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Abstract—In this paper, we consider the single-user MIMO
channel with per-antenna power constraint. We formulate the
capacity optimization problem with per-antenna constraint in
the SDP framework and analyze its optimality conditions. We
establish in closed-form the optimal input covariance matrix
as a function of the dual variable. We then propose a simple
algorithm to find this optimal input covariance and the capacity.
Results show that the capacity with per-antenna power can
be significantly different from that with sum power or with
independent multiple access constraint.

I. INTRODUCTION

The capacity of a MIMO wireless channel depends on the
constraints on the transmit power and on the availability of the
channel state information at the transmitter and receiver. With
sum power constraint across all transmit antennas, the capac-
ity and optimal signaling are well established. For channels
known at both the transmitter and the receiver, the capacity
can be obtained by performing singular value decomposition of
the channel and water-filling power allocation on the channel
eigenvalues [1].

Under the per-antenna power constraint, the MIMO capacity
is less well understood. This per-antenna power constraint,
however, is more realistic than sum power in practice because
of the constraint on the individual RF chain connected to each
antenna. Hence the transmitter may not be able to allocate
power arbitrarily among the transmit antennas. Another ap-
pealing scenario for the per-antenna constraint is a distributed
MIMO system, which has the transmitted antennas located
at different physical nodes that cannot share power. Thus
understanding the capacity and the optimal signaling scheme
under per-antenna power constraint can be useful.

The per-antenna power constraint has been investigated in
different problem setups. In [2], the problem of a multiuser
downlink channel is considered with per-antenna power. For
downlink broadcast, the capacity optimization problem is non-
convex. It was argued that linear processing at both the
transmitter (by multi-mode beamforming) and the receiver
(by MMSE receive beamforming with successive interference
cancellation) can achieve the capacity region. Using uplink-
downlink duality, the boundary points of the capacity region
for the downlink channel with per-antenna constraint can be
found by solving a dual uplink problem, which maximizes
a weighted sum rate for the uplink channel with sum power
constraint across the users and an uncertain noise. The dual up-
link problem is convex which facilitates computation. Similar
uplink-downlink duality holds with the sum power constraint,
in which case, the uplink capacity can be solved using the effi-
cient and distributed iterative water-filling algorithm [3]. This
algorithm is based on the closed-form solution for capacity of

a single-user MIMO channel with sum power constraint. In
the case of per-antenna power constraint, however, no closed-
form capacity solution so far exists, the lack of which implies
full and centralized computation required to solve even the
convex uplink capacity problem.

In this paper, we consider the single-user MIMO channel
with per-antenna power constraint. The capacity optimization
problem with per-antenna power is convex and can be cast
in the SDP framework. We analyze its optimality conditions
and establish in closed-form the optimal input covariance
matrix as a function of the dual variable. We then propose
a simple algorithm to find this optimal input covariance and
the capacity. Simulation examples show the fast convergence
of the proposed algorithm and that capacity with per-antenna
power can be significantly different from that with sum power.

For notation, we use bold face lower-case letters for vec-
tors, capital letters for matrices, (.)T for transpose, (.)∗ for
conjugate, (.)† for conjugate transpose, � and � for matrix
inequalities (positive semi-definite relation), tr(.) for trace,
and diag{.} for forming a diagonal matrix with the specified
elements.

II. CHANNEL MODEL AND POWER CONSTRAINTS

A. Channel model

Consider a multiple-input multiple-output (MIMO) channel
with n transmit and m receive antennas. The channel between
each transmit-receive pair is a complex, multiplicative factor
hij . Denote the channel coefficient matrix as H of size m×n,
and the transmit signal vector as x = [x1 . . . xn]T . Then the
received signal vector of length m can be written as

y = Hx + z (1)

where z ∼ CN (0, I) is a vector of additive white circularly
complex Gaussian noise. Here we have normalized the noise
power at all receivers, which can be done by absorbing the
actual noise power into the transmit power constraint.

Assume the channel H is known at both the transmitter
and receiver. The capacity of the MIMO channel depends
on the power constraint on the input signal vector x. In all
cases, because of the Gaussian noise and known channel at
the receiver, the optimal input signal is Gaussian with zero
mean [4]. Let Q = E[xx†] be the covariance of the Gaussian
input, then the achievable transmission rate is

r = log det
(
Im + HQH†) . (2)

The remaining question is to establish the optimal Q that
maximizes this rate according to the CSIT condition and a
given power constraint.
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B. Power constraints

Often the MIMO capacity is studied with sum power
constraint across all antennas. In this paper, we consider a
more realistic per-antenna power constraint. For comparison,
we also include the case of independent multiple-access power
constraint. We elaborate on each power constraint below.

