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Abstract

As models of sequence evolution become more and more complicated, many criteria for model selection have been pro-
posed, and tools are available to select the best model for an alignment under a particular criterion. However, in many
instances the selected model fails to explain the data adequately as reflected by large deviations between observed pat-
tern frequencies and the corresponding expectation. We present MISFITS, an approach to evaluate the goodness of fit
(http://www.cibiv.at/software/misfits). MISFITS introduces a minimum number of “extra substitutions” on the inferred tree
to provide a biologically motivated explanation why the alignment may deviate from expectation. These extra substitutions
plus the evolutionary model then fully explain the alignment. We illustrate the method on several examples and then give a
survey about the goodness of fit of the selected models to the alignments in the PANDIT database.
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Introduction

In recent years, the complexity of models of sequence evolu-
tion steadily increased (cf. Swofford et al. 1996; Felsenstein
2004). The general time reversible model (GTR) allows for
the estimation of nucleotide-specific substitution rates (e.g.,
Yang 1994), the assumption of different rates across sites
is included (e.g, Yang 1993; Gu et al. 1995) and even het-
erogeneity and change in evolutionary substitution models
along a tree can be modeled (e.g, Tuffley and Steel 1998;
Foster 2004). Moreover, we are able to compute the likeli-
hood of a tree by using rapid maximum likelihood (ML) tree
reconstruction methods (Huelsenbeck and Ronquist 2007;
Guindon and Gascuel 2003; Jobb et al. 2004; Minh et al. 2005;
Stamatakis et al. 2008). Tools are also available to select the
best model from a collection of available models (Posada
2008). Recent surveys (Sullivan and Joyce 2005; Ripplinger
and Sullivan 2008) indicate that the most complex model
is typically selected. The selected model leads to a tree that
has a significantly higher likelihood than trees based on the
other models.

The next step in a regular phylogeny analysis would be
to test how well the selected model fits the alignment.
The easiest such approach is a parametric form of the
classical likelihood ratio statistics, where the likelihood of
the tree is compared with the unconstrained likelihood
(Navidi et al. 1991; Goldman 1993a, 1993b). Due to its
computational costs and possibly also due to the unpleas-
ant outcome that the tree does not explain the alignment
very well, the test is typically not applied. However, it
has been shown that a careful combination of such tests
and then subsequently going back to the alignment can
help to improve the phylogenetic analysis (Schoniger
and von Haeseler 1999). Nevertheless, this analysis was

instance based and it is not possible to apply it routinely to
alignments.

Thus, there is a need to suggest an applicable method
that tests whether the alignment s explained adequately by
the model and the inferred tree. The method should simul-
taneously suggest alignment positions that may not fit to
the model and the tree. We present such a method, the so-
called MISFITS, in this paper.

In a nutshell, MISFITS does the following: Based on the
alignment, the substitution model, and the inferred ML
tree, we compute the likelihood of the site patterns in the
alignment and the corresponding unconstrained likelihood
(Navidi et al. 1991; Goldman 19933,1993b). A confidence
region is then computed to determine a set of overrepre-
sented patterns and a set of underrepresented patterns with
respect to the expected number of occurrence. We then ap-
ply a maximum parsimony approach to determine the min-
imal number of extra substitutions on the ML tree neces-
sary to convert an alignment column that belongs to an
overrepresented pattern into a pattern that is underrepre-
sented in the alignment. The theoretical basis to compute
the minimal number of substitutions utilizes the concept
of one-step mutation (OSM) matrices (Klaere et al. 2008).
Subsequently, a parametric bootstrap analysis is performed
to determine whether the number of extra substitutions is
significantly elevated. Moreover, the overrepresented pat-
terns are mapped back to the alignment to pinpoint to po-
tentially problematic regions in the alignment and to enable
a more thorough analysis.

We give a series of illustrative examples and a survey
about the goodness of fit of the selected models to the align-
ments as provided by the PANDIT database (Whelan et al.
2006).
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Table 1. Schematic Workflow of the Method.

Step 1: Count the observed frequency of patterns in the alignment

Step 2: Compute pattern likelihood under the model and the inferred
tree

Step 3: Determine the set of overrepresented patterns D+ and the set
of underrepresented patterns D~

Step 4: For all pairs of patterns (p, p’), p € Dt andp’ € D, compute
the minimal number of extra substitutions to convert p
into p’

Step 5: Selecta matchingwhich pairs every pattern in D with patterns
in D~ such that the total number of extra substitutions is
minimal

Step 6: Map the extra substitutions on the tree

Step 7: Determine the significance of the number of extra substitutions
computed in Step 5 by parametric bootstrap

Methods

Table 1 presents a schematic workflow of MISFITS. We will
now describe the steps in more detail.

