MISCELLANEOUS DATA ON MATERIALS FOR MILLIMETRE AND SUBMILLIMETRE OPTICS

James W. Lamb

Institut de Radio Astronomie Millimétrique 300, Rue de la Piscine, Domaine Universitaire de Grenoble F-38406 St-Martin-D'Hères Cedex, France

Abstract

Several parameters of various materials, including solid and foam dielectrics, absorbers, and metals, are collected for use in optical design in the millimetre and submillimetre range. Although the list is not exhaustive it covers most of the important materials and parameters, and extensive references are given.

Key Words: Dielectrics, millimetrewaves, submilleterwaves, material properties

Introduction

In the design of optical systems for the millimetre and submillimetre wavelength range there are various materials available with suitable properties. Choice of materials depends on losses, dielectric constants, and frequently on low-temperature suitability for cryogenic applications. There have been many types of measurements of materials in the millimetre, submillimetre, and infrared wave bands which are of interest in optical design. No attempt has been made to be critical of the different measurement methods and it is left to the reader to judge the accuracy and appropriateness of the measurements from the original publications. The Tables give refractive index and absorption data for some of the dielectrics which are most important for optical design. Many more materials have been measured but these are often more for the understanding of the materials than for applications. More extensive lists of references for dielectrics are given by Simonis [1] and Birch [2]. Data are also given for metal reflectivities. Other physical properties which are useful in cryogenic optical design, such as thermal contraction and conductivity, are also tabulated.

Dielectric Parameters

The data are presented in terms of the real part of the dielectric constant, ϵ' , and the loss tangent, tan δ , which are commonly used by microwave engineers. The complex dielectric constant is

$$\hat{\boldsymbol{\epsilon}} = \boldsymbol{\epsilon}' - \boldsymbol{i} \boldsymbol{\epsilon}'' \tag{1}$$

where $i = \sqrt{-1}$, and

$$\tan \delta = \epsilon''/\epsilon \tag{2}$$

In millimetre optics it is perhaps more common to deal with the refractive index, n, (which is also tabulated here) and power absorption coefficient, α . These are related to the complex refractive index

$$\hat{\boldsymbol{n}} = \boldsymbol{n} - i\boldsymbol{k} \tag{3}$$

with

$$\alpha = 4\pi v k/c \tag{4}$$

c the speed of light, and v the frequency. For non-magnetic materials the two representations are related by

$$\epsilon' = n^2 - k^2 \qquad \epsilon'' = 2nk \qquad (5)$$

or, for low loss materials,

$$\epsilon' = n^2 \quad \tan \delta = 2k/n = \alpha c/2\pi n \nu$$
 (6)

Note that α is often given in units of cm⁻¹ or Np cm⁻¹. In the conventions of millimetrewave optics the neper (Np) is used as a measurement of power absorption (1 Np = 4.343 dB), in contrast to the normal electrical engineering definition in terms of amplitude.

Variability of Dielectric Properties

There are significant variations in the tabulated values for some of the materials. These arise from the measurement technique, the supplier, or the preparation of the material. Original references should be consulted for details. Generally there are larger discrepancies in the absorption coefficients than the refractive indices, since they are more difficult to determine and are relatively sensitive to material preparation (annealing, sintering, impurities, *etc.*). Several papers discuss the differences between measurement techniques [3][4][5], and a recent paper presents the measurements of the same samples by several different laboratories [6].

Temperature Dependence

Most of the measurements have been made at room temperature (~300 K), but there are fewer results at cryogenic temperatures. In some cases where measured data are not available the *Lorentz-Lorenz formula* [7]

$$\rho \propto \frac{\epsilon - 1}{\epsilon + 2} \tag{7}$$

relating the density, ρ , and dielectric constant may be used along with the known thermal contraction to estimate the dielectric constant at different temperatures. PTFE and HDPE lenses designed accordingly have shown correct focusing compared to lenses where the effect was not accounted for [8]. In that instance, computing the dielectric constant at 4.2 K using (7) corrected a 25 % beam broadening in a feed system with a PTFE lens, yet some published data show no change in refractive index [9][10]. In the design of a cryogenic lens both the change in dimensions and the change in refractive index need to be taken into account.

Absorption in some samples varies significantly with temperature and in other only slightly [11]. In the context of cryogenic low-noise optics probably the most significant benefit of cooling is the reduction of the thermal emission rather than the reduction of loss.

Metallic Reflection

There are few measurements on the resistivity of metallic reflectors at mm and sub-mm wavelengths. Cook *et al.* describe an apparatus at 337 GHz [12], but their measurements are preliminary and subject to comparison with an aluminum plate of unknown absolute reflectivity. In practice, losses at mm wavelengths are almost negligible. For sub-

millimetre wavelengths it may be sufficient to assume that the surface resistivity is twice as high as calculated from the nominal DC conductivity. Surface resistivity, R_s , related to conductivity, σ , by

$$R_s = 10.88 \times 10^{-3} \sqrt{\left(\frac{10^7}{\sigma}\right) \frac{1}{\lambda_0}}$$
(8)

 $(\lambda_0 \text{ in m}, \sigma \text{ in S m}^{-1})$. Surface roughness effects are discussed by Tischer [13] who indicates that when the roughness is greater than a skin depth the increase in effective surface resistivity is equal to the increase in area. The reflection loss is found (for normal incidence) from

$$f_L = \frac{R_s}{30\,\pi} \tag{9}$$

where f_L is the fraction of the power dissipated in the reflector.

Explanation of the Tables

It is difficult to ensure uniformity in the tabulations because of the different measurements and reporting of the various authors. Often the same material goes under different names (*e.g.*, PMMA, Perspex, Plexiglas, Lucite, *etc.*). A single name has been used and a cross-reference table provided. Where possible, manufacturers names have been included with the material designation or as a footnote. The nomenclature for SiO_2 materials is confusing as the names silica and quartz are both used. There are perhaps differences in naturally and synthetically produced SiO_2 so the original designations have been retained.

Table I: Dielectric constants for a number of homogeneous solids which have reasonably low losses.

Table II: Losses for foams and woven sheet materials. These are materials which are suitable for vacuum or environmental windows and infrared filters. Over the last few years there has been a change in the foaming gasses from ones which are harmful to ozone to more benign ones. This has corresponded to a significant increase in the absorption at millimetre wavelengths and the number of suitable foams has decreased dramatically. Materials which are known to be no longer available are not included in the table. Expanded polystyrene appears to be a transparent material, but there do not appear to be any definitive infrared transparency figures.

Dielectric constants are not given here, but an empirically derived formula for expanded foams has been given by Sanford [14] as follows

$$\epsilon_{r} = \frac{2}{5} (\epsilon_{r0})^{\frac{d}{d_{0}}} + \frac{3}{5} \left[1 + \frac{d}{d_{0}} (\epsilon_{r0} - 1) \right]$$
(10)

where, for polystyrene, $\epsilon_{r0} = 2.54$, $d_0 = 1.05$ g cm⁻³, and for polyethylene, $\epsilon_{r0} = 2.25$, $d_0 = 0.092$ g cm⁻³.

Table III: Absorption properties of some solids suitable for optical loads at room and cryogenic temperatures.

Table IV: Reflection and transmission losses of some commercially available free-space absorbers of various types.

Table V: Thermal contraction of some dielectrics which can be used for lens design, *etc.*

Table VI: Thermal conductivity at cryogenic temperatures for some dielectrics.

Table VII: Material cross-reference for dielectrics. Some materials are known under various common, chemical, or trade names. The most common are given in the table.

Table VIII: Guide to reflectivities of metals at millimetre wavelengths. For a description of the material preparation or surface condition the original references should be consulted.

Acknowledgements

I wish to thank the many people have contributed information in this compilation. In particular, I wish to mention Paul Goldsmith who made available a table due to be published in a quasioptics text, and also Nigel Keen who supplied a number of references.

