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Abstract

Classical quasi-steady galloping analysis deals exclusively with cases of across-wind vibrations, leaving aside

the more general situation where the wind and motion may not be normal. This can arise in many cir-

cumstances, such as the motion of a power transmission cable about its equilibrium configuration, which is

swayed from the vertical plane due to the mean wind, or for a tall slender structure in a skewed wind. Fur-

thermore the generalisation to such situations, when this had been made, has only considered special issues.

In this paper the correct equations for the quasi-steady aerodynamic damping coefficients for the rotated

system or wind are derived, and differences from other variants are highlighted. Motion in two orthogo-

nal structural planes is considered, potentially giving coupled translational galloping, for which previous

analysis has often been limited or has even arrived at erroneous conclusions. For the two-degree-of-freedom

case, the behaviour is dependent on the structural as well as aerodynamic parameters, in particular the

orientation of the principal structural axes and the relative natural frequencies in the two planes. For the

first time, differences in the aerodynamic damping and zones of galloping instability are quantified, between

solutions from the correct perfectly tuned, well detuned and classical Den Hartog equations (and also an

incorrect generalisation of it), for a variety of typical cross-sectional shapes. It is found that although the

Den Hartog summation often gives a reasonable estimate for the actual aerodynamic damping even for the

rotated situation, in some circumstances the differences can be quite large.

Keywords: Galloping, Den Hartog, quasi-steady theory, aerodynamic damping, translational coupling

1. Introduction

Quasi-steady theory allows aerodynamic problems to be simplified vastly by replacing the actual unsteady

condition in hand by an equivalent static one, where only the relative flow velocity is considered for capturing
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the relevant aerodynamic forcing. Its most famous application is probably the galloping criterion put forward

by Den Hartog (1932, 1947) setting the condition for aerodynamically unstable behaviour of a single degree-

of-freedom (DOF) oscillator as:

F ′ = sinα (−L+D′) + cosα (L′ +D) < 0 (1)

which is often (e.g. see Holmes (2001, p117), Hémon and Santi (2002, p856)) expressed in terms of static

force coefficients as:

Ssc = sinα (−CL + C ′

D) + cosα (C ′

L + CD) < 0 (2)

where α is the angle of attack, L, D, CL, CD are the static lift and drag forces and static lift and drag

coefficients respectively, assumed for nominally 2D flow to be functions only of α, and the prime indicates

the derivative with respect to α. The criterion is only a condition to avoid an undamped oscillator becoming

negatively damped due to aerodynamic action. Thus the overall dynamic stability problem simply involves

determining the aerodynamic damping contribution and setting it equal and opposite to the available struc-

tural damping. However, Eq.(2) when presented as such is misleading as it has a major limitation. It is

only valid for α = 0, corresponding to 1D oscillations normal to the wind direction, which is tacitly ignored.

In the general case (i.e. α 6= 0), the principal structural axes may not be aligned along the flow direction

and normal to it, for example for a vertical section in skewed wind (or for a horizontal section in inclined

wind) in bending as in Fig.1(a), or considering the static sway of a catenary due to the mean wind force,

Fig.1(b). Then Eq.(2) fails to correctly account for the effect of aerodynamic damping, as in the across-wind

galloping scenario, and even if employed in its correct Den Hartog stated form then it fails to describe the

true condition. The correct treatment for 1 degree-of-freedom (DOF) galloping not necessarily normal to the

wind, although sketched in the literature previously (Richardson and Martuccelli (1965), Blevins (1977)),

is generally not followed in practice and the resulting errors in calculations arising from the mishandling

have not previously been quantified. To this end a number of benchmark cross-sections are considered to

illustrate the differences emerging in defining instability bounds.

In addition, the full extension of generalised translational galloping analysis to sections with principal

axes arbitrarily inclined to the flow, has to cover motion in both axes, including their aerodynamic coupling,

which is especially important when they have close natural frequencies. Such an analysis has previously been

performed by a number of authors with specific omissions and sometimes with erroneous conclusions. In

particular, Jones (1992) addressed coupled motion in two planes in some detail, but only for the special case
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Figure 1: (a) Plan view; vertical section in skewed wind (or elevation; horizontal section in inclined wind) in bending (b)
Catenary swaying statically due to the mean wind force. Note x and y are the principal structural axes, which sometimes
coincide with axes of symmetry, as in (a), but not necessarily so.

of α = 0 with identical natural frequencies in the vertical and horizontal directions, and she concluded that

no vertical galloping can occur when horizontal motion is restrained. Although suggesting that this may

be a reason for experimental behaviour observed, it results only from mistreating the boundary conditions

and neglecting the effect of the envisaged horizontal restraining force in the analysis. Liang et al. (1993)

and Li et al. (1998) used the formulation in terms of body co-ordinates, following Davenport (1966), and

covered the seemingly more general case of α 6= 0 2D perfectly tuned coupled motion. However, the fact

that the frequencies are restrained to be tuned renders α arbitrary, thus the results are only equivalent to

