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We present a quantitative study of the thickness dependence of the polarization and piezoelectric
properties in epitaxials001d PbZr0.52Ti0.48O3 films grown ons001d SrRuO3-buffereds001d SrTiO3

substrates. High-resolution transmission electron microscopy reveals that even the thinnest films
s,8 nmd are fully relaxed with a dislocation density close to 1012 cm−2 and a spacing of
approximately 12 nm. Quantitative piezoelectric and ferroelectric measurements show a drastic
degradation in the out-of-plane piezoelectric constantsd33d and the switched polarizationsDPd as a
function of decreasing thickness. In contrast, lattice-matched ultrathin PbZr0.2Ti0.8O3 films that have
a very low dislocation density show superior ferroelectric properties. Supporting theoretical
calculations show that the variations in the strain field around the core of the dislocation leads to
highly localized polarization gradients and hence strong depolarizing fields, which result in
suppression of ferroelectricity in the vicinity of a dislocation. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1922579g

Understanding nanoscale ferroelectrics has become a
topic of intense fundamental research.1,2 Recent studies show
that lattice engineering and internal stresses have a major
role in the structural and physical properties of ultrathin
ferroelectric films.3–5 In lattice-matchedsor epitaxiald films
and heterostructures, the strain due to lattice mismatch be-
tween the film and the substrate can be relaxed during film
growth. by the formation of orthogonal arrays of misfit dis-
locations at the film-substrate interface.6–11 For epitaxial 10
nm high PbZr0.52Ti0.48O3 fPZT s52/48dg nanoislands on Nb-
doped SrTiO3 sSTOd, the strain field associated with the dis-
location core was found to be propagating into the ferroelec-
tric layer with a height of,4 nm and a width of,8 nm, a
significant volume fraction of the islands.4

Recent theoretical results12 for an epitaxial PTO thin film
with periodic misfit dislocations predict that the strong cou-
pling of the dislocation strain field with the polarization leads
to high local polarization gradients. This results in strong
depolarizing fields around a dislocation in a region of 5–10
nm in diameter around the core, that ultimately suppress
ferroelectricity.13,14 Misfit dislocations should thus act as an
extrinsic dominating factor in the scaling of polarization and
all physical properties as a function of thickness. In this let-
ter, we provide a systematic quantitative study on the role of
dislocations on the stability ferroelectricity in epitaxial ferro-
electric thin films.

Epitaxial s001d PZT s52/48d films were grown ons001d
SrRuO3 sSROd-buffereds001d SrTiO3 sSTOd substrates. The
thickness of the PZTs52/48d layer was varied from 200 nm
down to 12 nm thickness. The details of the growth method
and parameters are given elsewhere.15 In order to compare

and contrast the effect of misfit dislocations, very well
lattice-matched PZT s20/80d/SRO/STO heterostructures
were also prepared from 80 nm down to 4 nm. In order to
avoid complications from 90° domain formation,16 we chose
80 nm as the upper bound for the PZTs20/80d films.

X-ray synchrotron measurements confirmed that the
SRO layer was pseudomorphic with the STO substrate with
an in-plane lattice parameter of 0.3905 nm at room tempera-
ture sRTd and 0.3930 nm at the growth temperatureTG
=600°C. Additional x-ray and high-resolution transmission
electron microscopysTEMd diffraction verified the epitaxial
orientational relationship: s001dPZTf100gPZTis001dSRO
f100gSTOis001dSTOf100gSTO. X-ray diffraction reciprocal
space mappingsnot shownd of the PZT layers confirmed
them to be tetragonal. AtTG, the lattice parameter of PZT
s52/48d is 0.4084 nm; therefore, the misfit between SRO and
PZT s52/48d at TG is 23.93%. Employing the Matthews–
Blakeslee criteria6 and using the elastic moduli of PZT
s52/48d,17 the critical thickness for misfit dislocation forma-
tion was calculated to be,2.3 nm and the nominal disloca-
tion spacing to be 12.8 nm for the 12 nm and 10.5 nm for the
160 nm thick film, respectively. In contrast, the in-plane lat-
tice parameter for PZTs20/80d at TG is 0.396 nm; thus, the
lattice mismatch at growth temperature is only around
20.7% resulting in a theoreticalhc,10 nm and a spacing of
about 30 nm.