Steps 1 and 2: Consider a gap free, multiple nucleic acid
alignment of n sequences with length ¢, a nucleotide sub-
stitution model, and the inferred ML tree. For n taxa, a total
of 4" site patterns are possible. The sites of the alignment
constitute a subset of these patterns. Given the ML tree and
the substitution model (thereafter jointly referred to as tree
model), we compute the expected pattern likelihood vec-
tor (p"*¢) for the patternsin the alignment using, for exam-
ple, IQPNNI (Minh et al. 2005), Tree-Puzzle (Schmidt et al.
2002), and PHYML (Guindon and Gascuel 2003). The un-
constrained likelihood vector (p ") of the patterns is simply
the number of alignment sites showing the pattern divided
by the length of the alignment (Navidi et al. 1991; Goldman
19933, 1993b). p“"“is actually the observed frequency of the
patterns in the alignment. Thus, it will be called observed
pattern frequency vector.

Step 3: If the ML tree is an adequate description of the
data, the difference between the two vectors p ™ and p "
should be small. In fact, they are the basis for the Cox test
suggested by Goldman (1993b). Instead of looking at the
overall fit, we compare the two vectors position wise. Fig-
ure 1 displays a parametric plot of the logarithms of the two
likelihood vectors computed on a primate complete mito-
chondrial genome data set under the GTR model. The x
axis displays the logarithm of the entries in p™ and the
y axis the logarithm of the unconstrained likelihood p“".
If the tree model describes the data adequately, all points
will approximately lie on the identity line. However, residu-
als (deviation from the identity line) are often observed. To
account for variability in the data, we compute a simulta-
neous & = 95% Gold confidence region for multivariate
proportions (Gold 1963) for the entries in p™®:

tree tree
Cl(pitree) — pitree + \/KZ . pi (1 g pi )
is the confidence interval for the likelihood of pattern
i (p/*®) under the tree model, where k> = X} (a/(20))
is the 1 — «/(2¢)-quantile of the x? distribution with k
degrees of freedom. The degrees of freedom in this case are
the total number of estimated variables, that is, the sum of
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FIG. 1. Observed pattern frequencies and expected pattern likelihood
under the tree model. Each circle represents a pattern in the align-
ment by its expected log likelihood under the tree model (x axis) and
the logarithm of its frequency or unconstrained likelihood (y axis). The
dashed lines indicate the 95% Gold confidence region. The open cir-
cles represent patterns within the confidence region; the black-filled
circles are underrepresented patterns, whereas the gray-filled circles
are overrepresented patterns.

the number of parameters of the substitution model and
the number of branches on the ML tree. The dashed linesin
figure 1 show the logarithms of the upper bound and the
lower bound of the confidence region.

We call pattern i overrepresented if p," is greater than
the upper bound of Cl(p{™®). If p*" is smaller than the
lower bound of Cl(p/™), then pattern i is underrepre-
sented in the alignment. We denote the set containing the
overrepresented patterns DT and the set of the under-
represented patterns D~. D~ also contains patterns not
observed in the alignment, where the pattern likelihood un-
der the tree model is larger than 1/. Thus, we would ex-
pect to find them at least once in an alignment of length
£. These patterns can be easily constructed using the OSM
matrix (Klaere et al. 2008).

The overrepresented site patterns indicate alignment
sites that occur more often than expected under the tree
model. This means that the tree model does not capture
these alignment sites adequately. On the other hand, the
underrepresented patterns are expected to occur more of-
ten in the alignment than they actually do. Thus, it appears
plausible to compute the minimal number of substitutions
that are required to change the overrepresented sites in the
alignment (site patternsin D) into patterns that are more
likely to occur given the ML tree (patternsin D). The num-
ber of extra substitutions can then be used as a measure to
evaluate the goodness of fit of a model to the data: the less
the number, the better the fit.

Step 4: We now describe how to compute the extra
substitutions to convert a pattern into another pattern.
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[Taxon 1] [Taxon 2] [Taxon 1] [Taxon 2] [Taxon 1] [Taxon 2]
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(@) (b)

FIG. 2. Placing an extra substitution on a branch. Figure (a) shows a
rooted two taxon tree, where the mutation history of the nucleotide
position is known: A substitution s; occurred on the branch leading to
taxon 1. An extramutation s3 was introduced (b ) before and (c) after
the substitution s, occurred. Wherever the extra substitution s3 was
placed, the nucleotide observed in taxon 1 is the same.