Material	f	Т	n	<u>ل</u>	tan ~ 104	Ref.
	(GHz)	(K)			0* 10	
Acrylic 31	100	300	1.611	2.595	8.1	[15]
	200		1.609	2.590	11.0	
	300		1.609	2.590	13.5	
AlN: (Generic)	146	300	2.81-2.88	7.90-8.29	6-38	[16]
(Tokuyama Soda)	140	300	2.883	8.312	6.0	
Alumina:	100	300	3.0983	9.599	6.0	[4],[17]
(WESGO)	250		3.0975	9.595	11.5	
	400		3.0980	9.598	16.0	
Alumina:	100	300	3.1451	9.892	14.5	[4],[17]
(COORS)	250		3.1440	9.885	21.5	
	400		3.1451	9.892	26.0	
Alumina: (BK-99)	140	300	3.244-3.252	10.523-10.576	2.7-3.2	[16]
(22XC)	150		3.05-3.06	9.30-9.36	2.7-3.5	
Alumina	245	300	3.093	9.5666		[18]
Beryllia	245	300	2.6126	6.8256	7.4	[19]
Beryllia	30-900	293	2.588	6.700		[6]
	300				12	
Beryllia, Hot pressed	150	300	2.6732	7.1462	9.5	[4]
	300		2.6725	7.1425	22.6	
Beryllia:	100	300	2.5842	6.6780	16	[4],[17]
(Ceradyne Ceralloy 418s)	250		2.5833	6.6735	22	
	450		<u>2</u> .5824	6.6690	25	
Beryllia: (B97-1)	140	300	2.6-2.62	6.76-6.86	6-8	[16]
Beryllia	390	300	2.5871	6.693	11.5	[20]

Table I: Low-Loss Dielectric Materials

Material	f	Т	n	<u>ب</u>	tan ~ 10 ⁴	Ref.
	(GHz)	(K)		ţı)	0* 10	
BN	245	300	2.0727	4.2961	6.4	[19]
BN, Hot pressed ¹	141	300	1.783	3.179	14	[16]
	150	300	1.782	3.176	15	
BN, Pyrolitic	140	300	2.10-2.22	4.41-4.93	8-15	[16]
CaF ₂	140	300	2.609	6.807	19	[16]
Diamond, chemical vapour	120	300			100	[54]
deposition (CVD)	200		2.381	5.669	5	
	400		2.373	5.631		
	600		2.375	5.641		
	800		2.373	5.631		
Eccofoam SIL ²	22	300	1.71	2.91	260	[10]
		77	1.69	2.87	100	
Epoxy casting resin, 36DK ⁽²⁾	94	300	2.3845	5.685	42	[21]
Epoxy casting resin, 36DA ⁽²⁾	94	300	1.9950	3.980	14	[21]
Epoxy casting resin, 36D ⁽²⁾	94	300	1.5770	2.487	11	[21]
Epoxy casting resin, 36DS ⁽²⁾	94	300	1.3285	1.765	41	[21]
Epoxy casting resin, Eccosorb	100	4.8	1.87	3.50	315	[9]
CR110 ⁽²⁾	300	4.8	1.87	3.50	400	
	900	4.8	1.87	3.50	500	
	100	300	1.88	3.53	570	
	300	300	1.88	3.53	640	
	900	300	1.88	3.53	715	

¹ Not Homogeneous ² Emerson and Cuming, Inc

Material	f	Т	n	አ	tan $\propto 10^4$	Ref.
	(GHz)	(K)		ţii	0* 10	
Epoxy casting resin, Stycast	100	4.8	2.00	4.00	20.8	[9]
2850FT ⁽²⁾	300	4.8	2.00	4.00	88	
	900	4.8	2.00	4.00	330	
	100	300	2.28	5.20	65	
	300	300	2.28	5.20	275	
	900	300	2.28	5.20	1040	
Epoxy-Araldit CY 209, HY 951 ³	22	300	1.72	2.96	230	[10]
		77	1.69	2.87	41	
Epoxy-Araldit CY 220, HY	22	300	1.72	2.97	250	[10]
951 ⁽³⁾		77	1.70	2.89	42	
Epoxy-Araldit D, HY 951 ⁽³⁾	22	300	1.73	2.99	240	[10]
		77	1.70	2.90	39	
Epoxy-Araldit F, HY 951 ⁽³⁾	22	300	1.76	3.08	340	[10]
		77	1.70	2.90	43	
Epoxy-LMB 1386, HY 951 ⁽³⁾	22	300	2.08	4.33		[10]
Epoxy-LMB 1386,						[10]
LMB 1387, Mixed by wgt.	22	300	2.09	4.38	110	
DY $067^{(3)}$ Mixed by vol.	22	300	2.13	4.55	110	
		77	2.11	4.45	60	
Epoxy, Araldite	80-105	300	2.90	8.41	200	[22]
Epsilam-10	150	290	3.20	10.2	20	[23]
	600		3.25	10.2	50	
	900		3.25	10.2	130	

³ Ciba-Geigy

Material	f	Т	n	<u>ь</u>	$\tan \propto 10^4$	Ref.
	(GHz)	(K)		ţı)	0* 10	
Ethyl cellulose	25	300	1.628	2.65	300	[24]
Ethyl cellulose	140	300	1.926	3.71	1000	[25]
Ferroflow	150	290	3.58	12.6	2700	[23]
	300		3.45	11.3	2800	
	600		3.30	10.6	3000	
Ferroflow	30-900	293	3.6	13.0		[6]
	300				3200	
Fluorogold: Parallel to grain	150	293	1.625	2.641	77	[26]
"	300		1.625	2.641	77	
"	600		1.630	2.657	125	
"	900		1.632	2.663	265	
Perpendicular to grain	150		1.602	2.566	40	
"	300		1.602	2.566	59	
"	600		1.606	2.579	110	
"	900		1.610	2.592	210	
Fluorogold	300-900	300	-	-	_4	[27]
Fluorogold, rod	100	4.8	1.68	2.82	0.6	[9]
_	300	4.8	1.68	2.82	13	
	900	4.8	1.68	2.82	230	
	100	300	1.70	2.89	12	
	300	300	1.70	2.89	64	
	900	300	1.70	2.89	295	

⁴ Strong dichroism

Material	f	Т	n	<u>k</u>	$\tan \propto 10^4$	Ref.
	(GHz)	(K)		(1)	0* 10	
Fluorosint	150	6	1.881	3.538	<8	[28]
	300	6	1.881	3.538	231	
	600	6	1.885	3.553	76	
	150	77	1.878	3.527	<8	
	300	77	1.879	3.531	21	
	600	77	1.884	3.549	87	
	150	295	1.872	3.504	17	
	300	295	1.873	3.508	42	
	600	295	1.876	3.519	115	
Fused silica, 85% density, slip	94	300	1.814	3.29	26	[29]
cast						
Fused silica QU:			1.958	3.8338	14-15	[16]
QV:	150	300	1.953	3.8142	5.5-7.1	
QI:			1.952	3.8103	5-5.3	
Fused silica, slip cast	50	300	1.81	3.28		[30]
_	400				1.7	
	500				2.7	
	600				3.6	
	700				5.1	
	800				5.9	
	900				6.2	
	1000				6.4	

Material	f	Т	n	<u>k</u>	$\tan \propto 10^4$	Ref.
	(GHz)	(K)		ţii	0* 10	
Fused silica, Titanium silicate	120	300	1.9992	3.9968	12	[4]
with $7\% TiO_2^5$	250		1.9983	3.9932	22	
	360		1.9983	3.9932	22	
Fused silica: (Spectrosil)	10	300	1.944	3.78	1.7	[24]
Fused silica: (Spectrosil)	60-90	300	1.954	3.82		[31]
Fused silica: (Dynasil 4000)	245	300	1.955	3.822	18.0	[19]
Fused silica: (Spectrosil WF)	245	300	1.9516	3.8087	8.0	[19]
Fused silica	393	300	1.9469	3.801	12.87	[20]
Fused silica: (Spectrosil)	2-300	300	1.962	3.85	1	[32]
Germanium,	890	300	3.9904	15.923	14.4	[33]
Crystalline						
Germanium,	900	300	4.006	16.048	1.3	[34]
Crystalline	900	1.5	3.928	15.429	1.4	
	1200	300	4.006	16.048	2.0	
	1200	1.5	3.928	15.429	1.0	
Glass, Cover slip	100	4.8	2.42	5.86	6.0	[9]
	300	4.8	2.42	5.86	110	
	900	4.8	2.42	5.86	1500	