Jones’ (1992) case and not a generalisation of it. By using force coefficients defined in body co-ordinates

rather than wind co-ordinates, the connections of their work to the Den Hartog criterion are unclear. In

the analysis a special behavioural subcase is missed and the incorrect assertion is put forward that 2D

coupled galloping oscillations may occur only when the fundamental natural frequencies of a structure

in the two orthogonal principal directions are identical, which is a consequence of erroneously assuming

that the motion in the two planes should be in phase. Macdonald and Larose (2008a,b), focusing on dry

inclined galloping of circular cables, accurately provided the full 2D aerodynamic damping matrix, including

also terms due to force coefficient variations with Reynolds number and 3D geometric effects. Also, both

resonant and non-resonant conditions between vibrations in the two planes were taken into account. A

similar treatment, though waiving (and questioning) the use of Reynolds number dependent terms, was

presented by Carassale et al. (2005), who utilised Kronecker products and matrix calculus to derive a full

aerodynamic damping matrix. Both these studies however focused on circular cylinders so the derivatives

with respect to α were taken as zero so the results are not applicable to other galloping cases. It is worth

referring also to Luongo and Piccardo (2005), who used bifurcation analysis to capture the limit cycle

behaviour of detuned configurations, and to Caracoglia (2007), who extensively treated the galloping of
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highway tubular poles while accounting for wind shear and coupling of along and across wind modes, again

limited to Jones’ (1992) schematic case with the principal axes along and perpendicular to the wind. These

references, alongside broader 3DOF treatments, with different perspectives and not focusing on translational

interaction (e.g. Wang and Lilien (1998), Yu et al. (1993)), cover the full range of available literature on

modelling two-degree-of-freedom (2DOF) translational galloping vibrations. In summary, there has been no

previous reference that has specifically (and correctly) addressed 2D translational galloping of non-circular

cross sections with arbitrary orientation of the principal axes.

Other previous analysis of 2DOF coupled galloping has primarily been concerned with the combination

of translational and rotational motions e.g. Blevins (1977), Blevins and Iwan (1974), Desai et al. (1990),

McComber and Paradis (1998). However, in many cases there are similar structural conditions for trans-

lational motions in the two orthogonal planes normal to the cylinder axis and rotational motion may not

occur simultaneously, so it is appropriate to consider pure translational 2DOF galloping. In this paper the

correctly modified version of the Den Hartog criterion for an arbitrary angle of attack for 1D motion and

a solution for the more generic motion in two orthogonal planes are derived in order to become a future

reference for similar treatments. For simplicity and to emphasise the features of pure translational 2DOF

galloping, potential rotational motion is not included. For the analysis the full aerodynamic damping matrix

is formed and the scenario of coupled galloping oscillations is considered, which is shown to be a function

of the structural parameters as well as the aerodynamic ones and can lead to elliptical trajectories.

2. Quasi-steady derivations

This paper aims to quantify the difference between the generalised 2DOF galloping scenario shown

in Fig.2(a), not explicitly addressed before, and the normally considered special case in Fig.2(b) for pure

across-wind motion. For completeness, the quasi-steady aerodynamic damping derivations, yielding galloping

criteria, are briefly presented here, with an added intention of highlighting the errors in Eq.(2). Here the

variation of the force coefficients with Reynolds number is neglected, since it is only relevant in special cases.

The classical Den Hartog derivation starts typically by writing the mean aerodynamic force, per unit

length, along the y-axis in Fig.2, as a function of the mean drag and lift forces:

Fy = L cosα+D sinα , (3)

where L = 1
2
ρU2

relBCL, D = 1
2
ρU2

relBCD, ρ is the fluid density, B is a reference dimension of the section
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Figure 2: Geometry of a bluff section indicating lift and drag forces (L, D), relative angle of attack (α) and principal structural
axes (x, y). (a) The general case with α0 6= 0 and the potential for 2DOF motion. (b) The special case for 1DOF across-wind
oscillations.

and Urel is the relative velocity. Based on the quasi-steady assumption, Fy varies as a function of the body

velocity, ẏ. Following Taylor series expansion of Fy around ẏ=0 and truncation of the higher order terms,

which is deemed acceptable for small amplitude motion, the standard damped equation of motion of the

body can be written as:

mÿ + cẏ +mω2
yy = Fy = Fy|ẏ=0

+ ẏ ·
dFy

dẏ

∣

∣

∣

∣

ẏ=0

, (4)

where m is the cylinder mass per unit length, ωy is the circular natural frequency (in the absence of wind),

c is the structural damping coefficient, and overdots represent differentiation with respect to time. Not

considering the nonlinear terms in Eq.(4) from the full Taylor expansion of the aerodynamic force Fy or from

structural non-linearity, restricts its applicability to define the incipient instability, leaving the identification

of any steady states aside. Exclusively when the free-stream wind velocity U and the motion velocity ẏ are

orthogonal and thus α = arctan(−ẏ/U) (Fig.2(b)),

dFy

dẏ

∣

∣

∣

∣

ẏ=0

= −
1

U
F ′

y

∣

∣

α=0
. (5)

From Eq.(3), the derivative of Fy with respect to α, which can be used for Taylor expansion around any

initial inclination α0, is

F ′

y = L′ cosα− L sinα+D′ sinα+D cosα . (6)

In Eq.(4), the aeroelastic force (the last term on the right hand side), is equivalent to a linear viscous

damping force. The condition for dynamic instability is simply that the total effective damping coefficient

is negative. Hence from Eqs.(5&6), noting that for α = 0, U ′

rel = 0, it is easily shown that the galloping
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criterion is:

−
dFy

dẏ

∣

∣

∣

∣

ẏ=0

=
ρUB

2
(C ′

L + CD) < −c . (7)

For zero structural damping, this reduces to the classical Den Hartog criterion:

SDH = (C ′

L + CD) < 0 . (8)

which agrees with Eq.(2) for α = 0.