The mathematical intricacies will be described elsewhere
(Klaere S, Nguyen MAT, and von Haesler A, in preparation).
For this work, it suffices to recapitulate the Kimura three-
parameter model (Kimura 1981). It distinguishes three types
of substitutions as summarized in the following permuta-
tion matrices:

A G C T
A/0 1 0 0
. _G[1 0 00
'™ clo o o 1Y)
T\o 0 1 o0
A G C T
A/0 0 1 0
Glo o o 1
2=¢cl1 0 o of 2
T\o 1 0 o0
A G C T
A/0 0 0 1
G[o 0o 1 0
3= clo 1 0 ol
T\1 0 0 o0

where s; describes the transitions within purines and pyrim-
idines, respectively, s, represents the transversions within
the nucleotide pairs (A,C) and (G, T), and s3 the remaining
transversions within the nucleotide pairs (A,T) and (C,G).
Using this model, we now study the effect of an extra substi-
tution on a certain branch of the tree. Consider the rooted
two taxon tree in figure 2. The mutation history of the nu-
cleotide on this tree is known: The root state is C and a
substitution s, occurs on the branch leading to taxon 1.
Therefore, we observe the nucleotide A in taxon 1. How
will the observed nucleotide change if we introduce an extra
substitution, for example, an s3 substitution, on the branch
leading to taxon 17 We can introduce s; either “before” or
“after” s, occurs. If the extra substitution s3 occurs before s,
it changes the root nucleotide C into G. Then, G is changed
into T by s,; hence, T would be observed in taxon 1 in-
stead of A (see fig. 2b). If the extra substitution occurs af-
ter s,, it changes the observed nucleotide A also into T
(fig. 2¢). Thus, independent of the order of substitutions,
the outcome is always a T at taxon 1. Hence, placing an
extra substitution on an edge of the tree results in a unique

=
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FIG. 3. Exchanging two patterns on the tree. Figure (a) displays a
rooted four taxon tree with a pattern GTAA observed at the leaves. If
we want to convert the pattern GTAA into ACAA, we may introduce
a series of substitutions (s1, s1, So, So) to the four external branches. Un-
der the Kimura three-parameter model and the OSM setting (Klaere
et al. 2008), this series is equivalent to an “extra substitution” s; on
the internal branch leading to taxa 1 and 2 as the two taxa form a
cluster on the tree. Therefore, the one extra substitution is enough to
switch the observed pattern GTAA into ACAA regardless of the evolu-
tionary process the pattern GTAA has undergone. On the other hand,
the above substitution series converts a constant pattern AAAA into
a unique pattern GGAA. Hence, converting the pattern GTAA into
ACAA is equivalent to evolving the ancestral character A along the
tree such that pattern GGAA is obtained at the leaves. Applying the
Fitch algorithm (Fitch 1971) to the latter results in a unique assign-
ment in (b): An s; substitution, which changes A into G, occurs on
the internal branch leading to taxa 1 and 2. This assignment is identi-
cal to the assignment in (a).

outcome independent of the unknown substitution history
of the observed nucleotide. This is essentially due to the fact
that the substitution matrices sy, s,, 53, and the identity ma-
trix s form a commutative group (Klein four group) with re-
spect to matrix multiplication. We also note that the Kimura
three-parameter model is the most general model for nu-
cleotide substitution that can be used in our approach.
The algebraic structure of the Kimura model also
allows for an efficient way to convert an alignment pat-
tern p into another pattern p’ by putting a minimal
number of extra substitutions on the tree. In a straight-
forward approach, one could simply generate all possible
patterns from p by putting a number of extra substitu-
tions on branches of the tree until p’ is produced. How-
ever, this approach is computationally infeasible. Klaere S,
Nguyen MAT, and von Haesler A (in preparation) show
that a parsimony algorithm produces the required num-
ber of extra substitutions. Here, we discuss an example.
Consider the rooted four taxon tree in figure 3a and the
pattern GTAA at the leaves. Assume that the pattern GTAA
is to be converted into ACAA. By comparing patterns posi-
tion wise, we need a substitution s; on the branch leading
to taxon 1to convert G into A at the first position (the first
taxon). Similarly, we need a substitution s; on the branch
leading to taxon 2; no changes are needed for taxa 3 and 4.
Thus, a series of substitutions (s;, s, S, Sg) on the four ex-
ternal branches of the tree transfers the pattern GTAA into
the pattern ACAA. Because taxa 1 and 2 form a cluster on
the tree and the two substitutions are from the same ma-
trix s;, they are equivalent to a substitution s; on the cor-
responding internal branch. As shown before, the outcome
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FIG. 4. Primate complete mitochondrial genome. Histogram of the number of extra substitutions computed on 1,000 generated alignments under
(a) GTRand (b) GTR + I 4+ I" models. The attained value (mo) was significantly high under both models.

is independent of the order of the extra substitutions to
the unknown substitutions; therefore, the extra substitution
s, on the internal branch is enough to switch the pattern
GTAA into the pattern ACAA.