⁵ Corning

Material	f	Т	n	<u>k</u>	tan ~ 10 ⁴	Ref.
	(GHz)	(K)		ţii	0* 10	
Glass, Pyrex ⁽⁵⁾	100	4.8	2.08	4.33	4.2	[9]
	300	4.8	2.08	4.33	53	
	900	4.8	2.08	4.33	530	
	100	300	2.11	4.45	125	
	300	300	2.11	4.45	255	
	900	300	2.11	4.45	494	
Glass, Pyrex ⁽⁵⁾	400	300			28	[30]
	600				40	
Glass, Schott	100	4.8		4.33	1.8	[9]
	300	4.8	2.08	4.33	36	
	900	4.8	2.08	4.33	560	
Glass ⁽⁵⁾ 7070	25	300	1.97	3.9	31	[24]
Glass ⁽⁵⁾ 7070	2-300	300	2.0	4.0	24	[32]
HDPE	156	300			2.5	[35]
HDPE	160	290	1.5246	2.3244	3.1	[36]
	300		1.5247	2.3247	3.9	
	450		1.5246	2.3245	4.1	
	600		1.5247	2.3247	4.0	
	970		1.5245	2.3242	6.3	
HDPE	300	300			2.1	[37]
	600				3.9	
	900				5.2	
	1200				6.5	
HDPE	890	300	1.4711	2.1641	9.7	[33]
HDPE	1900-13000	293	1.5304-1.5320	2.3422-2.3472	8.6-30	[38]

Material	f	Т	n	h	$\tan_{\infty 10^4}$	Ref.
	(GHz)	(K)		(1)	0* 10	
HDPE	26-40	300	1.53	2.34		[39]
	26-40	77	1.51	2.29		
HDPE	300-900	4.2	1.567	2.455		[40],[41
		20	1.566	2.452]
		60	1.565	2.449		
		120	1.560	2.434		
		200	1.549	2.399		
		295	1.525	2.326		
LDPE	156	300			2.7	[35]
LDPE	160	290	1.5141	2.2923	3.1	[36]
	300		1.5141	2.2924	2.8	
	450		1.5139	2.2918	3.9	
	600		1.5137	2.2913	4.5	
	1000		1.5136	2.2911	6.8	
LDPE	1875-13700	293	1.5131-1.5139	2.2894-2.2920	5.5-13	[38]
LDPE	300-900	4.2	1.556	2.421		[40],[41
		20	1.555	2.418]
		60	1.554	2.415		
		120	1.548	2.396		
		200	1.537	2.362		
		295	1.514	2.292		
Macor	100	300	2.382	5.673	15.0	[4]
	200		2.377	5.648	20.0	
	300		2.377	5.648	25.0	

Material	f	Т	n		tan ~ 10 ⁴	Ref.
	(GHz)	(K)		ţn	0* 10	
Macor	150	290	2.37	5.62	135	[23]
	450		2.37	5.61	313	
	750		2.38	5.66	340	
	900		2.38	5.65	900	
Macor	30-900	293	2.38	5.66		[6]
	300				23	
Macor	390	300	2.3799	5.664	269	[20]
MgAl ₂ O ₄ Spinel	100	300	2.89420	8.3764	5.0	[4],[17]
	200		2.89454	8.3784	9.0	
	300		2.89430	8.3770	11.5	
Neoprene, Sheet	100	4.8	2.4	5.76	500	[9]
_	300	4.8	2.4	5.76	630	
	900	4.8	2.4	5.76	790	
Nickel ferrite	245	300	3.7298	13.911	17.4	[19]
Nylon	50	300	1.791	3.21		[30]
	400				16	
	450		1.778	3.16		
	500				22	
	600				26	
Nylon	100	4.8	1.72	2.99	-	[9]
	300	4.8	1.72	2.99	-	
	900	4.8	1.72	2.99	-	
Nylon	100	300	1.730	2.993	8.8	[15]
	200		1.729	2.993	12.5	
	300		1.729	2.995	16	

Material	f	Т	n	<u>ь</u>	$\tan \propto 10^4$	Ref.
	(GHz)	(K)		ţıı	0* 10	
Nylon	150	290	1.7267	2.9814	101	[36]
	300		1.7266	2.9812	170	
	450		1.7268	2.9814	250	
Paraffin	22	300	1.51	2.27	3	[10]
Paraffin	25	300	1.48	2.2	<3	[24]
Paraffin	120	300	1.480	2.19	27	[42]
	168	300	1.48	2.2	13.5	
Paraffin	2-300	300	1.52	2.3	10	[32]
Parylene N	6000-15000	300	1.446	2.07	300-700	[43]
PE	25	300	1.497	2.24	2.1	[24]
PE	71	300	1.510	2.28		[30]
	400				1.7	
	450		1.506	2.27		
	500				1.9	
	600				1.5	
	700				1.4	
	800				1.3	
	900				1.3	
	1000				1.3	
PE	100	300	1.5185	2.3058	3.7	[15]
	200		1.5183	2.3053	4.2	
	300		1.5182	2.3048	4.2	

⁶ Difference compared to manufacturesrs optical data of 1.62 possibly due to impurities.

Material	f	Т	n	*	$\tan \propto 10^4$	Ref.
	(GHz)	(K)		ţn	0* 10	
PE	143	300	1.520	2.31		[44]
	343		1.520	2.31		
PE	393	300	1.531	2.343	3.72	[20]
PE	850	300	1.526	2.33	4	[29]
PE	1000	298	1.5200	2.3104	14	[45]
	3000		1.5200	2.3104	14	
	5000		1.5200	2.3104	6	
PE	30-900	293	1.512-1.526	2.286-2.329	0-7	$[6]^7$
PETP	55	300	1.733	3.145	44	[46]
PETP	140	300	1.830	3.35	100	[25]
PETP	890	300	1.83	3.35	264	[47]
PMMA	25	300	1.603	2.57	32	[24]
PMMA	25	300	1.609	2.59	67	[24]
PMMA	71	300	1.615	2.61		[30]
	400				20	
	450		1.619	2.62		
	500				20	
	600				36	
PMMA	100	300	1.608	2.585	8.1	[15]
	200		1.607	2.582	11.0	
	300		1.607	2.582	13.5	

⁷ Inter-laboratory comparison measurements

Material	f	Т	n	<u>k</u>	$\tan \propto 10^4$	Ref.
	(GHz)	(K)		ţ11	0* 10	
PMMA	100	4.8	1.57	2.46	27	[9]
	300	4.8	1.57	2.46	90	
	900	4.8	1.57	2.46	270	
	100	300	1.60	2.56	6.0	
	300	300	1.60	2.56	15.7	
	900	300	1.60	2.56	38	
PMMA	120	300	1.609	2.59	75	[42]
	168	300			89	
PMMA	140	300	1.600	2.56		[25]
	210		1.606	2.58		
PMMA	143	300	1.613	2.60		[44]
	343		1.615	2.61		
PMMA	150	290	1.6090	2.5887	89	[36]
	300		1.6081	2.5861	146	
	450		1.6061	2.5791	214	
PMMA	245	300	1.616	2.612		[18]
PP	35	300	1.50	2.25		[31]
РР	100	300	1.5017	2.2550	7.3	[15]
	200		1.5016	2.2549	6.2	
	300		1.5015	2.0545	5.2	
РР	120	300			5.3	[48]
РР	156	300			6.5	[35]