If the motion is not normal to the wind direction, Eq.(7) does not hold and there are two problems

with Eqs.(1&2). Firstly α 6= arctan(−ẏ/U) so Eq.(5) is not valid, which affects both Eqs.(1&2). Secondly

in finding L′ and D′, U ′

rel 6= 0, so extra terms are introduced in Eq.(2). For the general case of arbitrary

orientation and for extending the analysis to cover two orthogonal translational DOFs (see Fig.2(a)), which

potentially can lead to coupled response, the derivation follows. Note that x and y are the principal structural

axes, which may or may not align with axes of symmetry of the cross-section. Rotation of the body has not

been included.

In the general 2DOF translational case Eq.(3) still holds and also

Fx = −L sinα+D cosα. (9)

after Taylor series expansion of Fy and Fx, again for small amplitude motion only retaining the linear viscous

damping terms with the aim of identifying the stability of the initial at rest state, similar to before

Fy = Fy|ẋ=ẏ=0
+ ẋ ·

dFy

dẋ

∣

∣

∣

∣

ẋ=ẏ=0

+ ẏ ·
dFy

dẏ

∣

∣

∣

∣

ẋ=ẏ=0

,

Fx = Fx|ẋ=ẏ=0 + ẋ ·
dFx

dẋ

∣

∣

∣

∣

ẋ=ẏ=0

+ ẏ ·
dFx

dẏ

∣

∣

∣

∣

ẋ=ẏ=0

. (10)

For evaluating the derivatives we employ the chain rule

d()

dẋ
=

∂()

∂Urel

·
dUrel

dẋ
+

∂()

∂α
·
dα

dẋ
, (11)

and similarly for ẏ.
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Keeping in mind the relations

Urel =
√

(Uy − ẏ)2 + (Ux − ẋ)2 , tanα =
Uy − ẏ

Ux − ẋ
, tanα0 =

Uy

Ux

, (12)

finally the unit length full 2×2 aerodynamic damping matrix of a bluff section is obtained:

Caero =







cxxa cxya

cyxa cyya






=















−
dFx

dẋ
−
dFx

dẏ

−
dFy

dẋ
−
dFy

dẏ















ẋ=ẏ=0

=
ρBU

2













Sxx Sxy

Syx Syy













, (13)

with

Sxx = CD(1 + cos2 α0)− (CL + C ′

D) sinα0 cosα0 + C ′

L sin2 α0 , (14a)

Sxy = −CL(1 + sin2 α0) + (CD − C ′

L) sinα0 cosα0 + C ′

D cos2 α0 , (14b)

Syx = CL(1 + cos2 α0) + (CD − C ′

L) sinα0 cosα0 − C ′

D sin2 α0 , (14c)

Syy = CD(1 + sin2 α0) + (CL + C ′

D) sinα0 cosα0 + C ′

L cos2 α0 . (14d)

To the authors’ knowledge this full 2DOF translational aerodynamic damping matrix has not been suc-

cinctly and correctly presented previously. The derivation is also valid for wind skewed to the cylinder axis,

by employing the wind component normal to the cylinder and the force coefficients with respect to that

component, as long as the independence principle is a viable approximation.

The 1DOF instability thresholds for galloping in the pure x or y planes are simply when the diagonal

terms of Caero become negative (or more generally equal to minus the structural damping coefficient).

Evidently the non-dimensional aerodynamic damping coefficients, Sxx and Syy in Eqs.(14a&d), differ from

Ssc in Eq.(2), confirming that it is incorrect. For α0 = 0, Syy in Eq.(14d) reduces to SDH in Eq.(8) (as does

Sxx in Eq.(14a) for α0 = ±90◦), as expected.

