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Misinterpreting Others and the Fragility of Social Learning∗

Mira Frick Ryota Iijima Yuhta Ishii

Abstract

We study to what extent information aggregation in social learning environments is robust

to slight misperceptions of others’ characteristics (e.g., tastes or risk attitudes). We consider

a population of agents who obtain information about the state of the world both from initial

private signals and by observing a random sample of other agents’ actions over time, where

agents’ actions depend not only on their beliefs about the state but also on their idiosyncratic

types. When agents are correct about the type distribution in the population, they learn the true

state in the long run. By contrast, our first main result shows that even arbitrarily small amounts

of misperception can generate extreme breakdowns of information aggregation, where in the long

run all agents incorrectly assign probability 1 to some fixed state of the world, regardless of the

true underlying state. This stark discontinuous departure from the correctly specified benchmark

motivates independent analysis of information aggregation under misperception. Our second

main result shows that any misperception of the type distribution gives rise to a specific failure of

information aggregation where agents’ long-run beliefs and behavior vary only coarsely with the

state, and we provide systematic predictions for how the nature of misperception shapes these

coarse long-run outcomes. Finally, we show that how sensitive information aggregation is to

misperception depends on how rich agents’ payoff-relevant uncertainty is. A design implication

is that information aggregation can be improved through interventions aimed at simplifying the

agents’ learning environment.

∗This version: January 15, 2019. Frick: Yale University (mira.frick@yale.edu); Iijima: Yale University (ry-
ota.iijima@yale.edu); Ishii: Centro de Investigación Económica, ITAM (yuhta.ishii@itam.mx). This research was
supported by National Science Foundation grant SES-1824324. We thank Larbi Alaoui, Nageeb Ali, Attila Am-
brus, Dirk Bergemann, Aislinn Bohren, Kalyan Chatterjee, Krishna Dasaratha, Darrell Duffie, Ignacio Esponda, Erik
Eyster, Drew Fudenberg, Simone Galperti, John Geanakoplos, Ben Golub, Andrei Gomberg, Ed Green, Marina Ha-
lac, Kevin He, Shaowei Ke, Igor Kheifets, Botond Köszegi, Vijay Krishna, George Mailath, Stephen Morris, Wojciech
Olszewski, Romans Pancs, Antonio Penta, Jacopo Perego, Andrea Prat, Mauricio Romero, Larry Samuelson, Ran
Shorrer, Ron Siegel, Rani Spiegler, Philipp Strack, Bruno Strulovici, Xavier Vives, as well as audiences at Boston Uni-
versity, Caltech Workshop on Information and Social Economics, Columbia, ES Winter Meetings (Atlanta), ITAM,
Michigan, National University of Singapore, Northwestern, Penn State, Pompeu Fabra, Princeton, Tokyo, and Yale.
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1 Introduction

In many economic and social settings, individuals hold limited private information about a payoff-

relevant state of the world and rely on observing the behavior of others as a vital source of additional

information. Typically, however, others’ behavior reflects not only their own information about

the state of the world, but is also influenced by their idiosyncratic characteristics. For example,

in assessing the quality of a new product or a political candidate, people may draw inferences

from the purchasing decisions or stated opinions of others, but these depend at least in part on

others’ consumption tastes or political preferences. Likewise, in many decentralized markets (such

as over-the-counter markets or privately held auctions), agents learn about market fundamentals by

observing other participants’ trading behavior, yet the latter may also be driven by idiosyncratic

features such as risk attitudes, private values or liquidity constraints.

A classic literature examines the possibility of information aggregation in such settings, deriving

conditions under which individuals are able to learn the true state of the world in the long run.1

A common modeling assumption is that individuals possess a correct understanding of their envi-

ronment, in particular the distribution of relevant population characteristics. This conflicts with

growing empirical evidence that people are prone to systematic misperceptions about such distri-

butions; from under- or overestimating the heterogeneity of socio-political attitudes, consumption

tastes or wealth levels in their societies to misjudging the share of “fake” product recommenders or

political supporters on review platforms and social networking sites.2 Such evidence has motivated

a burgeoning theoretical literature to incorporate various forms of misspecification into models of

social learning.3

At the same time, a widely held view of models is summarized by George Box’s saying that “all

models are wrong,” but “cunningly chosen parsimonious models often do provide remarkably useful

approximations” (Box, 1979). This raises the question how severe agents’ misperceptions must be

to motivate departing from the standard model: Does the correctly specified model perhaps offer a

good enough approximation as long as the amount of misperception is sufficiently small?

The first main result in this paper suggests a negative answer to this question. We consider a

population of agents who obtain information about the state of the world both from initial private

signals and by observing a random sample of other agents’ actions over time, where agents’ actions

depend not only on their beliefs about the state but also on their idiosyncratic types. When agents

are correct about the type distribution in the population, they learn the true state in the long

run. By contrast, we show that even arbitrarily small amounts of misperception about the type

distribution can generate extreme breakdowns of information aggregation, where in the long run

all agents incorrectly assign probability 1 to some fixed state of the world, regardless of the true

underlying state.

This stark discontinuous departure motivates analyzing information aggregation under mis-

1For surveys, see Vives (2010); Chamley (2004).
2See Section 2.4 for references.
3We discuss this literature in Section 7.1.
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perception in its own right, without extrapolating from the predictions of the correctly specified

benchmark. Our second main result shows that any misperception about the type distribution gives

rise to a specific failure of information aggregation where agents’ long-run beliefs and behavior vary

only coarsely with the state. Moreover, we provide systematic predictions for how the nature of

misperception shapes these coarse long-run outcomes. Finally, our third main result shows that how

sensitive information aggregation is to misperception depends on how rich agents’ payoff-relevant

uncertainty is. An important design implication is that information aggregation can be improved

through interventions aimed at simplifying the agents’ learning environment.

In our model, a large population of agents choose actions in each period t ∈ {1, 2, . . .} to

maximize their expected utility given their time t information about a fixed but unknown state of

the world ω ∈ Ω = [ω, ω]. Each agent’s utility to a given action depends not only on the state ω, but

also on his idiosyncratic type θ, where types in the population are distributed according to some cdf

F . Each agent i’s time t information about ω consists of two sources: First, in period 0, i observes

a private signal about ω; second, in each period up to time t, i randomly meets some other agent

j and observes j’s action in that period. If agents are correct about the type distribution F , then

under our assumptions on signals and payoffs, information aggregation is successful (Lemma 1);

intuitively, by observing a sufficiently large sample of other agents’ actions, all agents are able to

correctly back out the state in the long run.4

Our focus is on the case where agents are misspecified about the type distribution, in the sense

that they misperceive the true distribution F to be some other cdf F̂ . Here agents’ amount of mis-

perception can be quantified by standard notions of distance between cdfs F̂ and F .5 Misperceiving

the type distribution entails the possibility of misinterpreting other agents, in the sense of drawing

incorrect inferences about the state from their actions. Nevertheless, one might expect that as long

as the amount of misperception is small, this effect should likewise be small, and information ag-

gregation should be approximately successful. Indeed, a natural analogy is with a single agent who

receives repeated informative signals about the state of the world, but misperceives the mapping

from states to signals. When signals are exogenous, a classic result due to Berk (1966) implies that

the agent’s long-run belief is approximately correct when the amount of his misperception is small

(Proposition 0). Moreover, as we discuss below, the same is true in recent models of misspecified ac-

tive learning, where signals depend endogenously on the agent’s actions and the agent misperceives

this dependence.

Theorem 1 offers a sharp contrast to these single-agent benchmarks. Under social learning,

even vanishingly small amounts of misperception can lead to extreme breakdowns of information

aggregation, where long-run beliefs are state-independent point masses : For any state ω̂, there exists

4Our model is closely related to Duffie and Manso’s (2007) random matching model of social learning without
misspecification, which also features successful information aggregation. Like them, we abstract away from important
forces that cause failures of information aggregation in other correctly specified models, e.g., herding or informational
cascades in Bikhchandani, Hirshleifer, and Welch (1992); Banerjee (1992); Smith and Sørensen (2000). This allows
us to isolate the effect of vanishingly small misperceptions, which we show can lead to more extreme failures of
information aggregation than in any correctly specified model.

5We use the total variation distance, but our results go through under other standard norms.
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a perception F̂ that is arbitrarily close to the true type distribution F , but under which in all states

ω, all agents’ long-run beliefs incorrectly assign probability 1 to ω̂.

Section 4.2 illustrates the logic behind Theorem 1, which relies on showing that in the long

run, agents’ belief dynamics exhibit two key features. First, there is mislearning, in the sense

that agents’ misperception of the type distribution generates “discrepancies” between expected and

observed behavior, to which agents respond by successively misadjusting their beliefs about the

state and correspondingly misadjusting their behavior in the next period, generating yet another

discrepancy. Second, belief dynamics become decoupled from the true state in the long run; this is

because under social learning, agents’ information over time is based increasingly on other agents’

behavior, which depends on the true state only indirectly through other agents’ beliefs. We show

that the combination of these two features renders belief dynamics extremely sensitive to small

misperceptions and can lead to the complete unraveling of information aggregation in Theorem 1.

Section 4.3 discusses how these two features drive the sharp contrast between misspecified social

learning and the single-agent benchmarks: Mislearning is absent under single-agent passive learning

where information is exogenous, but it is closely related to the phenomenon of misguided learning in

the single-agent active learning model of Heidhues, Koszegi, and Strack (2018).6 However, the latter

setting again differs from social learning in that long-run belief dynamics do not become decoupled

from the true state, because the agent’s only source of information in each period are signals that

depend directly on the state of the world. As a result, these single-agent benchmarks, unlike

social learning, are not sensitive to small amounts of misperception. We also emphasize that belief

dynamics and behavior in the proof of Theorem 1 have the feature that agents’ observations (both

in finite time and asymptotically) never contradict their mistaken belief that the type distribution

is F̂ , suggesting a sense in which such misperceptions can be a persistent phenomenon.

Theorem 1 highlights that vanishingly small amounts of misperception can generate stark dis-

continuous departures from the correctly specified benchmark. While not every misperception F̂

need give rise to breakdowns of information aggregation that are as extreme as in Theorem 1, this

suggests that social learning under misperception must be studied independently, without relying

on the predictions of the correctly specified model. Theorem 2 therefore investigates information

aggregation under arbitrary well-behaved true and perceived type distributions F and F̂ . We show

that information aggregation continues to fail, but in general long-run beliefs need not be fully

state-independent and instead display the following weaker form of “coarseness:” F and F̂ generate

a partition of the state space Ω = [ω, ω] into finitely many intervals, and within each such interval,

agents’ long-run beliefs incorrectly assign probability 1 to the same fixed state. As a result, long-run

behavior also varies only coarsely with the true state, remaining constant within each interval of

the partition and changing discretely from one interval to the next. As we discuss, this prediction

is broadly in line with the widely studied fact that behavior in many economic settings is not finely

attuned to economic fundamentals, suggesting a possible new channel for this phenomenon.

Theorem 2 also provides a starting point for analyzing how long-run beliefs vary across differ-

6Related work includes Nyarko (1991); Fudenberg, Romanyuk, and Strack (2017).
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ent forms of misperception. As an illustration, Section 4.4 shows that when F and F̂ are ranked

according to first-order stochastic dominance (e.g., when agents under-/overestimate the share of

“fake” recommenders) long-run beliefs exhibit drastic overoptimism/-pessimism, and that under- or

overestimating population heterogeneity leads to conservative or extreme long-run beliefs, respec-

tively.

Finally, Theorem 3 highlights a key determinant of the fragility of information aggregation,

by showing that information aggregation is more sensitive to misperception the richer the state

space. Suppose we approximate our continuous state space Ω = [ω, ω] by an increasingly fine

sequence Ωn of finite state spaces. Then for each n, there is some threshold εn such that information

aggregation is successful whenever the amount of misperception is below this threshold. However,

as the size of the state space grows, εn shrinks to 0, so that information aggregation is more and

more sensitive to misperception; indeed, arbitrarily small amounts of misperception can give rise

to extreme breakdowns of information aggregation analogous to Theorem 1 whenever the state

space is large enough. As we discuss, this result offers a complementary perspective to Bohren

and Hauser (2018), who show that a version of the sequential social learning model (Bikhchandani,

Hirshleifer, and Welch, 1992; Banerjee, 1992; Smith and Sørensen, 2000) is robust to small amounts

of misspecification but focus on the binary state space setting.

Many settings of economic interest naturally feature rich state spaces, from safety levels of new

products to market fundamentals under decentralized trade. From a design perspective, Theorem 3

implies that information aggregation in such settings can be improved by simplifying the agents’

learning environment: For instance, in the context of news releases by a central bank or consumer

protection agency, Example 3 highlights a new trade-off between providing more information for

agents to aggregate and rendering information aggregation more sensitive to misperception, and we

argue that this may call for releasing only “vague” information.

The paper proceeds as follows. Section 2 sets up the model. Section 3 establishes two prelimi-

nary benchmarks: Successful information aggregation under the correctly specified model and the

robustness of single-agent passive learning to small amounts of missperception. Sections 4 and 5

present our main results, Theorems 1–3. Section 6 discusses more general forms of misperception,

in particular the interaction between misspecified and correctly specified agents. Finally, Section 7

reviews related literature and offers some concluding remarks.

2 Model

2.1 Environment

There is a continuum of agents with mass normalized to 1. Each agent is endowed with a fixed

(preference) type θ ∈ R. Each agent’s type is his private information. Types in the population

are distributed according to a cdf F that admits a positive and continuous density over R. Let F

denote the space of cdfs with these properties.

At the beginning of period 0, a state of the world ω is drawn once and for all from a cdf Ψ
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that admits a positive density over a bounded interval Ω := [ω, ω] ⊆ R. Agents do not observe

the realization of ω. At the beginning of each period t = 1, 2, . . ., each agent i chooses an action

ait ∈ {0, 1} to myopically maximize his expected utility given his period t information about ω.7 We

assume binary actions for simplicity, but as we discuss in Supplementary Appendix G, analogous

insights obtain under continuous actions.

We specify information in the next subsection. Each agent’s utility u(a, θ, ω) depends on his

action, his type, and the state of the world. The utility u(0, θ, ω) to action 0 is normalized to be

identically 0 for all types and states. We denote the utility u(1, θ, ω) to action 1 by u(θ, ω) and

assume this to be strictly increasing and continuously differentiable in both θ and ω. Moreover,

limθ→∞ u(θ, ω) > 0 and limθ→−∞ u(θ, ω) < 0; that is, for high (respectively, low) enough types

it is always optimal to choose action 1 (respectively, action 0).8 For each ω, let θ∗(ω) denote the

threshold type that is indifferent between both actions in state ω; θ∗(ω) is uniquely defined by

u(θ∗(ω), ω) = 0 and is strictly decreasing in ω.

2.2 Information

At the end of period 0, each agent i observes a private signal si ∈ R about the state of the world.

Conditional on realized state ω, private signals are drawn i.i.d. across agents from cdf Φ(·|ω) with

positive density φ(·|ω) over R.9 Private signal distributions satisfy the monotone likelihood ratio

property; that is, for each ω > ω′, φ(s|ω)
φ(s|ω′) is strictly increasing in s, so that higher signal realizations

are more indicative of higher states.

At the end of each period t = 1, 2, . . ., each agent i randomly meets another agent j and observes

j’s period t action ajt.
10 We assume independent random matching, in the sense that j’s type θj is

drawn from the type distribution F in the population, independent of i’s own type θi; Section 7.2

briefly discusses incorporating assortative random matching.

Thus, at the beginning of each period t = 1, 2, . . ., each agent’s information about the state

consists of two sources: His private signal in period 0; and, if t ≥ 2, a random sample of other

agents’ actions in periods 1, . . . , t − 1. Note that agents do not observe and draw inferences from

their utilities; as point (iv) in Section 2.4 discusses, two natural interpretations of this include

settings where payoffs are realized only in the long run or where overlapping generations of agents

take one-shot actions.

7Myopia is without loss in this setting as players’ actions do not affect their information.
8Such dominant types play the following technical role. They ensure (i) that information aggregation is successful

in the correctly specified model (Lemma 1) and (ii) that both actions are observed with positive probability in each
period; (ii) avoids the problem of belief-updating after zero probability events, as regardless of their perceptions
F̂ ∈ F , agents never encounter observations they considered impossible. In the context of word-of-mouth learning
about the quality of a new product, Example 1 interprets such types as “fake” recommenders.

9We assume full-support signal distributions for notational simplicity. Our results remain valid as long as all
densities φ(·|ω) admit the same support S ⊆ R.

10We follow convention in assuming a law of large numbers over a continuum of i.i.d. random variables (i.e., agents’
observations of signals and other agents’ actions). See Sun (2006), Duffie and Sun (2012) for rigorous formulations.
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period 0

period 1

period t

state
ω ∼ Ψ

realized,
not observed

observe
private signal
si ∼ Φ(·|ω)

choose
action
ai1

meet agent j
with type θj ∼ F ,

observe aj1

· · · choose
action
ait

meet agent j
with type θj ∼ F ,

observe ajt

· · ·

Figure 1: Timeline. At the end of each period, each agent i Bayesian-updates his belief belief about the state given

the perception that the type distribution is F̂ .

2.3 Perceptions and Inferences

In drawing inferences from other agents’ actions, we allow for the possibility that agents are misspec-

ified about the type distribution F in the population. Specifically, throughout most of the analysis,

we assume that there is some cdf F̂ ∈ F such that all agents believe the true type distribution to be

F̂ and believe that F̂ is common knowledge. We refer to F̂ as agents’ perceived type distribution

(perception for short) and focus on the case of misperception, where F̂ 6= F . This parsimonious

departure from the correctly specified model, where F̂ = F , is enough to convey our main insights,

but Section 6 discusses more general misperceptions.

The key implication of misperception is the possibility that agents may draw incorrect infer-

ences about the state from their observations of other agents’ actions. We will be particularly

interested in the case when the amount of misperception is small. To formalize this, we mea-

sure the amount of misperception by the total variation distance between F̂ and F ; that is,

‖F̂ − F‖ := supB∈B |
´

✶B(θ) dF̂ (θ) −
´

✶B(θ) dF (θ)|, where B denotes the Borel σ-algebra on R.

Our results go through under other standard norms (see footnote 21).

Aside from their potential misperception of the type distribution, agents’ inferences are standard.

In particular, both the distribution of states Ψ and the private signal distributions Φ(·|ω) are

common knowledge among agents.11 Moreover, given perception F̂ , agents draw inferences from

information in each period by Bayesian updating. Figure 1 summarizes the timeline of the model.

In any state ω and at the beginning of each period t ≥ 1, let µω
t ∈ ∆(∆(Ω)) denote the population

distribution over agents’ posterior beliefs about the state. To study information aggregation, we

consider the distribution of long-run beliefs; that is, the limit µω
∞ := limt→∞ µω

t with respect to the

topology of weak convergence. Whenever µω
∞ exists and assigns probability 1 to a Dirac measure

δω′ on some state ω′, we say that in state ω almost all agents’ beliefs converge to a point mass on

ω′; if ω′ = ω, then information aggregation in state ω is successful.