On the other hand, Klaere et al. (2008) showed that
the series of substitutions (sq,s1,50,50) can also act on
any other pattern and produces another unique pattern.
Applying this series of substitutions on a constant pattern,
AAAA, leads to the pattern GGAA. Therefore, converting
the pattern GTAA into the pattern ACAA is equivalent to
converting the constant pattern AAAA into the pattern
GGAA. Hence, computing the minimal number of sub-
stitutions to change the pattern GTAA into the pattern
ACAA is equivalent to computing the minimal number of
character changes required along the tree to explain the
pattern GGAA observed at the leaves given that the root
state is A. The latter can be efficiently computed using
the Fitch algorithm (Fitch 1971) with the extension that if
the root character set does not contain A, we increase the
number of character changes by 1. The Fitch algorithm also
assigns the substitutions on the branches of the tree. In our
example, this results in an unique assignment in figure 3b,
which agrees to the assignment in figure 3a.

Step 5: After computing the number of substitutions to
convert each pattern in D into every pattern in D, we
determine a matching which pairs every patternin D with
patternsin D~ such that the total number of substitutions
is minimal. This is done by applying the Munkres algorithm
for the assignment and transportation problems (Munkres
1957). The minimal number of substitutions, thereafter re-
ferred to as the number of extra substitutions and denoted
as m, is then considered as the minimal “cost” to fit the tree
model to the observed data.

Step 6: Subsequently, we apply the second part of the
Fitch algorithm to assign extra substitutions to the branches
of the tree to exchange the paired patterns between D" and
D-.

Step 7: Finally, we assess the significance of the number
of extra substitutions using parametric bootstrap. We gen-
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eratea number of alignments (e.g., 1,000 alignments) on the
tree under the substitution model with the respective pa-
rameter values using a sequence generator program such as
Seq-Gen (Rambaut and Grassly 1997). We then re-estimate
the tree and compute the number of extra substitutions
for each simulated alignment. Subsequently, we determine
whether the number of extra substitutions computed on
the originalalignment (my) is significantly high according to
a given significance level (5%). It should be noted that if mq
is close the critical value (5% point), one may increase the
number of simulated alignments for a more accurate esti-
mation of the P value.

Results

Primate Mitochondrion, Complete Genome

The data set under consideration contains the complete mi-
tochondrial DNA from five primates: chimpanzee, bonobo,
human, gorilla, and orangutan (Horai et al. 1995). The align-
ment, after removing sites containinggaps, is 16,271 bp long
and is composed of 241 distinct patterns. As discussed ear-
lier, figure 1 shows the logarithm of the observed pattern
frequencies and the expected pattern likelihood under the
GTR model. We counted 207 patterns within the confidence
region (open circles), 30 overrepresented patterns (gray-
filled circles), and 4 underrepresented ones (black-filled
circles). Using the OSM matrix (Klaere et al. 2008), we gen-
erated 94 patterns one substitution away from the constant
patterns, 12 of which are not observed in the alignment but
are all expected to occur at least once. The average likeli-
hood of these 12 patternsis 1.09 X 10~ %, whereas the average
likelihood of the 25 overrepresented patterns, each occur-
ring once in the alignment, is 5.28 X 10~’. Thus, the unob-
served one substitution patterns are on average 207.5 times
more likely to occur in the alignment. The inferred ML tree
is rooted at the external branch leading to the orangutan
and the resulting number of extra substitutionswas 61. This
was excessively high compared with the simulated null hy-
pothesis distribution (fig. 4a).
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C.elegans 6 1 Fruit fly
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FIG. 5. Fungi, metazoa CDC45 -like region. Figures (a) and (b ) present the ML trees reconstructed under GTR + [ 4+1"and JC69 + | + I, respectively.
Branch lengths are scaled according to the ML estimation. The number above each branch is the number of extra substitutions assigned by

MISFITS.

