
INTERFACE SCIENCE 8, 131–140, 2000
c© 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

Misorientation Dependence of the Grain Boundary Energy in Magnesia
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Abstract. Geometric and crystallographic data obtained from a well annealed magnesia polycrystal have been
used to specify the five macroscopic degrees of freedom for 4665 grain boundaries. The results indicate, that for this
sample, the five parameter grain boundary character space is fully occupied. A finite series of symmetrized spherical
harmonics has been used to approximate the misorientation dependence of the relative grain boundary energy. Best
fit coefficients for this series were determined by assuming that the interfacial tensions at each triple junction are
balanced. The grain boundary energy function shows Read-Shockley behavior at small misorientations and a broad
minimum near the !3 misorientation. Furthermore, misorientations about the 〈100〉 axis create boundaries with
relative energies that are less than those created by misorientations about the 〈110〉 or 〈111〉 axes.
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Introduction

In a pure single phasematerial, the grain boundary char-
acter can be specified by the five macroscopic degrees
of freedom that define the crystallographic lattice mis-
orientation and the boundary plane. Because the local
atomic structure in the intergranular regions of a poly-
crystal is distinct from the bulk and varies with charac-
ter, the free energy per unit area of the grain boundary
is also expected to vary with character. The number
of distinct grain boundary characters that can exist in
nature is very large, and this has made it challenging
to characterize their diversity and establish character-
property correlations. For example, if one considers a
cubic material, the number of distinct grain boundaries
can be enumerated in the following manner. The three
Euler angles (φ1# φ2) that characterize the misorien-
tation range from zero to 2π , π , and 2π , respectively
[1]. The two spherical angles (θφ) that characterize the
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boundary plane range from zero to 2π and π , respec-
tively. Since the boundary normal can be selected in
two directions, the crystals can be exchanged, and one
can apply 24 cubic symmetry operators to either crys-
tal, there are 2 ·2 ·242 combinations of the five angular
parameters that lead to identical bicrystals. Thus, the
number of distinct boundaries, N , is:

N = π5

288&5 , (1)

where & is the angular resolution (in radians) with
which the degrees of freedom are measured.While this
particular parameterization is nonuniform and leads to
singularities, it accurately illustrates that for reasonable
values of &, the number of boundaries is very large.
For example, if& = 0.087 (5◦), there are 2× 105 dis-
tinct boundaries. Furthermore, the number of distinct
boundaries increases significantly for smaller values of
& and is higher for less symmetric crystals.
Until recently, it was not possible to character-

ize enough grain boundaries to measure the com-
plete anisotropy of the energy or even to know if
all of the distinct possibilities are realized in nature.
Therefore, previous experimental studies of the grain
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boundary energy-character relationship in ceramics
have focused on one-dimensional slices through the
five-dimensional grain boundary character space [2–7].
Larger subsections of the space have been probed by
simulation [8]. The objective of this paper is to de-
scribe our recent characterization of the five degrees of
freedom of 4665 grain boundaries in a magnesia poly-
crystal equilibrated at 1600◦C in air. Based on these
data, the relative grain boundary energy is determined
as a function of the three misorientation parameters.

Experimental

(i) Experimental Approach

Acquisition of the geometric and crystallographic data
required to characterize the grain boundary degrees
of freedom was accomplished by using a recently de-
veloped instrument known as the Mesoscale Interface
Mapping System (MIMS) [9]. TheMIMS is based on a
conventional scanning electronmicroscope (SEM) that
is used in concert with computers that automatically
record images, correct dimensional distortions, detect
the locations of triple junctions,measure apparent grain
boundary dihedral angles, control the beam and sam-
ple stage position, and acquire and analyze electron
backscattered diffraction patterns (EBSPs). The oper-
ation of the MIMS can be briefly described in the fol-
lowing way. The sample surface is divided into sec-
tors and, in each sector, a secondary electron image is
recorded and analyzed to reveal the locations of bound-
aries and triple junctions. Once image distortions have
been removed from these data, the grain boundary di-
hedral angles are determined and the electron beam
is directed (in spot mode) to each grain in the sec-
tor, where a backscattered electron diffraction pattern
is recorded, and the orientation is determined. When
the sector characterization is complete, the microscope
stage is automatically moved to the next sector. The
entire procedure is carried out under computer control
and at its conclusion, three orientations and apparent
dihedral angles are recorded for each triple junction on
the specimen surface. To determine boundary inclina-
tion and the true dihedral angles, a thin layer of the
sample is removed by polishing and the procedure is
repeated.
The condition for local equilibrium at the intersec-

tion of two or more interfaces with anisotropic ener-
gies was originally articulated by Herring [10]. In the
present analysis, we ignore the influence of the grain