2.4 Examples

The above framework captures numerous economic and social situations:

11Incorporating misperceptions about Ψ and/or Φ(·|ω) in addition to misperceptions about F does not affect our
main results. However, if agents are correct about the type distribution F and only hold misperceptions about Ψ
and/or Φ(·|ω), then information aggregation is approximately successful under small enough amounts of mispercep-
tion. See also footnote 22.
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(i) Learning from others’ behavior. In assessing the long-term health effects ω of potentially risky

behaviors (e.g., recreational drug use) or new products (e.g., GMO foods), individuals may possess

only a “fuzzy” understanding s ∼ Φ(·|ω) of existing research on the subject and obtain additional

information by observing other agents’ day-to-day behavior and consumption choices at.

(ii) Word-of-mouth communication. Based on a political candidate’s campaign announcement

speech or a promotional trailer for an upcoming movie or music album, people may form their own

opinions about the expected quality of the candidate or product, but update these opinions after

hearing others’ assessments.

(iii) Decentralized markets. Duffie and Manso (2007) propose a related framework (without type

heterogeneity and misperceptions thereof) to capture decentralized markets (e.g., the markets for

real estate or over-the-counter securities), where agents who are uncertain about market funda-

mentals may randomly encounter other participants (e.g., at privately held auctions) and gather

additional information by observing their trading behavior (e.g., their bids).

(iv) Overlapping generations. An implicit assumption in the previous examples is that agents

take actions repeatedly, but do not observe their payoffs to these actions. This fits many settings

where states affect payoffs only in the long run (e.g., long-term health effects in (i), the quality of

a political candidate once in office in (ii), or an asset conditioned on a distant future event in (iii)).

Similar to the literature on sequential social learning (e.g., Bikhchandani, Hirshleifer, and Welch,

1992; Banerjee, 1992; Smith and Sørensen, 2000), our model also fits settings where overlapping

generations of agents take one-shot actions whose payoffs they observe privately, and subsequent

generations of agents observe a random sample of previous agents’ actions.

In each of the above settings, other agents’ behavior is influenced not only by their own infor-

mation, but also by their heterogeneous characteristics θ (e.g., consumption tastes, socio-political

preferences, risk attitudes, liquidity constraints). Moreover, as highlighted in the introduction, a

growing empirical literature suggests that agents are prone to systematically misperceive the distri-

butions of these characteristics, from under- or overestimating the heterogeneity of socio-political

attitudes, consumption tastes or wealth levels in their societies to misjudging the share of “fake”

product recommenders or political supporters on review platforms and social networking sites.12

3 Preliminary Benchmarks

Before turning to analyze information aggregation under misperception about the type distribution

in Section 4, this section presents two preliminary benchmarks that will serve as a helpful contrast

to our main results. In Section 3.1, we show that when agents’ perception of the type distribution is

correct, information aggregation is successful in all states. In Section 3.2, we consider a single agent

who observes an exogenous sequence of random actions and misperceives the distribution of actions

12See, e.g., Hauser and Norton (2017), Norton and Ariely (2011) for evidence of under-/overestimation of wealth
inequality; Ahler (2014) for overestimation of political attitude polarization; Kunda (1999), Nisbett and Kunda (1985)
for misperceptions of numerous taste and attitude distributions in society; and Mayzlin, Dover, and Chevalier (2014)
and the references therein for the difficulties of detecting fake reviews.
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in each state. We show that in this case, the agent’s long-run beliefs are approximately correct as

long as the amount of misperception is sufficiently small.

3.1 Information Aggregation under Correct Perceptions

We first show that when there is common knowledge of the correct type distribution F , agents learn

the true state in the long run. We will invoke this result in analyzing the case with misperception in

Section 4, where we will obtain starkly different conclusions. At the same time, this result highlights

the fact that our model does not feature the possibility of herding or related failures of information

aggregation that can arise even under correct perceptions. As such, it serves to isolate misperception

as the sole source of the breakdown of information aggregation that we will study in Section 4.

Lemma 1 (Information aggregation under correct perceptions). Suppose that F̂ = F . Then in any

state ω, almost all agents’ beliefs converge to a point mass on ω.

We prove Lemma 1 in Appendix A. Letting qt(ω) denote the fraction of agents that take action 0

in state ω and period t, the key idea is to prove that limt→∞ qt(ω) exists and is strictly decreasing in

ω, which enables agents to correctly back out the state in the long run by observing sufficiently many

actions of others. One complication is that agents’ action observations, and hence their beliefs about

the state, are private, so that calculating qt(ω) requires keeping track of the population distribution

of agents’ beliefs µω
t ∈ ∆(∆(Ω)), which does not admit a tractable expression.13

Instead, we first use an inductive argument to show that qt(ω) is strictly decreasing in ω for

each t. The intuition is quite simple: First, when the realized state ω is low, more agents observe

lower private signals in period 0, and consequently, more agents choose action 0 in period 1. As

a result, more agents observe action 0 at the end of period 1, and given the first step, action 0 is

more indicative of low states than action 1. This in turn leads to more agents choosing action 0 in

period 2, and so on. To use this to establish that limt→∞ qt(ω) exists and is strictly decreasing in

ω, we must additionally rule out the possibility that qt(ω) becomes very flat in ω in the limit, in

which case some states might yield almost the same action frequencies and be impossible for agents

to distinguish in the limit. In Appendix A, we establish this through an analysis of the asymptotic

properties of the belief distribution µt that is based on martingale convergence arguments and the

richness of types in the population.14

3.2 Single Agent Benchmark with Misperception

In the previous subsection, agents’ ability to draw correct inferences about the state from observed

actions relied on the fact that they knew the true type distribution. When agents misperceive the

13In Duffie and Manso’s (2007), Duffie, Malamud, and Manso’s (2009), and Duffie, Giroux, and Manso’s (2010)
related models of learning in decentralized markets (see Section 2.4), the population distribution of posteriors can
be calculated explicitly. The methods rely on these papers’ specific assumptions about state distributions (binary or
Gaussian) and homogeneous preferences, and thus do not apply to our setting.

14Relatedly, Goeree, Palfrey, and Rogers (2006) establish successful information aggregation in a sequential social
learning model with rich types.
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type distribution to be F̂ 6= F , this introduces the possibility of misinterpreting observed actions,

in the sense that agents might have in mind an incorrect mapping from states to probabilities of

observing actions 0 or 1 at any point in time.

Nevertheless, one intuition one might have is that as long as the amount of misperception is

small, the effect of such misinterpretation will likewise be small, and agents will “approximately”

learn the true state in the long run. Our main results in Section 4 will show that this intuition is

not valid. However, to better understand the logic behind these results, it will be helpful to contrast

them with the following benchmark, where a small amount of misinterpretation of observed actions

does lead to approximately correct long-run beliefs.

Specifically, consider a single agent who observes an exogenous sequence of binary random

variables (“actions”) at ∈ {0, 1} in all periods t = 1, 2, . . .. Unlike in our original model, where

observed actions result from utility-maximizing behavior by other agents, we assume that conditional

on realized state ω, at is distributed i.i.d. over time: at takes value 0 with probability q(ω) and value

1 with complementary probability, where the mapping q : Ω → (0, 1) from states to probabilities of

observing action 0 is continuous and strictly decreasing. To capture misinterpretation of observed

actions, we consider the possibility that the agent misperceives the mapping q to be q̂ : Ω → (0, 1),

where q̂ is again continuous and strictly decreasing.15

A classic result due to Berk (1966) (see also Esponda and Pouzo, 2016) characterizes the agent’s

long-run beliefs in this case: Define the Kullback-Leibler (KL) divergence between probabilities

p, p̂ ∈ (0, 1) to be KL(p, p̂) := p log(p
p̂
) + (1− p) log(1−p

1−p̂
). Then in any state ω, the agent’s long-run

belief assigns probability 1 to the state

ω̂(ω) := argmin
ω̂∈Ω

KL(q(ω), q̂(ω̂))

that minimizes KL divergence between the true action 0 frequency q(ω) and the agent’s perceived

frequency q̂(ω̂). Note that ω̂(ω) exists and is unique for each ω, as q and q̂ are continuous and

strictly decreasing. An immediate implication is that when the amount of misperception is small,

the agent’s long-run belief is approximately correct, in the sense that the perceived state ω̂(ω) is

approximately equal to the true state ω:16

Proposition 0. For any continuous and strictly decreasing q, q̂ : Ω → (0, 1), the agent’s belief in

any state ω converges almost surely to a point mass on ω̂(ω) := argminω̂∈ΩKL(q(ω), q̂(ω̂)), which

15In the present model, the agent’s learning is passive. In Section 4.3, we discuss models of misspecified single-
agent active learning and illustrate why long-run beliefs are likewise approximately correct when the amount of
misspecification is small.

16 A similar continuity result holds in the following setting. Suppose a population of agents acquire information
and take actions to maximize utility as in Section 2, but only a single agent perceives the type distribution to be
F̂ (and believes that F̂ is common knowledge), while all other agents have common knowledge of the correct type
distribution F . Here the action 0 frequency qt(ω) in the population is not i.i.d. over time, reflecting correctly specified
agents’ learning. However, since the correctly specified agents learn the true state in the long-run (by Lemma 1),
qt(ω) converges to q(ω) := F (θ∗(ω)) over time. Given this, it can be shown that the single misspecified agent’s belief
converges to a point mass on ω̂(ω) = argminω̂ KL(q(ω), F̂ (θ∗(ω̂))), where ω̂(ω) is again close to ω when the amount
of misperception is small. By contrast, Section 6 considers hybrid populations where some positive fraction of agents
is misspecified and shows that interactions between correct and misspecified agents are more subtle in this case.
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is strictly increasing and continuous in ω. Moreover, for any δ > 0, there exists ε > 0 such that if

supω∈Ω |q̂(ω)− q(ω)| < ε, then supω∈Ω |ω̂(ω)− ω| < δ.

4 Failure of Information Aggregation under Misperception

We now return to analyzing the effect of misperception about the type distribution in the population

setting of Section 2. Our main results contrast sharply with the previous two benchmarks.

4.1 Main Results

Our first main result finds that information aggregation is highly non-robust to small amounts of

misperception. Whereas Lemma 1 established that under correct perceptions, agents eventually

learn the true state, we now show that even arbitrarily small amounts of misperception can lead

information aggregation to break down.

The breakdown we derive is very stark: Given any type distribution F , we can find an arbitrarily

small amount of misperception under which agents’ long-run beliefs are state-independent point

masses, assigning probability 1 to some fixed state ω̂ regardless of the true state ω. Moreover,

long-run beliefs are arbitrary, in the sense that any state ω̂ can arise as the long-run point-mass

belief under some arbitrarily small amount of misperception.

Theorem 1 (Discontinuous breakdown of information aggregation). Fix any F ∈ F and ω̂ ∈ Ω.

For any ε > 0, there exists a perception F̂ ∈ F with ‖F̂ − F‖ < ε under which in any state ω,

almost all agents’ beliefs converge to a point mass on ω̂.

Several prominent social learning models can give rise to unsuccessful information aggregation

even when agents are correctly specified; e.g., due to the possibility of herding and/or confounded

learning in sequential learning models à la Bikhchandani, Hirshleifer, and Welch (1992), Banerjee

(1992), and Smith and Sørensen (2000).17 However, Theorem 1 generates a more extreme breakdown

of information aggregation—long-run beliefs that are state-independent point-masses—that cannot

arise under any correctly specified Bayesian learning model, because beliefs in such models follow

a martingale.

Related instances where agents’ long-run beliefs grow confident in an incorrect state have been

derived in several recent papers (e.g., Eyster and Rabin, 2010; Bohren, 2016; Gagnon-Bartsch and

Rabin, 2017) that incorporate various forms of misspecification into sequential learning models. The

key novelty is that Theorem 1 shows that state-independent point-mass beliefs can arise even under

vanishingly small amounts of misperception. In contrast, the aforementioned papers rely on strong

forms of misspecification;18 indeed, in a general model of misspecified sequential learning that nests

17In a random matching setting, see, e.g., Banerjee and Fudenberg (2004), Wolinsky (1990), Blouin and Serrano
(2001) for correctly specified models where information aggregation can fail.

18E.g., in Eyster and Rabin (2010) and Gagnon-Bartsch and Rabin (2017), agents naively believe that each prede-
cessor’s action reflects solely that person’s private information, fully neglecting the fact that predecessors’ behavior
also reflects their inferences from their own predecessors’ behavior.
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several of these types of misspecification, Bohren and Hauser (2018) show that agents learn the

true state whenever the amount of misspecification is sufficiently small. One important difference

between these models and ours is that they assume a binary state space. In Section 5, we will show

that how rich a space of uncertainty agents face has a key impact on how sensitive information

aggregation is to small amounts of misperception in our setting.

The fact that an arbitrarily small amount of misperception suffices to bring about this breakdown

is also in marked contrast to the single agent benchmark in Section 3.2, where we saw that the

agent’s long-run beliefs are approximately correct when the amount of misperception is sufficiently

small. While Section 3.2 is a model of passive learning, Section 4.3 will discuss why small amounts

of misperception also have a negligible effect in recent models of single-agent active learning and

will identify the source of this important difference between social learning and (passive or active)

single-agent learning.

As the proof sketch in Section 4.2 will illustrate, for a given type distribution F , the mispercep-

tions F̂ that give rise to the extreme breakdown in Theorem 1 are quite specific, though Section 4.4

provides natural examples of such misperceptions (e.g., underestimation of type heterogeneity). Of

course, Theorem 1 does not suggest that every misperception leads to state-independent point-

mass beliefs. Rather, the key implication is that the correctly specified model need not offer a

good approximation of a setting where agents hold even slightly incorrect beliefs about others’

characteristics. This suggests that information aggregation under misperception should be studied

independently, without relying on the predictions of the correctly specified model.

As a step in this direction, our second main result therefore investigates the effect of arbitrary

misperceptions F̂ . While in general long-run beliefs need not be fully state-independent, we show

that information aggregation continues to fail, and the failure takes the specific form of “coarse” long-

run beliefs and behavior. The result focuses on well-behaved true and perceived type distributions;

specifically, we assume that F and F̂ are analytic.19

Theorem 2 (Coarse information aggregation). Fix any analytic F , F̂ ∈ F with F̂ 6= F . There

exists a mapping ω̂∞ : Ω → Ω that is weakly increasing and has finite range such that in any state

ω, almost all agents’ beliefs converge to a point mass on ω̂∞(ω).

Information aggregation in Theorem 2 is coarse in the following sense: Since the mapping ω̂∞

from true states ω to long-run point-mass beliefs ω̂∞(ω) is weakly increasing and has finite range,

it partitions the continuous state space Ω = [ω, ω] into finitely many intervals, and long-run point-

mass beliefs are not necessarily fully state-independent, but are constant within each of these finitely

many intervals. This prediction again contrasts with Proposition 0 from the single agent benchmark,

where the agent’s long-run belief ω̂(ω) is a strictly increasing and continuous function of the true

state.
19Function g : R → R is analytic if it is locally given by a convergent power series; that is, for any x0 ∈ R, there is

a neighborhood J of x0 and a sequence of real coefficients (αn)
∞

n=0 such that for all x ∈ J , g(x) =
∑

∞

n=0
αn(x− x0)

n

and the right-hand side converges. As Section 4.2 illustrates, the only feature of analyticity that Theorem 2 exploits
is that analytic F̂ 6= F can intersect at most finitely many times on any compact interval; the theorem remains valid
even if F̂ , F are not analytic but have this feature.
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As a result of agents’ coarse long-run beliefs, their long-run behavior also varies only coarsely

with the true state, remaining constant within each interval of the partition generated by ω̂∞ and

changing discretely from one interval to the next. This prediction is broadly in line with the fact

that behavior in many economic settings (e.g., firms’ pricing behavior and individuals’ consumption-

savings decisions) is not finely attuned to economic fundamentals.20 A rich theory literature provides

models of such coarse behavior that are based on the idea that individuals face limitations in their

ability to process or acquire information (e.g., Sims, 1998, 2003; Mullainathan, 2002; Jehiel, 2005;

Fryer and Jackson, 2008; Gul, Pesendorfer, and Strzalecki, 2017). Theorem 2 highlights a possible

complementary channel: Agents in our model do not face any difficulties processing their private

information, but coarse behavior emerges because agents’ misperceptions of others’ characteristics

give rise to coarse aggregation of this dispersed individual information.

The proofs of Theorems 1 and 2 appear in Appendix B. In the next subsection, we illustrate

the basic argument, which relies on a mechanism that we term “decoupled mislearning.” As we

will see, this mechanism is key in understanding the starkly different effect that small amounts of

misperception can have relative to single-agent active or passive learning models.

4.2 Illustration of Theorems 1 and 2

Step 1: Limit model. To illustrate the key ideas, Steps 1 and 2 first present and analyze a

heuristic limit model , to which we will refer back throughout the paper. In Step 3 below, we will

show that this limit model approximates agents’ long-run beliefs and behavior in the original model,

allowing us to translate the conclusions obtained in the limit model back into the original model.

We first consider an arbitrary perception F̂ . The limit model differs from the original model

solely in assuming that at the end of each period t ≥ 1, each agent meets not one, but infinitely

many other agents and observes their period t actions. By an exact law of large numbers, this

means that in any state ω all agents perfectly learn the fraction qt(ω) of actions 0 that is played in

the population in period t.

In period 1, all agents play the action that maximizes their expected utility given their period 0

private signal. Because of this, if perception F̂ = F is correct, then by observing q1(ω) at the end of

period 1, all agents can correctly back out the true state ω. From period 2 on, agents then follow a

threshold strategy with threshold θ∗(ω), where types above (respectively, below) θ∗(ω) play action

1 (respectively, action 0). Observing this behavior in each period is consistent with agents’ belief

that the state is ω.

Suppose next that F̂ 6= F . Since all agents believe F̂ to be the true type distribution (and believe

this to be common knowledge), observing q1(ω) at the end of period 1 leads agents to commonly

believe in some state ω̂1(ω). Since F̂ 6= F , ω̂1(ω) need not equal ω, though by a similar reasoning

as in Section 3.2, |ω̂1(ω)− ω| is negligible when ‖F̂ − F‖ is sufficiently small. Given their belief in

ω̂1, in period 2, agents then follow a threshold strategy with threshold θ∗1 := θ∗(ω̂1).

A key departure from the correct perceptions case arises at the end of period 2. This takes

20See, e.g., Reis (2006a,b) and references therein.
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Figure 2: Left: Starting with any point-mass belief ω̂1, agents face a discrepancy between expecting to observe

fraction F̂ (θ∗(ω̂1)) of actions 0 and actually observing F (θ∗(ω̂1)). In response, they adjust beliefs to a point mass on

ω̂2, which perfectly explains the latter observation. But following this adjustment, next-period behavior is governed by

threshold θ∗(ω̂2), giving rise to another discrepancy between expected and actual behavior F̂ (θ∗(ω̂2)) and F (θ∗(ω̂2)).

The process of adjustments continues, converging to the unique belief ω̂ under which expected and actual behavior

coincide. Right: An example with three steady states ω̂∞, ω̂′

∞, ω̂′′

∞.

the form of a possible inconsistency between expected behavior and actual observations: Given

perception F̂ , all agents assign probability 1 to observing fraction F̂ (θ∗1) of actions 0 at the end of

period 2. However, since the true type distribution is F 6= F̂ , agents’ actual observation at the end

of period 2 is q2(ω) = F (θ∗1), which typically does not equal F̂ (θ∗1).