1) Sum power constraint: With sum power constraint, the
total transmit power from all n antennas is P , but this power
can be shared or allocated arbitrarily among the transmit
antennas. This constraint translates to a condition on the input
covariance as

tr(Q) ≤ P. (3)

This constraint allows complete cooperation among the trans-
mit antennas.

2) Independent multiple-access power constraint: In this
case, each transmit antenna has its own power budget and
acts independently. This constraint can model the case of
distributed transmit antennas, such as on different wireless
nodes scattered in a field, without explicit cooperation among
them. Let Pi be the power constraint on antenna i, then this
constraint is equivalent to having a diagonal input covariance
Q = diag{Pi}. Denote P = diag{Pi}, where tr(P) = P in
relation to (3), then the multiple-access power constraint can
also be expressed as

Q � P. (4)

3) Per-antenna power constraint: Here each antenna also
has a separate transmit power budget of Pi (i = 1, . . . , n)
but can fully cooperate with each other. Such a channel
can model a physically centralized MIMO system, in which
the per-antenna power comes from the realistic individual
constraint of each transmit RF chain. The channel can also
model a distributed (but cooperative) MIMO system, in which
each transmit antenna belongs to a sensor or ad hoc node
distributed in a network and thus cannot share power. The per-
antenna constraint is equivalent to having the input covariance
matrix Q with fixed diagonal values Qii = Pi. Denote
ei = [0 . . . 1 . . . 0]T as a vector with the ith element equal
to 1 and the rest is 0. Then the per-antenna power constraint
Qii ≤ Pi can be written as

eT
i Qei ≤ Pi, i = 1 . . . n. (5)

This constraint is a set of linear constraints on Q. It should
be stressed that a constraint on the diagonal values of Q is
not the same as a constraint on the eigenvalues of Q.

III. CAPACITY OPTIMIZATION PROBLEM

For all stated power constraints, this capacity optimization
can be cast as follows.

max log det
(
Im + HQH†) (6)

s.t. g(Q,P) ≤ 0
Q � 0

where the input covariance Q is Hermitian, and g(Q,P) ≤ 0
refers to a power constraint as in (3), (4) or (5).

Since all the power constraints are linear in Q, the above
optimization is convex with any power constraint. Thus for

each power constraint, the problem admits a unique optimal
solution for Q. By Slater’s condition [5], this optimal solution
always exists because of the strictly feasible value Q = P � 0
which readily satisfies all power constraints.

With sum power constraint (3), the optimal solution is found
by the well-known water-filling algorithm [1]. With multiple-
access constraint (4), the obvious solution is Q = P. In this
case the optimal signaling is sending independent signals from
different antennas, each with the constrained power.

A. Capacity optimization using SDP framework

Since problem (6) with per-antenna power is convex, it can
be analyzed using the SDP framework. Let D = diag{di} � 0
be a diagonal matrix consisting of Lagrangian multipliers di

for the per-antenna power constraints in (5). Furthermore, let
M � 0 be the Lagrangian multiplier for the positive semi-
definite constraint. Then the Lagrangian for problem (6) can
be formed as

L(Q,D,M)

= log det
(
Im + HQH†)− tr[D(Q−P)] + tr(MQ). (7)

Taking the first order derivative of L in (7) with respect to
Q (see [6] Appendix A.7 for derivatives of a function with
respect to a matrix) and equating to zero, we obtain

H† (
Im + HQH†)−1

H−D + M = 0. (8)

Based on the KKT and (8), we obtain a set of optimality
conditions as follows.

H† (
Im + HQH†)−1

H = D−M (9)

MQ = 0
diagonal D � 0

Hermitian M,Q � 0

The optimal input covariance Q is the solution to the set of
equations in (9).

B. Rank of the optimal input covariance

Combining (8) with the complementary slackness condition
MQ = 0, we have

DQ = H† (
Im + HQH†)−1

HQ. (10)

Now at optimum, we must have D � 0. That is, D is strictly
positive definite and the power constraint is tight. In other
words, at optimum, each constraints in (5) must be met with
equality, for otherwise we can always increase the input power
and get a higher rate; hence the associated dual variables are
strictly positive at optimum. Thus at optimum, D is full-rank,
subsequently (10) implies that

rank(Q) ≤ rank(H). (11)

Therefore, the rank of the optimal input covariance is no
more than the channel rank. In other words, the number of
independent signal streams (or modes) should be no more
than the rank of the channel. This result is similar to that
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with sum power constraint but is different with multiple access
constraint.