Figure 1. (a) Schematic illustration of an internal triple junction
where three grains meet. (b) Schematic illustration of a thermal
groove where a grain boundary intersects a free surface.

boundary plane on the energy. In this case, the condi-
tion for local equilibrium at a triple junction reduces to
the well known Young equation:

∑

i
γi (&g)t̂i = 0, (2)

where γi , the energy of the i-th boundary, is assumed
to be a function only of the misorientation (&g), and
t̂i is the unit vector tangent to the i-th boundary plane
at the triple junction. With respect to the experimental
measurements, Eq. (2) can be rewritten in the following
way:

∑

i
γi (&g) cosχij = 0, (3)

where χij denotes the angle between vectors t̂i and t̂ j ,
as shown in Fig. 1(a). In this paper, our approach to
determining the energy is to approximate the function
γi (&g) as a finite series of symmetrized spherical har-
monics. The unknown coefficients of the series are then
determined by fitting the observed data for each triple
junction to the condition for local equilibrium given by
Eq. (3).
The thermal groove that forms at the intersection of

the grain boundary and the sample surface provides
an alternative way to measure the energy. If we again
assume that the grain boundary plane does not influence
the energy, and further assume that the boundary plane
is normal to the surface and that the surface energy (γs)
is isotropic, the condition for local equilibrium can be
written in the following way:

γ (&g)
γs

= 2 cos
(

ψs

2

)
, (4)

where ψs is the surface dihedral angle defined in
Fig. 1(b). Atomic force microscopy (AFM) has been
used to measure ψs for thermal grooves at boundaries
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with knownmisorientation. From thesemeasurements,
it is possible to independently estimate the relative
grain boundary energy and test the validity of the best
fit function determined from the analysis of the triple
grain boundary junctions.

(ii) Sample Preparation

Magnesia powder was formed by decomposing 99.7%
puremagnesium carbonate (Fisher Scientific) at 997◦C
in air. Uniaxial compaction in a hot press for 2 h at
1700◦C and 61 MPa produced a disc with a diameter
of 50 mm and an average thickness of 1.5 mm. Speci-
mens cut from the disc were then packed in a magne-
sia crucible with the parent powder and annealed for
48 h at 1600◦C in air. At the end of this treatment, the
specimens were translucent. The geometric measure-
ments used to characterize the triple junction geome-
try require samples that are flat and have two parallel
faces. Appropriate surfaces were prepared using an au-
tomatic polisher (Logitech PM5). The surfaces were
initially lapped parallel with a 9 µm alumina slurry,
and the final polish was achieved using an alkaline
(pH∼10) colloidal silica (0.05 µm) slurry. The flat-
ness of the final surface was measured using an induc-
tive axial movement gauge head with a resolution of
0.1µm (Brown and Sharpe, TESR, Model TT22); sur-
faces were determined to be flat within ±0.3 µm over
lateral dimensions of 1 cm. For serial sectioning, the
same polisher and gauge headwere used to remove thin
layers and measure the amount removed, respectively.
To enhance the contrast at the grain boundaries, the
surface was thermally grooved by annealing it in air
for 5 h at 1400◦C. The average grain size of the sample
was 109µm.At this stage, one samplewas analyzed for
impurities. The sample contained 0.2wt.%Ca, 0.02wt.
% Al, 0.03 wt. % Fe, 0.02 wt. % Si, and 0.03 wt. % Y.