The limit model postulates that agents react to such possible “contradictions” as follows: Upon

observing fraction qt(ω) of action 0 at the end of any period t ≥ 2, all agents update beliefs to

assign probability 1 to the state ω̂t(ω) := argminω̂∈ΩKL
(

qt(ω), F̂ (θ∗(ω̂))
)

. State ω̂t is chosen to

best explain observation qt under perception F̂ , in the sense of minimizing KL-divergence between

qt and the fraction F̂ (θ∗(ω̂t)) of actions 0 that agents would have expected to observe if ω̂t had been

common knowledge in period t.

Given the updated belief that the state is ω̂t, in period t + 1, agents then follow the threshold

strategy with cutoff θ∗t := θ∗(ω̂t) and at the end of the period again face a possible discrepancy

between expected behavior F̂ (θ∗t ) and actual behavior F (θ∗t ). Starting with ω̂1 as derived above,

we thus obtain a process of point mass beliefs ω̂t in all periods t ≥ 2 given by

ω̂t = argmin
ω̂∈Ω

KL
(

F (θ∗t−1), F̂ (θ∗(ω̂))
)

with θ∗t−1 = θ∗(ω̂t−1). (1)

Of course, the belief adjustment process (1) is heuristic, as it involves switching from assigning

probability 1 to state ω̂t−1 at the beginning of period t to assigning probability 1 to the possibly

different state ω̂t at the end of period t. However, as we shall see in Step 3, in the long run this

adjustment process approximates the Bayesian belief dynamics in the original model: For large t,

agents’ beliefs in the original model are “close” to point-mass beliefs on ω̂t−1 and ω̂t at the beginning

and end of period t, but beliefs retain full support throughout, so that belief-updating is well-defined.

Step 2: Long-run beliefs. Turning to long-run beliefs in the limit model, we now show how
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process (1) leads learning about the state to gradually unravel. To illustrate Theorem 1, we first

consider a particular choice of F̂ and F , where F is arbitrary and F̂ crosses F from below at a

single point θ∗ = θ∗(ω̂) with ω̂ ∈ Ω, as shown in the left-hand panel of Figure 2. Example 2 in

Section 4.4 provides an interpretation in terms of underestimation of population heterogeneity. As

explained in Figure 2, starting at any state ω̂1, the ω̂t-process in (1) must converge to the limit belief

ω̂ that corresponds to the crossing point of F̂ and F . Thus, even though, as noted in Step 1 above,

the period 1 belief ω̂1 depends on the true state ω (and indeed is arbitrarily close to ω when the

amount of misperception is small), agents’ long-run belief assigns probability 1 to the same fixed

state ω̂ regardless of the true state ω. Moreover, observe that by suitably choosing F̂ , both the

amount of misperception ‖F̂ − F‖ and the long-run belief ω̂ ∈ Ω can be arbitrary. Together with

the justification of the limit model in Step 3, these observations will establish Theorem 1.21

We refer to (1) as a process of decoupled mislearning . “Mislearning” refers to the fact that

agents’ misperception of the type distribution leads them to repeatedly misinterpret others’ actions,

responding to the discrepancy between expected and observed behavior by misadjusting their beliefs

about the state and correspondingly misadjusting their behavior in the next period. Except for

boundary cases, the adjusted belief ω̂t satisfies F̂ (θ∗(ω̂t)) = F (θ∗t−1), so that beliefs at the end of

each period t perfectly explain the behavior that was observed in the current period. However, each

belief adjustment is followed by a corresponding adjustment in next period’s behavior, which leads to

a new discrepancy between expected and actual behavior, triggering yet another belief adjustment.

The latter point contrasts with the single agent passive learning benchmark in Section 3.2, where

observed action frequencies qt(ω) in each period were exogenous and hence were unaffected by

changes in the belief about the state.22

“Decoupled” refers to a second key feature of our setting: Under social learning, agents’ belief-

updating over time is based increasingly on other agents’ behavior, which depends on the true state

only indirectly through other agents’ beliefs. In the limit model, this takes the especially extreme

form that process (1) is decoupled from the true state ω, in the sense that adjustments from ω̂t−1

to ω̂t in all periods t ≥ 2 are completely independent of the realized ω. In Section 4.3, we will

show that this feature distinguishes social learning from single agent active learning models with

misspecification.

To illustrate Theorem 2, we next consider long-run beliefs for arbitrary F and F̂ . Let SS(F, F̂ ) :=

{ω̂∞ ∈ Ω : ω̂∞ = argminω̂∈ΩKL
(

F (θ∗(ω̂∞)), F̂ (θ∗(ω̂))
)

} denote the set of steady states of process

(1). It is easy to show that any steady state ω̂∞ satisfies either F (θ∗(ω̂∞)) = F̂ (θ∗(ω̂∞)) or

ω̂∞ ∈ {ω, ω}; thus, steady states either feature no discrepancy between the true and perceived

21From this, it is clear that Theorem 1 does not rely on the use of the total variation distance. It remains
valid under any norm on F with the feature that for any ω̂, there are perceptions F̂ that are arbitrarily close to
F but cross F only once from below at θ∗(ω̂). Such norms include the sup norm, all Lp norms, the C1 norm
(‖F̂ − F‖C1 := supθ∈R

|F̂ (θ)− F (θ)|+ supθ∈R
|F̂ ′(θ)− F ′(θ)|), etc.

22Another contrast is with the case where agents are correct about the type distribution, but hold misperceptions
about the distribution Ψ of states or Φ(·|ω) of private signals. Such misperceptions only affect agents’ inferences at
the end of period 1; in all subsequent periods, agents face no discrepancy between actual and expected behavior and
do not further adjust beliefs, so that small amounts of misperception have a negligible effect.
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fraction of actions 0 or are boundary points of the state space. Moreover, based on the observation

that ω̂t+1 is increasing in ω̂t for all t, we can show that in any state ω, the ω̂t-process converges to

some ω̂∞(ω) ∈ SS(F, F̂ ), where ω̂∞(ω) is weakly increasing in ω.

Observe that when F and F̂ are analytic with F̂ 6= F , then F and F̂ coincide in at most finitely

many points on the compact interval [θ∗(ω), θ∗(ω)].23 As a result, SS(F, F̂ ) is finite; the right-hand

panel of Figure 2 provides an example in which there are three steady states. Hence, the previous

paragraph yields a weakly increasing and finite-ranged map ω̂∞ : Ω → Ω from realized states ω to

limit beliefs ω̂∞(ω). Together with Step 3, this will establish Theorem 2.

Step 3: Justifying the limit model. Finally, we return to the original model and sketch

why in the long run, belief updating and behavior are approximated by the limit model. In the

original model, each agent’s observations up to period t+1 consist of a random sample (a1, . . . , at) of

other agents’ actions in periods 1 through t. Belief updating in this model is more complicated than

adjustment process (1) for two main reasons: First, agents’ inference problem is not time-stationary;

second, due to sampling noise, observations (and hence beliefs) differ across agents.

In Appendix B, we overcome both complications by considering the empirical frequency āt :=
1
t

∑t
τ=1 aτ of actions that each agent observes. First, since each agent believes that his perception

F̂ is correct and is shared by everyone, he believes (by Lemma 1) that the population learns the

true state in the long run and that behavior converges to the corresponding threshold strategy.

Based on this, Lemma B.2 shows that for large enough t, āt provides an approximate sufficient

statistic for each agent’s inferences; moreover, inferences are approximately time-stationary, in the

sense that each agent’s time t posterior, while having full support, is close to a point-mass belief

on the state argminω̂ KL(1− āt, F̂ (θ∗(ω̂)) that best explains āt under perception F̂ . Second, most

agents’ observed empirical frequencies āt, and hence their beliefs, are very similar in the long run.

Specifically, let qτ (ω) denote the true action 0 share in the population at time τ . Then, based on a

law of large numbers argument, Lemma B.3 shows that in the long run, an arbitrarily large fraction

of agents observes 1−āt that is arbitrarily close to the true time average share q̄t(ω) :=
1
t

∑t
τ=1 qτ (ω)

of action 0, where q̄t(ω) converges.24

Combining these two observations, Proposition B.1 shows that most agents’ long-run belief

updating is approximated by the following sequence of commonly held point-mass beliefs ω̂t and

behavior in the population is close to the corresponding threshold strategy:

qt+1(ω) ≈ F (θ∗(ω̂t)) with ω̂t = argmin
ω̂∈Ω

KL
(

q̄t(ω), F̂ (θ∗(ω̂))
)

,

where the approximation “≈” becomes arbitrarily precise as t → ∞. Since q̄t(ω) converges and

hence is close to qt(ω) in the long run, this yields

ω̂t ≈ argmin
ω̂∈Ω

KL
(

F (θ∗(ω̂t−1)), F̂ (θ∗(ω̂))
)

,

23This follows from the principle of permanence for analytic functions; see footnote 61.
24Here the law of large numbers applies since conditional on each state ω, each agent’s action observations

(a1, . . . , at) are independently (although not identically) distributed over time.
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i.e., an approximate version of the updating process (1) in the limit model. In particular, long-run

beliefs in the original model correspond precisely to steady states ω̂∞(ω) ∈ SS(F, F̂ ) of (1).

4.3 Discussion

Persistence of misperceptions. In contrast with the heuristic updating process in the limit

model, agents in our model are Bayesian and assign positive probability to every finite action

sequence, so they never encounter any “contradictory” information in finite time. Nevertheless,

one might wonder whether in the limit as they accumulate infinitely many observations, agents

should realize that their perception is incorrect. There is a sense in which this is not the case.

This is because (except for boundary cases) almost all agents’ observed empirical action frequencies

limt→∞
1
t

∑t
τ=1 aτ converge precisely to the prediction 1 − F̂ (θ∗(ω̂∞)) under their limit belief.25

This suggests that misperceptions in this environment can be a relatively persistent phenomenon.

Social learning vs. single-agent active learning. Theorem 1 highlights a fundamental

distinction between social and single-agent learning: Under the former, but not the latter, small

amounts of misperception can have a large negative effect in the long run. Section 3.2 discussed

the single-agent passive learning benchmark. In addition, several important papers (Nyarko, 1991;

Fudenberg, Romanyuk, and Strack, 2017; Heidhues, Koszegi, and Strack, 2018) study the effect

of misspecification in single-agent environments with active learning, where the agent’s actions

influence the distribution of signals he observes in each period. Similar to the mislearning process

we highlighted in Section 4.2, Heidhues, Koszegi, and Strack (2018) emphasize that this endogeneity

of the agent’s information can render his belief more and more incorrect over time. However, all

aforementioned models again differ from ours in that long-run beliefs under small enough amounts

of misspecification are approximately correct.

This distinction is due to the fact that, in contrast with the second key feature of social learning

we highlighted in Section 4.2, belief updating in these active learning models does not become

decoupled from the true state over time. To see this, consider a single agent who chooses actions

from A = [0, 1] in each period to maximize his state-dependent utility u(a, ω). Assume for simplicity

that a∗(ω) := argmaxa u(a, ω) is unique for each ω ∈ Ω. At the end of each period t ≥ 1, the agent

receives a signal st ∈ {0, 1} about the state, where the probability q(at, ω) of receiving signal

0 depends both on ω and his period-t action at.
26 Assume that the agent perceives mapping

q : A × Ω → (0, 1) to be q̂ : A × Ω → (0, 1), where q and q̂ are continuous and strictly decreasing

in both arguments and are surjective in ω for each a. Analogous to Section 4.2, we consider a limit

model where the agent observes not one, but infinitely many draws of signals each period. In period

1 the agent chooses action a∗1 based on his prior and arrives at a point-mass belief in the unique

state ω̂1(ω) that explains the observed signal frequency q(a∗1, ω) given his perception q̂.27 In period

25This observation is an analog of Proposition 6 in Heidhues, Koszegi, and Strack (2018).
26We assume that action set A is the unit interval and signals st are binary in order to make this model as

analogous as possible to our model, where a∗(ω̂) corresponds to the aggregate action frequency F (θ∗(ω̂)) and st to
the observation of a random agent j’s action ajt. Neither assumption is essential for robustness of learning.

27As in Heidhues, Koszegi, and Strack (2018), our setting has the feature that observing infinitely many signals leads
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2, he then chooses action a∗2 = a∗(ω̂1), which typically yields a contradiction between the expected

and actual signal frequencies q̂(a∗2, ω̂1) and q(a∗2, ω). Analogous to process (1) (and to Section 3 of

Heidhues, Koszegi, and Strack, 2018), we postulate that this gives rise to the following process of

point-mass beliefs in periods t ≥ 2:

ω̂t = argmin
ω̂∈Ω

KL
(

q(a∗t−1, ω), q̂(a
∗
t−1, ω̂)

)

with a∗t−1 = a∗(ω̂t−1). (2)

Ignoring boundary cases, steady states ω̂∞ of (2) satisfy q(a∗(ω̂∞), ω) = q̂(a∗(ω̂∞), ω̂∞).

Process (2) differs from (1) in one key respect: The true state ω enters directly into (2). Because

of this, the correctly specified case q̂ = q has ω̂∞ = ω as its unique steady state. Under mild

regularity conditions which ensure that the implicit function theorem applies, a key implication of

this uniqueness is that small amounts of misperception continue to yield steady states (and hence

long-run beliefs) that are close to the truth; see Supplementary Appendix F. In contrast, as noted

in Section 4.2, process (1) is decoupled from ω, because other agents’ actions are the only source

of new information in each period t ≥ 2, and these depend on ω only indirectly through others’

beliefs. As a result, (1) admits a continuum of steady states in the correctly specified case F̂ = F ;

indeed, SS(F, F ) = Ω. This renders system (1) fragile against perturbations at F̂ = F , so that even

a slight amount of misperception can have a discontinuous impact on steady states.

Interpretation of discontinuity and countervailing forces. While Theorem 1 exhibits a

stark discontinuity of long-run beliefs to small amounts of misperception, our preferred interpretation

of this result places less emphasis on the formal discontinuity than on the substantive implication

that slight misperceptions can have a large negative impact on social learning. Indeed, below we

highlight two countervailing forces that render long-run beliefs continuous in F̂ , but show that when

these forces are weak this substantive implication is unaffected:

Repeated private signals. As in much of the social learning literature, we have assumed that each

agent has access to a single private signal about ω, and our results are unaffected if agents receive

private signals in finitely many periods.28 On the other hand, if agents receive private signals in

all periods, then one can show that agents’ long-run beliefs ω̂∞(ω) depend on the true state ω and

vary continuously with F̂ ; intuitively, this setting is a hybrid of social and single-agent learning,

and as discussed above, belief dynamics in the latter do not become decoupled from the true state

over time. However, whenever agents’ repeated private signals are sufficiently uninformative, we

obtain an approximate analog of Theorem 1, where for any ω̂ there exist arbitrarily small amounts

of misperception F̂ such that agents’ long-run beliefs ω̂∞(ω) in each state are arbitrarily close to a

point mass on ω̂.29 Thus, whenever agents’ dominant source of information is social learning rather

to a point-mass on a unique state: By monotonicity and surjectivity of q̂, ω̂1 is uniquely given by q(a∗

1, ω) = q̂(a∗

1, ω̂1).
This abstracts away from possible non-identification problems.

28If private signals are costly, then agents might choose to acquire only finitely many signals under certain classes
of cost functions (e.g., Ali, 2018; Burguet and Vives, 2000).

29More formally, suppose agents receive i.i.d. signal draws from Φ(·|ω) in all periods. For any analytic F, F̂ , similar
reasoning as in the proof of Theorem 2 shows that agents’ long-run beliefs are given by state-dependent point-mass
beliefs ω̂∞(ω) ∈ argminω̂ KL(F (θ∗(ω̂∞(ω)), F̂ (θ∗(ω̂))) + KL(Φ(·|ω),Φ(·|ω̂)). Then a similar logic as for Theorem 1
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than private signals, the basic insight that slight misperceptions of others’ characteristics can have

a large negative impact on information aggregation remains valid.30

Finite horizon. Following much of the literature on information aggregation, our analysis focuses

on asymptotic beliefs. For any fixed finite horizon t, it is not difficult to see that the distribution

µω
t of agents’ posteriors is continuous in F̂ . Nevertheless, analogous to the previous paragraph,

Theorem 1 immediately entails that even under arbitrarily small amounts of misperception, µω
t

can be arbitrarily close to a Dirac measure on the state-independent point-mass δω̂ whenever t is

large enough. One implication is that in contrast with the correctly specified benchmark, halting

agents’ interactions after a certain number of periods may improve social learning in the presence

of misperception.

4.4 Examples: Nature of Misperception Shapes Long-Run Beliefs

As we have argued, a key implication of Theorem 1 is that information aggregation under mis-

perception should be studied in its own right, without relying on the predictions of the correctly

specified benchmark. In characterizing long-run beliefs under any (analytic) F and F̂ as steady

states SS(F, F̂ ) of process (1), the proof of Theorem 2 provides a starting point for studying how

the nature of agents’ misperception shapes their long-run beliefs. In the following, we illustrate this

for two natural forms of misperception.

For this exercise, it is worth highlighting the following robustness property of such predictions.

Even though Theorem 1 shows that the mapping from true and perceived type distributions (F, F̂ )

to steady states SS(F, F̂ ) exhibits a discontinuity at F̂ = F (i.e., in the correct perceptions case),

the mapping is continuous in both F̂ and F for any well-behaved misperceptions F̂ 6= F .31 Thus,

our framework can provide predictions for long-run beliefs under various well-documented forms of

misperception, and these predictions are robust, in the sense that they are not sensitive to the exact

true and perceived type distributions.

Example 1 (First-Order Stochastic Dominance and “Fake” Recommendations). We first

consider the possibility that the true type distribution first-order stochastically dominates agents’

perceptions or vice versa, so that agents systematically under- or overestimate the share of types

above any given level. As discussed in Section 2.4, one natural example of this form of misperception

is word-of-mouth communication about a new product where agents underestimate the share of

“fake” recommenders. Fake recommenders can be modeled as types θ ≥ θ∗(ω) who take action

1 (“recommend”) irrespective of the true quality of the product; underestimating their share then

shows that for any F , ω̂, and ε > 0, there exists F̂ with ‖F̂ − F‖ < ε and δ > 0 such that if ‖Φ(·|ω) − Φ(·|ω)‖ < δ,
then in all states ω, almost all agents’ beliefs converge to a point mass on some ω̂∞(ω) ∈ [ω̂ − ε, ω̂ + ε].

30Likewise, if some fraction of agents ignore others’ actions and act solely based on their private signals (and hence
do not adjust behavior from period 1 on), the same approximate analog of Theorem 1 holds whenever this fraction
is small.