We then included invariant sites (I) and I 'rate hetero-
geneity into the GTR model and also examined a simpler
model, JC69 + | + I'. Under)C69 + | + I, the number of
extra substitutions on the originalalignment (m,) was 2,168
and it was way out of the range of the simulated null hy-
pothesis distribution (data not shown). Remarkably, m, es-
timated under GTR 41 4 I, though very low (m, = 6), was
still significantly high (Pvalue = 0.002 based on 1,000 simu-
lated alignments, fig. 4b ). This demonstrates the power of
our approach in terms of rejecting models that do not re-
ally fit the data.

This study involves a simple model, JC69 + | + I, and
the more complex ones, GTR and GTR + | + I'. Neverthe-
less, these models are rejected by the Cox test proposed by
Goldman (1993b) (data not shown) as well as under our ap-
proach. Thus, there might be factors in the process of evo-
lution that even the complicated model GTR + | + I was
unable to cover. A closer look at the data revealed four over-
represented site patterns. Two of which are located at genes
ND1 and ND5, both at the third codon position: position
747 in the human ND1 gene and position 981 in the human
ND5 gene (positions 4,053 and 13,317, respectively, in the
human mitochondrial genome). The other two are located
at the D-loop at positions 151 and 16,293 in the human mi-
tochondrial genome. Moreover, it should be noted that the
test of homogeneity of the substitution process on a phy-
logeny advocated by Weiss and von Haeseler (2003) also re-
jected GTR and GTR + I on this data set. It implied that
there may be heterogeneous substitution processes within
the phylogeny describing the data.

Fungi, Metazoa CDC45-Like Region
This protein-coding DNA alignment (PF02724) was taken
from the PANDIT database (Whelan et al. 2006). It encodes
the CDC45-like protein. The sequences are homologs, as
studied by Saha et al. (1998), from seven fungi, metazoa
species: Ustilago maydis (Corn smut), Saccharomyces cere-
visiae (Budding yeast), Schizosaccharomyces pombe (Fis-
sion yeast), Caenorhabditis elegans (C. elegans), Drosophila
melanogaster (Fruit fly), Xenopus laevis (Xenopus), and
Homo sapiens (Human). After removing sites containing
gaps, 1,503 sites remain.

Model testing under Akaike information criterion sug-
gested the GTR + | + I" model. However, the inferred tree

failed to recover the generally accepted taxonomic group-
ings (fig. 5a). The internal branch leading to one of the
inappropriate groupings (Xenopus, C. elegans) is weakly
supported by 31%. Remarkably, the tree inferred by a sim-
pler model, JC69 + I + I, was congruent with the gener-
ally accepted phylogeny (fig. 5b ). Moreover, this tree needs
15 extra substitutions less than the tree in fig. 5a. Figure 5a
and b also display the assignment of the extra substitutions
on the trees using accelerated transformation, ACCTRAN
(Farris 1970; Swofford and Maddison 1987). The number
above each branch shows the number of extra substitutions.
Branch lengths are scaled according to the number of sub-
stitutions per site under the ML estimation. The root was
placed on the branch separating the fungal species from the
metazoa.

Notably, we observed the tendency to place extra sub-
stitutions on short branches, for instance, on the two ex-
ternal branches leading to Human and Xenopus. A reason
may be that substitutions on short branches are rarely cap-
tured by the ML model. They are then accounted for by
our approach as extra substitutions. We therefore studied
the significance of the number of extra substitutions as-
signed to the branches of the tree under JC69 + | + I
We generated 1,000 alignments, used them to re-estimate
the branch lengths and then computed the number of
extra substitutions on the branches of this tree. Table 2
displays the results. The number of assigned extra substitu-
tions on all branches of the tree, including the two exter-
nal branches leading to Human and Xenopus, are not signif-
icantly high (significance level & = 0.05).

Highlighting the overrepresented positions in the align-
ment, we observed most of them at the third codon posi-
tion: 88.6% under GTR + | + I" and 87.5% under JC69 +
I 4 I'. This is congruent with the fastest evolutionary rate of
the nucleotides at the third codon position (Swofford et al.
1996; Rodriguez-Trelles et al. 2006; Bofkin and Goldman
2007).

Finally, we studied the significance of the number of ex-
tra substitutions on the trees under the above two models
and GTR (1,000 alignments were generated for each model).
Under)C69 + | + I"and GTR + 1 + I', the number of ex-
tra substitutions (my = 49 and 64, respectively) fell in the
corresponding simulated null hypothesis distribution (no
significance). However, mg = 196 under GTR was way too
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Table 2. Number of extra substitutions Assigned to the Branches of
the Tree Inferred by JC69 + | + I for the alignment of CDC45-Like
Region (PF02724).