For the instability condition of the coupled response, an eigenvalue analysis has to be performed for the

2DOF system, which is a function of the structural, as well as the aerodynamic, parameters. In general a

numerical solution is required, but for special cases a closed form result is derived as follows. Since rotations

are not included in this analysis potential inertial coupling of the degrees of freedom due to eccentricity of

the centre of mass is not allowed for and the mass per unit length, m, associated with the two degrees of
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freedom is the same. The equations of motion

mẍ+ (cx + cxxa)ẋ+mω2
xx = −cxyaẏ ,

mÿ + (cy + cyya)ẏ +mω2
yy = −cyxaẋ , (15)

with ωx, ωy and cx, cy the natural frequencies and structural damping coefficients for the two DOFs respec-

tively, are assumed to possess a solution of the form

x = X exp(λt) , y = Y exp(λt) , (16)

where the eigenvalues λ and the amplitudes X, Y are in general complex-valued. Eqs.(15&16) then yield

Y

X
= −

λ2 + cxx

m
λ+ ω2

x

λ
cxya

m

= −
λ

cyxa

m

λ2 +
cyy

m
λ+ ω2

y

, (17)

λ4 +

(

cxx + cyy
m

)

λ3 +

(

cxxcyy − cxyacyxa
m2

+ ω2
x + ω2

y

)

λ2 +

(

cxxω
2
y + cyyω

2
x

m

)

λ+ ω2
xω

2
y = 0 , (18)

where cxx = cx+ cxxa and cyy = cy + cyya. On the stability boundaries the eigenvalues are purely imaginary

(λ=iω). When ωx = ωy = ωn, solving the biquadratic Eq.(18) for marginal stability gives

ω = ωn , together with cxxcyy − cxyacyxa = 0 , (19)

or cxx + cyy = 0 (with ω not restricted to equal ωn) . (20)

For no structural damping (cx = cy = 0) Eq.(19) translates, in analogy to Eqs.(2, 8&14a&d), to the criterion

for coupled galloping:

S2D =
1

2

[

3CD + C ′

L ±

√

(CD − C ′

L)
2
+ 8CL (C ′

D − CL)

]

< 0 , (21)

where S2D denotes the non-dimensional effective aerodynamic damping coefficient of the coupled motion

(equivalent to Sxx and Syy for uncoupled motion) and the negative square root obviously gives the critical

case. Here Y/X is real, indicating planar trajectories.

The solution in Eq.(20) corresponds to the so-called complex response (see Jones (1992), Macdonald and

Larose (2008a)), which arises when the term under the square root in Eq.(21) is negative. Then the criterion
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for coupled galloping (for no structural damping) becomes

S2D =
1

2
(3CD + C ′

L) < 0, (22)

which coincides with the real part in Eq.(21), but in addition, the frequencies of the resulting two in-wind

modes are released from being equal. This solution is often missed (as in Li et al. (1998), Liang et al. (1993))

by constraining X and Y to be real. From Eq.(17), for λ = iω with ω 6= ωn, Y/X is complex, indicating

elliptical trajectories. Since the two modal responses occur simultaneously at different frequencies, a 2D

beating-type behaviour occurs, as described in Jones (1992), Luongo and Piccardo (2005) and Macdonald

and Larose (2008a).

More generally, in the presence of structural damping (the same in both planes, cx = cy = c), the right

hand side of Eqs.(21&22) becomes −2c/ρBU (equivalent to Eq.(7)).

Also of interest is the case where the initial natural frequencies (or the structural damping) in the two

DOFs (ωx and ωy or cx and cy) are not equal. Then on the stability boundary Eq.(18) yields:

(cxxcyy − cxyacyxa)(cxx + cyy)(κ
2cxx + cyy) + cxxcyy(1− κ2)2m2ω2

x = 0, (23)

where κ = ωy/ωx. This can generally only be solved numerically. For all detuned cases, the trajectories

become elliptical, similar to actual occurrences of galloping in the field.

2.1. Relevance to uniform continuous systems

It is worth noting that all the derived aerodynamic damping estimates (and hence the galloping criteria),

although referring explicitly to a unit length section, are often also applicable for a uniform continuous

system allowing motion in two orthogonal planes, in a uniform flow. This can be easily proved by applying

in Eqs.(15) the standard separation of time and space variables,

x(s, t) =
∑

n

φxn
(s)qxn

(t) , y(s, t) =
∑

n

φyn
(s)qyn

(t), (24)

where s is the distance along the continuous system, φxn
(s) and φyn

(s) are the nth undamped mode shapes

in the x, y planes and qxn
(t), qyn

(t) the corresponding generalised displacements. In addition to the standard

orthogonality conditions for same-plane modes

∫

mφxn1
(s)φxn2

(s)ds = 0 for n1 6= n2 ,

∫

mφyn1
(s)φyn2

(s)ds = 0 for n1 6= n2 , (25)
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for the case that the mode shapes in the two planes are the same (i.e. φxn
(s) = φyn

(s) = φn(s)), which is

common for uniform sections, for any pair of modes in the two planes, Eqs.(15) transform to

q̈xn
(t)

∫

m(φn(s))
2ds+ q̇xn

(t)

∫

cxx(φn(s))
2ds+ ω2

xqxn
(t)

∫

m(φn(s))
2ds =

−q̇yn
(t)

∫

cxya(φn(s))
2ds ,

q̈yn
(t)

∫

m(φn(s))
2ds+ q̇yn

(t)

∫

cyy(φn(s))
2ds+ ω2

yqyn
(t)

∫

m(φn(s))
2ds =

−q̇xn
(t)

∫

cyxa(φn(s))
2ds . (26)

Since for a uniform section in a uniform wind, the mass per unit length and damping coefficients (including

aerodynamic components) are not functions of s, the integral term
∫

(φn(s))
2ds cancels out, yielding back

again Eqs.(15) and thus rendering the deduced instability thresholds in Eqs.(14a&d, 21&22) still valid. It is

noted that when the aerodynamic damping coefficients cannot be deemed as constants over the structural

length, as for instance for tall structures where the wind velocity profile is significant (varying the factor

ρBU/2), or for a varying section, then the integrals in Eq.(26) should be calculated explicitly. However, in

many cases the simplifying approach of uniform wind velocity and section is adequate, and in the present

situation it allows comparison between the relatively simple different criteria presented above.