Based on (11), since channel H can support at most r =
min{m,n} independent modes (independent signal streams),
the rank of Q is at most r. When the rank of Q is less than
r, that implies mode-dropping (similar to the same concept
with sum power constraint). Since QM = 0, M is a positive
semidefinite matrix in the null space of Q. The rank of M
corresponds to the number of modes that has to be dropped
for Q to be positive semidefinite. Suppose that the optimal
solution has k modes dropped (0 ≤ k ≤ min{m,n}), then

rank(M) = k, rank(Q) = min{m,n} − k.

The difference between the rank of Q and the size of Q
should be stressed here. The size of Q is n × n. If n >
m (more transmit than receive antennas), the optimal Q is
inherently rank-deficient. In this case, even without any mode-
dropping, the maximum rank of Q is m < n. Thus no mode-
dropping does not always imply full-rank Q. If n ≤ m then
the maximum rank of Q is n without mode-dropping, and
only then Q is full-rank.

C. Optimality conditions

Noting that D is full-rank and invertible, lets denote Ď =
D−1 and define

Rm = HQH† , Fm = HĎH†. (12)

Then from the set of optimality conditions in (9), after some
manipulation, we can show that

(Rm − Fm + Im)Rm = 0. (13)

The proof is given in Appendix A. Note that both Rm and
Fm are m×m Hermitian matrices and the achievable rate for
each channel state in (2) can now be expressed as r(H) =
log det (Im + Rm), which is a sole function of Rm.

Condition (13) provides the equation for solving for Q. To
understand the meaning of this equation better, lets denote

Sm = Rm − Fm + Im. (14)

Then we can show that (see Appendix A)

HĎM = SmH. (15)

Since Ď is square and full rank, (15) implies rank(Sm) =
rank(M) = k. From (12) and (11), we have rank(Rm) =
rank(Q) = min{m,n} − k. From (13), we have SmRm = 0.
Thus Rm contains the active transmission modes, and Sm

contains the modes that are dropped. In other words, Sm is a
matrix in the null space of Rm, in the same way that M is in
the null space of Q. In the next section, we will use (13) to
solve for the optimal Q.

IV. OPTIMAL INPUT COVARIANCE

In this section, we solve for the optimal value of Q as a
function of the dual variable D. Here we focus on the case
that n ≤ m (solution for the case n > m can be found in [7]).
Let the singular value decomposition of the channel matrix be

H = UHΣHV†
H (16)

where
• UH is a m×m unitary matrix of the left singular vectors,
• VH is a n×n unitary matrix of the right singular vectors,
• ΣH is a m × n diagonal matrix containing the (real)

singular values in decreasing order.
For n ≤ m, rank(H) = n and rank(Q) = n− k. However,

Fm as defined in (12) has size m×m and is not full-rank. It
is necessary to convert this matrix to full-rank as follows. In
(16), for n ≤ m, we have ΣH = [Σn 0n,m−n]T , where Σn

is a n× n diagonal matrix containing the real singular values
of H. Now define

K = VHΣnV†
H. (17)

Next define two n× n matrices as

Rn = KQK† , Fn = KĎK†. (18)

Multiplying (13) on the left with H† and on the right with H,
and noting that H†H = KK†, we get

K [(Rn − Fn + In)Rn]K† = 0.

Since for n ≤ m, K is square and full-rank, the above equation
is equivalent to

(Rn − Fn + In)Rn = 0. (19)

We get an equation in a form similar to (13), but in this case
of n ≤ m, Fn is full-rank.

Equation (19) can be written as R2
n + Rn = FnRn. This

equality implies that FnRn is Hermitian and has the same
eigenvalue decomposition as R2

n + Rn, which has the same
eigenvectors as those of Rn. This is possible only if Rn and
Fn share the same eigenvectors for the non-zero eigenvalues.
Now since for n ≤ m, Fn is full rank and Hermitian, it has
a unique eigenvalue decomposition (up to any multiplicity of
eigenvalues). From (18), rank(Rn) = rank(Q) = n−k. Equa-
tion (19) then implies that Rn must span n − k eigenspaces
of Fn. That is, the n − k eigenvectors corresponding to the
non-zero eigenvalues of Rn are the same as n−k eigenvectors
of Fn. Let

Sn = Rn − Fn + In, (20)

then equivalently, (19) implies that Sn spans the other k
eigenspaces of Fn (the k eigenvectors with non-zero eigen-
values of Sn are the same as the other k eigenvectors of Fn).
Here Sn contains the k modes that are dropped.