31In particular, suppose that F 6= F̂ are analytic such that (i) F ′(θ) 6= F̂ ′(θ) whenever F (θ) = F̂ (θ), and (ii)
F (θ) 6= F̂ (θ) at θ = θ∗(ω), θ∗(ω). Then one can verify that for any sequences F̂n and Fn converging to F̂ and F ,
SS(Fn, F̂n) converges to SS(F, F̂ ) with respect to the Hausdorff topology. Note that assumption (i) rules out the case
in which F and F̂ are tangent to each other at some point in [θ∗(ω), θ∗(ω)].
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Figure 3: Overoptimism under FOSD. When F ≻FOΘ∗
F̂ , beliefs in all states converge to a point mass on ω.

naturally corresponds to F̂ being first-order stochastically dominated by F .32 In the correctly

specified model of Section 3.1, the presence of fake recommenders has no effect in the long run, as

agents continue to learn the true state.

By contrast, the following result shows that fake recommendations can be a highly effective

tool for “manipulating” consumers’ beliefs, suggesting a possible rationale for the prevalence of this

marketing strategy: As long as consumers slightly underestimate the share of such recommendations,

their presence can lead to drastic overoptimism about the quality of the product, in the sense that

long-run beliefs are a point mass on the highest quality ω, regardless of the true quality ω.33

For this result, it is sufficient that F strictly first-order stochastically dominates F̂ on

the set Θ∗ := (θ∗(ω), θ∗(ω)); that is, F (θ) < F̂ (θ) for all θ ∈ Θ∗, which we denote by F ≻FOΘ∗ F̂ .

Intuitively, all types below θ∗(ω) (respectively, above θ∗(ω)) have the same dominant action 0

(respectively, 1) so that agents’ perceptions about the relative type distributions outside Θ∗ are

irrelevant.

Corollary 1 (Overoptimism/-pessimism). Fix any F, F̂ ∈ F . If F ≻FOΘ∗ F̂ (respectively, F̂ ≻FOΘ∗

F ), then in any state ω, almost all agents’ beliefs converge to a point mass on ω (respectively, ω).

Figure 3 illustrates the intuition in the limit model. When agents systematically underestimate

the share of types above any given level, then under any belief about the state, they are surprised

by the lower than expected frequency of action 0. They respond with continual upward adjustments

to their beliefs, converging eventually to a point mass on the unique steady state ω. �

Example 2 (Underestimation of Population Heterogeneity). Another widely documented

form of misperception is that in many contexts, individuals tend to underestimate type heterogeneity

32Concretely, suppose that the true type distribution F = βP +(1− β)G is a convex combination of a distribution
P of “promotional” types whose support is contained in [θ∗(ω),+∞) and a full-support distribution G of “genuine”
types; and suppose that F̂ = β̂P + (1− β̂)G where β̂ < β.

33In a setting of repeated agent-to-agent noisy message relay, Jackson, Malladi, and McAdams (2018) introduce a
share of biased agents (who transmit positive recommendations regardless of preceding messages) and consider the
possibility that other agents are slightly uncertain (though not misspecified) about this share. In contrast with our
finding that agents become confident in the highest state, they show that agents’ posterior might converge to their
prior as the chain grows long.
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in society.34 We capture this by means of the commonly used dispersiveness order (Shaked and

Shanthikumar, 2007), whereby F is more dispersive than F̂ if F−1(x)−F−1(y) ≥ F̂−1(x)−F̂−1(y)

for all type quantiles x, y ∈ (0, 1) with x > y; we denote this by F %disp F̂ . For example, under

Gaussian distributions F ∼ N (µ, σ2), F̂ ∼ N (µ̂, σ̂2), this takes the simple parametric form that

perceived type variance σ̂2 is lower than actual variance σ2. We rule out the possibility that

F ≻FOΘ∗ F̂ or F̂ ≻FOΘ∗ F , as this is covered by Corollary 1 above.

The following result shows that underestimation of population heterogeneity leads to conser-

vative long-run beliefs, in the sense that beliefs in all states converge a point mass on an interior

state ω̂ ∈ (ω, ω):

Corollary 2 (Conservative beliefs). Fix any analytic F, F̂ ∈ F with F̂ 6= F such that F̂ , F are

not strictly first-order stochastic dominance ranked on Θ∗. If F %disp F̂ , then there exists some

ω̂ ∈ (ω, ω) such that in any state ω, almost all agents’ beliefs converge to a point mass on ω̂.

Intuitively, when agents underestimate type heterogeneity, they overestimate the sensitivity of

the population action distribution against the state, because in any state, they expect different

agents to take more similar actions than they actually do. As a result, their belief updates after

observing others’ actions are more “sluggish” than they should be, leading to conservatism in long-

run beliefs. More formally, Figure 4 (left) shows that Corollary 2 corresponds to a setting where F̂

crosses F from below in a single point θ∗(ω̂) that corresponds to an interior state ω̂ ∈ (ω, ω). This

is the same setting we analyzed in Figure 2 as part of the proof sketch of Theorem 1, where we saw

that SS(F, F̂ ) = {ω̂}.35

In other contexts, people are found to overestimate population heterogeneity.36 This corresponds

to F̂ %disp F , where we again assume that F̂ , F are not first-order stochastic dominance ranked on

Θ∗. As illustrated in Figure 4 (right), in this case F̂ crosses F from above in a single point θ∗(ω̂)

with ω̂ ∈ (ω, ω), and the limit model predicts convergence to the extreme beliefs ω and ω in almost

all states ω.37 �

5 Rich vs. Coarse State Spaces

In this section, we show that a key determinant of how fragile information aggregation is under mis-

perception is how rich a space of uncertainty agents face. We also discuss some design implications

34For example, several studies (e.g., Norton and Ariely, 2011; Engelhardt and Wagener, 2015) find systematic
underestimation of wealth inequality in many countries.

35In the proof of Theorem 1, we also allow for the possibility that θ∗(ω̂) ∈ {θ∗(ω), θ∗(ω)}, in which case beliefs
converge to the corresponding boundary point. In Corollary 2, this is ruled out by the assumption that F̂ , F are not
first-order stochastic dominance ranked on Θ∗.

36See, e.g., Ahler (2014) in the context of perceived political attitudes.
37We state this prediction only for the limit model of Section 4.2, because in addition to ω, ω, the set of steady

states of (1) also includes ω̂, so that the proof of Theorem 2 only implies that agents’ long-run point-mass beliefs
in the original model are given by a weakly increasing mapping ω̂∞ : Ω → {ω, ω̂, ω}. However, steady state ω̂ is
unstable, because in almost all states ω, (1) converges to either ω or ω. Given this, we conjecture that in the original
model ω̂∞(ω) likewise takes values ω or ω in almost all states ω, but establishing this requires an argument for
non-convergence to unstable steady states of (1), which we do not pursue in the present paper.
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Figure 4: Left: Underestimation of population heterogeneity leads to conservative long-run beliefs. Right: Overes-

timation leads to extreme beliefs.

of this finding. Throughout, we fix some countably infinite set of states {ω1, ω2, ...} that is dense in

Ω = [ω, ω] and let Ωn := {ω1, ..., ωn} for each n.

The following result makes two points. First, for any fixed finite state space Ωn (with arbitrary

full-support prior Ψn ∈ ∆(Ωn)), information aggregation is robust, in the sense that if the amount

of misperception is small enough agents learn the true state in Ωn. Second, however, the larger the

state space Ωn, the more sensitive information aggregation is to small amounts of misperception, and

in the limit as n → ∞, we obtain an approximate analog of the extreme breakdown of information

aggregation in Theorem 1:

Theorem 3 (Finite state space). Fix any F ∈ F .

1. Fix any Ωn. There exists εn > 0 such that under any perception F̂ ∈ F with ‖F̂ − F‖ < εn

and in any state ω ∈ Ωn, almost all agents’ beliefs converge to a point mass on ω.

2. Fix any ω̂ ∈ Ω. For any ε > 0, there exists N and a perception F̂ ∈ F with ‖F̂ − F‖ < ε

under which for any state space Ωn with n ≥ N and in any state ω ∈ Ωn, almost all agents’

beliefs converge to a point mass on some ω̂∞(ω) ∈ [ω̂ − ε, ω̂ + ε].

The second part of Theorem 3 offers an approximate analog of Theorem 1 in the following sense:

For any ω̂, Theorem 1 exhibits arbitrarily small amounts of misperception such that agents’ long-

run belief is a state-independent point mass on ω̂. In the present setting, agents’ beliefs converge

to a point mass on ω̂∞(ω), which may depend on the true state ω. However, Theorem 3 exhibits

arbitrarily small amounts of misperception such that in all large enough state spaces Ωn, agents’

long-run belief ω̂∞(ω) is arbitrarily close to a state-independent point mass on ω̂. An immediate

implication is that in the first part of Theorem 3, the amount of misperception εn below which

information aggregation is successful in Ωn shrinks to 0 as n → ∞.

We prove Theorem 3 in Appendix C. To see the intuition for the first part, suppose that n = 2.

Consider the limit model from Section 4.2, whose conclusions can again be shown to approximate

those of the original model in the long run. Just as in the continuous state setting, after observing
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Figure 5: The limit model with a binary state space Ω = {ω1, ω2}. When ω̂t = ω1, then for small enough amount

of misperception, actual behavior F (θ∗(ω1)) is better explained by expected behavior F̂ (θ∗(ω1)) under the true state

ω1 than by expected behavior F̂ (θ∗(ω2)) under the only other state ω2.

the action frequency in the population at the end of period 1, all agents again commonly believe

in some state ω̂1; and as summarized by equation (1), from period 2 on, agents play threshold

strategies according to their current point-mass beliefs ω̂t and adjust these beliefs at the end of

each period to explain the observed action frequency in that period under their misperception F̂ .

Analogous to the continuous state case, ω̂1 again depends on the true state ω and converges to ω

as ‖F̂ − F‖ → 0; in the binary state setting, this means that ω̂1 in fact equals the true state when

F̂ is sufficiently close to F .

However, the key difference with the continuous state setting concerns belief adjustments from

period 2 on. In the continuous setting, whenever F̂ (θ∗(ω̂1)) 6= F (θ∗(ω̂1)), then (ignoring bound-

ary cases) agents can find some new point-mass belief ω̂2 that better explains observed behavior

F (θ∗(ω̂1)); that is, even small discrepancies between expected and observed behavior trigger a se-

quence of belief adjustments and corresponding adjustments in behavior, giving rise to the process

of decoupled mislearning we highlighted in Section 4.2.

By contrast, in the binary state setting, whenever the amount of misperception is sufficiently

small, agents do not further adjust their beliefs in period 2 and beyond. To see this, suppose, say,

that ω̂1 = ω1, so that observed behavior in period 2 is F (θ∗(ω1)). Then, even though expected

behavior F̂ (θ∗(ω1)) under ω1 does not perfectly match this observed behavior, there is only one

other possible state ω2, and when ‖F̂ −F‖ is sufficiently small, expected behavior F̂ (θ∗(ω2)) under

ω2 will be even farther from F (θ∗(ω1)) than under ω2. This is illustrated in Figure 5. Thus,

the binary state setting is robust to small amounts of misperception, because small discrepancies

between expected and observed behavior do not trigger adjustments to beliefs about the state.

Given the coarseness of the state space, believing in the true state ω is sustainable, as the behavior

this gives rise to cannot be better explained by any other state.

However, the second part of Theorem 3 implies that as the state space becomes richer, the

amount of misperception ε under which information aggregation remains successful becomes smaller
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and smaller. Intuitively, any discrepancy between observed and expected behavior is more likely to

trigger a belief adjustment the more alternative states there are that could explain this discrepancy.

In the limit as the number of states approaches infinity, ε shrinks to 0, thus effectively restoring the

conclusion of Theorem 1.

Many settings of economic interest naturally feature rich state spaces, from safety levels of new

products to market fundamentals in decentralized trade settings. In such settings, an important

implication of Theorem 3 is that there can be a benefit to “simplifying” agents’ learning environment,

for instance by making their private information or their payoffs less sensitive to fine details of the

fundamentals. We illustrate this with two examples.

Example 3 (Benefits of undetailed public news). Suppose that agents’ period 0 private in-

formation is obtained in the following manner. Similar to Myatt and Wallace (2014),38 there is a

benevolent sender (e.g., a central bank or consumer protection agency) that acquires and truthfully

communicates information about the state of the world (e.g., market fundamentals or the safety

of a new product) subject to two frictions: First, there may be limits on the sender’s ability to

acquire information; second, there is some “receiver noise,” in that any given news release might be

interpreted differently by different agents.

This is modeled as follows. First, in each state ω ∈ Ω = [ω, ω], the sender observes a signal

σ(ω) ∈ R, where σ : Ω → R is weakly increasing; here the partition Πσ := {σ−1(m) : m ∈ R}

of Ω represents the sender’s possibly imperfect information about the state. Second, the sender

communicates his signal σ(ω), but each agent observes this signal with some idiosyncratic noise;

specifically, agent i observes signal si = σ(ω) + ηi, where ηi is drawn i.i.d. across agents and states

from a mean zero distribution with positive log-concave density on R.39 The induced private signal

distributions Φ(si|ω) = Pr(σ(ω) + ηi ≤ si) are measurable with respect to the sender’s partition

Πσ. Thus, a strictly increasing σ (i.e., a perfectly informed sender) corresponds to the continuous

state space setting of Section 2,40 while if σ has finite range, then the setting is isomorphic to one

with a finite state space where each state corresponds to a cell of Πσ.

If in all subsequent periods t ≥ 1 agents draw inferences from each other’s behavior as in our

model in Section 2, then our analysis implies the following. If agents are correct about the type

distribution F , then the better informed the sender (i.e., the finer Πσ) the better this is for long-run

learning, as agents’ beliefs converge to a point mass on the correct cell of Πσ; in particular, if and

only if the sender is perfectly informed, agents always learn the exact state. By contrast, if agents’

perception F̂ is even slightly incorrect, this gives rise to the following new trade-off: On the one

hand, the finer Πσ, the more precise is agents’ long-run information about the state if aggregation

is successful; but on the other hand, information aggregation is more sensitive to misperception and,

at worst, may break down completely. As a result, worse informed senders (i.e., coarser partitions

Πσ) can be better. Moreover, even if a benevolent sender has access to precise information about

38See also Morris and Shin (2007); Myatt and Wallace (2011); Pavan (2014); Galperti and Trevino (2018).
39We assume for simplicity that idiosyncratic noise ηi does not vary across different sender signal technologies σ.

Introducing such variation does not affect our conclusions, as long as ηi always has full support.
40Signal distributions satisfy the monotone likelihood ratio property as ηi has log-concave density.
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the state, he has a rationale to commit not to fully release it (as might be achieved, e.g., by central

banks establishing a reputation for “vague” or “undetailed” announcements).41 �

Example 4 (Benefits of simple financial assets). Similar to Duffie and Manso (2007) (cf.

example (iii) in Section 2.4), suppose that actions at = 1, 0 correspond to bidding or not bidding

for some financial asset that is traded in a decentralized market.42 Assets are modeled as maps

ρ : Ω → R which in each state of the world ω ∈ [ω, ω] yield long-run payoff ρ(ω), where ρ is weakly

increasing and continuous; here the partition Πρ := {ρ−1(m) : m ∈ R} of Ω reflects how finely

the asset conditions on the details of the economic environment. Each agent i’s long-run utility

to action at = 1 in state ω is given by u(ω, θi) = vθi(ρ(ω)), where vθi is i’s strictly increasing and

continuous utility for money.

Note that each u(·, θ) is measurable with respect to Πρ. Thus, analogous to Example 3, a

strictly increasing ρ corresponds to the continuous state space setting in Section 2, while if ρ has

finite range, then u(·, θ) is a step function and the setting is isomorphic to one with a finite state

space where each state corresponds to a cell of Πρ. Hence, as in the previous example, our analysis

implies that if agents’ perception F̂ is incorrect, then coarser partitions (i.e., “simpler” assets) may

enable agents to learn more about the state in the long run, while if Πρ is too fine (i.e., the asset

is too “complex”), agents may come to hold highly incorrect beliefs about the state, with adverse

consequences for long-run bidding behavior and payoffs. �

6 More General Perceptions

So far, we have assumed that all agents share the same perception F̂ of the the type distribution

and that this is common knowledge among agents. Under this assumption, agents’ first-order beliefs

about F may be incorrect, but their higher-order beliefs (about other agents’ beliefs about F and

others’ beliefs about others’ beliefs about F etc.) are correct.43 Thus, Theorem 1 highlights that

slightly incorrect first-order beliefs are enough to generate extreme departures from the correctly

specified model.

At the same time, an important question in many models featuring agents that are in some way

“non-standard” is how such agents interact with standard and sophisticated agents, who are aware

of the presence of these non-standard agents.44 In Section 6.1, we investigate this question in our

setting by incorporating a fraction of agents who know the true type distribution. We show that

there are learning externalities between the two groups of agents that give rise to a new form of non-

41This rationale for vague communication is complementary to ones based on strategic externalities across agents
(e.g. Morris and Shin, 2002) or between sender and receiver (e.g., Crawford and Sobel, 1982).

42More realistically, bids might be modeled as continuous, as in Duffie and Manso’s (2007) example of a wallet
game à la Klemperer (1998). As mentioned, our conclusions are unaffected by continuous action spaces.

43This setting also has the feature that when F̂ is close to F , then agents’ hierarchy of beliefs is close (in the
product topology) to the correctly specified setting where there is common knowledge of F .

44Early explorations of this question include Haltiwanger and Waldman (1985); De Long, Shleifer, Summers, and
Waldmann (1990). A recent example is Jehiel (2018), where the presence of correct agents reduces the welfare of
naive agents.

25



robustness: Information aggregation is highly sensitive to sophisticated agents’ second-order beliefs.

In addition, Section 6.2 briefly discusses other generalizations of our baseline model of perceptions.

6.1 Interaction between Correct and Incorrect Agents

Specifically, we now extend our baseline model so that (independently of types) fraction α ∈ [0, 1] of

agents (referred to as incorrect agents) misperceive the type distribution to be F̂ and believe that

F̂ is common knowledge among all agents. The remaining fraction 1 − α of agents know the true

type distribution F and are aware of the presence of incorrect agents and their beliefs. However,

we allow for the possibility that they may be (slightly) wrong about the fraction of incorrect agents

in the population; specifically, they perceive this fraction to be α̂. We refer to this second group of

agents as correct if α̂ = α and quasi-correct if α̂ 6= α. Our baseline model corresponds to the

case where α = 1.

We first show that correct agents, who exactly know the fraction of incorrect agents, are able

to learn the true state in the long run. Moreover, correct agents exert a positive externality on the

learning of incorrect agents: In contrast with the baseline model, incorrect agents are now able to

approximately learn the true state as long as their amount of misperception is sufficiently small.45

Proposition 1. Fix any α̂ = α < 1.

1. Fix any F ∈ F . Under any F̂ ∈ F and in any state ω, almost all correct agents’ beliefs

converge to a point mass on ω.

2. Fix any analytic F ∈ F and any δ > 0. There exists ε > 0 such that under any analytic

F̂ ∈ F with ‖F̂ − F‖ < ε and in any state ω, almost all incorrect agents’ beliefs converge a

point mass on some state ω̂∞(ω) with |ω̂∞(ω)− ω| < δ.