3. Application: quantifying differences between the criteria

The differences in the results arising from the different galloping criteria are quantified by utilising data

of aerodynamic force coefficients for a variety of cross-sectional shapes. Fortunately such data are available

in the literature for many shapes (e.g. see Alonso et al. (2005, 2009), ESDU 82007 (2004), Jones (1992),

Norberg (1993), Richardson and Martuccelli (1965), Tatsuno et al. (1990)), although they have almost

exclusively been used in the Den Hartog criterion only, which, as previously stated, is not always the case

in hand. For the current study a number of representative shapes, as illustrated in Fig.3, were chosen

to span a whole range of possible relative differences between the different galloping criteria. The last

three iced cable shapes (Figs.3(j,k,&l)), although only specific examples of the infinite number of possible

iced geometries, were chosen for direct comparison with the similarly scoped work of Jones (1992), since,

although she attempted to define the worst case for 1DOF or perfectly tuned coupled galloping, she chose

a presentation method that did not make the actual differences in the results clear.

Fig.4 presents the non-dimensional aerodynamic damping coefficients for each galloping criterion, for
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Figure 3: Sections with aerodynamic coefficients provided in the literature Alonso et al. (2005, 2009), ESDU 82007 (2004),
Jones (1992), Norberg (1993), Richardson and Martuccelli (1965), Tatsuno et al. (1990), used in the galloping analysis herein.

each section, for the whole angle range of angles of attack that are available. Negative values identify

aerodynamically unstable regions, where galloping would occur in the absence of structural damping. More

generally, with structural damping, galloping occurs when the non-dimensional aerodynamic damping coeffi-

cient is below −2c/ρBU . For each shape, three lines are plotted, corresponding to the aerodynamic damping

contributions from: i) the classical Den Hartog summation, SDH, in Eq.(8); ii) the more adverse of the two

rotated 1DOF cases, Sxx or Syy, as given in Eqs.(14a&d); and iii) the perfectly tuned 2DOF coupled motion

case, S2D, in Eqs.(21&22). It is pointed out that these correspond to three conceptually different motion

scenarios: i) applies for different aerodynamic angles of attack of the cross-section, α, but with the motion

always constrained to be purely across-wind; ii) applies to the instance where the principal structural axes

and cross-sectional shape are fixed to each other and rotate together with respect to the wind (or the wind

rotates relative to the structural axes and shape) as in Fig.2(a), with α0 becoming the variable; and iii)

applies to combined 2D motion with perfect tuning of the structural natural frequencies in the two planes,

in which case the orientation of the structural axes is arbitrary, reflected by Eqs.(21&22) being independent

of α0, and only the orientation of the cross-sectional shape with respect to the wind direction then being

relevant. The subcase of the 2DOF complex response (Eq.(22)) is distinguished in Fig.4 by plotting open

circles on the line. It is notable that there is no case of instability linked to this scenario (i.e. S2D from

Eq.(22), when it applies, is never negative). This is keeping with the suggestion by Macdonald et al. (2008),

for galloping of a skewed stranded cable in the critical Reynolds number range, that the combination of

parameters required for galloping of a complex response is unlikely to occur in practice. In addition, com-

paring Eqs.(8&22), since CD is always positive, the condition for 2DOF complex galloping is always less

onerous than the condition for pure across-wind galloping. Hence, in contrast to Jones’ (1992) suggestion

that observations of elliptical galloping trajectories in the field can be attributed to complex galloping, here

it seems probable that this is not the actual case.
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Figure 4: Non-dimensional aerodynamic damping coefficients (SDH, min(Sxx, Syy), S2D) as a function of angle of attack for
the cross-sectional shapes given in Fig.3 (inset letters link the two figures). Negative values indicate unstable behaviour (in the
absence of structural damping).
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Figure 4 (continued)

13



The results presented here are for the cases of the wind and motion direction fixed at right angles to

each other (case i), for the principal structural axes and cross-sectional shape fixed to each other (case

ii) (relevant to slender bodies in bending, where the cross-sectional shape dictates both the aerodynamic

and the structural stiffness), or for perfect tuning in 2DOF (case iii). However, the generalised approach

allows the wind direction, principal structural axes and the orientation of the cross-sectional shape to all be

independent. This could occur, for example, for a transmission line, where the wind is close to horizontal,

the structural axes are given by the inclination of the cable catenary in the mean wind (Fig.1(b)), and the

cross-sectional shape can rotate due to the influence of gravity on any accreted ice. Such a situation is

still covered by Eqs.(13-15), where in Eq.(14) α0 is the angle between the wind direction and the structural

x-axis (Fig.2(a)), but CD, CL and their derivatives should be evaluated at the angle of attack between the

wind direction and the reference direction of the cross-sectional shape (not necessarily equal to α0 due to

the cross-section rotating).

