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Misfit dislocations in nanoscale ferroelectric heterostructures
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We present a quantitative study of the thickness dependence of the polarization and piezoelectric
properties in epitaxial001) PbZp, 5,Tig 4405 films grown on(001) SrRuG-buffered(001) SrTiO;
substrates. High-resolution transmission electron microscopy reveals that even the thinnest films
(~8 nm) are fully relaxed with a dislocation density close to'26m2 and a spacing of
approximately 12 nm. Quantitative piezoelectric and ferroelectric measurements show a drastic
degradation in the out-of-plane piezoelectric constdgy) and the switched polarizatiqaAP) as a
function of decreasing thickness. In contrast, lattice-matched ultrathiry PgEOs5 films that have

a very low dislocation density show superior ferroelectric properties. Supporting theoretical
calculations show that the variations in the strain field around the core of the dislocation leads to
highly localized polarization gradients and hence strong depolarizing fields, which result in
suppression of ferroelectricity in the vicinity of a dislocation2@05 American Institute of Physics
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Understanding nanoscale ferroelectrics has become a@nd contrast the effect of misfit dislocations, very well
topic of intense fundamental researchRecent studies show lattice-matched PZT (20/80/SRO/STO heterostructures
that lattice engineering and internal stresses have a majavere also prepared from 80 nm down to 4 nm. In order to
role in the structural and physical properties of ultrathinavoid complications from 90° domain formatidhwe chose
ferroelectric films®™ In lattice-matchedor epitaxia) films 80 nm as the upper bound for the PZA0/80 films.
and heterostructures, the strain due to lattice mismatch be- X-ray synchrotron measurements confirmed that the
tween the film and the substrate can be relaxed during filnERO layer was pseudomorphic with the STO substrate with
growth. by the formation of orthogonal arrays of misfit dis- an in-plane lattice parameter of 0.3905 nm at room tempera-
locations at the film-substrate interfaté’ For epitaxial 10 ture (RT) and 0.3930 nm at the growth temperatufg
nm high PbZg s,Tio 4§05 [PZT (52/48] nanoislands on Nb- =600°C. Additional x-ray and high-resolution transmission
doped SrTiQ (STO), the strain field associated with the dis- electron microscopyTEM) diffraction verified the epitaxial
location core was found to be propagating into the ferroelecerientational relationship: (001)PZT[100]PZT||(00)SRO
tric layer with a height of~4 nm and a width of~8 nm, a  [100]STQ|(00)STQ100]STO. X-ray diffraction reciprocal
significant volume fraction of the islands. space mappingnot shown of the PZT layers confirmed

Recent theoretical resuttsfor an epitaxial PTO thin film them to be tetragonal. Alg, the lattice parameter of PZT
with periodic misfit dislocations predict that the strong cou-(52/48 is 0.4084 nm; therefore, the misfit between SRO and
pling of the dislocation strain field with the polarization leadsPZT (52/48 at T is —3.93%. Employing the Matthews—
to high local polarization gradients. This results in strongBlakeslee criter% and using the elastic moduli of PZT
depolarizing fields around a dislocation in a region of 5-10(52/48,*" the critical thickness for misfit dislocation forma-
nm in diameter around the core, that ultimately suppression was calculated to be-2.3 nm and the nominal disloca-
ferroelectricity->* Misfit dislocations should thus act as an tion spacing to be 12.8 nm for the 12 nm and 10.5 nm for the
extrinsic dominating factor in the scaling of polarization and160 nm thick film, respectively. In contrast, the in-plane lat-
all physical properties as a function of thickness. In this let-tice parameter for PZT20/80 at Tg is 0.396 nm; thus, the
ter, we provide a systematic quantitative study on the role ofattice mismatch at growth temperature is only around
dislocations on the stability ferroelectricity in epitaxial ferro- —0.7% resulting in a theoretical.~ 10 nm and a spacing of
electric thin films. about 30 nm.

Epitaxial (001 PZT (52/48 films were grown or(001) Figure Xa) is a representative cross-sectional, TEM im-
SrRuQ; (SRO-buffered(001) SrTiO; (STO) substrates. The age of a 20 nm thick PZT52/48 film on SRO/STO. The
thickness of the PZT52/48 layer was varied from 200 nm  ferroelectric layer is rough even at the nanoscale and has a
down to 12 nm thickness. The details of the growth methodarge density of dislocations indicated by the strain contrast
and parameters are given elsewh&rén order to compare in the image. In comparison, Fig(H) is a low-magnification

image of a 20 nm thick PZT120/80 film. The dashed lines
Author to whom correspondence should be addressed: electronic maill Fig. 1(b) indicate the interfaces between the PZT, SRO,
p.alpay@ims.uconn.edu and STO layers, respectively. The interfaces are smoother
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FIG. 1. Comparison of TEM images for PZ{62/48 (top) and PZT
(20/80 (bottom films, both 20 nm thick. The image shows that PZT
(52/48 has a large density of dislocations and rough interfaces due t
lattice mismatch. PZT20/80 film shows a relatively smooth and sharp
interface as a result of the closer lattice matching.