However, consider next the case of quasi-correct agents, who slightly misperceive the fraction

of incorrect agents. Then Proposition 1 breaks down, and now it is the incorrect agents who exert

a negative externality on quasi-correct agents’ learning. Specifically, the following result extends

Theorem 1 by showing that the presence of incorrect agents with an arbitrarily small amount of

misperception can lead to state-independent and arbitrary long-run beliefs among both groups of

agents; moreover, for this to occur, the fraction α > 0 of incorrect agents can be arbitrarily small

and quasi-correct agents’ perception α̂ of this fraction can be arbitrarily close to the truth, as long

as α̂ 6= α.

Proposition 2. Fix any F ∈ F , ω̂ ∈ Ω, and α̂, α > 0 with α̂ 6= α. For any ε > 0, there exists

F̂ ∈ F with ‖F̂ − F‖ < ε such that in any state ω, almost all (quasi-correct and incorrect) agents’

beliefs converge to a point mass on ω̂.

45Note that Lemma 1 follows as a special case of Proposition 1 with α = 0. Note also that Proposition 1 holds
for α arbitrarily close to 1. Thus, even an arbitrarily small fraction of sophisticated agents is enough to enable
incorrect agents to approximately learn the state. However, similar to Theorem 3, it can be shown that incorrect
agents’ learning is more sensitive to misperception the smaller the fraction of sophisticated agents, so that ε in part
(2) shrinks to 0 as α → 1.
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The proofs of Propositions 1 and 2 appear in Supplementary Appendix E. The intuition behind

Proposition 1 is that since correct agents know the fraction of incorrect agents, their knowledge of

F and F̂ allows them to back out the true state from observed behavior in the long run. Moreover,

similar to footnote 16, the fact that correct agents’ long-run behavior depends on the true state ω

prevents incorrect agents’ beliefs from unraveling too much.

By contrast, in Proposition 2, even if quasi-correct agents are only slightly wrong about α,

then despite knowing the true type distribution and incorrect agents’ misperception, they too face

discrepancies between actual and anticipated behavior. This can give rise to an analogous process of

decoupled mislearning as in Section 4.2. Moreover (ignoring boundary cases), incorrect and quasi-

correct agents’ steady states (ω̂I
∞, ω̂C

∞) under this process must coincide: Indeed, when α̂ 6= α, this is

the only way for quasi-correct agents not to face a discrepancy between the actual action 0 frequency

αF (θ∗(ω̂I
∞)) + (1 − α)F (θ∗(ω̂C

∞)) and their expected frequency α̂F (θ∗(ω̂I
∞)) + (1 − α̂)F (θ∗(ω̂C

∞)).

As a result, for any F̂ 6= F , long-run outcomes are exactly the same as if there were only incorrect

agents, yielding the above generalization of Theorem 1.46

6.2 Other Perceptions

We briefly comment on further extensions of our baseline model of perceptions.

Heterogeneous perceptions. While our baseline model assumes that agents share the same

misperception F̂ , it might be more realistic to allow each agent i to hold his own misperception

F̂i, in the sense that he believes the true type distribution to be F̂i and (erroneously) believes this

to be common knowledge among the population. For example, the false-consensus effect (Ross,

Greene, and House, 1977) finds a positive association between people’s own characteristics and

their perceptions of others’ characteristics. Generalizing Theorems 1 and 2 to such heterogeneous

perceptions is not difficult, and the only main difference is that this extension naturally gives rise

to heterogeneous long-run beliefs (i.e., disagreement).47 Notably, even when agents’ perceptions F̂i

are on average correct (i.e., equal to F ), their average long-run belief can be highly incorrect (e.g.,

state-independent or a coarse function of the state).

Higher-order perceptions. A further generalization of the setting in the previous paragraph

is when agents are (partially) aware of the fact that others hold different perceptions.48 While the

general analysis of this case is beyond the scope of our paper, slight misspecifications of higher-

order perceptions can also lead to discontinuous break-downs of information aggregation, as we

46This observation also yields a generalization of Theorem 2.
47To see this, consider the limit model from Section 4.2. Let λ ∈ ∆(R × F) denote the joint distribution over

types and perceptions in the population, with marginal marg
R
λ over types given by F . For each F̂ ∈ F and fraction

q ∈ [0, 1] of action 0, define ω̂(q; F̂ ) = argminω̂ KL(q, F̂ (θ∗(ω̂))). Then the fraction qt of action 0 in the population
evolves according to qt+1 = λ({(θ, F̂ ) : θ∗(ω̂(qt; F̂ )) > θ}) =: g(qt). Note that transition function g is independent
of the realized state; that is, learning is again decoupled. Since g is increasing, qt converges to one of the steady
states of the system. Generalizing Theorem 1, if g crosses the identity function at a single point q∗ from above,
then limt qt = q∗ regardless of the true state ω, which implies that agents’ (heterogeneous) long-run beliefs are state-
independent; and this can occur even when all misperceptions in the support of λ are arbitrarily close to F . Likewise,
coarse information aggregation arises when g crosses the identity finitely many times on [0, 1].

48See Bohren and Hauser (2018) for such a formulation in the context of the sequential learning model.
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have demonstrated for the hybrid model with correct and incorrect perceptions above.

Nondegenerate perceptions. Finally, as is common in the misspecified learning literature, we

have assumed throughout that agents’ perceptions are point-mass beliefs on particular distributions

F̂ , so that agents do not update their perceived type distributions. A more general form of misspec-

ification might involve agents holding a (common) prior belief over some set of type distributions,

with support F̂ ⊆ F that does not contain the true distribution F ; agents then update these beliefs

(as well as their beliefs about ω) over time. A full analysis of this case is again beyond the scope of

the current paper, but it is not difficult to construct arbitrarily small perturbations of the correctly

specified model that feature nondegenerate misperceptions yet yield the same extreme breakdown

of information aggregation as in Theorem 1.

A substantially different setting is when the support F̂ contains the true type distribution F .

In this case, agents are correctly specified (under common priors), which falls outside the focus of

this paper. In particular, the martingale property of beliefs applies and rules out such extreme

breakdowns of information aggregation as the state-independent point-mass beliefs in Theorem 1.

However, medium-run predictions (at any fixed period t) under this model approximate those in

our baseline model with common F̂ whenever agents’ prior places sufficiently high probability on a

small neighborhood of F̂ . It is also worth noting that learning in this setting can be subject to an

identification problem, as there are typically many combinations of states and type distributions that

are consistent with the same observed action distributions, leading to the possibility of incomplete

long-run learning.

7 Concluding Remarks

7.1 Related Literature

Our paper contributes to the burgeoning literature on Bayesian learning with misspecified models,

which has been studied in a variety of contexts spanning single-agent passive and active learning

(e.g., Nyarko, 1991; Rabin, 2002; Rabin and Vayanos, 2010; Ortoleva and Snowberg, 2015; Fu-

denberg, Romanyuk, and Strack, 2017; Heidhues, Koszegi, and Strack, 2018; He, 2018) and social

learning (e.g., Eyster and Rabin, 2010; Guarino and Jehiel, 2013; Bohren, 2016; Gagnon-Bartsch,

2017; Dasaratha and He, 2017; Bohren and Hauser, 2018; Bohren, Imas, and Rosenberg, 2018).49

Among single-agent learning models, the most closely related paper is Heidhues, Koszegi, and

Strack (2018) who study active learning by an agent who is overconfident in his ability. As we

discuss in Section 4.3, they highlight a similar mislearning process to ours, but in contrast with

our non-robustness result, the agent’s long-run belief in their setting (and other aforementioned

single-agent models) is approximately correct when his amount of misperception is small. We show

49See Glaeser and Sunstein (2009); Levy and Razin (2015) for static models of information aggregation with
misspecified agents. Specific forms of misspecification have also been incorporated into macroeconomic models; for a
survey, see Evans and Honkapohja (2012). Hassan and Mertens (2017) consider a general equilibrium model in which
agents misperceive signals about economic fundamentals. In their setting, small amounts of misperception have a
continuous effect on equilibrium, but they emphasize that the slope of this effect can be arbitrarily large.
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that this distinction is due to the fact that unlike in our social learning environment, belief updating

in these single-agent models does not become “decoupled” from the true state over time.50

In the social learning setting, many aforementioned papers incorporate various specific forms

of misspecification into sequential social learning models. As we discuss in Section 4.1, several of

these papers predict that agents’ long-run beliefs grow confident in incorrect states, but in contrast

with our vanishingly small misperceptions in Theorem 1, these papers rely on strong forms of

misspecification, and in a general framework that nests several of these misspecifications Bohren and

Hauser (2018) show that information aggregation is robust to small amounts of misspecification.51

Aside from the difference between the sequential social learning setup in these papers and our

random matching model of social learning, one important distinction between their setting and ours

is the size of the state space (binary vs. continuous). In Section 5, we show that how rich a state

space agents face can be an important determinant of how fragile information aggregation is, and

we discuss design implications of this finding.

Esponda and Pouzo (2016, 2017) introduce Berk-Nash equilibrium to capture long-run beliefs

under repetition of a (single or multi-agent) game with misspecified players.52 Due to the nonsta-

tionarity of our environment,53 our setting does not strictly fit into their framework, but we show

that, just as under Berk-Nash, agents’ long-run beliefs are based on minimization of KL-divergence.

Indeed, except for boundary cases, long-run beliefs achieve zero KL-divergence between perceived

and actual behavior.

Acemoglu, Chernozhukov, and Yildiz (2016) consider agents who observe exogenous public sig-

nals and hold non-common full support priors about the signal technology. In contrast with our

focus on learning about the state, they focus on higher-order belief disagreement and show that

even a small amount of uncertainty can lead to substantial long-run disagreement, due to a non-

identification problem in disentangling states and signal technologies. As agents in their model are

correctly specified (i.e., their beliefs contain the truth in their support), it is not possible to generate

long-run phenomena such as state-independent point-mass beliefs.

While we maintain the classical assumption that agents are Bayesian, a sizeable literature con-

siders models of non-Bayesian social learning where agents update beliefs by employing various

exogenous heuristics (e.g., Ellison and Fudenberg, 1993, 1995; DeMarzo, Vayanos, and Zwiebel,

2003; Golub and Jackson, 2010, 2012). Information aggregation can fail in such settings as well,

depending on the specifics of the environment and of agents’ heuristic rules.54 Mueller-Frank (2018)

considers a model of DeGroot-style learning on a network where an agent can manipulate her up-

50It is worth emphasizing that the discontinuous departure from the correctly specified benchmark in our setting is
driven purely by misinterpretation among agents, not by payoff externalities from others’ actions. In the context of
screening problems where the principal is misspecified about agents’ preferences, Madarász and Prat (2017) highlight
the possibility of the latter kind of discontinuity and propose a remedy.

51In Gagnon-Bartsch (2017), agents’ beliefs need not converge under small amounts of misperception, but long-run
average beliefs depend continuously on agents’ perceptions.

52Related approaches include Esponda (2008) and Spiegler (2016).
53Specifically, agents receive private signals only in period 0.
54See, e.g. Molavi, Tahbaz-Salehi, and Jadbabaie (2018) and Sadler (2017) for systematic analyses of this question

in the context of learning on networks.
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dating rule and shows that small amounts of manipulation can have a significant and arbitrary

impact on other agents’ long-run beliefs. An advantage of non-Bayesian models with simple up-

dating heuristics is that in some situations they may be more realistic, as they do not assume that

agents are able to form beliefs about the details of their environment and solve complex inference

problems. In contrast, our focus on Bayesian agents is better suited to our goal of of understanding

the robustness of the canonical model of rational social learning. This also allows us to explicitly

model agents’ perceptions and how they affect their process of inference and their interpretation of

others, which is usually abstracted away from under heuristic rules.

7.2 Conclusion

This paper highlights a natural setting—social learning among heterogeneous agents—where even

small amounts of misspecification can lead long-run beliefs and behavior to depart significantly from

the correctly specified benchmark. First and foremost, we view our findings as further motivating the

study, both empirically and theoretically, of relevant forms of misspecification/behavioral biases in

learning environments. In addition, we briefly point to some other directions that seem worthwhile

to explore:

First, in order to investigate the robustness of the canonical model of rational social learning, we

have maintained the assumption that our agents, while misspecified, are nevertheless Bayesian. One

might question the descriptive validity of this assumption, as Bayesian updating requires agents to

solve complicated inference problems, and also wonder to what extent the discontinuity results rely

on it. While full analysis of this question is beyond the scope of this paper, we note that our results

go through under some natural models of simpler inference. For one plausible example, consider

the overlapping generations interpretation of our model, and assume that agents perform “coarse

inferences” (Guarino and Jehiel, 2013), in the sense that all agents believe the action 0 frequency

in all periods to be i.i.d. conditional on each state ω; specifically, they believe this to be equal to

the long-run frequency F̂ (θ∗(ω)) under their misperception F̂ .55 Under this model, all our results

go through, with similar (in fact, somewhat simpler) proofs. Thus, some plausible simplifications

of agents’ updating processes preserve the fragility of information aggregation. At the same time,

an interesting direction for future work is to understand what minimal departures from Bayesian

learning might render information aggregation more robust to small amounts of misperception.

Second, while this paper considers a model of social learning through decentralized random

interactions that is closest to Duffie and Manso (2007), a natural question is whether analogs

of Theorem 1 hold for other social learning models. In ongoing work, we explore this for the

following two classes of models. First, a model that is identical to ours except that in each period

t, all agents observe a public signal st of the aggregate action frequency qt(ω), instead of (or in

addition to) privately observing others’ actions; one interpretation of such public signals is as market

55Guarino and Jehiel (2013) analyze a sequential learning model with homogeneous agents, and show that such
inference procedures can break information aggregation. They motivate this formulation based on analogy-based
expectations equilibrium (Jehiel, 2005).
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prices, where agents’ actions represent demand/supply, and correctly specified versions appear in

Vives (1993, 1997); Amador and Weill (2012); Duffie, Malamud, and Manso (2010). Second, a

heterogeneous agent version of the sequential learning model of Bikhchandani, Hirshleifer, and Welch

(1992) and Banerjee (1992), where agents sequentially choose one-shot actions after observing all

previous agents’ actions.

Finally, while we have assumed independent random matching, our model can be enriched to

allow for assortativity, where agents are more likely to encounter other agents with similar types

(e.g., income, political attitudes). Introducing assortative interactions allows one to analyze how

agents’ misperceptions of interaction patterns (e.g., underestimation of assortativity, Frick, Iijima,

and Ishii, 2018) influence their beliefs. One new phenomenon that can emerge in this setting is that

even when all agents share the same misperception of interaction patterns, agents’ long-run beliefs

can depend systematically on their types, in line with empirical evidence on correlation between

tastes and beliefs.56 In ongoing work, we pursue this question in more detail.

56See, e.g., Bullock, Gerber, Hill, and Huber (2013) in the context of partisan bias in factual beliefs about politics.
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Appendix: Main Proofs

A Proof of Lemma 1 and Part 1 of Proposition 1

Consider the hybrid model from Section 6, with true and perceived fraction α = α̂ < 1 of incorrect

agents. In this section, we prove part 1 of Proposition 1, i.e., that in every state ω, almost all correct

agents’ beliefs converge to δω. Lemma 1 follows immediately as the special case where α = α̂ = 0.

We make use of the following additional notation. For any belief H ∈ ∆(Ω), let θ∗(H) denote the

type that is indifferent between action 0 and 1; that is,
´

u(ω, θ∗(H))dH(ω) = 0. By the assumptions

on u, such a type exists and is unique and θ∗(H) is continuous in H under the topology of weak

convergence. As in the main text, we let θ∗(ω) denote θ∗(δω). Given any private signal s, let

Hs ∈ ∆(Ω) denote the Bayesian update of H after observing s. Note that if H is not a Dirac

measure, then by the assumptions on signal distributions Φ, Hs strictly first-order stochastically

dominates Hs′ for any s > s′, which implies that θ∗(Hs) < θ∗(Hs′).

In each state ω and at the beginning of each period t ≥ 1, let µω,C
t , µω,I

t ∈ ∆(∆(Ω)) denote the

population distributions of posterior beliefs among correct (superscript C) and incorrect (superscript

I) agents. Note that the distributions of posteriors are independent across types θ. Let qCt (ω) and

qIt (ω) denote the fractions of correct and incorrect agents who choose action 0 in period t and ω;

that is,

qCt (ω) =

ˆ

F (θ∗(H))dµω,C
t (H), qIt (ω) =

ˆ

F (θ∗(H))dµω,I
t (H).

Let qt(ω) = αqIt (ω) + (1− α)qCt (ω) denote the total fraction of action 0 in the population.

Finally, let µ̄ω,C
t , µ̄ω,I

t ∈ ∆(∆(Ω)) denote the hypothetical population distributions of posteriors

among correct and incorrect agents when agents update beliefs only based on observing actions

and do not take into account their private signals in period 0. More precisely, each agent observes

actions aτ in periods τ = 1, . . . , t − 1 that are generated according to qτ (ω) defined above, and

correct agents update their beliefs assuming that aτ is distributed according to qτ while incorrect

agents assume that aτ is distributed according to qIτ . Given this, we can also express qCt , q
I
t as

qCt (ω) =

ˆ ˆ

F (θ∗(Hs))dΦ(s|ω)dµ̄ω,C
t (H), qIt (ω) =

ˆ ˆ

F (θ∗(Hs))dΦ(s|ω)dµ̄ω,I
t (H). (3)

A.1 Correct Agents’ Long-Run Behavior

The following four lemmas establish that (on some measure 1 set of states), limt→∞ qCt (ω) exists

and is strictly decreasing in ω. The first lemma proves that qCt and qIt are strictly decreasing at all

finite times.

Lemma A.1. For each t, qCt (ω), q
I
t (ω) are strictly decreasing in ω and satisfy qCt (ω), q

I
t (ω) ∈ (0, 1).

Proof. The claim that qCt (ω), q
I
t (ω) ∈ (0, 1) is clear from the fact that types above θ∗(ω) always

choose action 1 and types below θ∗(ω) always choose action 0. To show that qCt (ω), q
I
t (ω) are
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strictly decreasing in ω, we proceed by induction on t. For t = 1, this follows from (3) and the fact

that µ̄ω,C
1 = µ̄ω,I

1 = δΨ and Φ(·|ω) is strictly increasing in ω with respect to first-order stochastic

dominance. Suppose next that the claim holds for all periods up to and including t and consider

period t+ 1.

Let Ψs,at

C ∈ ∆(Ω) denote the posterior belief of a correct agent who observes private signal s and

action sequence at = (a1, ..., at) ∈ {0, 1}t. Note that Ψs,at

C has full support on Ω, since qτ (ω) ∈ (0, 1)

for all τ = 1, .., t and all ω (so that at occurs with positive probability in each state) and by the

full-support assumptions on prior Ψ and on private signals. Consider any ω∗ > ω∗∗. For each

k = 2, ..., t− 2, we have

qCt+1(ω
∗) =

ˆ ˆ

F (θ∗(Hs))dΦ(s|ω∗)dµ̄ω∗,C
t+1 (H) <

ˆ ˆ

F (θ∗(Hs))dΦ(s|ω∗∗)dµ̄ω∗,C
t+1 (H)

=

ˆ

∑

at

t
∏

τ=1

(qτ (ω
∗)(1− aτ ) + (1− qτ (ω

∗))aτ )F (θ∗(Ψs,at

C ))dΦ(s|ω∗∗)

<

ˆ

∑

at

t−1
∏

τ=1

(qτ (ω
∗)(1− aτ ) + (1− qτ (ω

∗))aτ ) (qt(ω
∗∗)(1− at) + (1− qt(ω

∗∗))at)F (θ∗(Ψs,at

C ))dΦ(s|ω∗∗)

<

ˆ

∑

at

k−1
∏

τ=1

(qτ (ω
∗)(1− aτ ) + (1− qτ (ω

∗))aτ )
t
∏

τ ′=k

(qτ ′(ω
∗∗)(1− aτ ′) + (1− qτ ′(ω

∗∗))aτ ′)F (θ∗(Ψs,at

C ))dΦ(s|ω∗∗)

<

ˆ ˆ

F (θ∗(Hs))dΦ(s|ω∗∗)dµ̄ω∗∗,C
t+1 (H) = qCt+1(ω

∗∗).