Material	f	Т	n	<u>ل</u>	$\tan \propto 10^4$	Ref.
	(GHz)	(K)		ţn	0* 10	
PP	1500-12000	290	1.4970-1.4983	2.241-2.245	57-110 ⁸	[49]
PP, Sintered	890	300	1.4875	2.2127	30.1	[33]
PS	25	300	1.594	2.54	12	[24]
PS	71	300	1.54	2.37		[30]
	400				3	
	450		1.57	2.48		
	600				5	
	1000				7	
PS	120	300			13	[42]
	168	300			25	
PS	143	300	1.600	2.56		[44]
	343		1.603	2.57		
PS	150	290	1.5925	2.5361	18	[36]
	300		1.5920	2.5345	27	
	450		1.5916	2.5331	36	
	600		1.5910	2.5312	44	
	900		1.5897	2.5277	48	
PS	850	300	1.587	2.52	9	[29]
PS	1640-13000	290	1.583-1.593	2.505-2.537	8.8-53	[49]

⁸ Several absorption peaks

Material	f	Т	n	<u>k</u>	$\tan \propto 10^4$	Ref.
	(GHz)	(K)		ţn	5 * 10	
PS	300-900	4.2	1.620	2.624	,	[40],[41
		20	1.619	2.621]
		60	1.617	2.615		
		120	1.616	2.611		
		200	1.603	2.570		
		295	1.591	2.531		
PTFE ¹⁰	22	300	1.40	1.96	5	[10]
		77	1.40	1.96	3	
PTFE	25	300	1.442	2.08	6	[24]
PTFE	35	300	2.058	1.73	3	[50]
PTFE	71	300	1.45	2.10		[30]
	400				4	
	450		1.41	1.99		
	600				2	
	1000				2	
PTFE	94	300	1.4370	2.065	2.1	[21]
PTFE	100	4.8	1.44	2.07	-	[9]
	300	4.8	1.44	2.07	-	
	900	4.8	1.44	2.07	-	
PTFE	100	300	1.4389	2.0701	5.3	[15]
	200		1.4386	2.0797	6.2	-
	300		1.4385	2.0794	6.8	

⁹ Small change in absorption with temperature ¹⁰ Dupont, Inc.

Material	f	Т	n	<u>ل</u>	$\tan \propto 10^4$	Ref.
	(GHz)	(K)		ţn	0* 10	
PTFE	140	300	1.432	2.05	30	[25]
	210		1.442	2.08		
PTFE	143	300	1.439	2.07		[44]
	343		1.439	2.07		
PTFE	150	290	1.4330	2.0535	2.9	[36]
	300		1.4330	2.0535	2.8	
	450		1.4330	2.0535	6.1	
	1000		1.4330	2.0535	15	
PTFE	156	300			3.6	[35]
PTFE	850	300	1.429	2.042	7	[29]
PTFE	890	300	1.4333	2.0543	13.1	[33]
PTFE	1600-5700	290	1.440-1.478	2.074-2.187	24-16011	[49]
PTFE, Sintered	300	300			4.4	[37]
	600				11	
	900				20	
	1200				22	
PTFE, Unsintered	35	300	1.396	1.950		[51]
PTFE, Unsintered	35	300	1.397	1.952	0.5	[52]
PTFE, Unsintered	300	300			<1	[37]
	600				5	
	900				13	
	1200				15	
Quartz, Crystalline	245	300	2.107	4.439		[18]

 $^{\rm 11}$ Strong absorption band above 6000 GHz

		0					D 4
Material		f	Т	n	ሕ	$\tan \propto 10^4$	Ref.
		(GHz)	(K)				
Quartz, Crystalline		390	300	2.1059	4.435		[20]
Quartz, Crystalline		890	300	2.1133	4.4660	2.5	[33]
Quartz, Fused	(Herasil)	94	300	1.8738	3.511	10	[21]
Quartz, Fused		245	300	1.951	3.806		[18]
Quartz:	0	245	300	2.1059	4.4348	1.0	[19]
	E			2.1533	4.6367	1.4	
Quartz:	Е	30-900	293	2.154	4.640		[6]
		300				2	
Quartz:	0	35	300	2.105	4.43	0.31	[51]
Quartz:	0	140	300	2.1076	4.4420	5.1	[16]
	E			2.1550	4.6440	2.4	
Quartz:	0	900	300	2.113	4.465	8	[34]
		900	1.5	2.110	4.452	8	
		1200	300	2.115	4.473	7.5	
		1200	1.5	2.111	4.456	7.5	
	E	900	300	2.156	4.648	0.5	
		900	1.5	2.142	4.588	0.3	
		1200	300	2.157	4.653	0.7	
		1200	1.5	2.144	4.597	0.2	
Quartz:	0	30-900	293	2.106	4.435		[6]
		300				2	
Rexolite		10	300	1.594	2.54	5	[24]

Material	f	Т	n	<u>ل</u>	$\tan \propto 10^4$	Ref.
	(GHz)	(K)		ţn	0* 10	
Rexolite	71	300	1.61	2.58		[30]
	400				1	
	450		1.58	2.52		
	600				3	
	1000				5	
Rexolite	94	300	1.5987	2.556	2.6	[21]
Rexolite	140	300	1.572	2.47	20	[25]
	210		1.581	2.50		
Rexolite	143	300	1.562	2.44		[44]
	343		1.594	2.54		
Rexolite	390	300	1.5912	2.532	27.4	[20]
Rexolite	850	300	1.589	2.525	30	[29]
Rexolite	30-900	293	1.586-1.64	2.515-2.69		[6]
	150				10	
	300				20	
	600				35	
	900				47	

-	Material	f	Т	n	<u>ь</u>	$\tan \propto 10^4$	Ref.
		(GHz)	(K)		(1)	0* 10	
Sapphire		36	300			0.2	[53]
			150			0.07	
			100			0.003	
			70			0.0007	
			10			0.00003	
			4			0.000002	
		72	300			0.4	
			150			0.2	
			100			0.01	
			70			0.002	
			10			0.00009	
			4			0.0001	
Sapphire	(HEMLITE)	100	300	3.065	9.395	4.6	[54]
		200		3.065	9.393	6.5	
		350		3.065	9.393	9.4	
Sapphire	(HEMLUX)	100	300	3.094	9.574	4.8	[54]
		200		3.094	9.572	6.9	
		350		3.094	9.571	9.0	
		90	6.5			1.4	
		90	35			0.7	
		90	77			1.9	
		90	300			1.5	
		180	6.5			4.2	
		180	35			5.0	
		180	77			4.85	
		180	300			5.75	

Ma	terial	f	Т	n	5	tan ~ 10 ⁴	Ref.
		(GHz)	(K)		(1)	0* 10	
Sapphire,	0	140	300	3.066-3.071	9.400-9.431	2.1-2.5	[16]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0 _E	140		3.400-3.405	11.560-11.594	1.1-1.4	
Sapphire:	0	900	300	3.069	9.419	17	[34]
		900	1.5	3.052	9.315	1.7	
	E	900	300	3.415	11.662	30	
		900	1.5	3.372	11.370	1.6	
Sapphire, z-cut		100	300	3.06396	9.3879	4.5	[4],[17]
		200		3.06356	9.3854	6.0	
		300		3.06350	9.3850	8.0	
Scotchcast 830		22	300	1.74	3.03	210	[10]
			77	1.71	2.92	51	
Silicon		100	300	3.4464	11.878	19	[4]
		250		3.4471	11.883	7.5	
		400		3.4469	11.881	5.0	
Silicon		245	300	3.4182	11.684	7.6	[19]
Silicon		900	300	3.4155	11.666	6	[34]
		900	1.5	3.3818	11.437	1.6	
Silicon:	(ICHPS RAN.)	150	300	3.424	11.72	0.24	[16]
	(Wacker Ch.)			3.421-3.424	11.70-11.72	0.7-1.1	
Silicon		30-300	290	3.416-3.423	11.669-11.717		
Silicon	(HR-Si)	50	290			2.0	[55]
	× ,	100				1.4	
		150				0.8	
		200				0.6	
		250				0.5	
		300				0.4	