FIG. 3. Piezoelectric and polarization characterization of the PR2148

and PZT(20/80 thickness serieqa) Piezoelectric hysteresis loops for the
012 nm (triangleg and 160 nm(squares PZT (52/48 films. (b) Measured
out-of-plane piezoelectric constatty; and switchable polarizatio\P) for
PZT (52/48 as a function of film thicknesgc) Out-of-planeds; and (d)
switchable polarization normalized with respect to their individual “unsup-

with a significantly reduced strain contrast and the density Opressed"_ values as a function _of film thickness. _In the case of the PZT
defects is greatly reduced. Figure@2 shows a high- Eﬁ’;ﬂ ‘tﬁeﬂg;'; %fgﬁg%g{g&ggg}fiﬁ ?{leg r?:; a thickness much greater
resolution image of an 8 nm thick PZ52/48 sandwiched ’
between the top and bottom SRO layers. An array of misfit
dislocations is observed at the interface between the PZ§f Fig. 2(b), the SRO lattice fringes in the bottom part of the
(52/48 and the bottom SRO layer as indicated by open arframe were used as a spacing reference. Figufes ahd
rows. The majority of the dislocations are located in the SRQ2(d) show the maps of spacing changes along the in-plane
layer away from the interface plane. Some of the dislocationaixis [100] and out-of-plane axig§001], respectively. The
dissociate into two partials to lower the energy associatedcale in Figs. @) and 2d) quantifies the changes in the local
with the lattice strain. Figure(B) shows a magnified region |attice parameter with respect to the SRO fringes. It can be
around the dislocation core within the white frame. Dissocia-seen that the SRO layer is locally compressed while the PZT
tion of the dislocation can be clearly seen as indicated by tweayer has significant in-plane tensile strain close to the core.
arrows. The corresponding Burger’s vectors for the two dis-The extra half-plane is in the SRO layer with the core pen-
sociating edge-type partials aed2 [101] and a/2 [101],  etrating into this layer away from the interface to minimize
leading to a sum Burger’s vectbr=2a[100]. excessive elastic energy associated with the core. This is fre-
Lattice strain in the vicinity of the dislocation was stud- quently observed in films on substrates where the film is
ied by studying the changes in lattice fringe spacings usinglastically stiffer than the substrat&The abrupt changes of
geometric phase analysis of the lattice fringe imdg& attice stain, from compressive to tensile across the edge dis-
calculating the lattice spacing variations in the framed aredocation cores, are well characterized by variations in the
color scale. Above the dislocation core, a tensile lattice strain
is clearly seen in the two maps in comparison with the areas
away from the dislocation cores and parallel to the interface.
The lattice expansion in-plane is stronger than the one out-
of-plane and extends far into the PZ52/48 layer.
Quantitative piezoresponse force microscopy was used
to extract the out-of-plane piezoelectric coefficielt. To
ensure a uniform electric-field distribution, the measure-
ments were made using a top electrode and a conductive
Pt-Ir tip. The displacement of the cantilever was calibrated
using x-cut quartz, which has a known piezoelectric coeffi-
cient (2.3 pm/V). Figure 3a) showsds; loops for two PZT
(52748 thicknesses: 12 nrttriangles and 160 nm(squarep
thick films. The plot shows a dramatic reduction in the pi-
ezoelectric coefficient for the 12 nm film compared to the
160 nm thick film. For this compositiortds; for a clamped
(00Y-oriented epitaxial film without any suppression or ex-
trinsic effects, is expected to bel57 pm/V (Ref. 20 as

002 000 o0z 004 006 shown by the 160 nm thick film. This drops significantly for

the 12 nm film, which shows average remanésgof only

30 pm/V. In Fig. 3b), we plotds; at remanance as a function
FIG. 2. (Color onling (a) HRTEM image of a 8 nnsRO/PZT52/48/srRo  Of film thickness. It shows a systematic and sharp fall when
heterostructure. The arrows point toward misfit dislocations. The dislocatiorthe thickness is below 100 nm, indicating the detrimental
has split into two partials to further reduce the energy associated with theffect of misfit dislocations. We also measured the switch-

Change of local |attice parametars

Iatt!ce straln.(b)_ A mgg_mfled region arou_nd t_he dlslocatlo_n core within the able poIarizatior(AP), which is the difference between the
white frame. Dissociation of the dislocation into two partials can be clearly

. * - % 1
seen as indicated by two arrows) and(d) show maps of spacing changes switched (P") and nonswitchedP) response%. We used

along the in-plane axif100] and out-of-plane axif001], respectively. this instead of 2P, wherePg is the remanent polarization,
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layer-to-film thickness ratio. As films get thicker, the equilib-
rium dislocation density increases and hence the dislocation
periodicity decreases resulting in better relaxation of epitax-
ial stresses. The thickness of the dead layer depends on the
dislocation density, which theoretically levels off above
~100 nm in PZT(52/48 films on SRO/STO.

These results have several implications in terms of prop-
erties of ultrathin ferroelectric films and nanostructures. Ob-
viously, there exists a significant volume that will not con-
tribute to the polarization, dielectric, piezoelectric, and
pyroelectric response. Furthermore, because of this dead
layer, the applied electrical field that is necessary to activate
the unique properties of ferroelectrics will be screened.
These regions also serve as pinning centers for reversible
180° and non-180° domain-wall motion in the presence of an
applied field, and thereby reduce the extrinsic contribution to
all physical properties. The detrimental effect of such regions
will be enhanced in nanoscale ferroelectric films and hetero-

structures, and hence play a critical extrinsic role in size
FIG. 4. (Color onling The polarization distribution around periodic misfit effact studies of ferroelectrics.
dislocations withb=a[100] in (a) 12 nm and(b) 200 nm thick(001) PZT
(52/48 film on (001) SRO-buffered001) STO substrate, assuming a depo- This work was supported by the National Science Foun-
sition temperature of 600 °C. Film areas shown(@ and (b) represent dation (NSP under Grant Nos. DMR-0132918, NSF-
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