Commenting on the individual plots in Fig.4, the first impression is that in most cases all the values follow

roughly similar trends and predict close instability zones with respect to the angle of attack. Especially for

sections being or resembling rectangles, including the square in Fig.4(d), the rectangle with side ratio 3:1 in

Fig.4(g), and the rectangle with rounded ends in Fig.4(h), the ranges of angles of attack for instability from

the three different criteria are almost indistinguishable, showing some insensitivity of the susceptibility to

galloping for the different cases. The square and rectangle were actually chosen for this study for exhibiting

different characteristics, with the square galloping for zero angle of attack and the 3:1 rectangular not (for

a classical treatise on the instabilities of rectangular sections with different side ratios see Nakamura and

Hirata (1964)), although the most severe zone of instability is for an angle of attack near 10◦ in both cases.

This is the case for the section in Fig.4(h) also. A similar connection exists between the rectangle in Fig.4(g)

and the ellipsoid in Fig.4(c) with stronger instability near 70◦ for both, showing that sections with rounded

faces can still exhibit negative aerodynamic damping values and consequently unstable behaviour, in this

case likely because, after separation at the sharp corner, the flow then does not reattach, causing a rapid

drop in lift. In any case, for all the figures referenced so far, the differences are sufficiently small to consider

that any of the above instability bounds works quite well in any actual case. Indeed the previous lack of

a study to quantify the differences arising from the use of different criteria can probably be linked to the

fact that benchmark studies of galloping analysis have often been performed on rectangles or rectangle-like

shapes, where the differences are unimportant.

On the other hand, another section, equally widely studied in wind tunnel tests and historically connected
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with galloping, the D-section in Fig.4(a), shows more diverse behaviour. For zero angle of attack, the Den

Hartog summation (SDH) predicts zero aerodynamic damping (the D-section is a hard oscillator, see Weaver

and Veljkovic (2005), that, for motion exceeding a certain amplitude, will gallop even for this angle of attack,

but this is beyond the scope of the current analysis). Evidently the lesser of Sxx or Syy (in this case Syy)

from Eqs.(14a&d) (referred to as the 1D rotated case hereafter) becomes the same as SDH when α0 = 0, and

slightly more unexpectedly the 2DOF solution (S2D) also falls on the same value giving a common start for

all three. As the angle of attack increases, SDH departs from the other two, which have a negative peak near

40◦, representing almost twice the negative aerodynamic damping as for SDH. This is a significant difference

and it clearly demonstrates that the appropriate galloping criterion should always be applied carefully to

the actual problem in hand. Increasing the angle of attack further, a smaller instability zone is expected

near 100◦ where now the most severe condition is for 2D motion and the Den Hartog summation estimates

slightly more negative aerodynamic damping than for the 1D rotated case. Near 80◦ it is seen that SDH

gives extremely positive aerodynamic damping. Looking more broadly it is seen that for nearly all sections

the Den Hartog summation gives the highest positive aerodynamic damping value. Such extreme values

are often very close to the ones from the alternate 1D rotated case (the greater of Sxx or Syy), which is

not shown in Fig.4, which only presents the worse case. This also explains why in Figs.4(f,g&h) the Den

Hartog summation does not match the 1D rotated case for zero angle of attack - the aerodynamic damping

of along-wind vibrations is lower than for across-wind, although both are positive.

Other sections considered also show notable differences between the outputs for the different cases. The

results for the triangle with a vertex angle 30◦ as shown in Fig.4(f) show that near 20◦ the 1D rotated case

is close to being stable while the other two cases are clearly unstable, and around 30◦ the 2D case is unstable

whereas the other two are not. The same section near 180◦ (presenting a flat face to wind) on the other hand

shows all the three lines in Fig.4(f) coinciding. Similarly the equilateral triangle (Fig.4(e)) exhibits significant

differences, although the 1D and 2D rotated cases generally give close results. In addition it is of interest

to note that the two triangles behave quite differently (Fig.4(e&f)) when presenting their flat faces to the

wind although only a small vertex angle change has occured. Differences are also apparent in Figs.4(b,j&k),

with the 1D rotated case giving the least unstable results, thus rendering the simple Den Hartog calculation

to be unnecessarily conservative if the structural axes rotate with the section. Conversely for the L-section

in Fig.4(i), in the most critical region near 60◦, the Den Hartog summation is unconservative.

Drawing some general conclusions, although in most cases the broad picture from the three criteria is

similar, the absolute aerodynamic damping values at certain angles can be quite different. There are many
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Figure 5: . Comparison between the erroneous Ssc (Eq.(2)) and the correct value for the 1D rotated y-axis case, Syy (Eq.(14d)),
for (a) the square in Fig.3(d) and (b) the triangle in Fig.3(f).

instances where a section stable according to one criterion can be unstable according to another, and there

is no set sign for the relative differences, with changes being possible even for the same shape in a different

range of angle of attack. Still, in almost all the examples interestingly the worst case occurs for the 2DOF

criterion.