	Material	f	Т	n	<u>k</u>	$\tan_{10^4}$	Ref.
		(GHz)	(K)		(11	<b>U</b> * 10	
Silicon	(eHR-Si)	150	290			0.35	[55]
		200				0.25	
		250				0.20	
		300				0.20	
Silicon	(HP-Si;dLR-Si)	70	290			0.50	[55]
		100				0.36	
		150				0.25	
		200				0.20	
		250				0.15	
		300				0.10	
Silicon	(HR-Si)	145	330			0.7	[55]
			290			0.7	
			150			1.3	
			100			1.1	
Silicon	(HP-Si)	145	290			0.28	[55]
			150			0.72	
			100			0.80	
			70			0.5	
Silicon	(eHR-Si)	145	330			0.40	[55]
			290			0.23	
			150			0.13	
			100			0.15	
			70			0.15	

	Material	f	Т	n		tan ~ 10 ⁴	Ref.
		(GHz)	(K)		(1)	0* 10	
Silicon	(dLR-Si)	145	330			0.05	[55]
			290			0.20	
			150			0.08	
			100			0.09	
			70			0.08	
Silicon	1 500	100	298	11.697	3.420	17	[56]
	™¢m	200		11.687	3.419	10	
		300		11.685	3.418	8	
		400		11.686	3.418	9	
Silicon	2 000	100	298	11.678	3.417	17	[56]
	æm	200		11.678	3.417	11	
		300		11.678	3.417	8	
		400		11.678	3.417	9	
Silicon	11 000	200	298	11.655	3.414	1	[56]
	æm	300		11.655	3.414	2	
		400		11.655	3.414	3	
Teflon-Ver	rgussmasse	22	300	1.73	3.00	190	[10]
			77	1.71	2.92	48	
TPX		35	300	1.470	2.126	4.8	[51]
TPX		94	300	1.4659	2.149	9	[21]
TPX		100	300	1.4587	2.1276	6.4	[15]
		200		1.4583	2.1266	8.1	
		300		1.4581	2.1262	8.4	
TPX		120	300			7.6	[48]
ТРХ		156	300			6.1	[35]
TPX		245	300	1.459	2.129		[18]

Material	f	Т	n	<u>ل</u>	$\tan \propto 10^4$	Ref.
	(GHz)	(K)		ţn	0* 10	
TPX	300	290	1.4600	2.1316	6.0	[36]
	450		1.4600	2.1316	6.8	
	1000		1.4600	2.1316	11	
TPX	890	300	1.4583-1.4585	2.1266-2.1272	10.7-10.6	[33]
TPX	900-12600	293	1.4555-1.4568	2.1182-2.1222	6.5-(>20) ¹²	[57]
TPX	1000	298	1.4563	2.1208	13	[45]
	3000		1.4557	2.1191	13	
	5000		1.4559	2.1196	5	
TPX	300-900	4.7	1.475	2.176		[58],[41
		77	1.475	2.176		]
		100	1.474	2.173		
		210	1.466	2.149		
		290	1.458	2.162		
TPX, Sheet.	100	4.8	1.42	2.02	11.2	[9]
	300	4.8	1.42	2.02	11.2	
	900	4.8	1.42	2.02	11.2	
	100	300	1.43	2.04	-	
	300	300	1.43	2.04	-	
1	900	300	1.43	2.04	-	

¹² Several absorption bands. Strongest absorption at 12300 GHz

Material	f	Т	n	Å	$\tan \propto 10^4$	Ref.
	(GHz)	(K)			0* 10	
YAG	72	300			0.4	53
		150			0.2	
		100			0.03	
		70			0.007	
		10			0.001	
		4			0.001	
ZnSe	100	300	3.0158	9.087	19	[4]
	250		3.0155	9.092	27	
	350		3.0166	9.100	28	
ZnSe	890	300	3.1246	9.7631	33.1	[33]

# Table II: Foam and Fabric Dielectrics

Material	Chara	octeristics	f	Loss ¹³	Ref.
			(GHz)		
Gore-Tex, cloth	Expanded PTF	E, 2×2 basket	120	1	[59]
	weave, with la	minated film	300	4	
			600	10	
			900	18	
			1200	33	
Dylite ¹⁴	Expanded	0.92 lb ft ⁻³	200	0.0018	[60]
	PS foam:	$(17.8 \text{ kg m}^{-3})$	230	0.0045	
			260	0.0045	
		1.26 lb ft ⁻³	200	0.0035	
		$(20.2 \text{ kg m}^{-3})$	230	0.0055	
			260	0.0075	
		1.33 lb ft ⁻³	200	0.0035	
		(21.3 kg m ⁻³ )	230	0.0055	
			260	0.0075	
		1.84 lb ft ⁻³	200	0.0091	
		$(29.5 \text{ kg m}^{-3})$	230	0.011	
			260	0.013	
Styrodure ¹⁵ , Green		38 kg m ⁻³	320	0.030	[61]
Wallmate S1-E, Blue		34 kg m ⁻³	320	0.020	[61]

Table III: Solid Absorbers

Material	f	Т	n	α	Ref.
	(GHz)	(K)		(Np cm ⁻¹ )	
CR110 ¹⁶	36	300		1.2	[62]
	94			2.0	
	250			7.1	
	670			9.7	
	2550			>15	
CR110 ⁽¹⁶⁾	36	80		0.83	[62]
	94			1.3	
	250			4.7	
	2550			11.5	

¹³ Losses given in % for cloths, Np cm⁻¹ for foams.
¹⁴ Radva Corporation, Radford, VA.
¹⁵ BASF

¹⁶ Emerson and Cuming, Inc.

Material	f	Т	n	α	Ref.
	(GHz)	(K)		(Np cm ⁻¹ )	
CR112 ⁽¹⁶⁾	36	300		6.0	[62]
	94			6.5	
	250			>15	
	670			>13	
CR112 ⁽¹⁶⁾	36	80		4.4	[62]
	94			5.5	
CR114 ⁽¹⁶⁾	36	300		7.7	[62]
	94			9.0	
	250			>15	
	670			>13	
CR117 ⁽¹⁶⁾	36	300		10.5	[62]
	94			11	
	250			>15	
	670			>13	
CR110 ⁽¹⁶⁾	100-300	1.2	1.93		[63]

Table IV: Foam Absorbers

Material	Geometry	f	Т	R	Ref.
		(GHz)	(dB)	(dB)	
Eccosorb ANP-73 ¹⁷ Gold side	flat	85	22	11	[64]
White side		85	23	5.5	
Eccosorb AN-72 ⁽¹⁷⁾ Gold side	flat	85	24	17.5	[64]
White side		85	24	18.5	
Eccosorb VHP-94-1 ⁽¹⁷⁾	pyramid	80	>40	>20	[65]
		115	>40	>15	
Eccosorb VHP-94-2 ⁽¹⁷⁾	pyramid	80	>50	>25	[65]
		115	>50	>15	
Eccosorb AN-72 ⁽¹⁷⁾ White side	flat	80	>15	>12	[65]
		115	>20	>6	
Eccosorb CV-3 ⁽¹⁷⁾	egg box	80	>50		[65]
		115	>50		
APM3 ¹⁸ , unpainted	pyramid	80			[65]
		115			
APM3 ⁽¹⁸⁾ , painted	pyramid	80		>20	[65]
		115		>17	
APM5 ⁽¹⁸⁾ , unpainted	pyramid	80	>25	>30	[65]
-		115	>30	>30	