Here, the first inequality holds since θ∗(Hs) is strictly decreasing in s for each H in the support

of µ̄ω∗,C
t+1 and since Φ(·|ω∗) strictly first-order dominates Φ(·|ω∗∗). For the second inequality, note

that since qt(ω) is strictly decreasing in ω, Ψs,at−1,1
C strictly first-order stochastically dominates

Ψs,at−1,0
C . Thus, θ∗(Ψs,at−1,1

C ) < θ∗(Ψs,at−1,0
C ), which together with qt(ω

∗) < qt(ω
∗∗) yields the

second inequality. Iterating this argument yields the remaining inequalities. The fact that qIt+1 is

strictly decreasing in ω follows by an analogous argument.

To prove that qCt remains strictly decreasing in ω in the limit as t → ∞, Lemmas A.2 and A.3

first consider the limit of the hypothetical belief distributions µ̄ω,C
t that are based only on action

observations. Lemma A.2 shows this limit exists almost surely.

Lemma A.2. There exists a set of states Ω∗ ⊆ Ω such that Ψ(Ω∗) = 1 and the weak convergent

limit µ̄ω,C
∞ := limt µ̄

ω,C
t exists for all ω ∈ Ω∗.

Proof. To formalize any correct agent’s belief updating based only on observing sequences of actions

(not private signals), consider the probability space (Ω̄,A,P). Here Ω̄ := Ω × {0, 1}∞ is a Polish

space (endowed with the product topology) that encodes the realized state ω ∈ Ω and action

sequences a∞ = (a1, a2, ...) ∈ {0, 1}∞, A denotes the corresponding Borel algebra, and measure P
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satisfies

P
(

{(ω, a∞) ∈ Ω̄ : ω ∈ E, at1 = x1, . . . , atk = xk}
)

=

ˆ

E

k
∏

j=1

(

(1− qtj (ω))xj + qtj (ω)(1− xj)
)

dΨ(ω)

for every Borel set E ⊆ Ω, t1, . . . , tk ∈ N, and x1, . . . , xk ∈ {0, 1}. For each finite action sequence

at ∈ {0, 1}t, Bayesian updating based on P induces a correct agent’s posterior H(·|at) ∈ ∆(Ω) over

states after observing at. Since Ω and {0, 1}∞ are both Polish, the posterior belief H(·|a∞) ∈ ∆(Ω)

conditional on each infinite sequence a∞ ∈ {0, 1}∞ is also well-defined (see Theorem 9.2.2 in Stroock,

2010).

Define the filtration It := σ (a1, . . . , at) ⊆ A that describes an agent’s information at the end of

each period t. Let I∞ :=
⋃∞

t=0 It ⊆ A. For each Borel set E ⊆ Ω, Levy’s upwards theorem applied

to the indicator function on E guarantees that as t → ∞, H(E|at) = E[1ω∈E |It] → E[1ω∈E |I∞] =

H(E|a∞) holds P-almost surely (see Corollary 5.2.4 in Stroock, 2010). By standard arguments, this

implies that H(·|at) converges weakly to H(·|a∞) P-almost surely.

Thus, there is a set of states Ω∗ ⊆ Ω with P(Ω∗ × {0, 1}∞) = Ψ(Ω∗) = 1 such that conditional

on each ω ∈ Ω∗, H(·|at) converges weakly to H(·|a∞) P-almost surely. Consider any ω ∈ Ω∗.

Since µ̄ω,C
t ∈ ∆(∆(Ω)) is the distribution of H(·|at) conditional on ω and since conditional on ω,

H(·|at) converges to H(·|a∞) P-almost surely, this implies that µ̄ω,C
t converges weakly, with limit

µ̄ω,C
∞ ∈ ∆(∆(Ω)) given by µ̄ω,C

∞ (H) = P [H(·|a∞) ∈ H|ω] for any Borel set H ⊆ ∆(Ω).

For Ω∗ as in Lemma A.2, the following lemma shows that for each ω ∈ Ω∗, µ̄ω,C
∞ assigns proba-

bility 1 to limit posteriors that contain the true state ω in their support.

Lemma A.3. For any ω ∈ Ω∗, µ̄ω,C
∞ ({H : suppH ∋ ω}) = 1.

Proof. Fix any ω ∈ Ω∗. It suffices to prove the following claim: For any non-empty intervals

E,E′ ⊆ Ω with E closed in Ω and E′ open in Ω such that either (i) ω ≤ inf E < supE ≤ inf E′ or

(ii) supE′ ≤ inf E < supE ≤ ω, we have

µ̄ω,C
∞

(

{H : H(E) = 0 and H(E′) > 0}
)

= 0.

To see that this claim implies Lemma A.3, note that for each H such that ω 6∈ suppH, we have for

some n that either H ∈ H+
n := {H ′ : H ′([ω, ω+ 1

n
]) = 0 and H ′((ω+ 1

n
, ω]) > 0} or H ∈ H−

n := {H ′ :

H ′([ω − 1
n
, ω]) = 0 and H ′([ω, ω − 1

n
)) > 0}. But by the above claim, µ̄ω,C

∞ (H+
n ) = µ̄ω,C

∞ (H−
n ) = 0

for all n. Hence, by countable additivity of µ̄ω,C
∞ , µ̄ω,C

∞ ({H : suppH 6∋ ω}) = 0.

To prove the claim, we only consider case (i); the proof for case (ii) is analogous. Consider any

correct agent and conditional on realized state ω, let (Ht) denote the process of his hypothetical

posterior beliefs that are based only on observing actions (without taking into account his private

signal). By the proof of Lemma A.2, (Ht) weakly converges with probability 1, and the limit

posterior is distributed according to µ̄ω,C
∞ .
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Consider the process Wt := Ht(E
′)/Ht(E), which is well-defined at every t since the posterior

Ht always has full support. We have

E [Wt+1 | It, ω] =

(

qt(ω)
qt(E

′)

qt(E)
+ (1− qt(ω))

1− qt(E
′)

1− qt(E)

)

Ht(E
′)

Ht(E)

≤

(

qt(E)
qt(E

′)

qt(E)
+ (1− qt(E))

1− qt(E
′)

1− qt(E)

)

Ht(E
′)

Ht(E)
= Wt,

where It denotes the filtration generated by the sequence of actions observed by the agent, qt(E) :=
´

E
qt(ω′)dHt(ω′)

Ht(E) ∈ (0, 1) and qt(E
′) :=

´

E′ qt(ω
′)dHt(ω′)

Ht(E′) ∈ (0, 1) denote the probabilities of observing

action 0 conditional on events E and E′, and the inequality holds because qt(ω) > qt(E) > qt(E
′)

by the assumption that ω ≤ inf E < supE ≤ inf E′ and since qt(ω
′) is strictly decreasing in ω′

(Lemma A.1). Thus, Wt is a non-negative supermartingale conditional on ω.

By the martingale convergence theorem, there exists some W∞ ∈ L1 such that conditional on

ω, Wt → W∞ almost surely. Since W∞ ∈ L1, W∞ < +∞ almost surely. Thus, almost surely

lim inf
t→∞

Ht(E
′) > 0 ⇒ lim sup

t→∞
Ht(E) > 0.

By weak convergence of (Ht) and the Portmanteau theorem, this yields the desired claim.

Based on Lemma A.3, we now establish that on Ω∗, qCt remains strictly decreasing in the limit.

Lemma A.4. For any ω ∈ Ω∗, qC∞(ω) := limt q
C
t (ω) exists and is strictly decreasing in ω.

Proof. Recall from (3) that qCt (ω) =
´ ´

F (θ∗(Hs))dΦ(s|ω)dµ̄ω,C
t (H), where

´

F (θ∗(Hs))dΦ(s|ω) is

continuous and bounded in H. Thus, since µ̄ω,C
t weakly converges to µ̄ω,C

∞ on Ω∗, limt q
C
t (ω) exists

for all ω ∈ Ω∗ and is given by

qC∞(ω) =

ˆ ˆ

F (θ∗(Hs))dΦ(s|ω)dµ̄ω,C
∞ (H).

To show that qC∞ is strictly decreasing, take any ω∗, ω∗∗ ∈ Ω∗ such that ω∗ > ω∗∗. If µ̄ω∗,C
∞ = δδω∗

and µ̄ω∗∗,C
∞ = δδω∗∗ , then qC∞(ω∗) = F (θ∗(ω∗)) < F (θ∗(ω∗∗)) = qC∞(ω∗∗). Thus, suppose that either

µ̄ω∗,C
∞ 6= δδω∗ or µ̄ω∗∗,C

∞ 6= δδω∗∗ . We consider the case when µ̄ω∗,C
∞ 6= δδω∗ ; the other case is analogous.

We have

qC∞(ω∗) =

ˆ ˆ

F (θ∗(Hs))dΦ(s|ω∗)dµ̄ω∗,C
∞ (H) <

ˆ ˆ

F (θ∗(Hs))dΦ(s|ω∗∗)dµ̄ω∗,C
∞ (H) =

lim
t→∞

ˆ ˆ

F (θ∗(Hs))dΦ(s|ω∗∗)dµ̄ω∗,C
t (H) ≤ lim

t→∞

ˆ ˆ

F (θ∗(Hs))dΦ(s|ω∗∗)dµ̄ω∗∗,C
t (H) = qC∞(ω∗∗).

For the first inequality, note that since µ̄ω∗,C
∞ 6= δδω∗ , Lemma A.3 implies that µ̄ω∗,C

∞ assigns

positive measure to beliefs H that are not Dirac measures. Since for non-Dirac H, θ∗(Hs) is

strictly decreasing in s, the inequality follows from the fact that Φ(·|ω∗) strictly first-order stochas-

tically dominates Φ(·|ω∗∗). The second inequality holds because by the proof of Lemma A.1,
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´ ´

F (θ∗(Hs))dΦ(s|ω∗∗)dµ̄ω∗,C
t (H) <

´ ´

F (θ∗(Hs))dΦ(s|ω∗∗)dµ̄ω∗∗,C
t (H) for all t.

A.2 Completing the Proof

To complete the proof, we show that in all states, almost all correct agents’ beliefs converge to a

point-mass on the true state. The next lemma first shows this for states ω ∈ Ω∗.

Lemma A.5. µ̄ω,C
∞ = δδω for each ω ∈ Ω∗.

Proof. Fix any ω ∈ Ω∗ and any closed interval E := [ω−, ω+] 6∋ ω. Consider any correct agent and

let (Ht) denote the process of his posterior beliefs in state ω when he updates beliefs based only on

observing others’ actions. It suffices to show that Ht(E) → 0 almost surely.57

We focus on the case ω− < ω+ < ω, as the other case ω < ω− < ω+ is analogous. Without loss,

we assume that ω+ ∈ Ω∗, as otherwise we can expand E by selecting a point from (ω+, ω) ∩ Ω∗ as

the new upper-bound of E. Pick any ω∗ ∈ Ω∗ such that ω+ < ω∗ < ω and let E∗ := [ω∗, ω].

By Lemma A.4, we have qC∞(ω+) > qC∞(ω∗) > qC∞(ω). Thus, we can pick γ, δ > 0 sufficiently

small such that for all q+, q
∗, q ∈ [F (θ∗(ω)), F (θ∗(ω))] with q+ ≥ q∗ ≥ q, we have that

(

αq + (1− α)qC∞(ω) + γ
)

log

(

αq+ + (1− α)qC∞(ω+) + γ

αq∗ + (1− α)qC∞(ω∗)− γ

)

+
(

1− αq − (1− α)qC∞(ω) + γ
)

log

(

1− αq+ − (1− α)qC∞(ω+) + γ

1− αq∗ − (1− α)qC∞(ω∗)− γ

)

is less than −δ.58

Now consider the process of log likelihood ratios Vt := log
(

Ht(E)
Ht(E∗)

)

. For all t, we have

E[Vt+1 − Vt|It, ω] = qt(ω) log

(

qt(E)

qt(E∗)

)

+ (1− qt(ω)) log

(

1− qt(E)

1− qt(E∗)

)

< qt(ω) log

(

qt(ω+)

qt(ω∗)

)

+ (1− qt(ω)) log

(

1− qt(ω+)

1− qt(ω∗)

)

=
(

αqIt (ω) + (1− α)qCt (ω)
)

log

(

αqIt (ω+) + (1− α)qCt (ω+)

αqIt (ω
∗) + (1− α)qCt (ω

∗)

)

+(1− αqIt (ω)− (1− α)qCt (ω)) log

(

1− αqIt (ω+)− (1− α)qCt (ω+)

1− αqIt (ω
∗)− (1− α)qCt (ω

∗)

)

,

where It denotes the filtration generated by the sequence of actions observed by the agent, and

qt(E) =
´

E
qt(ω′)dHt

Ht(E) and qt(E
∗) =

´

E
qt(ω′)dHt

Ht(E∗) . Here the inequality holds since qIt , q
C
t are strictly

57Indeed, since process (Ht) almost surely weakly converges and its limit is distributed according to µ̄ω,C
∞ , the

Portmanteau theorem then implies that µ̄ω,C
∞ ({H : H(Eo) = 0}) = 1, where Eo denotes the interior of E in Ω. In

particular, letting H+
n = {H : H((ω + 1

n
, ω]) > 0} and H−

n = {H : H([ω, ω − 1

n
)) > 0}, we have µ̄ω,C

∞

(

H+
n

)

=

µ̄ω,C
∞

(

H−

n

)

= 0 for each n. Thus, by countable additivity, µ̄ω,C
∞ ({H : H 6= δω}) = µ̄ω,C

∞

(
⋃

n(H
+
n ∪H−

n )
)

= 0, as
required.

58To see this, note that for all β+, β
∗, β ∈ (0, 1) with β+ > β∗ > β, we have that β log

(

β+

β∗

)

+(1−β) log
(

1−β+

1−β∗

)

< 0.

Thus, for any compact B ⊆ (0, 1), there exist small enough γ, δ > 0 such that (β + γ) log
(

β++γ

β∗−γ

)

+ (1 − β +

γ) log
(

1−β++γ

1−β∗−γ

)

< −δ for all β+, β
∗, β ∈ B with β+ > β∗ > β.
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decreasing by Lemma A.1 and Ht has full-support over Ω. Moreover, by Lemma A.4, there exists

T such that |qCt (ω)− qC∞(ω)|, |qCt (ω+)− qC∞(ω+)|, |q
C
t (ω

∗)− qC∞(ω∗)| < γ for all t ≥ T . In addition,

qIt (ω+), q
I
t (ω

∗), qIt (ω) ∈ [F (θ∗(ω)), F (θ∗(ω))] with qIt (ω+) > qIt (ω
∗) > qIt (ω) for every t. Thus, by

choice of γ, δ > 0, the above shows that E[Vt+1 − Vt|It, ω] < −δ for all t ≥ T .

Therefore, almost surely, Vt → −∞ and hence Ht(E) → 0, as required.

Lemma A.5 implies that qC∞(ω) = F (θ∗(ω)) and µω,C
t weakly converges to δδω for any ω ∈ Ω∗.

Now take any ω ∈ Ω \ Ω∗. By Lemma A.1, we have the inequalities

F (θ∗(ω′)) = lim
t→∞

qCt (ω
′) ≥ lim sup

t→∞
qCt (ω) ≥ lim inf

t→∞
qCt (ω) ≥ lim

t→∞
qCt (ω

′′) = F (θ∗(ω′′))

for any ω′, ω′′ ∈ Ω∗ such that ω′ < ω < ω′′. If ω ∈ (ω, ω) is interior, then since Ψ(Ω∗) =

1 and Ψ admits a positive density, we can choose ω′, ω′′ ∈ Ω∗ arbitrarily close to ω. Hence,

by continuity of F and θ∗, we have qCt (ω) → F (θ∗(ω)). For boundary points ω ∈ {ω, ω}, the

same argument shows that lim inft→∞ qCt (ω) ≥ F (θ∗(ω)) and lim supt→∞ qCt (ω) ≤ F (θ∗(ω)). Since

qCt (·) ∈ [F (θ∗(ω)), F (θ∗(ω))], this again implies qCt (ω) → F (θ∗(ω)) and qCt (ω) → F (θ∗(ω)). Thus,

qC∞(·) := limt→∞ qCt (·) = F (θ∗(·)) exists and is strictly decreasing on the whole of Ω. Given this, for

any ω ∈ Ω \ Ω∗, the same argument as in the proof of Lemma A.5 shows that µ̄ω,C
∞ = δδω . Hence,

µω,C
t weakly converges to δδω , completing the proof of part 1 of Proposition 1.

B Proofs of Theorems 1 and 2

We prove Theorems 1 and 2 in Sections B.3 and B.4, respectively. Both proofs follow from prelimi-

nary results on agents’ long-run inferences and beliefs that we establish in Sections B.1 and B.2, in

particular Proposition B.1, which shows that long-run beliefs are steady states of the limit model

belief adjustment process that we considered in Section 4.2.

B.1 Agents’ Long-Run Inferences

In this section, we first consider any agent whose perception is given by F̂ and study his inferences

from sequences of observed actions at−1 = (a1, . . . , at−1). The key result is Lemma B.2, which shows

that the average action āt−1 = 1
t−1

∑t−1
τ=1 aτ that the agent observes up to time t− 1 provides an

“approximate” sufficient statistic for the agent’s belief as t → ∞.

Let q̂t(ω) denote the agent’s perceived fraction of action 0 in each period t and state ω. Since

the agent believes that F̂ is the true type distribution and that F̂ is common knowledge among all

agents, Lemma 1 and all lemmas used in its proof in Appendix A apply to the agent’s perceptions

of behavior and beliefs in the population. In particular, Lemma 1 implies that the agent believes

that in all states ω almost all agents’ beliefs converge to a point mass on the true state ω. Thus, the

agent believes that behavior in state ω converges to a threshold strategy according to θ∗(ω); that

is, q̂∞(ω) := limt→∞ q̂t(ω) = F̂ (θ∗(ω)) for each ω. Additionally, Lemma A.1 implies that q̂t(·) is
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strictly decreasing for each t. Hence, since F̂ (θ∗(·)) is continuous on the compact interval Ω = [ω, ω],

it follows that q̂t(·) converges to F̂ (θ∗(·)) uniformly.