Figure 1sad is a representative cross-sectional, TEM im-
age of a 20 nm thick PZTs52/48d film on SRO/STO. The
ferroelectric layer is rough even at the nanoscale and has a
large density of dislocations indicated by the strain contrast
in the image. In comparison, Fig. 1sbd is a low-magnification
image of a 20 nm thick PZTs20/80d film. The dashed lines
in Fig. 1sbd indicate the interfaces between the PZT, SRO,
and STO layers, respectively. The interfaces are smoother
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with a significantly reduced strain contrast and the density of
defects is greatly reduced. Figure 2sad shows a high-
resolution image of an 8 nm thick PZTs52/48d sandwiched
between the top and bottom SRO layers. An array of misfit
dislocations is observed at the interface between the PZT
s52/48d and the bottom SRO layer as indicated by open ar-
rows. The majority of the dislocations are located in the SRO
layer away from the interface plane. Some of the dislocations
dissociate into two partials to lower the energy associated
with the lattice strain. Figure 2sbd shows a magnified region
around the dislocation core within the white frame. Dissocia-
tion of the dislocation can be clearly seen as indicated by two
arrows. The corresponding Burger’s vectors for the two dis-

sociating edge-type partials area/2 f101g and a/2 f101̄g,
leading to a sum Burger’s vectorb=af100g.

Lattice strain in the vicinity of the dislocation was stud-
ied by studying the changes in lattice fringe spacings using
geometric phase analysis of the lattice fringe image.18 In
calculating the lattice spacing variations in the framed area

of Fig. 2sbd, the SRO lattice fringes in the bottom part of the
frame were used as a spacing reference. Figures 2scd and
2sdd show the maps of spacing changes along the in-plane
axis f100g and out-of-plane axisf001g, respectively. The
scale in Figs. 2scd and 2sdd quantifies the changes in the local
lattice parameter with respect to the SRO fringes. It can be
seen that the SRO layer is locally compressed while the PZT
layer has significant in-plane tensile strain close to the core.
The extra half-plane is in the SRO layer with the core pen-
etrating into this layer away from the interface to minimize
excessive elastic energy associated with the core. This is fre-
quently observed in films on substrates where the film is
elastically stiffer than the substrate.19 The abrupt changes of
lattice stain, from compressive to tensile across the edge dis-
location cores, are well characterized by variations in the
color scale. Above the dislocation core, a tensile lattice strain
is clearly seen in the two maps in comparison with the areas
away from the dislocation cores and parallel to the interface.
The lattice expansion in-plane is stronger than the one out-
of-plane and extends far into the PZTs52/48d layer.

Quantitative piezoresponse force microscopy was used
to extract the out-of-plane piezoelectric coefficientd33. To
ensure a uniform electric-field distribution, the measure-
ments were made using a top electrode and a conductive
Pt–Ir tip. The displacement of the cantilever was calibrated
using x-cut quartz, which has a known piezoelectric coeffi-
cient s2.3 pm/Vd. Figure 3sad showsd33 loops for two PZT
s52/48d thicknesses: 12 nmstrianglesd and 160 nmssquaresd
thick films. The plot shows a dramatic reduction in the pi-
ezoelectric coefficient for the 12 nm film compared to the
160 nm thick film. For this composition,d33 for a clamped
s001d-oriented epitaxial film without any suppression or ex-
trinsic effects, is expected to be,157 pm/V sRef. 20d as
shown by the 160 nm thick film. This drops significantly for
the 12 nm film, which shows average remanentd33 of only
30 pm/V. In Fig. 3sbd, we plotd33 at remanance as a function
of film thickness. It shows a systematic and sharp fall when
the thickness is below 100 nm, indicating the detrimental
effect of misfit dislocations. We also measured the switch-
able polarizationsDPd, which is the difference between the
switched sP*d and nonswitchedsPˆd responses.21 We used
this instead of 2·PR, wherePR is the remanent polarization,

FIG. 1. Comparison of TEM images for PZTs52/48d stopd and PZT
s20/80d sbottomd films, both 20 nm thick. The image shows that PZT
s52/48d has a large density of dislocations and rough interfaces due to
lattice mismatch. PZTs20/80d film shows a relatively smooth and sharp
interface as a result of the closer lattice matching.