¹⁷ Emerson and Cuming, Inc.
 ¹⁸ Hyfral

APM5 ⁽¹⁸⁾ , painted	pyramid	80	>27	>25	[65]
		115	>33	>20	
Thomas Keating Absorber	pyramid	80		>20	[65]
		115		>25	
LAO5 ¹⁹	flat	80		>20	[66]
		115		>20	
LAO12 ⁽¹⁹⁾	flat	80		>15	[66]
		115		>20	
AF40 ⁽¹⁹⁾	flat	80		>27	[66]
		115		>30	

# Table V: Thermal Expansion

Total contraction in % from 300 K to temperature T as  $(\ell_{300 \text{ K}} - \ell_T)/\ell_{300 \text{ K}}$ 

Material	4.2 K	20 K	80 K	200 K	Ref.
Epoxy, CY221/HY979 ⁽³⁾	1.14	1.14	1.03	0.57	[67]
HDPE	2.02	2.01	1.89	1.05	[67]
Nylon	1.32	1.30	1.07	0.93	[68]
PETP	1.24	1.24	1.09	0.53	[67]
PMMA	1.07	1.05	0.93	0.50	[67]
PP	1.25	1.25	1.15	0.62	[67]
PS	1.44	1.43	1.27	1.07	[67]
PTFE	1.86	1.86	1.76	0.91	[67]
Pyrex	0.04	0.04	0.04	0.01	[68]
Quartz, fused	-0.015	-0.015	0.000	0.003	[68]

Table VI: Thermal Conductivity at Cryogenic Temperatures

Material	Т	k	Ref.
	(K)	(W cm ⁻¹ K ⁻¹ )	
Epoxy Resin, MF110	15	1.4	[69]
Epoxy Resin, MF114	15	1.9	[69]
Glass, Pyrex	85	5.3	[70]
	200	8.4	
	300	10	
Nylon	4	0.13	[70]
	20	1.0	
	100	2.5	

¹⁹ GEC Marconi

Material	Т	k	Ref.
	(K)	(W cm ⁻¹ K ⁻¹ )	
PE	4	0.11-0.26	[70]
	20	1.1-4.6	
	100	3.6	
	300	3.1-3.3	
PETP	30	0.6	[70]
	100	1.1	
	300	1.2	
PMMA	4	0.56	[70]
	20	0.72	
	80	1.5	
	300	2.0	
PS	4	0.35	[70]
PTFE	5	0.56	[70]
	20	1.4	
	80	2.0-2.3	
	300	2.2	
Quartz, fused	4	0.95-1.3	[70]
	20	1.3-1.5	
	80	4.7-6.0	

 Table VII:
 Material Cross-Reference

Material	Comments
Acrylic	Polymethacralate
Alumina	Al ₂ O ₃
Beryllia	Beryllium oxide, BeO
BN	Boron nitride
CFRP	Carbon-fibre reinforced plastic
Epsilam-10	Ceramic powder filled TFE resin: 3M Company
Ferroflow	Castable microwave absorber: Microwave Filter Company Inc.
Fluorogold	PTFE filled with glass grains. Reg. trademark of Fluorocarbon Inc.
Fluorosint	PTFE alloyed with mica: Polymer Corporation USA & Polypenco
	Companies
Fused silica	Silica glass, SiO ₂
HDPE	High density polyethylene
LDPE	Low density polyethylene
Macor	Machinable glass ceramic (code 9658), Corning
Nylon	Polyamide
Parylene N	Poly para-xylene, Union Carbide
PE	Polyethylene
PETP	Polyethylene tetephthalate; Mylar (US), Melinex (UK)
PMMA	Polymethyl methacrylate: Perspex (US), Plexiglas (UK), Lucite
PP	Polypropylene

Material	Comments
PS	Polystyrene
PTFE	Polytetrafluoroethylene
Quartz: O	Ordinary ray
Е	Extraordinary ray
Rexolite	Cross linked polystyrene
Sapphire	Al ₂ O ₃
Fused silica	QU - For ultraviolet; QV - For visible; QI - For infrared
Spectrosil	Fused silica: Thermal American Fused Quartz Co; WF: Water-free
TPX	A poly 4-methyl 1-pentene
Teflon	Treated PTFE
YAG	Yttrium Aluminium Garnet

Table VIII: Metallic Reflector Conductivities

Material	f	Т	$\sigma_{\rm eff}$	Ref.
	(GHz)	(K)	$(10^7 \text{ S m}^{-1})$	
Aluminium	9	300	1.7	[71]
Aluminium, pure	24	300	1.97	[72]
Aluminium, pure	0	300	3.25	[72]
Aluminium 6061-T6, polished	260	300	1.2	[73]
Aluminium on glass ²⁰	260	300	1.7-2.3	[73]
Aluminium on CFRP ⁽²⁰⁾	260	300	0.3-1.6	[73]
Aluminium, bulk	377	300	1.6	[74]
Aluminium, film	377	300	2.7-4.6	[74]
Aluminium, pure	790	200	3.0	[75]
Aluminium, Alloy A5052	790	200	2.0	[75]
Bismuth, 500 nm on aluminium	260	300	0.37	[73]
Brass, free machining	0	300	1.48	[72]
Brass, free machining	24	300	1.11	[72]
Brass, yellow (80-20)	0	300	1.57	[72]
Brass, yellow (80-20)	24	300	1.45	[72]
Brass	260	300	0.96	[73]
Copper ²¹	337	300	7.8	[12]
Copper	35	300	4.5	[12]
Copper, electroformed	0	300	5.92	[72]
Copper, electroformed	24	300	3.15	[72]
Copper, plate	24	300	2.28-1.81	[72]
Copper, plate	0	300	5.92	[72]
Copper, bulk	337	300	1.8-4.6	[74]

²⁰ Variation over several samples²¹ Measured relative to an Al plate.

Material	f	Т	$\sigma_{\rm eff}$	Ref.
	(GHz)	(K)	$(10^7 \text{ S m}^{-1})$	
Gold, 0.5 $\mu$ m on quartz ⁽²¹⁾	337	300	2.06	[12]
Gold, evaporated	890	300	0.83	[76]
Gold, plate	24	300	1.87	[72]
Gold on glass	260	300	2.5	[73]
Phosphor-bronze	790	200	1.0	[75]
Gold, plate	0	300	4.10	[72]
Gold, film	337	300	1.3-2.7	[74]
Molybdenum	337	300	0.8-1.3	[74]
Silver; coin, drawn	24	300	2.92	[72]
Silver; coin, drawn	0	300	4.79	[72]
Silver; Fine, machined	24	300	2.92	[72]
Silver; Fine, machined	0	300	6.14	[72]
Silver; Plate	24	300	3.98-2.05	[72]
Silver; Plate	0	300	6.14	[72]
Stainless Steel, 304 ⁽²¹⁾	337	300	0.09	[12]
Stainless Steel	890	200	0.17	[75]
Tantalum ⁽²¹⁾	337	300	0.58	[12]