It should be noted that the accuracy of the results is of course limited by the accuracy of the available

data. But additionally there is the need to convert the discrete point measurements of static force coefficients

into a continuous or piecewise continuous function in order to determine their derivatives. Many options

were considered for this purpose, including polynomial and harmonic curve fits of different orders. In any

case there is a need for a high order for any function to accurately fit the measured points, which was

recognised early by Blevins and Iwan (1974). In Blevins’ analysis the nonlinear terms enter the equation of

motion and subsequently solutions are sought to yield the steady state amplitudes, thus it is detrimental

that the introduction of different non-linearity, from different fitted functions, strongly influences the results.

However for the purposes of the present analysis, the different options make little difference to the results of

the comparison (except making the plots smoother). For this reason the simplest possible, piecewise linear

assumption was chosen for estimation of the derivatives in Fig.4.

Returning to the misleading galloping criterion in Eq.(2), it is useful to show the potential error arising

from its use. At first sight it is clear that for 180◦ rotation it is the opposite of the Den Hartog criterion,

while for 90◦ any correlation with the Den Hartog criterion should be deemed as fortuitous. Judging from

the general similarity found between the Den Hartog case and the 1D rotated case, it is expected that great

differences from Eq.(2) can emerge for α 6= 0. Actually it should be noted that the correct direct equivalent
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of Eq.(2) is not the worse of Eqs.(14a&d), as considered above, but only Eq.(14d), for motion in the y

direction. As can be seen in Fig.5(a), showing the results from Eqs.(2&14d) for the square section, although

Eq.(2) inaccurately predicts a weak instability zone near 80◦ it otherwise predicts instabilities in agreement

with the correct result. This is only because a square’s critical zone occurs for small angles of attack, where

Eq.(2) should be close to the Den Hartog criterion. On the other hand, for the triangular section in Fig.2(f)

the errors are alarming (Fig.5(b)). Apart from the initial agreement of the two curves for small α, Eq.(2)

is consistently unable to capture not only the value of the aerodynamic damping but even its correct sign.

This is true for most of the section shapes considered (Fig.3).

4. The effect of frequency detuning

The 2DOF solution presented above is restricted to perfectly tuned natural frequencies and equal struc-

tural damping coefficients in the two motion planes. It is evident that in a great number of situations

different natural frequencies exist for the different directions of motion. Such a case is found for instance

for cables, where, due to sag, the frequencies of odd in-plane modes are higher than for the corresponding

out-of-plane ones. For any detuning the coupled Eqs.(15) still apply, but for increasing detuning the coupling

terms on the right hand side become further from the relevant natural frequency and hence have a reduced

effect on the behaviour. Eventually, for greatly detuned systems the coupling becomes irrelevant and the

system behaves like two uncoupled 1DOF systems in the orthogonal planes. This poses the interesting

questions of: i) what happens for close but not equal natural frequencies and ii) what will the behaviour be

for quite large detuning values.

Utilising Eq.(23) for all the different sections in hand it is found that the two 1DOF and the tuned 2DOF

solutions define an envelope within which the detuned coupled solutions always fall. The actual evolution

with detuning consists of starting from the tuned 2DOF solutions (using ± in Eq.(21)) for zero detuning and

progressively converging towards the 1DOF ones for large detuning, as presented, for example, in Fig.6(a)

for the iced cable section of Fig.3(j) for an angle of attack of 123◦ (other parameters (m, ωx, ρ, B, U) were

taken from Jones (1992)). The alternate form of the solution is given for example in Fig.6(b) for the iced

cable section of Fig.3(k) for an angle of attack of 30◦, where one of the 1D solutions is more onerous than the

2D tuned ones (similar beneficial or detrimental effect of detuning on galloping thresholds was previously

also observed for the case of tubular poles in Caracoglia (2007)). The actual rate of convergence is found

to be strongly dependent on the force coefficients and hence the angle of attack. The smaller the initial

difference between the coupled and uncoupled solutions in Fig.4, the slower the rate of convergence seems
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Figure 6: Evolution of the non-dimensional aerodynamic damping coefficient for different values of detuning, κ, for (a) the
section in Fig.3(j) at α = 123◦ and (b) the section in Fig.3(k) at α = 30◦. The lower branch is the critical one. In (a) for
perfect tuning the solution is unstable (negative aerodynamic damping) and for detuning above about 7% it approaches the
1D solution, which in this case is stable. In (b), on the other hand, for perfect tuning the solution is stable and for detuning
above 1% it becomes unstable while approaching the 1D solution.

to become. As clearly shown in Fig.6(a), for detuning of only 7% the 2D solution, which is unstable when

tuned, becomes stable and approaches the 1D solution (see the lower critical branch in the figure and also

Fig.4(j) at 123◦).