FIG. 2. sColor onlined sad HRTEM image of a 8 nmSRO/PZTs52/48d/SRO
heterostructure. The arrows point toward misfit dislocations. The dislocation
has split into two partials to further reduce the energy associated with the
lattice strain.sbd A magnified region around the dislocation core within the
white frame. Dissociation of the dislocation into two partials can be clearly
seen as indicated by two arrows.scd andsdd show maps of spacing changes
along the in-plane axisf100g and out-of-plane axisf001g, respectively.

FIG. 3. Piezoelectric and polarization characterization of the PZTs52/48d
and PZTs20/80d thickness series:sad Piezoelectric hysteresis loops for the
12 nm strianglesd and 160 nmssquaresd PZT s52/48d films. sbd Measured
out-of-plane piezoelectric constantd33 and switchable polarizationsDPd for
PZT s52/48d as a function of film thickness.scd Out-of-planed33 and sdd
switchable polarization normalized with respect to their individual “unsup-
pressed” values as a function of film thickness. In the case of the PZT
s52/48d films, a steep drop begins at,100 nm, a thickness much greater
than the case of the PZTs20/80d film s,12 nmd.
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as it is less likely to be convoluted by leakage. We find that
similar to d33, the DP also drops drastically for thicknesses
below 100 nm. This drop begins at a thickness much greater
than that predicted for fully commensurate ferroelectric het-
erostructures by theory22,23 or experiments.24 It, therefore,
clearly illustrates the dominant extrinsic role dislocations
play in the size effects of nanoscale ferroelectrics. This is
evident in Figs. 3scd and 3sdd, where we compared33 andDP
values of the PZTs20/80d versus PZTs52/48d. For the sake
of comparing both compositions on one scale, the values
have been normalized to the unsuppressed theoretical values.
The lattice-matched PZTs20/80d system shows no scaling in
d33 or DP down to 15 nm.24 In comparison, the drop in the
PZT s52/48d system is much sooner; thereby exhibiting the
overriding role of dislocations in the size effects of ferroelec-
trics.

To probe this further, we carried out a thermodynamic
analysis to investigate the role of dislocations in ferroelectric
materials using a methodology based on a modified mean-
field Landau–Devonshire formalism incorporating the elastic
energy of the dislocations, its electromechanical coupling to
the polarization, and the internal field due to polarization
gradients given by Maxwell’s relations. The details of this
method are given elsewhere.12 We analyzed the polarization

distribution around misfit dislocations withb=af1̄00g in
s001d PZT s52/48d films with 12 and 200 nm thickness on
thick s001d STO substrates with fully relaxed SRO buffer
layers sSRO/STOd. The internal stresses due to lattice mis-
match were coupled with the stress field of dislocations in
the linear elastic limit. As shown in Figs. 4sad and 4sbd, due
to strong strain gradients, there is a drastic variation in the
polarization near the film-substrate interface that should re-
sult in the formation of,10 and,15 nm thick ferroelectri-
cally dead layers in 12 and 200 nm films, respectively. These
plots also display the thickness dependence of the dead

layer-to-film thickness ratio. As films get thicker, the equilib-
rium dislocation density increases and hence the dislocation
periodicity decreases resulting in better relaxation of epitax-
ial stresses. The thickness of the dead layer depends on the
dislocation density, which theoretically levels off above
,100 nm in PZTs52/48d films on SRO/STO.

These results have several implications in terms of prop-
erties of ultrathin ferroelectric films and nanostructures. Ob-
viously, there exists a significant volume that will not con-
tribute to the polarization, dielectric, piezoelectric, and
pyroelectric response. Furthermore, because of this dead
layer, the applied electrical field that is necessary to activate
the unique properties of ferroelectrics will be screened.
These regions also serve as pinning centers for reversible
180° and non-180° domain-wall motion in the presence of an
applied field, and thereby reduce the extrinsic contribution to
all physical properties. The detrimental effect of such regions
will be enhanced in nanoscale ferroelectric films and hetero-
structures, and hence play a critical extrinsic role in size
effect studies of ferroelectrics.
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FIG. 4. sColor onlined The polarization distribution around periodic misfit

dislocations withb=af1̄00g in sad 12 nm andsbd 200 nm thicks001d PZT
s52/48d film on s001d SRO-buffereds001d STO substrate, assuming a depo-
sition temperature of 600 °C. Film areas shown insad and sbd represent
12 nm340 nm and 30 nm360 nm cross section across the film thickness
in the xz-plane, respectively. Individual elements in the simulations were
,0.4 nm.
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