Let Ht(· | a
t−1, s) ∈ ∆(Ω) denote the agent’s posterior belief after observing private signal s and

action history at−1 = (a1, . . . , at−1). Because q̂t(ω) ∈ (0, 1) for each t and ω (Lemma A.1) and by

the full-support assumption on private signals, Ht(· | a
t−1, s) has full support over Ω with positive

density ht(· | a
t−1, s) for all at−1 and s . For each pair of states ω′, ω′′, denote the corresponding

log likelihood ratio by

ℓt(ω
′, ω′′ | at−1, s) := log

ht(ω
′ | at−1, s)

ht(ω′′ | at−1, s)
.

Lemma B.1 below will provide a lower bound on the log likelihood ratio that depends on histories

at−1 only through the average action āt−1 and holds uniformly across all pairs of states. To state

this, we first choose some ν∗ > 0 and C < 0 < C such that q̂∞(ω) ± ν∗ ∈ (0, 1) for all ω and such

that for all ν ∈ (0, ν∗),

C < min

{

log
1− F̂ (θ∗(ω))− ν

1− F̂ (θ∗(ω)) + ν
, log

F̂ (θ∗(ω))− ν

F̂ (θ∗(ω)) + ν

}

< 0

< max

{

log
1− F̂ (θ∗(ω))− ν

1− F̂ (θ∗(ω)) + ν
, log

F̂ (θ∗(ω))− ν

F̂ (θ∗(ω)) + ν

}

< C.

Such values exist since q̂∞(ω) = F̂ (θ∗(ω)) ∈ [F̂ (θ∗(ω)), F̂ (θ∗(ω))] for each ω and 0 < F̂ (θ∗(ω)) <

F̂ (θ∗(ω)) < 1.

Moreover, for any ν ∈ [−ν∗, ν∗], R ∈ [0, 1] and R′, R′′ ∈ [F̂ (θ∗(ω)), F̂ (θ∗(ω))], we define

∆ν(R,R′, R′′) := R log
R′ − ν

R′′ + ν
+ (1−R) log

1−R′ − ν

1−R′′ + ν
.

Lemma B.1. Take any ν ∈ (0, ν∗). There exists some t̂ such that for all t ≥ t̂, all ω′ 6= ω′′, all s,

and all at−1,

ℓt(ω
′, ω′′ | at−1, s) > log

φ(s | ω′)

φ(s | ω′′)
+ (C − C)(t̂− 1) + (t− t̂)∆ν(āt−1, q̂∞(ω′), q̂∞(ω′′)).

Proof. Since q̂t converges to q̂∞ uniformly, we can choose t̂ such that for all t ≥ t̂, we have

supω∈Ω |q̂t(ω) − q̂∞(ω)| < ν. Pick any t ≥ t̂, any ω′ 6= ω′′, any private signal s, and any
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at−1 = (a1, . . . , at−1). Then

ℓt(ω
′, ω′′ | at−1, s)− log

φ(s | ω′)

φ(s | ω′′)
=

t−1
∑

τ=1

(

aτ log
q̂τ (ω

′)

q̂τ (ω′′)
+ (1− aτ ) log

1− q̂τ (ω
′)

1− q̂τ (ω′′)

)

> C(t̂− 1) +
t−1
∑

τ=t̂

(

aτ log
q̂τ (ω

′)

q̂τ (ω′′)
+ (1− aτ ) log

1− q̂τ (ω
′)

1− q̂τ (ω′′)

)

≥ C(t̂− 1) +

t−1
∑

τ=t̂

(

aτ log
q̂∞(ω′)− ν

q̂∞(ω′′) + ν
+ (1− aτ ) log

1− q̂∞(ω′)− ν

1− q̂∞(ω′′) + ν

)

> C(t̂− 1) +

t−1
∑

τ=1

(

aτ log
q̂∞(ω′)− ν

q̂∞(ω′′) + ν
+ (1− aτ ) log

1− q̂∞(ω′)− ν

1− q̂∞(ω′′) + ν

)

− C(t̂− 1)

= (C − C)(t̂− 1) + (t− t̂)

(

āt−1 log
q̂∞(ω′)− ν

q̂∞(ω′′) + ν
+ (1− āt−1) log

1− q̂∞(ω′)− ν

1− q̂∞(ω′′) + ν

)

= (C − C)(t̂− 1) + (t− t̂)∆ν(āt−1, q̂∞(ω′), q̂∞(ω′′)),

as required. Here the first inequality holds because by choice of C, we have for all τ = 1, . . . , t̂− 1

that

aτ log
q̂τ (ω

′)

q̂τ (ω′′)
+ (1− aτ ) log

1− q̂τ (ω
′)

1− q̂τ (ω′′)
≥ min

{

log
F̂ (θ∗(ω))

F̂ (θ∗(ω))
, log

1− F̂ (θ∗(ω))

1− F̂ (θ∗(ω))

}

> C.

The second inequality holds by choice of t̂. The third inequality holds because by choice of C, we

have for all τ = 1, . . . , t̂− 1 that

aτ log
q̂∞(ω′)− ν

q̂∞(ω′′) + ν
+(1−aτ ) log

1− q̂∞(ω′)− ν

1− q̂∞(ω′′) + ν
≤ max

{

log
1− F̂ (θ∗(w))− ν

1− F̂ (θ∗(w)) + ν
, log

F̂ (θ∗(w))− ν

F̂ (θ∗(w)) + ν

}

< C.

And the final two equalities hold by definition of āt−1 and ∆ν .

Using Lemma B.1, we now show that for large t, the agent’s belief is approximately given by

a point mass on the state ω̂ = minω̂′ KL(1 − āt−1, q̂∞(ω̂′)) that minimizes KL-divergence between

the observed empirical frequency 1− āt−1 of action 0 and the agent’s perceived long-run fraction of

action 0.

Lemma B.2. Fix any s ≤ s and R ∈ (0, 1). Let ω̂ := argminω̂′ KL(R, q̂∞(ω̂′)). Then for every

interval E ∋ ω̂ of states with non-empty interior, there exists ε > 0 such that

lim
t→∞

inf
{

Ht

(

E | at−1, s
)

: s ∈ [s, s], 1− āt−1 ∈ [R− ε,R+ ε]
}

= 1.

Proof. Note that since the agent’s posterior admits a positive density, Ht(E | at−1, s) = Ht(E
◦ |

at−1, s) for all t, at−1, and s, where E◦ is the interior of the interval E. Since E◦ is an open interval,

E◦ = (α1, α2) for some α1 < α2 with ω ≤ α1 < α2 ≤ ω. Let R1 := q̂∞(α1) and R2 := q̂∞(α2).
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There are three cases to consider:

1. ω̂ ∈ (α1, α2) and R = q̂∞(ω̂),

2. ω̂ = α2 = ω and R ≤ q̂∞(ω̂),

3. ω̂ = α1 = ω and R ≥ q̂∞(ω̂).

We illustrate the argument only for case 1 as it translates easily to the other cases.59 Moreover,

in case 1, we can assume that ω < α1 < ω̂ < α2 < ω, by restricting to a subset of E if need be.

Then we can choose ξ, ε, ρ > 0 such that R2 < R− ξ < R+ ξ < R1 and

ρ < inf
{

∆0(R′, R′′, R′′′) : R′ ∈ [R− ε,R+ ε], R′′ ∈ [R− ξ, R], R′′′ ≤ R2

}

,

ρ < inf
{

∆0(R′, R′′, R′′′) : R′ ∈ [R− ε,R+ ε], R′′ ∈ [R,R+ ξ], R′′′ ≥ R1

}

.

By continuity of KL-divergence, there exists some ν ∈ (0, ν∗) such that

ρ < inf
{

∆ν(R′, R′′, R′′′) : R′ ∈ [R− ε,R+ ε], R′′ ∈ [R− ξ, R], R′′′ ≤ R2

}

,

ρ < inf
{

∆ν(R′, R′′, R′′′) : R′ ∈ [R− ε,R+ ε], R′′ ∈ [R,R+ ξ], R′′′ ≥ R1

}

.

Take M > 0 such that −M ≤ log φ(s|ω′)
φ(s|ω′′) for all ω′, ω′′ ∈ [ω, ω] and all s ∈ [s, s]. Let t̂ be the

cutoff given by Lemma B.1. Then for all t ≥ t̂, ω′ ∈ [ω̂, q̂−1
∞ (R − ξ)], ω′′ ∈ q̂−1

∞ ([0, R2]), s ∈ [s, s],

and any at−1 such that 1− āt−1 ∈ [R− ε,R+ ε], we have

ℓt(ω
′, ω′′ | at−1, s) > log

φ(s | ω′)

φ(s | ω′′)
+ (C − C)(t̂− 1) + (t− t̂)∆ν(1− āt−1, q̂∞(ω′), q̂∞(ω′′))

≥ −M + (C − C)(t̂− 1) + (t− t̂)ρ,

where the first inequality holds by Lemma B.1 and the second inequality holds by choice of ν and

M above.

Likewise, for all t ≥ t̂, ω′ ∈ [q̂−1
∞ (R + ξ), ω̂], ω′′ ∈ q̂−1

∞ ([R1, 1]), s ∈ [s, s], and any at−1 such that

1− āt−1 ∈ [R− ε,R+ ε], we have

ℓt(ω
′, ω′′ | at−1, s) ≥ −M + (C − C)(t̂− 1) + (t− t̂)ρ.

59In case 2, we choose ξ, ε, ρ > 0 such that q̂∞(ω) < R+ ξ < R1 and

ρ < inf
{

∆0(R′
, R

′′
, R

′′′) : R′ ∈ [R− ε,R+ ε], R′′ ∈ [R,R+ ξ], R′′′ ≥ R1

}

.

Finally, in case 3, we choose ξ, ε, ρ > 0 such that R2 < R− ξ < q̂∞(ω) and

ρ < inf
{

∆0(R′
, R

′′
, R

′′′) : R′ ∈ [R− ε,R+ ε], R′′ ∈ [R− ξ,R], R′′′ ≤ R2

}

.

The remaining steps are analogous to case 1.
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As a result, for all t ≥ t̂, s ∈ [s, s], and any at−1 such that 1− āt−1 ∈ [R− ε,R+ ε], we have

Ht(E | at−1, s) ≥ Ht([ω̂, q̂
−1
∞ (R− ξ)] | at−1, s) +Ht([q̂

−1
∞ (R+ ξ), ω̂] | at−1, s)

≥ e−M+(C−C)(t̂−1)+(t−t̂)ρ

(

q̂−1
∞ (R− ξ)− ω̂

ω − α2
Ht

(

[α2, ω] | a
t−1, s

)

+
ω̂ − q̂−1

∞ (R+ ξ)

α1 − ω
Ht

(

[ω, α1] | a
t−1, s

)

)

≥ Ke−M+(C−C)(t̂−1)+(t−t̂)ρHt

(

Ω \ E | at−1, s
)

,

where the second inequality uses the bounds on log likelihood ratios we obtained above, and in

the third line we let K := min
{

q̂−1
∞ (R−ξ)−ω̂

α1−ω
, ω̂−q̂−1

∞ (R+ξ)
ω−α2

}

. Since Ht

(

Ω \ E | at−1, s
)

= 1 −Ht(E |

at−1, s), this yields

Ht(E | at−1, s) ≥
Ke−M+(C−C)(t̂−1)+(t−t̂)ρ

Ke−M+(C−C)(t̂−1)+(t−t̂)ρ + 1
,

which completes the proof as the right-hand side converges to 1 as t → ∞.

B.2 Long-Run Beliefs Converge to Steady States

In this section, we fix arbitrary true and perceived type distributions F, F̂ ∈ F and analyze long-

run beliefs and behavior. In each state ω, let qt(ω) and q̂t(ω) denote the corresponding true and

perceived fractions of action 0 in period t, and let q̄t(ω) := 1
t

∑t
τ=1 qτ (ω) denote the true time

average of the fraction of action 0 up to period t. Let Pr(· | ω) denote the probability distribution

over observed private signals s and action sequences at when signals are distributed according to

Φ(· | ω) and actions in each period τ are distributed according to qτ (ω). Define the set of steady

states SS(F, F̂ ) := {ω̂∞ ∈ Ω : ω̂∞ = argminω̂∈ΩKL
(

F (θ∗(ω̂∞)), F̂ (θ∗(ω̂))
)

}.

Focusing on the case when SS(F, F̂ ) is finite, the key result of this section is Proposition B.1,

which shows that agents’ long-run beliefs always assign probability 1 to some steady state. As a

preliminary step, the following lemma shows that behavior in each state converges.

Lemma B.3. Suppose that SS(F, F̂ ) is finite. Then R(ω) := limt→∞ q̄t(ω) exists for every ω and

is weakly decreasing in ω.

Proof. Fix any ω ∈ Ω. Let R̄(ω) := lim supt→∞ q̄t(ω) and R(ω) := lim inft→∞ q̄t(ω). To show that

R(ω) := limt→∞ q̄t(ω) exists, suppose for a contradiction that R(ω) > R(ω). Since SS(F, F̂ ) is finite,

we can pick some R ∈ (R(ω), R(ω)) such that q̂−1
∞ (R) /∈ SS(F, F̂ ). Let ω̂ := argminω̂′∈ΩKL(R, q̂∞(ω̂′)).

Note that R 6= F (θ∗(ω̂)), as otherwise q̂−1
∞ (R) is a steady state. Below we assume that R < F (θ∗(ω̂)),

as the remaining case, R > F (θ∗(ω̂)), is analogous.

Pick R,R such that R(ω) < R < R < R < R̄(ω) and R < F (θ∗(ω̂)). Note that we can choose a

small enough interval E ∋ ω̂ with non-empty interior, a large enough interval [s, s] of private signals,

and a small enough ν > 0, such that for any t, if at least fraction 1−ν of agents with private signals

s ∈ [s, s] hold beliefs such that Ht(E | at−1, s) > 1− ν, then qt(ω) > R+ ν.60

60To see this, observe that if all agents’ beliefs assigned probability 1 to ω̂ at t, then qt(ω) = F (θ∗(ω̂)) > R.
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By Lemma B.2, there exists ε > 0 and t̂1 such that for all t ≥ t̂1,

inf
{

Ht

(

E | at−1, s
)

| s ∈ [s, s], 1− āt−1 ∈ [R− ε,R+ ε]
}

> 1− ν.

Moreover, we can take ε sufficiently small such that R < R− ε < R+ ε < R.

Note that each agent observes a sequence of random actions (a1, a2, ...) that are independent

from each other conditional on the realized state ω. Hence, by the weak law of large numbers for

independent (but not necessarily identically distributed) random variables (see, e.g., Theorem 1.2.6

in Stroock, 2010), there exists t̂2 such that for all t ≥ t̂2,

Pr
(

1− āt−1 ∈ [q̄t−1(ω)−
ε

2
, q̄t−1(ω) +

ε

2
] | ω

)

> 1− ν.

Let T :=
{

t ≥ max{t̂1, t̂2} : q̄t−1(ω) ∈ [R− ε
2 , R+ ε

2 ]
}

. Then at all times t ∈ T , at least fraction

1 − ν of agents with private signals s ∈ [s, s] hold beliefs such that Ht(E | at−1, s) > 1 − ν. Thus,

for all t ∈ T , we have qt(ω) > R̄+ ν.

Since R̄(ω) = lim supt q̄t(ω) > R+ ε
2 and R(ω) = lim inft q̄t(ω) < R− ε

2 and |q̄t(ω)− q̄t−1(ω)| ≤
1
t
< ε for all large enough t, we must have an infinite sequence of times tk ∈ T such that

q̄tk−1(ω) ≥ R−
ε

2
> q̄tk(ω).

But then, by definition of q̄t, we have q̄tk(ω) = tk−1
tk

q̄tk−1(ω) +
1
tk
qtk(ω) > R − ε

2 , since qtk(ω) >

R+ ν > R− ε by construction of T . This is a contradiction. Hence, R(ω) = limt→∞ q̄t(ω) exists.

Finally, recall that Lemma A.1 applies to agents’ perceived fraction q̂t(ω) of action 0 and implies

that q̂t(ω) is strictly decreasing in ω at each t. Given this, a similar inductive argument as in the

proof of Lemma A.1 yields that the true action 0 fraction qt(ω) is strictly decreasing in ω for each

t. This implies that R(ω) = limt→∞ q̄t(ω) is weakly decreasing in ω, as required.

We now prove that in all states, agents’ long-run beliefs assign probability 1 to some steady

state:

Proposition B.1. Suppose that SS(F, F̂ ) is finite. Then in all states ω, there exists some state

ω̂∞(ω) ∈ SS(F, F̂ ) such that almost all agents’ beliefs converge to a point-mass on ω̂∞(ω). Moreover,

ω̂∞(ω) is weakly increasing in ω.

Proof. Fix any ω ∈ Ω and let R(ω) := limt→∞ q̄t(ω), which exists by Lemma B.3. Define

ω̂∞(ω) := argmin
ω̂∈Ω

KL(R(ω), q̂∞(ω̂)).

Note that ω̂∞(ω) is weakly increasing in ω since R(ω) is weakly decreasing and q̂∞ is strictly

decreasing.

Consider any interval E ∋ ω̂∞(ω) with non-empty interior and any s < s. By Lemma B.2, there
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exists ε > 0 such that

lim
t→∞

inf
{

Ht

(

E | at−1, s
)

| s ∈ [s, s], 1− āt−1 ∈ [R(ω)− ε,R(ω) + ε]
}

= 1.

As in Lemma B.3, the weak law of large numbers ensures that

lim
t→∞

Pr
(

1− āt−1 ∈ [R(ω)− ε,R(ω) + ε] | ω
)

= 1.

Hence, for every ν > 0, we have

lim
t→∞

Pr
(

Ht

(

E | at−1, s
)

> 1− ν | ω
)

≥ Φ([s, s] | ω).

Since s and s are arbitrary, the above implies that for every ν > 0 and E ∋ ω̂∞(ω) with non-empty

interior,

lim
t→∞

Pr
(

Ht

(

E | at−1, s
)

> 1− ν | ω
)

= 1.

Thus, conditional on state ω, almost all agents’ beliefs converge to a point-mass on ω̂∞(ω). But

then, qt(ω) → F (θ∗(ω̂∞(ω))) as t → ∞, which implies that R(ω) = F (θ∗(ω̂∞(ω))). Since q̂∞(·) =

F̂ (θ∗(·)), this yields ω̂∞(ω) = argminω̂∈ΩKL(F (θ∗(ω̂∞(ω))), F̂ (θ∗(ω̂))); that is, ω̂∞(ω) ∈ SS(F, F̂ ).

B.3 Proof of Theorem 1

Fix any F ∈ F , ω̂ ∈ Ω, and ε > 0. We can pick F̂ ∈ F such that F̂ crosses F from below in the

single point θ∗(ω̂), as shown in Figure 2; clearly, we can also require that ‖F − F̂‖ < ε. In this

case, SS(F, F̂ ) = {ω̂}. Thus, Proposition B.1 implies that in all states ω, almost all agents’ beliefs

converge to a point-mass on ω̂.