Incidentally, this particular example gives the opportunity to correct an erroneous conclusion reached

by Jones (1992). Results from tests on this section by Nigol and Buchan (1981), where no galloping

occurred, were taken as support for an assertion that in general when along-wind motion is restrained

then no instability can ever occur. However, the reasoning was only a result of forgetting the associated

external restraining force in the balance of forces in the equation of motion. As seen in Fig.4(j) at 123◦,

picked as being the most critical orientation, the tuned 2D solutions and Den Hartog criteria produce

indistinguishable values. Thus in this case, with allowance for across-wind motion, presence or absence of

along-wind motion, whatever the frequency ratio between the two, hardly changes the galloping threshold.

The true reason for the lack of observed galloping in this case, which is theoretically only slightly unstable,

is likely related to the level of structural damping and/or slight inaccuracies in quasi-steady theory when

hybrid vortex-buffeting-galloping mechanisms are involved, as discussed by Bearman et al. (1987) and Luo

et al. (1998).

Finally in this section it is interesting to discuss the response trajectories, which as already mentioned

can range from planar to elliptical. As discussed above and shown in Fig.6, for quite small detuning the 2D

solutions quickly approach the aerodynamic damping values that correspond to the 1D solutions. However,

they still remain qualitatively different from them in terms of the trajectories, which are described by
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Eq.(17). The evolution of the trajectories are presented for the case of Fig.6(a) in Fig.7. When perfectly

tuned (Fig.7(a)), two planar modes occur (not necessarily in orthogonal planes). For small detuning values,

the planar motion of the modes turns into ellipses with growing magnitudes of their minor axes as the

detuning increases. This is shown for κ = 1.005 in Fig.7(b). For larger detuning the axes of the elliptical

modes also rotate as in Fig.7(c), where κ = 1.05. This rotation continues until the principal structural

axes are reached, and when that is virtually accomplished (for a frequency ratio of the order of 1.1 in this

case as in Fig.7(d)) the width of the ellipses reduces as they converge onto the uncoupled planar solutions.

The aerodynamic damping coefficients have virtually converged on the 1D solutions for frequency rations

of about 1.1 (and 0.9), but the detuning values required to produce essentially planar responses are in fact

much larger (frequency ratios of the order of 3 or 1/3 in this case). The relevant aerodynamic damping

coefficients are shown in Fig.7 to indicate instabilities and to establish the link to Fig.6(a). It is a noteworthy

conclusion that the elliptical galloping paths observed in the field (see discussion in Jones (1992)), are almost

certainly due to the effect of detuning between the structural axes.

5. Conclusions

Quasi-steady aerodynamic theory, which lies at the core of the current analysis, has known limitations

and it has long been recognised that in certain operational ranges (only approximately identifiable) it breaks

down. Still, for a broad range of conditions for low frequency modes, quasi-steady analysis has a proven

ability to predict aerodynamic damping and galloping behaviour. The role of the current paper is to identify

cases where limitations are introduced only because of shortcomings in the actual application of the method

and to consider its generalisation for 2DOF translational motion with arbitrary orientation of the principal

structural axes.

The case sketched in Fig.2(a), with the structural axes inclined to the wind direction, has hardly been

considered before and the differences in the behaviour from classical across-wind galloping had not been

quantified. Application of the Den Hartog galloping criterion, or even worse an erroneous extension of it

presented in Eq.(2), for the rotated system or wind, can yield solutions that can range from close to even

the opposite of the correct generalised ones. Although the Den Hartog summation often gives reasonable

estimates of the aerodynamic damping even for the rotated case, it can in some circumstances give negative

estimates of only around half the magnitude of the real values, which is potentially unsafe. Conversely

in some other cases it can be unnecessarily conservative. Furthermore, the dynamic stability of a section

can be determined not only by its shape, the aerodynamic orientation and the orientation of the principal
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Figure 7: Modal trajectories corresponding to Fig.6(a) for cx = cy = 0 and (a) κ = 1, (b) κ = 1.005, (c) κ = 1.05 and (d)
κ = 1.1. The corresponding Sdetuned value is also indicated for each mode. Unstable modes are plotted with solid lines while
stable ones are dotted. Note for comparison that Sxx = 0.45, Syy = 0.06.
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structural axes (which may or may not follow the aerodynamic orientation), but also by the proximity of

the structural natural frequencies in the two planes.

The correct equations for the non-dimensional aerodynamic damping coefficients, and hence the dynamic

instability criteria, have been derived for an arbitrary orientation of the system with respect to the wind,

and they have been evaluated for a range of sections for perfectly tuned and well detuned natural frequen-

cies. Such a presentation (not previously existing as such) is valuable for understanding the way galloping

behaviour is dependent on the geometric arrangement details and frequency tuning. Furthermore, detuning

has received very little attention in the existing literature. Here, detuned results, numerically obtained, have

been shown always to fall between the solutions for the 2D perfectly tuned case and the two uncoupled 1D

cases, so the most critical of the 1D or perfectly tuned 2D cases can be used conservatively. The equations

provided are almost as easy to apply as the classical Den Hartog equation, yet they avoid potential errors

and give accurate estimates of the aerodynamic damping and the propensity of a cylinder to gallop. But it

is important to use the particular equation relevant to the specific problem being addressed.
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