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Theories of dACC function have to contend with an increasingly long and diverse list of signals 
that have been tied to this region1,2. To account for this apparent heterogeneity, we recently 
proposed a theory of dACC function that embraces that heterogeneity and offers a unifying 
function focused on the evaluation, motivation and allocation of cognitive control. Our theory 
proposes that dACC integrates information relevant to determining the Expected Value of 
Control (EVC) – including signals pertaining to demands for control (i.e., how much and what 
kind of control is needed) and those pertaining to the potential incentives for control (i.e., what 
are the consequences of exerting control) – and uses this to determine how best to allocate 
cognitive control1,2. We have shown that this theory accounts for variability in behavior and 
control states across a variety of experiments and task conditions3,4, and that it can account for 
the confluence of seemingly unrelated task-related variables within this region, including those 
related to reward, decision conflict, and the unexpectedness of a stimulus or outcome (i.e., 
surprise) (Fig. 1).  
 
Vassena and colleagues5 recently sought to test predictions of the EVC model, and concluded 
that it was unable to account for patterns of task-related dACC activity that they observed. 
Specifically, they show that dACC activity increased with levels of conflict and surprise during a 
choice task, and argue that the EVC model predicts the opposite pattern of results. Here, we 
identify misconstruals in analysis and interpretation that led to this conclusion. 
 

 
Figure 1. The EVC theory proposes that dACC integrates information about incentives and demands 
for control, including signals of processing conflict and unexpected changes in the environment (i.e., 
surprise), to determine how best to adjust control allocation with and across tasks. Vassena et al. join 
three previous experiments6,7 in demonstrating that dACC tracks both conflict and surprise during 
value-based choice, but diverges from those studies in suggesting that these effects are contrary to the 
predictions of the EVC theory. Figure adapted from Shenhav et al. (2016). 

 
Participants in Vassena et al.’s study performed a task that required them to quickly determine 
which of two sets of options would yield more reward. To apply the EVC model to their task, the 
authors make several critical assumptions. First, they assume that the scope of control during this 
task is limited to a single consideration: how vigorously should I respond to a given option on 
this trial? Second, they assume that the sole incentive determining the value of control is the 
monetary reward for this task, which is weighed against the cost of exerting control. Thus, they 
argue that their control signal (vigor) should intensify as the reward for the associated option 
increases, such that an option worth 50 cents will elicit a more ‘vigorous’ response than a 20-



cent option, increasing its chance of being chosen. Applying this to EVC, Vassena et al. assume 
that dACC will, in their task, determine the overall value of vigor for each response. As we 
describe below, this inappropriately restricted version of our model, which we will refer to as the 
Expected Value of Vigor (EVV) model, not only fails to predict the patterns of dACC activity 
they observe, it also fails as a descriptive and mechanistically plausible model of control for their 
task (Fig. 2). 
 

 
Figure 2. To refute the EVC theory, Vassena et al. simulate dACC activity during their task based on 
a reinterpretation of the model, EVV (top). Participants were tasked with quickly selecting which pair 
of previously learned options promised greater reward. Under the EVV model, dACC has advance 
information about which option is more rewarding (i.e. it effectively knows the correct response), and 
uses this to promote the choice of that more rewarding option (see their Supplementary Methods). By 
contrast, EVC (bottom) predicts that dACC uses information available while choosing, such as conflict 
and surprise, to adjust control directed at the task (e.g., attention to options, threshold) and broader goals 
(e.g., learning, attention to other tasks).  

 
EVV is neither a necessary nor sufficient account of control  
EVV proposes that the role of control in this task is to invigorate responses that will yield greater 
reward (Fig. 2, top). While intuitive at first blush, on closer scrutiny it becomes clear that this 
proposal is mechanistically and normatively problematic. To make their choices, participants 
performing this task need to determine the value of their options. The EVV model aims to 
intervene during this evaluation process, but to do so it relies on information about those option 
values (the very thing they are trying to determine). EVV can be calculated once these values are 
determined, but at that point it is likely that the participant already has enough information to 
make a choice.  
 
The authors claim that vigor is necessary for hastening this choice, to ensure that participants 
respond before their deadline. As evidence of this, they show that a participant’s threshold for 
making a decision varied based on the relative values of the options on a given trial: easy choices 
(those with large value differences) were associated with higher thresholds and hard choices 



(small value differences) were associated with lower thresholds. But there is a much simpler 
explanation for this pattern of results. If deadlines were being enforced by a threshold that 
decreases (collapses) over the course of a decision – as has been shown to be normative and 
evident in similar tasks8 – then it would appear as though thresholds were being controlled as a 
function of difficulty level, when in fact these threshold differences would actually reflect 
differences in how much the threshold had collapsed organically by the time an easy versus hard 
choice was made.  
 