#### References

- [1] G. J. Simonis, "Index to the literature dealing with the near-millimeter wave properties of materials," *Int. J. Infrared Millimeter Waves*, vol. 3, no. 4, pp. 439-469, 1982.
- [2] J. R. Birch, "A bibliography on dispersive Fourier Transform spectrometry, 1963-1968", NPL Report DES 93, Mar. 1989.
- [3] J. R. Birch and R. N. Clarke, "Dielectric and optical measurements from 30 to 1000 GHz," *The Radio and Electronic Engineer*, vol. 52, no. 11/12, pp. 565-584, Nov./Dec. 1982.
- [4] M. N. Afsar and K. J. Button, "Millimeter-wave dielectric measurement of materials," *Proc. IEEE*, vol. 73, no. 1, pp. 131-153, Jan. 1985.
- [5] J. Chamberlain, "Submillimeter-wave techniques," *High Frequency Dielectric Measurements*, p. 105 IPC Science and Technology Press Ltd., 1972
- [6] J. R. Birch, G. J. Simonis, M. N. Afsar, R. N. Clarke, J. M. Dutta, H. M. Frost, X. Gerbaux, A. Hadini, W. F. Hall, R. Heidinger, W. W. Ho, C. R. Jones, F. Königer, R. L. Moore, H. Matuso, T. Nakano, W. Richter, K. Saki, M. R. Stead, U. Stumper, R. S. Vigil and T. B. Wells, "An intercomparison of measurement techniques for the determination of the dielectric properties of solids at near millimeter wavelengths," *IEEE Trans. Microwave Theory Tech.*, vol. 42, no. 6, pp. 956-965, Jun. 1994.
- [7] M. Born and E. Wolf: *Principles of Optics*, Oxford: Pergamon Press, 1980.
- [8] J. W. Lamb and J. M. Payne: Private communication.
- [9] M. Halpern, H. P. Gush, E. Wishnow, and V. De Cosmo, "Far infrared transmission of dielectrics at cryogenic and room temperatures: glass, Fluorogold, Eccosorb, Stycast and various plastics," *Appl. Opt.*, vol. 25, no. 4, pp. 565-570, Feb. 1986.
- [10] R. W. Haas and P. W. Zimmerman, "22-GHz measurements of dielectric constants and loss tangents of castable dielectrics at room and cryogenic temperatures," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-24, no. 11, pp. 882-883, Nov. 1976.

- [11] W. Meyer, "Variation of dielectric microwave losses in polyethylene as a result of different sample treatments," in *Nonmetallic Materials and Composites*, A. F. Clark, R. P. Reed, and G. Hartwig (Eds), Plenum: New York, 1979.
- [12] J. D. Cook, J. W. Zwart, K. J. Long, V. O. Heinen, and N. Stankiewicz, "An experimental apparatus for measuring surface resistance in the submillimeterwavelength region," *Rev. Sci. Instrum.*, vol. 62. no. 10, pp. 2480-2485, Oct. 1991.
- [13] F. J. Tischer, "Excess conduction losses at millimeter wavelengths", *IEEE Trans. Microwave Theory Tech.*, vol. MTT-24, no. 11, pp. 853-858, Nov. 1976.
- [14] J. Sanford, "A Luneberg lens update," *IEEE Antennas and Propagat.*, vol. 37, no. 1, pp. 76-79, Feb. 1995.
- [15] M. N. Afsar, "Precision millimeter-wave measurements of complex refractive index, complex dielectric permittivity, and loss tangent of common polymers," *IEEE Trans. Instrum. Meas.*, vol. IM-36, no. 2, pp. 530-536, Jun. 1987.
- [16] V. V. Parshin, "Dielectric materials for gyrotron output windows," Int. J. Infrared Millimeter Waves, vol. 15, no. 2, pp. 339-348, 1994.
- [17] M. N. Afsar, "Dielectric measurements of millimeter-wave materials," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-32, no. 12, pp. 1598-1609, Dec. 1984.
- [18] G. J. Simonis and R. D. Felock, "Index of refraction determination in the nearmillimeter wavelength range using a mesh Fabry-Perot resonant cavity," *Appl. Opt.*, vol. 22, no. 1, pp194-197, Jan. 1983.
- [19] J. M. Dutta. C. R. Jones, and H Davé, "Complex dielectric constants for selected nearmillimeter-wave materials at 245 GHz," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-34, no. 9, pp. 932-936, Sept. 1986.
- [20] U. Stumper, "Six-port and four-port reflectometers for complex permittivity measurements at submillimeter wavelengths," *IEEE Trans. Microwave Theory Tech.*, vol. 37, no. 1, pp. 222-230, Jan. 1989.
- [21] F. I. Shimabukuro, S. Lazar, M. R. Chernick, and H. B. Dyson, "A quasi-optical method for measuring the complex permittivity of materials," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-32, no. 7, pp. 659-665, Jul. 1984.
- [22] P. Goy and M. Gross, "Free space vector transmission-reflection from 18 to 760 GHz," *Proc. 24th European Microwave Conf.* Cannes, France, pp. 1973-1978, Sep. 1994.
- [23] J. R. Birch, "Optical constants of some commercial microwave materials between 90 and 1200 GHz," *IEE Proc.*, vol. 130, Pt. H, no. 5, pp. 327-330, Aug. 1983.
- [24] A. R. Von Hipple: Dielectric Materials And Applications, New York: Wiley, 1954.
- [25] F. Sobel, F. L. Wentworth and J. C. Wiltse, "Quasi-optical surface waveguide and other components for 100 to 300 Gc region," *IRE Trans. Microwave Theory Tech.*, vol. MTT-9, no. 6, pp. 512-518, Nov. 1961.
- [26] J. R. Birch and F. P. Kong, "Birefringence and dichroism in Fluorogold at nearmillimeter wavelengths," *Infrared Phys.*, vol. 26, no. 2, pp. 131-133, 1986.
- [27] G. Dall'Oglio, P. De Bernardis, S. Masi, F. Melchiorri, A. Blanco, F. Alessandro, and S. Fonti, "Polarization properties of Fluorogold in the far-infrared," *Infrared Phys.*, vol. 22, pp. 185-186, 1982.
- [28] P. B. Whibberly and J. R. Birch, "The temperature variation of the near-mm wavelength optical constants of Fluorosint," *Infrared Phys.*, vol. 29, no. 6, pp. 995-996, 1989.
- [29] K. H. Breeden, et. al., "Complex permittivity measurements at millimeter wavelengths," *Dielectric Materials and Applications*, pp. 50-53, IEE Conf. Pub. no. 67, 1970.

- [30] K. H. Breeden and A. P. Sheppard, "A note on the millimeter wave dielectric constant and loss tangent value of some common materials," *Radio Science*, no. 2, p 205, Feb. 1968.
- [31] R. G. Jones, "Millimeter wave dielectric measurement using open resonators," *High Frequency Dielectric Measurements*, pp. 78-83, IPC Science and Technology Press Ltd., 1972.
- [32] A. F. Harvey, *Microwave Engineering*, London: Academic Press, 1963
- [33] Q. Bingsheng, L. Chengjia, H. Jiangjun, and Q. Ruman, "Automatic measurement for dielectric properties of solid material at 890 GHz," *Int. J. Infrared Millimeter Waves*, vol. 13, no. 6, pp. 923-931, 1992.
- [34] E. V. Loewenstein, D. R. Smith, and R. L. Morgan, "Optical constants of far infrared materials. 2: Crystalline solids", *Appl. Opt.*, vol. 12, no. 2, pp. 398-406, Feb. 1973.
- [35] D. T. Llewellyn-Jones, R. J. Knight, P. H. Moffat, and H. A. Gebbie, "New method of measuring low values of dielectric loss in the near millimetre wavelength region using untuned cavities," *IEE Proc.*, vol. 127, Pt. A. no. 8, pp. 535540, Nov. 1980.
- [36] J. R. Birch, J. D. Dromey and J. Lesurf, "The optical constants of some common low-loss polymers between 4 and 40 cm⁻¹," *Infrared Phys.*, vol. 21, pp. 225-228, 1981.
  (For numerical data, see also: J. R. Birch, J. D. Dromey and J. Lesurf, "The optical constants of some common low-loss polymers between 4 and 40 cm⁻¹," *NPL Report DES 69*, National Physical Laboratory (UK), Feb. 1981)
- [37] J. W. Flemming and G. W. Chantry, "Accurate radiometric measurements on low-loss polymers at submillimetric wavelengths," *IEEE Trans. Instrum. Meas.*, vol. IM-23, no. 4, pp. 473-478, Dec. 1974.
- [38] J. R. Birch, "The far infrared optical constants of polyethylene," *Infrared Phys.*, vol. 30, no. 2, pp. 195-197, 1990.
- [39] K. Seeger, "Microwave measurement of the dielectric constant of high-density polyethylene," *IEEE Trans. Microwave Theory Tech.*, vol. 39, no. 2, pp. 352-354, Feb., 1991.
- [40] J. R. Birch and F. P. Kong, "An interferometer for the determination of the temperature variation of the complex refraction spectra of reasonably transparent solids at near-millimetre wavelengths," *Infrared Phys.*, no. 2/3, pp. 309-314, 1984.
- [41] J. R. Birch, "Systematic errors in dispersive Fourier transform spectroscopy in a nonvacuum environment," *Infrared Phys.*, vol. 34, no. 1, pp. 89-93, 1993.
- [42] W. L. Brooks, et al., "Absorption of millimeter waves in dielectric solids," J. Opt. Soc. Am., vol. 43, pp. 1191-1194, Dec. 1953.
- [43] P. G. J. Irwin, P. A. R. Ade, S. B. Calcutt, S. B. Calcutt, F. W. Taylor, J. S. Seeley, R. Hunneman and L. Walton, "Investigation of dielectric spaced resonant mesh filter designs for PMIRR," *Infrared Phys.*, vol. 34, no. 6, pp. 549-563, 1993.
- [44] R. G. Fellers, "Measurements in the millimeter to micron range," *Proc. IEEE*, vol. 55, no. 6, pp. 1003-1014, Jun. 1967.
- [45] M. N. Afsar, J. Chamberlain, and G. W. Chantry, "High-precision dielectric measurements on liquids and solids at millimeter and submillimeter wavelengths," *IEEE Trans. Instrum. Meas.*, vol. IM-25, no. 4, pp. 290-294, Dec. 1976.
- [46] G. E. Conklin, "Measurement of the dielectric loss tangent of isotropic films at millimeter wavelengths," *Rev. Sci. Instrum.*, vol. 36, no. 9, pp. 1347-1349, Sep. 1965.
- [47] P. A. R. Ade, J. Acres, and W. R. Van der Reijden, "Reflection and absorption coefficients of Melinex at 338 μ," *Infrared Phys.*, vol. 11, pp. 233-235, 1971.
- [48] G. W. Chantry, "Optical materials for the submillimeter wave band," *High Frequency Dielectric Measurements*, pp. 117-121, IPC Science and Technology Press Ltd., 1972.