From 1,000 Bootstraps

Branch Leads to mb} Min Max Mean P valueb
Budding yeast (BY) 0 0 6 0.529 1.000
Fission yeast (FY) 3 0 7 0.778 0.076
(BY, FY) 1 0 7 0546 0.366
Corn smut (S) 2 0 5 0.393 0.079
(BY, FY, S) 2 0 5 0.450 0.090
Human (H) 14 0 46 5.812 0.109
Xenopus (X) 13 0 33 5.912 0.132
(H,X) 0 0 8  0.587 1.000
Fruit fly (F) 1 0 1 1.204 0.560
(H, X, F) 1 0 10 1181 0.599
C. elegans (E) 4 0 12 1.815 0.153
(H, X, F, E) 6 0 16 1.818 0.065
Root 2 0 9 1.458 0.358

2mbo: Number of extra substitutions assigned to each branch of the tree,
computed on the original alignment.

bp value: Proportion of the number of parametric bootstrapped alignments
where the number of extra substitutions assigned to a certain branch was
greater or equal to that computed on the original alignment.

high (see fig. 6). It implies that models without rate hetero-
geneity across sites would be inadequate for this data set.

Most importantly, this alignment demonstrates a case in
which a simpler model, JC69 + | + I, performed better
than a more complex one, GTR + | + I, with regards to the
inferred trees (cf. Sullivan and Swofford 2001) and to the
number of extra substitutions. Thus, MISFITS is capable of
indicating such a situation.

Study on a Large Range of Data

We applied MISFITS to study a wide range of multiple
alignments of protein-coding DNA sequences from the
PANDIT database, release 17 (Whelan et al. 2006). The PAN-
DIT database contains 7,738 alignmentsin total. Alignments
with less than four sequences (1,247 alignments) were dis-
carded from our analysis as the tree space (only one shape)
and the pattern space (not more than 64) are too small for a
typical phylogeny analysis. Alignments with more than 100

Table 3. Percentages (%) of the Selected Models for 6,171
Alignments in the PANDIT Database.

Rate
Model? One Rate | r 1+ 2 Model
JC 0.05 0.02 0.02 0.00 0.08
F81 0.15 0.16 0.18 0.10 0.58
K80 0.03 0.29 0.58 0.21 1.12
HKY 0.29 1.39 3.34 2.85 7.88
TrNef 0.03 0.15 0.13 0.19 0.50
TrN 0.19 0.79 1.59 1.81 4.39
TPM1 0.02 0.13 0.28 0.13 0.55
TPM1uf 0.16 0.92 1.70 1.70 4.49
SYM 0.13 0.39 3.21 6.03 9.76
GTR 0.49 3.68 26.06 40.43 70.65
S Rate 1.54 7.92 37.09 53.45 100.00

2Refer to Posada (2008) for a detailed description of the models listed.

sequences (320 alignments) were also discarded because the
gaplessalignment lengths are too short: The average of gap-
less alignment sites per taxon (alignment length divided by
number of sequences) is 1.23. Alignments with short se-
quence length and large number of taxa may lead to a bias in
phylogeny inference (Revell et al. 2005). Thus, the study in-
volved 6,171 alignments containing from 4 to 100 sequences
with gapless alignment length ranges from 15 to 6,288 bp.
The discarded alignments are listed in supplementary table
S1, Supplementary Material online.

First, we used jModelTest (Posada 2008) to select the
best model for each alignment. Under the selected model,
the ML tree and pattern likelihood were computed by us-
ing the PHYML package (Guindon and Gascuel 2003) and
the PUZZLE program (Schmidt et al. 2002), respectively. We
observed that the GTR models with and without rate het-
erogeneity across sites (GTR, GTR + I, GTR +1" [four rate
categories], GTR + | 4 I") were mostly selected (70.65%).
Furthermore, models with one rate across sites were rarely
selected (only 1.54%, see table 3).

Subsequently, we studied the goodness of fit of the
selected models to the alignments. For 777 alignments
(12.59%), the observed frequencies of all patternsare within
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FIG. 6. Fungi, metazoa CDC45-like region. Histogram of the number of extra substitutions computed on 1,000 generated alignments under (a)
GTR+ 1 + I, (b) )JC69 + | + I', and (c) GTR models. The attained value (my) falls in the null hypothesis distribution (not significant) under
GTR+1 + I'"and JC69 + I + I'. It is significantly high under GTR though (c).
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FIG. 7. Results on PANDIT database under the selected models for
the 4,268 alignments where overrepresented patterns were observed
and there were enough underrepresented patterns to exchange with
them. The histogram displays the number of alignments (the y axis)
versus the number of extra substitutions per 100 characters (the x
axis).

the confidence region. The number of sequences in these
alignments ranges between four and eight. Thus, for align-
ments with more than eight sequences, D+ or D~ are never
empty. The number of extra substitutions needed for these
777 alignments is 0.