EVV is thus designed to solve a problem that has already been addressed (guaranteeing that 
choices are made before a deadline), using a solution that lacks clear theoretical or empirical 
grounding (e.g., relying on information needed to make the choice). Furthermore, this solution 
fails to predict relevant features of their behavioral findings. As noted above, the authors found 
that thresholds were lowest for the hardest choices. While vigor may not be necessary to account 
for this finding (e.g., if a collapsing bound were in place), from a vigor perspective this finding 
suggests that these hard choices engendered high levels of vigor (control) to ensure a timely 
response. Their EVV calculations, however, make the opposite prediction: that control should be 
at its lowest when choices are hardest.  
 
In the context of these more fundamental concerns about the model’s validity, it is much less 
remarkable that Vassena and colleagues’ EVV model also cannot account for patterns of dACC 
activity during this task. 
 
EVC provides a more complete account of control allocation  
The EVC theory differs from EVV in at least two important respects. First, drawing on decades 
of theoretical and empirical research, EVC theory proposes that the dACC monitors information 
about incentives and task demands that can bear on control allocation, not only for the current 
trial of the current task, but also for subsequent trials and other possible tasks. When someone 
encounters an unexpected event, or information that conflicts with their current goal, they 
mobilize control processes to optimize both short and long-term goals, including adjusting 
performance on the next trial of the current task (e.g., increased attention, adjusting response 
threshold), focusing greater attention on other relevant tasks, and/or adjusting the rate of learning 
about one’s environment9-11 (Fig. 2, bottom). EVC can accommodate this range of conflict- and 
surprise-triggered control adjustments (Fig. 1), some of which were evident in the between-trial 
performance adjustments participants made while performing Vassena et al.’s task. 
 
Second, while both models share the critical assumption that control is allocated based on a cost-
benefit analysis, EVV takes a very narrow view of what might constitute a benefit: namely, the 
monetary reward that could accrue from the current trial. Here, again, EVC draws insights from 
the extant literature, which suggests that inputs to this cost-benefit analysis are broader in type 
(e.g., incorporating intrinsic rewards such as a bias towards being accurate) and scope (e.g., other 
timescales and tasks). For instance, participants will have likely learned over their lifetimes that 
surprise and conflict signals are generally associated with an increased value for certain control 
states (e.g., increased attentional engagement, evaluation, and/or caution), whether or not those 
control adjustments accrue reward for the task immediately at hand3,9,12,13.  
 



By accounting for the array of inputs to and outputs of decisions to allocate control, EVC can 
explain why Vassena and colleagues, like others6,7, found that dACC activity scales with both 
conflict and surprise during a choice task. 
 
Towards stronger tests of motivated control models 
Vassena and colleagues sought to rule out an EVC account of their dACC findings, but their data 
rule out only an inappropriately restricted version of that model. As we explain above, a more 
appropriate implementation of EVC should, under plausible assumptions, be able to generate 
patterns of control allocation that qualitatively mirror patterns of neural activity they observed in 
dACC. However, translating these into quantitative estimates of fMRI activity requires 
overcoming two major obstacles.  
 
First, it requires understanding the normative and empirical basis of control adjustments during 
this particular kind of task, and the incentives that drive those adjustments. This obstacle has 
largely been overcome by the majority of research into motivated control, by focusing on tasks 
which – unlike the current one – involve control processes that have been normatively motivated 
and empirically well-characterized (e.g., Stroop, flanker, task-switching)13-15. These properties 
have enabled the development of process models that can be used in conjunction with empirical 
data to distinguish between different types and intensities of control3,4.  
 
Second, predicting population-level neural activity (e.g., fMRI data) will require a better 
understanding of the representational content of neural activity associated with motivated 
control, and how this translates into BOLD activity. For instance, as we have previously noted1,6, 
conflict and surprise can elicit increases in BOLD activity because they signal a number of 
relevant inputs and outputs for a motivated control decision, including increases in the demand 
for control, the costs of the demanded control, and the intensity of the control output. 
 
Vassena and colleagues’ preferred model of dACC (PRO5) provides a normative, empirically-
grounded, and testable account of behavior and neural activity, and their latest paper offers 
further evidence in favor of this model. These strengths are obscured when their only reference 
points for model comparison are (1) accounts of dACC that have already been roundly refuted 
(as with the “choice difficulty” model; e.g., Refs. 2,6,7,9,10) and (2) implementations of an existing 
model that are incomplete, implausible, and inconsistent with empirical evidence (as in the case 
of EVV vs. EVC). By providing additional clarity on the nature of control and its evaluation, we 
hope that we have provided a path towards further analysis and comparison of each of these 
respective models. 
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