Intuitively, this result can be interpreted as follows. Note
that we can write Fn − In = Rn − Sn. The matrix Fn − In

may contain some positive and some non-positive eigenvalues.
Then Rn is the portion that contains only the positive eigen-
values, and (−Sn) is the portion that contains only the non-
positive eigenvalues. As such, both Rn and Sn are positive
semidefinite matrices and are orthogonal to each other.

Denote Ǩ = K−1, then from (18), Q = ǨRnǨ†. Based
on (20), we can find the optimal Q as

Q� = Ď− ǨǨ† + Z, (21)

where Z = ǨSnǨ†. This equation gives the solution for Q
as a function of the dual variable D. Here K is a function of
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the channel as defined in (17), while Sn is determined from
Fn which is a function of D as in (18). Note that since Rn

contains only the positive eigenmodes of Fn−In, the optimal
Q� as formed in (21) is always positive semidefinite. Thus the
only step left is to find the optimal dual variable D such that
Q� satisfies the power constraint of diag(Q�) = P.

To find the optimal D, at this point, we need to use an
iterative algorithm which we will discuss next.

V. ALGORITHM FOR FINDING THE OPTIMAL Q

There appears to be no closed-form analytical solution for a
diagonal Ď such that the solution in (21) satisfies diag(Q�) =
P. Fortunately, these equations suggest a way to update D
iteratively. In the follows, we design an iterative algorithm for
finding the optimal Ď, and hence Q�.

The approach is similar to mode-dropping in water filling.
We first assume that there is no mode-dropping, so that Sn = 0
and find the corresponding Q with diagonal P. If that solution
for Q is positive semidefinite, it is the optimal solution. If not,
then we need to find a new Ď, and equation (21) suggests a
way to update Ď at each iteration.

The initial step of this algorithm is straightforward. Assume
no mode-dropping, then Sn = 0 and (21) implies Q = Ď −
ǨǨ†. Thus we can just simply choose diagonal matrix Ď as

Ď0 = P + diag(ǨǨ†). (22)

This solution always satisfies D � 0 since ǨǨ† as a positive
semidefinite matrix has non-negative diagonal values. Then we
can form

Q�
0 = Ď0 − ǨǨ† (23)

and check if this Q�
0 is positive semidefinite. If it is, (23) is

the optimal input covariance.
If Q�

0 in (23) is non-positive semidefinite, then we adjust
Ď using an iterative procedure as follows. Say at iteration i
(i ≥ 0), we have obtained Ďi. Then we can form Fn,i, Sn,i

and Qi as

Fn,i = KĎiK

−Sn,i = non-positive eigenmodes of (Fn,i − In)

Zi = ǨSn,iǨ†

Qi = Ďi − ǨǨ† + Zi. (24)

The Qi as computed in (24) is always positive semidefinite (as
a consequence of (21)). Thus the term Zi � 0 is the adjustment
at step i to make Qi � 0. But it does not guarantee that the
diagonal of Qi will be P. From (24), noting that Ď is diagonal,
we update Ďi+1 by the difference between the diagonal of Qi

and P as

Ďi+1 = Ďi + P− diag(Qi) (25)

Iteration stops when the diagonal values of Qi is close to P
within an acceptable tolerance. In implementation, we choose
to stop when the duality gap satisfies |tr[D(Q−P)]| < ε. Since
problem (6) is convex and satisfies Slater’s condition, this
stopping criterion always guarantees the optimal solution. The
iterative procedure for finding Q� when n ≤ m is summarized
in Algorithm 1, drop-rank-n(·).

Algorithm 1 drop-rank-n(n, Ď0,K, Ǩ,P, ε): Iterative search
for Q� when n ≤ m.

Require: Ď0 diagonal � 0, P diagonal � 0, ε > 0. Here K
is defined as in (17) and Ǩ = K−1.

1: Initialize i = 0. (iteration count)
2: Initialize Δ = 1 + ε. (loop terminating variable)
3: while (Δ > ε) do
4: Form Fi = KĎiK† − In. (note that −In is included

here)
5: Perform the eigenvalue decomposition

Fi = UFΛFU†
F. Let k be the number of non-

positive eigenvalues of F.
6: Form Si = −Uk

FΛk
FUk

F

†
where

Λk
F is the k×k diagonal matrix of all k non-positive

eigenvalues of F
Uk

F consists of the corresponding k eigenvectors.