We observed overrepresented patterns in the remain-
ing 5,394 alignments. There were 98 alignments in which
all patterns are overrepresented. Thus, not a single pattern
fell into the confidence region. This is attributed to the fact
that they contain only singleton patterns (occurring only
oncein the alignment). Phylogeny based on such alignments
with tremendously diverse patterns is probably arbitrary.
Therefore, we discarded these alignments from the next
steps.
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The next step of MISFITS thus comprised 5,296 align-
ments. However, for 1,028 alignments (19.41%), there were
not enough unobserved patterns having a likelihood greater
than 1//, that is, not enough underrepresented patterns to
exchange for all the overrepresented patterns. These align-
ments were also discarded. These alignments together with
the above 777 and 98 alignments are listed in supplemen-
tary table S2, Supplementary Material online.

Thus, 4,268 alignments went into the final analysis. The
percentages of the models being selected for these align-
ments were similar to those in table 3. Thus, the removal
of the above alignments did not change the model selec-
tion substantially. On average, MISFITS introduced 13.73
extra substitutions per 100 characters (number of extra sub-
stitutions per site divided by the number of sequences in the
alignment times 100). Figure 7 shows the histogram of the
number of alignments against the number of extra substitu-
tions per 100 characters.

Based on the parametric bootstrap analysis consisting of
100 simulations for each of the 4,268 alignments, MISFITS
showed that the number of assigned extra substitutions
was not significant for 3,918 alignments (91.80%) and sig-
nificantly high for 350 alignments (8.20%). This means our
approach would reject 350 models. The Cox test proposed
by Goldman (1993b) rejected 478 models (11.20%), which
is in the same order of magnitude (refer to supplementary
tables S1 and S2, Supplementary Material online for more
details on these 3,918 and 350 alignments, respectively).
Two-hundred and seventeen models were rejected by both
approaches. Figure 8a and b display the number of align-
ments (the height indicated by the nonfilled bars) and the
number of alignments (models) being rejected by MISFITS
(black bars) and by the Cox test proposed by Goldman (gray
bars) with respect to the number of sequences in the align-
ment (a) and to the alignment length (b). These figures (see
also supplementary figs. S3 and S4, Supplementary Material
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FIG. 8. Results on PANDIT database under the selected models for the 4,268 alignments where overrepresented patterns were observed and there
were enough underrepresented patterns to exchange with them. The height indicated by the nonfilled bars display the number of alignments in
logarithm to base 10 (the corresponding decimal values are depicted by the dashed horizontal lines together with the numbers on the right). The
filled bars show the number of alignments (models) being rejected by MISFITS (black bars) and by the Cox test proposed by Goldman (gray bars)
with respect to the number of sequences in the alignment (a) and to the alignment length (b).
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online) show that the proportion of models being rejected
by both methods tends to increase when the number of
sequences grows as well as when the alignment length be-
comes longer. This implies that it becomes more and more
difficult to have a single model that can adequately explain
the data.

We learned from this survey that in a number of instances
(8.20%), the selected models and the resulting trees do not
really fit the data. Moreover, typically singleton patternsare
overrepresented. One reason for this is the discrete nature of
the patterns. Occasionally, some patterns have a very small
likelihood to occur on the inferred tree. Therefore, it is more
plausible to explain the occurrence of such a pattern by ex-
trasubstitutions, which are not covered by the model but
are more likely to happen on the tree.

Discussion

MISFITS provides a guided efficient way to pinpoint to site
patterns in the alignment, which are not captured well by
the substitution model and the inferred tree (refer to sup-
plementary section 1, Supplementary Material online for
further details). The differences (residuals) between their
observed frequencies and the corresponding expectation
manifest themselves in a clear deviation from the identity
line (cf. fig. 1). We then introduced a computational feasi-
ble method which puts extra substitutions on the tree to
reduce the residuals. The extra substitutions reduce over-
represented site patterns in the alignment and at the same
time increase underrepresented patterns. This has the ul-
timate effect that these extra substitutions pull overrepre-
sented patterns and simultaneously push underrepresented
patterns into the confidence region.