(iii) Orientation and Dihedral Angle Measurements

Crystallite orientations andgrain boundary dihedral an-
gles at triple junctions weremeasured using theMIMS.
The MIMS system is integrated with a Phillips XL40
FEG SEM. The uncoated magnesia sample was tilted
at 70◦ for imaging and acquisition of the EBSPs. Each
sector was analyzed at a magnification of 200×, which
corresponds approximately to a pixel-to-pixel separa-
tion of 0.83 µm in the lateral direction and 0.96 µm in
the vertical direction. Under these conditions, the error

in the calculation of the in-plane angles is estimated to
be ±10◦ for a material with a grain size of ∼100 µm.
The patterns were indexed using an algorithm previ-
ously described by Morawiec [11], which returns a set
of Euler rotation angles (φ1# φ2) relating the crystal
reference frame to the sample reference frame. The er-
ror in the absolute orientation (g) and misorientation
(&g) obtained in this manner are estimated to be ±5◦

and ±0.5◦, respectively.
After the first planar section was characterized, a

6.2± 0.3 µm layer was removed by polishing and the
entire sample surface was imaged once again. Analy-
sis of the geometric data requires a global coordinate
reference for all of the images that is more accurate
than the one provided by the stage coordinates. To es-
tablish this reference frame, the images in each planar
section must be positioned with respect to one another
and then the two planar sectionsmust be aligned. To de-
termine the relative positions of the images in a single
planar section, we used the following two step proce-
dure. Adjacent images in each planar section are de-
liberately recorded so that all adjacent sectors overlap;
this makes it possible to determine an offset between
each neighbor pair by maximizing the contrast correla-
tion in the overlapped region. However, when as many
as 100 images in a 10 by 10 array are positioned using
only nearest neighbor offsets, significant cumulative
errors arise. In other words, if the distance between
two points in distant images is computed by summing
the nearest neighbor offsets along two different paths
through the arrayof images, the distances usually differ.
So, the second step of the image positioning algorithm
is to randomly select paths through the image array and
reposition the images to minimize the differences be-
tween distances computed in the global reference frame
and those determined by summing the nearest neigh-
bor offsets along equivalent random paths. The errors
associated with positioning the images in this manner
were usually less than one pixel.
After all images in both sections hadbeenpositioned,

triple junctions on the top section were visually linked
with the corresponding triple junctions on the bottom
section. A total of 1555 triple junctions were character-
ized in this manner. The sections were then aligned by
minimizing the lateral distance between triple junctions
on both sections. The alignment procedure is described
in detail elsewhere [12]. Using the lateral distances be-
tween corresponding junctions and the depth of ma-
terial removed, the triple line directions were calcu-
lated. The triple line directions, along with the in-plane
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directions of the grain boundaries, were used to calcu-
late the true dihedral angles.

(iv) Determining the Relative Grain
Boundary Energies

Using the experimental techniques described above, it
is possible to specify all of the quantities in Eq. (3), ex-
cept for the grain boundary energies. Unfortunately, for
N observed triple junctions, there are 2N independent
equilibrium equations and a larger number (with an up-
per limit of 3N) of unknown energies. Thus, some level
of approximation is required. Here, the grain boundary
energy is approximated as a finite series of harmonic
basis functions which have the symmetry of cubic mis-
orientation space:

γ (&g) =
∞∑

*=1

M(*)∑

µ=1

M(*)∑

ν=1
C*µν

::
Tµν

* (&g), (5)

where
::
T

µν

* (&g) are cubic-cubic symmetric general-
ized spherical harmonics functions, C*µν are the coef-
ficients of the series, and M(*) are the number of lin-
early independent solutions which are enumerated by
the index µ or ν [1]. These cubic-cubic functions can
be used to represent any property which is a function of
misorientation in a homophase cubic system. Further-
more, knowing that the grain boundary energy function
should exhibit certain properties allows us to introduce
boundary conditions. In the limit that the misorienta-
tion between adjacent grains goes to zero, the energy
function must also be zero:

γ (I) = 0, (6)

where I is the identity misorientation. Also, since the
energies can only be determined in a relative sense,
we have normalized the function such that the average
energy is equal to one. Introducing these two conditions
leads to the following expression for the grain boundary
energy as a function of misorientation:

γ (&g) =
[
1−

::
T 114 (&g)

]
+

∞∑

*=6

M(*)∑

µ=1

M(*)∑

ν=1
C*µν

[ ::
T µν

* (&g) −
::
Tµν

* (I)
::
T 114 (&g)

]
. (7)