7: Form Zi = ǨSiǨ†.
8: Form Qi = Ďi − ǨǨ† + Zi.
9: Form Ďi+1 = Ďi + P− diag(Qi).

10: Compute Δ = |tr[Di(Qi −P)]|.
11: i← i + 1.
12: end while
13: return Ďi and Qi.

P1/P 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P = 1 47 33 28 24 22 22 23 26 36
P = 10 31 20 0 0 0 0 0 16 24

TABLE I
NUMBER OF ITERATIONS FOR TWO DIFFERENT TOTAL POWER P .

VI. NUMERICAL EXAMPLES

In this section, we perform numerical examples for a 2× 2
channel. The test channel is generated randomly according
to the circularly complex Gaussian with zero mean and unit
variance and is equal to

H =
[ −0.2581 + 0.6535i −0.2623 + 0.9434i

0.4385 + 0.3081i 0.4090− 0.2288i

]
. (26)

First, let the total power P = 1 and let the power constraint
of the first antenna P1 varies. Figure 1 shows the simulation
results comparing the different capacities. We see that the
capacity with per-antenna power can be significantly different
from either with sum power or multiple access constraints.
Figure 2 shows the convergence of the proposed algorithm
in terms of the objective function and the duality gap for 3
different values of P1 (tolerance ε = 10−6). We observe that
when P1 is closer to P/2, convergence is faster.

Second, if we increase the total power, we also observe
faster convergence. Table I shows the number of iterations for
each value of P1/P at two different total power P for the
same test channel in (26). In some cases, we see 0 iteration,
implying that the initial value in (23) is optimal.

Third, the channel right singular vectors, which are the
optimal input covariance eigenvectors under sum power, are
no longer optimal under per-antenna power. Here the optimal
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Fig. 1. Capacities for a 2 × 2 channel under different power constraints.
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Fig. 2. Convergence behavior for the test channel with per-antenna power
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D varies with the per-antenna constraint P and the signal-to-
noise ratio (SNR). Consequently, often both the eigenvectors
and eigenvalues of the optimal covariance in (21) also vary
with P and SNR. The proposed algorithm updates both
simultaneously.

VII. CONCLUSION

We have established the MIMO capacity with per-antenna
power constraint for channel known at both transmitter and
receiver. The optimal input covariance matrix shows that its
eigenvectors are not the same as the channel right singular
vectors as in the case of sum power constraint. We design
an efficient algorithm to find this optimal input covariance.
Simulation results show that the per-antenna constraint can
affect the capacity significantly.

APPENDIX

A. Proofs of MIMO optimal conditions in (13) and (15)

In the following derivation, we make repeated use of the
following identity expansion:

Im =
(
Im + HQH†) (

Im + HQH†)−1
. (27)

Note that the order of the two factors in this expansion is
interchangeable.

To prove (13), multiplying the first equation in (9) on the
right with QH† and on the left with HĎ, and noting that
MQ = 0, we get

HĎH† (
Im + HQH†)−1

HQH† = HQH†.

Now subtracting both sides by HĎH†, then applying the
identity expansion (27), this equation simplifies to

−HĎH† (
Im + HQH†)−1

= HQH† −HĎH†.

Next adding both sides of this equation with Im and again
using the identity expansion (27) on the left side, we get(

Im + HQH† −HĎH†) (
Im + HQH†)−1

= Im + HQH† −HĎH†.

Denote Sm = Im + HQH† − HĎH†, the above equation
becomes

Sm

(
Im −

(
Im + HQH†)−1

)
= 0.

Then applying the identity expansion (27) once more, we
obtain

Sm

(
HQH†) (

Im + HQH†)−1
= 0.

Since
(
Im + HQH†)−1

is a full-rank square matrix, the
above equation is equivalent to

Sm

(
HQH†) = 0.

This equality gives (13).
To show (15), from the first equation in (9), subtracting

H†H from both sides, we have

H†
[(

Im + HQH†)−1 − Im

]
H = D−M−H†H.

Using the identity expansion (27), we obtain

H† (
Im + HQH†)−1

HQH†H = H†H−D + M.

Now replacing part of the expression on the left with the first
equation in (9), we have

(D−M)QH†H = H†H−D + M.

But MQ = 0, hence we have

M = DQH†H + D−H†H.

Multiplying both sides on the left with HĎ, we obtain (15).
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