A big advantage of the approach is the possibility to map
the extra substitutions on the tree. Moreover, the extra sub-
stitutions required give a biological interpretation why the
data may not be adequately described by the tree model.
The reasons for significant deviations, however, may be dif-
ferent for every single instance. They depend on the selected
sequences, the selected organisms, and the unknown evolu-
tionary history of the sequences. This needs to be elucidated
on a case-by-case basis. Nevertheless, our tool on the one
hand may point to potential regions in the alignment that
may deserve a closer analysis. On the other hand, the assign-
ment of extra substitutions to branches of the tree provides
additional information to the interpretation of the inferred
phylogeny: where on the tree such extra substitutions would
help to reduce the residuals.

The approach we suggest also sheds additional light
on the goodness of fit in model testing approaches that
are discussed, for example, by Goldman (1993b) and
Posada (2008). It even may point to the risk of overfit-
ting the data that may lead to biologically implausible
results such as in the fungi, metazoa CDC45-like region
example.

From the computational point of view, it is practical in
terms of running time to apply MISFITS routinely to align-
ments. First, the computational complexity required to find
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the number of substitutions that change a pattern in D+
into a pattern in D~ is indeed the complexity of the pre-
liminary phase in the Fitch algorithm, that is, O (n), where
n is the number of sequences (Fitch 1971). Thus, comput-
ing the number of substitutions for every pair of patterns
between DT and D~ has complexity O (n - |D*| - |D7|),
where | - | denotes the cardinality of a set. Second, finding
an optimal matching between patternsin D' and D~ such
that the total number of extra substitutions is minimal ac-
cording to the Munkres algorithm runs in the worst-case
time O (V?), where V.= max{|D*|,| D~ |}. Moreover, the
number of patternsin D is not larger than the number of
distinct patterns observed in the alignment. The number of
distinct patterns in the alignment cannot exceed both the
alignment length and the total number of possible patterns
(4"). Hence, |[DT| < M = min{/,4"}. The cardinality of
D~ is in the same order of magnitude with the cardinality
of D", as D~ contains patterns whose likelihood under the
tree model is larger than 1//. Therefore, in the worst case
where all alignment sites are distinct and overrepresented,
computing the number of substitutions for every pair of
patterns and then finding the optimal matching between
DT and D~ requires O (nM?) and O (M?) complexity, re-
spectively. Nevertheless, although studying alignments with
a large number of sequences from the PANDIT database,
we never observed 4" patterns in the alignment. On aver-
age the computation of mq for one of the 4,268 alignments
going through all analysis steps took 8.4 s on a single core
of a 3-year-old dual core AMD Opteron CPU 2220 SE. A
more detailed depiction of the computing time with re-
spect to sequence length and number of sequences is given
in the supplementary figure S5, Supplementary Material
online.

We have discussed so far the biological implications and
the computational complexity MISFITS may cause. It should
be noted that there is also room for methodological exten-
sions. For example, different locations of the root on the
tree may result in different numbers of extra substitutions
as there is a constraint about the character state at the root
while employing the Fitch algorithm in our approach. It is
feasible to implement an exhaustive or heuristic search for
the location of the root which gives the minimal number
of extra substitutions. However, it is more useful to pro-
vide a biologically meaningful rooting based on preliminary
knowledge about the data.

It will be interesting to see how the phylogeny changes if
we systematically introduce additional signals into the align-
ment. We may put a number of extra substitutions on sev-
eral branches of the tree to change a number of patterns
in the alignment accordingly. Each extra substitution will
be placed on one branch and will change one site in the
alignment. Thus, the sample (pattern) space varies in a con-
trolled manner so that the trees reconstructed on the re-
sulting alignments may provide additional support for the
attained phylogeny.

One limitation that our approach cannot overcome is
the restriction to the Kimura three-parameter model for nu-
cleotide characters. For more complex models of nucleotide
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evolution and for amino acid characters, the algebra does
not work. Nevertheless, the method will work for 16 x
16 doublet models and for 64 X 64 codon models given
that the permutation matrices form a commutative group
with respect to matrix multiplication. Moreover, the above
limitationis not a true drawback of the method because the
method is applied after tree reconstruction and model se-
lection. If we have by statistical standards the best model
selected, then it is pointless to have a second model that is
again complex. We simply want to know where we still ob-
serve deviations; hence, MISFITS is a final step to find signif-
icant deviations.

Supplementary Material

Supplementary section 1, tables S1-S5, and figures S1-
S4 are available at Molecular Biology and Evolution online
(http://www.mbe.oxfordjournals.org/).
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