B.4 Proof of Theorem 2

Fix any analytic F, F̂ ∈ F with F̂ 6= F . Then the set {θ ∈ [θ∗(ω), θ∗(ω)] : F (θ) = F̂ (θ)} is

finite (possibly empty).61 But this implies that SS(F, F̂ ) is finite, as every ω̂∞ ∈ SS(F, F̂ ) satisfies

either F (θ∗(ω̂∞)) = F̂ (θ∗(ω̂∞)) or ω̂∞ ∈ {ω, ω}. Thus, Proposition B.1 implies that in every state

ω, almost all agents’ beliefs converge to a point-mass on a state ω̂∞(ω) ∈ Ω, where the mapping

ω 7→ ω̂∞(ω) is weakly increasing and has finite range.

61To see this, suppose for a contradiction that F − F̂ = 0 admits an infinite sequence θ1, θ2, . . . of distinct solutions
in Θ∗ := [θ∗(ω), θ∗(ω)]. By sequential compactness of Θ∗, restricting to a subsequence if necessary, we can assume
that the sequence converges. Then since F − F̂ is analytic on R, the principle of permanence implies that F − F̂ is
identically zero on R, contradicting F̂ 6= F .
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C Proof of Theorem 3

C.1 Theorem 3: Proof of Part 1

Throughout, we fix some Ωn = {ω1, . . . , ωn} ⊆ Ω. Up to relabeling, we can assume that ω1 <

ω2 < · · · < ωn. As before, given any true and perceived type distributions F, F̂ ∈ F and state

ω ∈ Ωn, let qt(ω, F, F̂ ) denote the true fraction of action 0 in the population at time t, and let

q̄t(ω, F, F̂ ) =
∑t

τ=1 qτ (ω, F, F̂ ) denote the time average of qτ (ω;F, F̂ ) in periods τ = 1, . . . , t.

Let Pr(· | ω, F, F̂ ) denote the probability distribution over observed private signals s and action

sequences at when signals are distributed according to Φ(·|ω) and actions in each period τ are

distributed according to qτ (ω, F, F̂ ).

In the correctly specified case, F = F̂ , we omit the dependency on F̂ and denote the corre-

sponding quantities by qt(ω, F ), q̄t(ω, F ), and Pr(· | ω, F ). Note that under perception F̂ , qt(ω, F̂ )

represents agents’ perceived fraction of action 0 at time t, as agents believe they are correctly spec-

ified; likewise, q̄t(ω, F̂ ) denotes agents’ perceived time average of action 0 under F̂ and Pr(· | ω, F̂ )

denotes agents’ perceived distribution over actions and signals.

Let Ht(ω|s, a
t−1, F̂ ) denote the probability that an agent with perception F̂ assigns to state

ω ∈ Ωn following any private signal s and observed action sequence at−1 = (a1, . . . , at−1). Finally,

for any F ∈ F and ξ > 0, we let B(F, ξ) := {G ∈ F : ‖G − F‖ < ξ} denote the ball of type

distributions in F that are within total variation distance ξ of F .

C.1.1 Preliminary Results

To prove the first part of Theorem 3, we first derive three results that (unlike the results in Ap-

pendix B.1–B.2) will enable us to analyze long-run inferences and behavior uniformly across all

small misperceptions F̂ .

First, Proposition C.1 shows that whenever F̂ is sufficiently close to F , then in every state ωk

agents’ perceived behavior qt(ω
k, F̂ ) converges at a uniform rate to a small ball around the long-run

behavior F (θ∗(ωk)) under the correctly specified model.

Proposition C.1. Fix any F ∈ F . There exists ξ∗ > 0 such that for every ωk ∈ Ωn and every

ξ ≤ ξ∗,

lim
t→∞

sup
F̂∈B(F,ξ)

|qt(ω
k, F̂ )− F (θ∗(ωk))| ≤ ξ.

Proof. See Supplementary Appendix D.

Second, using Proposition C.1, the following lemma shows that agents’ beliefs converge uniformly

to a point-mass on the true state whenever their amount of misperception is sufficiently small and

their observed empirical action frequency is sufficiently close to long-run behavior under the correctly

specified model.
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Lemma C.1. Fix any F ∈ F and ωk ∈ Ωn. There exists ξ > 0 and ε > 0 such that for any s ≤ s,

lim
t→∞

inf
{

Ht(ω
k|s, at−1, F̂ ) : s ∈ [s, s], 1− āt−1 ∈ [F (θ∗(ωk))− ε, F (θ∗(ωk)) + ε], F̂ ∈ B(F, ξ)

}

= 1.

Proof. For any ωℓ ∈ Ωn, we write F ℓ := F (θ∗(ωℓ)). It suffices to prove that for all ℓ 6= k, we can

find ξ, ε > 0 such that for any s ≤ s,

lim
t→∞

sup

{

log
Ht(ω

ℓ|s, at−1, F̂ )

Ht(ωk|s, at−1, F̂ )
: s ∈ [s, s], 1− āt−1 ∈ [F k − ε, F k + ε], F̂ ∈ B(F, ξ)

}

= −∞.

We only consider the case ℓ > k, as the argument for ℓ < k is exactly symmetric. In this case

ωℓ > ωk, so that F ℓ < F k and hence

(1− F k) log
1− F ℓ

1− F k
+ F k log

F ℓ

F k
= −KL(F k, F ℓ) < 0.

Thus, we can find ε > 0 sufficiently small such that F ℓ + ε < F k − ε and such that for all

R ∈ [F k − ε, F k + ε], we have

(1−R) log
1− F ℓ + ε

1− F k − ε
+R log

F ℓ + ε

F k − ε
< −ε. (4)

By Proposition C.1, there exists ξ∗ > 0 such that for all m = 1, 2, . . . , n and all ξ ≤ ξ∗,

lim
t→∞

sup
F̂∈B(F,ξ)

|qt(ω
m, F̂ )− Fm| ≤ ξ. (5)

We pick ξ ∈ (0, ξ∗) sufficiently small such that ξ < ε and min
{

Fn, 1− F 1
}

− ξ > 0. The latter

implies that for all t and F̂ ∈ B(F, ξ), we have M := max
{

log 1
Fn−ξ

, log 1
1−F 1−ξ

}

< ∞ and

max

{

log
qt(ω

ℓ, F̂ )

qt(ωk, F̂ )
, log

1− qt(ω
ℓ, F̂ )

1− qt(ωk, F̂ )

}

≤ max

{

log
1

F̂ (θ∗(ωn))
, log

1

1− F̂ (θ∗(ω1))

}

≤ M. (6)

Moreover, ξ < ε together with (5) yields a t∗ such that for all t ≥ t∗ and m = 1, 2, . . . , n,

sup
F̂∈B(F,ξ)

|qt(ω
m, F̂ )− Fm| ≤ ε. (7)
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Then for all t ≥ t∗, F̂ ∈ B(F, ξ), at−1 = (a1, . . . , at−1) with 1− āt−1 ∈ [F k − ε, F k + ε], and s,

log
Ht(ω

ℓ|s, at−1, F̂ )

Ht(ωk|s, at−1, F̂ )
− log

φ(s | ωℓ)

φ(s | ωk)
=

t−1
∑

τ=1

(

aτ log
1− qτ (ω

ℓ, F̂ )

1− qτ (ωk, F̂ )
+ (1− aτ ) log

qτ (ω
ℓ, F̂ )

qτ (ωk, F̂ )

)

≤ Mt∗ +
t−1
∑

τ=t∗+1

(

aτ log
1− qτ (ω

ℓ, F̂ )

1− qτ (ωk, F̂ )
+ (1− aτ ) log

qτ (ω
ℓ, F̂ )

qτ (ωk, F̂ )

)

≤ Mt∗ + (t− 1)āt−1 log
1− F ℓ + ε

1− F k − ε
+
(

(t− 1)(1− āt−1)− t∗
)

log
F ℓ + ε

F k − ε

=

(

M − log
F ℓ + ε

F k − ε

)

t∗ + (t− 1)

(

āt−1 log
1− F ℓ + ε

1− F k − ε
+ (1− āt−1) log

F ℓ + ε

F k − ε

)

≤

(

M − log
F ℓ + ε

F k − ε

)

t∗ − (t− 1)ε,

where the first inequality holds by (6), the second inequality follows from (7) and the fact that

F ℓ + ε < F k − ε, and the final inequality holds by (4) and the fact that 1− āt−1 ∈ [F k − ε, F k + ε].

Thus, for all s ≤ s, we have

lim
t→∞

sup

{

log
Ht(ω

ℓ|s, at−1, F̂ )

Ht(ωk|s, at−1, F̂ )
: s ∈ [s, s], 1− āt−1 ∈ [F k − ε, F k + ε], F̂ ∈ B(F, ξ)

}

≤ sup
s∈[s,s]

log
φ(s | ωℓ)

φ(s | ωk)
+

(

M − log
F ℓ + ε

F k − ε

)

t∗ − lim
t→∞

(t− 1)ε = −∞,

as required.

Finally, at any given time t, the following result provides a lower bound on the probability that

an agent’s empirical frequency of observing action 0 is close to the true time average of action 0,

where this bound holds uniformly across all F and F̂ .

Lemma C.2. Fix any F, F̂ ∈ F and ω ∈ Ωn. Then for all ρ > 0 and t,

Pr
(

|1− āt − q̄t(ω, F, F̂ )| < ρ | ω, F, F̂
)

≥ 1−
1

ρ2(t− 1)
.

Proof. Let σ2
t be the variance of the random variable āt. By Chebyshev’s inequality,

Pr
(

|1− āt − q̄t(ω, F, F̂ )| ≥ ρ | ω, F, F̂
)

≤
σ2
t

ρ2
.

Note that σ2
t ≤ 1

t
since a1, . . . , at ∈ {0, 1} are independent conditional on ω. Thus,

Pr
(

|1− āt − q̄t(ω, F, F̂ )| < ρ | ω, F, F̂
)

= 1− Pr
(

|1− āt − q̄t(ω, F, F̂ )| ≥ ρ | ω, F, F̂
)

≥ 1−
1

ρ2t
,

as claimed.
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C.1.2 Completing the Proof

We now complete the proof of the first part of Theorem 3. Fix any F ∈ F and ωk ∈ Ωn. We will

show that there exists ξk > 0 such that for all F̂ ∈ B(F, ξk) and all λ ∈ (0, 1), we have

lim
t→∞

Pr
(

Ht(ω
k|s, at−1; F̂ ) ≥ λ|ωk, F, F̂

)

≥ λ. (8)

Then setting εn := minnk=1 ξk yields the desired conclusion. We proceed in four steps.

Step 1. By Lemma C.1, there exists ξ, ε > 0 such that for all s ≤ s,

lim
t→∞

inf
{

Ht(ω
k|s, at−1, F̂ ) : s ∈ [s, s], 1− āt−1 ∈ [R,R], F̂ ∈ B(F, ξ)

}

= 1, (9)

where R := F (θ∗(ωk))− ε and R := F (θ∗(ωk)) + ε.

Step 2. Next, we pick κ ∈ (0, 1) sufficiently large and ρ ∈ (0, 1) sufficiently small such that in

any period t, if at least fraction 1 − ρ of agents assign probability at least κ to state ωk, then the

fraction of agents playing action 0 is in [R + ρ,R − ρ]. To see that such κ and ρ exist, let γ0(κ′)

(respectively, γ1(κ′)) denote the share of types that strictly prefer to play action 0 (respectively,

action 1) whenever their posterior assigns probability at least κ′ to state ωk.62 Then γ0(κ′) ≤

F (θ∗(ωk)) ≤ 1− γ1(κ′) for all κ′ ∈ [0, 1], with γ0(1) = F (θ∗(ωk)) = 1− γ1(1). Thus, since γ0 and

γ1 are continuous and weakly increasing and F (θ∗(ωk)) ∈ [R,R], there exists κ, ρ ∈ (0, 1) such that

R + ρ < (1 − ρ′)γ0(κ′) ≤ 1 − γ1(κ′) + ρ′ < R − ρ for all κ′ ≥ κ and ρ′ ≤ ρ. Then κ and ρ are as

required, since in any period t, the fraction of agents playing action 0 when fraction at least (1−ρ′)

of agents assign probability at least κ′ to state ωk is bounded below (resp. above) by (1− ρ′)γ0(κ′)

(resp. 1− γ1(κ′) + ρ′).

Step 3. We claim that there exist t1 and ξk < ξ such that for all t ≥ t1 and F̂ ∈ B(F, ξk), we

have q̄t(ω
k, F, F̂ ) ∈ [R + ρ,R − ρ]. To see this, note first that if F̂ = F , Proposition C.1 implies

that qt(ω
k, F ) → F (θ∗(ωk)). Thus, since F (θ∗(ωk)) ∈ (R + ρ,R − ρ), there exists t1 such that

qt(ω
k, F ) ∈ (R + ρ,R − ρ) for all t ≥ t1. Fix any s ≤ s with Φ([s, s] | ωk) > (1− ρ). By picking t1

sufficiently large, we can additionally assume by (9) that for all t ≥ t1, we have

inf
{

Ht(ω
k|s, at−1, F̂ ) : s ∈ [s, s], 1− āt−1 ∈ [R,R], F̂ ∈ B(F, ξ)

}

≥ κ (10)

and
(

1− 1
ρ2t

)

Φ([s, s] | ωk) ≥ (1 − ρ). Since q̄t1(ω
k, F ) ∈ (R + ρ,R − ρ), a continuity argument

at t1 implies that there exists ξk < ξ such that for all F̂ ∈ B(F, ξk), we also have q̄t1(ω
k, F, F̂ ) ∈

(R + ρ,R − ρ). Fix any F̂ ∈ B(F, ξk). We prove by induction that for all t ≥ t1, q̄t(ω
k, F, F̂ )

remains in [R + ρ,R − ρ]. Indeed, suppose this is true for a particular t′ ≥ t1. We will show that

q̄t′+1(ω
k, F, F̂ ) ∈ [R+ ρ,R− ρ].

Since q̄t′+1(ω
k, F, F̂ ) = t′

t′+1 q̄t′(ω
k, F, F̂ )+ 1

t′+1qt′+1(ω
k, F, F̂ ) it suffices to show that qt′+1(ω

k, F, F̂ ) ∈

[R+ ρ,R− ρ]. By Step 2, this holds as long as we can show that at t′ + 1, fraction at least (1− ρ)

62Formally, let γ0(κ) := F (θκ), where θκ satisfies κu(θκ, ω
k) + (1 − κ)u(θκ, ω

n) = 0, and let γ1(κ) := 1 − F (θκ),
where θκ satisfies κu(θκ, ω

k) + (1− κ)u(θκ, ω
1) = 0.
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of agents assign probability at least κ to state ωk. But note that

Pr
(

Ht′+1(ω
k|s, at

′

, F̂ ) ≥ κ | ωk, F, F̂
)

≥ Pr
(

1− āt
′

∈ [R,R] | ωk, F, F̂
)

Φ([s, s] | ωk)

≥ Pr
(

|1− at
′

− q̄t′(ω
k, F, F̂ )| < ρ | ωk, F, F̂

)

Φ([s, s] | ωk) ≥

(

1−
1

ρ2(t′ − 1)

)

Φ([s, s] | ωk),

where the first inequality holds by (10), the second inequality holds since q̄t′(ω
k, F, F̂ ) ∈ [R+ρ,R−ρ]

by inductive hypothesis, and the third inequality holds by Lemma C.2. Since by choice of t1, we

have
(

1− 1
ρ2t′

)

Φ([s, s] | ωk) ≥ 1− ρ, this yields the desired conclusion.

Step 4. Finally, fix any λ ∈ (0, 1), F̂ ∈ B(F, ξk), and s ≤ s such that Φ([s, s]|ωk) ≥ λ. By (9)

and since ξk < ξ, there exists t2 ≥ t1 such that for all t ≥ t2, we have

inf
{

Ht(ω
k|s, at−1, F̂ ) : s ∈ [s, s], 1− āt−1 ∈ [R,R]

}

≥ λ.

Then for all t ≥ t2,

Pr
(

Ht(ω
k|s, at−1, F̂ ) ≥ λ | ωk F, F̂

)

≥ Pr
(

1− āt−1 ∈ [R,R] | ωk, F, F̂
)

Φ([s, s]|ωk)

≥ Pr
(

|1− āt − q̄t(ω
k, F, F̂ )| < ρ | ωk, F, F̂

)

Φ([s, s]|ωk) ≥

(

1−
1

ρ2t

)

λ,

where the first inequality holds by choice of t2, the second inequality holds since q̄t(ω
k, F, F̂ ) ∈

[R + ρ,R − ρ] by Step 3, and the third inequality holds by Lemma C.2 and choice of [s, s]. This

yields (8), as required.

C.2 Theorem 3: Proof of Part 2

In each state space Ωn, define the corresponding set of steady states by

SSn(F, F̂ ) := {ω̂∞ ∈ Ωn : ω̂∞ = argmin
ω̂∈Ωn

KL
(

F (θ∗(ω̂∞)), F̂ (θ∗(ω̂))
)

}.

The proofs in Appendix B.1-B.2 do not rely on the fact that the state space is continuous and the

same arguments go through under finite state spaces. In particular, Proposition B.1 remains valid

for each Ωn and implies that in every state ω ∈ Ωn, there exists some state ω̂∞(ω) ∈ SSn(F, F̂ ) such

that almost all agents’ beliefs converge to a point-mass on ω̂∞(ω).

To prove the second part of Theorem 3, fix any F ∈ F , ω̂ ∈ Ω, and ε > 0. Take any perceived

type distribution F̂ ∈ F such that ‖F − F̂‖ < ε and F̂ − F is strictly increasing with F̂ (θ∗(ω̂)) −

F (θ∗(ω̂)) = 0. Then κ := minω∈Ω\[ω̂−ε,ω̂+ε] |F (θ∗(ω))− F̂ (θ∗(ω))| satisfies κ > 0.

Note that F̂ (θ∗(ω)) is uniformly continuous in ω by the compactness of Ω. Thus, there exists

γ > 0 such that for any ω′, ω′′ ∈ Ω with |ω′ − ω′′| < γ, we have |F̂ (θ∗(ω′)) − F̂ (θ∗(ω′′))| < κ.

Moreover, since {ω1, ω2, . . .} is dense in Ω, we can pick N large enough such that any interval in Ω

of length γ contains at least one state from ΩN = {ω1, ..., ωN}.
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Consider any state space Ωn with n ≥ N . We claim that SSn(F, F̂ ) ⊆ [ω̂ − ε, ω̂ + ε]. Indeed,

consider any ω̂∞ ∈ Ωn \ [ω̂ − ε, ω̂ + ε]. We focus on the case ω̂∞ < ω̂ − ε, as the case ω̂∞ > ω̂ + ε

is analogous. By construction, F (θ∗(ω∞)) − F̂ (θ∗(ω∞)) ≥ κ. Moreover, since n ≥ N , there exists

some state ω′ ∈ (ω̂∞, ω̂∞+γ]∩Ωn. By choice of γ, this yields F (θ∗(ω̂∞)) > F̂ (θ∗(ω′)) > F̂ (θ∗(ω̂∞)),

whence ω̂∞ 6∈ SSn(F, F̂ ). Thus, Proposition B.1 implies that in any state ω ∈ Ωn, almost all agents’

beliefs converge to a point-mass on some state ω̂∞(ω) ∈ SSn(F, F̂ ) ⊆ [ω̂ − ε, ω̂ + ε], as claimed.
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