- [49] J. R. Birch, "The far-infrared optical constants of polypropylene, PTFE, and polysytrene," *Infrared Phys.*, vol. 6, no.1, pp. 33-38, 1992.
  (For numerical data, see also "The far-infrared optical constants of some common poyymers," *NPL Report DES 111*, National Physical Laboratory (UK), Jun. 1991)
- [50] W. Culshaw and M. V. Anderson, "Measurement of permittivity and dielectric loss with a mm-wave Fabry-Perot interferometer," *IEE Proc.*, vol. 109, Pt. B, Supp. 23, pp. 820-826, 1961.
- [51] R. G. Jones, "Dielectric measurements at mm wavelengths using open resonators," *Dielectric Materials and Applications*, pp. 141-144-53, IEE Conf. Pub. no. 129, 1975.
- [52] R. J. Cook, R. G. Jones, and C. B. Rosenberg, "Comparison of cavity and open resonator measurements of permittivity and loss angle," *IEEE Trans. Instrum. Meas.*, vol. IM-23, no. 4, pp. 438-442, Dec. 1974.
- [53] V. B. Braginsky, V. S. Ilchenko, "Experimental observations of fundamental microwave absorption in high-quality dielectric crystals," *Phys. Lett.*, vol. 120, no. 6, pp. 300-305, Mar. 1987.
- [54] M. N. Afsar and H. Chi, "Window materials for high power gyrotron," Int. J. Infrared Millimeter Waves, vol. 15, no. 7, pp. 1161-1179, 1994.
- [55] V. V. Parshin, R. Heidinger, B. A. Andreev, A. V. Gusev, and V. B. Shmagin, "Silicon as an advanced window material for high power gyrotrons," *Int. J. Infrared and Millimeter Waves*, vol. 16, no. 5, pp. 864-877, 1995.
- [56] M. N. Afsar and H. Chi: "Millimeter wave complex refractive index, complex dielectric permittivity and loss tangent of extra high putity and compensated silicon," *Int. J. IR and Millimeterwaves*, vol. 15, no. 7, pp. 1181-1188, 1994.
- [57] J. R. Birch and E. A. Nichol, "The FIR optical constants of the polymer TPX," *Infrared Phys.*, vol. 24, no. 6, pp. 573-575, 1984.
- [58] C. Meny, J. Léotin, and J. R. Birch, "Temperature variation of the near millimetre wavelength optical constants of TPX," *Infrared Phys.*, vol. 31, no. 2, pp. 211-213, 1991.
- [59] J. R. Birch, E. A. Nichol, and R. L. T. Street, "New near-millimeter wavelength radome material", *Appl. Opt.*, vol. 22, pp. 2947-2949, Oct. 1983.
- [60] A. R. Kerr, N. J. Bailey, D E. Boyd and N. Horner, "A study of materials for a broadband millimeter-wave quasi-optical vacuum window", *Electronics Division Internal Report No. 292*, NRAO, Aug. 1992.
- [61] A. Karpov, "Properties of polystyrene foams in 300-600 GHz range," IRAM Technical Report, Aug. 1993.
- [62] H. Hemmati, J. C. Mather and W. L. Eichorn, "Submillimeter and millimeter wave characterization of absorbing materials," *Appl. Opt.*, vol. 24, no. 24, pp. 4489-4492, Dec. 1985.
- [63] J. B. Peterson and P. L. Richards, "A cryogenic blackbody for millimeter wavelengths", Int. J. Infrared Millimeterwaves., vol. 5, no. 12, pp. 1507-1515, 1984
- [64] L. Pettersson, "Tests of some mm-wave materials," *Electronics Division Internal Report No. 122*, Aug. 1972.
- [65] F. Mattiocco, "Absorber measurements between 80 and 115 GHz", *IRAM Internal Report*, Apr. 1994.
- [66] F. Mattiocco, IRAM Technical Note, Jun. 1994.
- [67] G. Schwartz, "Thermal expansion of polymers from 4.2 K to room temperature," *Cryogenics*, vol. 28, pp. 248-254, Apr. 1988.
- [68] A. C. Rose-Innes, Low Temperature Techniques, The English University Press, 1973.

- [69] A. P. D. Stewart and J. W. Lamb, Private communication.
- [70] G. E. Childs, L. J. Ericks, and R. L. Powell: Thermal Conductivity of Solids at Room Temperature and Below, NBS Monograph 131, 1973.
- [71] J. B Beyer and E. H. Scheibe, "Loss measurements of the beam waveguide," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-11, no. 1, pp. 18-22, Jan. 1963.
- [72] N. Marcuvitz: Waveguide Handbook, London: Peter Peregrinus, 1986.
- [73] J. J. Bock, M. K. Parikh, M. L. Fischer, and A. E. Lange, "Emissivity measurements of reflective surfaces at near-millimeter wavelengths," *Appl. Optics*, vol. 34, no. 22, pp 4812-16, Aug. 1995.
- [74] J. W. Zwart, V. O. Heinen, K. Long, and N. Stankiewicz: "Surface resistance measurements at 377 GHz," *Int. J. Infrared and Millimeter Waves*, vol. 17, no. 2, pp 349-357, 1996.
- [75] H. Matuso, J. Inatani, N. Kuno, K. Miyazawa, K. Okumura, T. Kasuga, and H. Murakami, "Submillimeter-wave telescope onboard a sounding rocket," *SPIE Proc.*, San Diego, 1994.
- [76] R. J. Batt, G. D. Jones, and D. J. Harris, "The measurement of evaporated gold at 890 GHz", *IEEE Trans. Microwave Theory Tech.*, vol. MTT-25, no. 6, pp. 488-491, Jun. 1977.