After substituting the grain boundary energy
(Eq. (7)) into the local equilibrium condition (Eq. (3)),

a standard linear least squares procedure was used to
determine the best fit values of the coefficients [13]. To
assess the quality of the fit, the ratio (α) of the sum of
squares of the residuals to the difference between the
number of equations and the number of free parame-
ters was computed as a function of the number of terms
(coefficients) in the series [14]. Based on this analysis,
the addition of coefficients beyond * = 12 did little to
improve the quality of the fit and the series was trun-
cated at this point (α = 0.12). By truncating the series
at this point, the minimum period of oscillations that
can be reproduced is 7.5◦, so this should be taken as
the resolution of the approximation. The limited res-
olution is presumably related to the experimental er-
rors, particularly those associated with measuring the
dihedral angles, and the neglect of the boundary plane
anisotropy.
To test the feasibility of approximating the grain

boundary energy as a finite series of harmonic basis
functions, we carried out the procedure on a control
data set generated from a hypothetical grain boundary
energy function. This exercise also allows us to exam-
ine artifacts associated with the finite series approxi-
mation and the impact of the approximation’s limited
resolution.We use the Read-Shockley (RS) model [15]
for the energy of low angle grain boundaries and as-
sume that high angle boundaries have a constant energy.
In this model, the grain boundary energy is a function
of a single misorientation parameter, θmis, which is the
angle ofmisorientation about the rotation axis common
to the two grains. The energies of grain boundarieswith
θmis ≤ 15◦ were assumed to be γ (θmis) = x(1− ln(x)),
where x = θmis/15◦ and θmis is given in degrees. The
energies of boundaries with θmis > 15◦ are taken to be
constant and equal to 1. A set of triple junctions, equal
in number to the experimental data set, were generated
by assigning Euler angles over the complete domain for
all possible orientations using an algorithm that guar-
antees a random orientation distribution. Using the RS
energy model, the dihedral angles at the triple junc-
tions were calculated by solving Eq. (3) with respect to
cos(χij) and using these values to calculate χij. To ac-
count for the experimental errors, the ideal dihedral an-
gles were altered by randomly generated angles (&χ )
with a population governed by the von Mises distribu-
tion, exp(κ cos&χ ), with κ = 300. This distribution is
peaked at &χ = 0; values outside the limits of ±10◦

are very unlikely.
A comparison between the RS model and the fit

function for the 〈110〉 misorientation axis is shown in
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Figure 2. Comparison of a model grain boundary energy function
and an approximate function fit to a data set generated from the RS
model.

Fig. 2. The fit function shows the same general trends
as the model; it increases as the misorientation angle
increases from zero to an angle of∼20◦. For misorien-
tation angles >20◦, the function flattens and oscillates
around 1. However, the exact shape of the RS model is
not reproduced by the approximate function, especially
near the origin. Instead of a sharp cusp at zero misori-
entation and a constant energy value of one for misori-
entations greater than the limiting angle, the slope of
the function vanishes at zero misorientation and there
are oscillations (±0.12) about one for the higher angle
misorientations. This is an unavoidable consequence
of approximating the energy as a finite series of har-
monic functions. While adding additional terms to the
series can improve the approximation if a larger set of
data were available, these characteristic features will,
to some extent, persist as long as this particular set of
basis functions is used.

(v) Thermal Groove Measurements

The surface dihedral angles of 184 thermal grooves
were measured by AFM and the misorientation across
the boundaries was determined from EBSPs. Using
these data, the relative grain boundary energy was cal-
culated according to Eq. (4). Thesemeasurementswere
conducted using a previously described procedure [16].

Results

We have characterized all five degrees of freedom for
4665 grain boundaries and use the following scheme
for the representation of these data: a three-dimensional

space is used to represent the misorientation param-
eters and, for each misorientation in this space, the
two boundary plane parameters are represented on
an inverse pole figure. Here, we use Rodrigues-Frank
(RF) space to represent the misorientations [17]. Be-
cause of cubic-cubic misorientation symmetry, there
are 2 · 24 · 24 equivalent rotations corresponding to any
given misorientation. We select a rotation with the
smallest misorientation angle (sometimes called the
disorientation). However, since there are 48 equivalent
rotations with the minimum misorientation, we select
the one whose axis lies in a fundamental zone; here we
define the fundamental zone as the region of RF space
where is the misorientation angle is minimum and the
axis 〈uvw〉 lies in the standard streographic triangle
such that u ≥ v ≥ w ≥ 0. Thus, each misorientation
can be represented by a vector (⇀R) in RF space that is
parallel to an equivalent misorientation axis in the fun-
damental zone and has a length related to the minimum
misorientation angle (θd ) by |⇀R| = tan(θd/2). The per-
pendicular components of ⇀R are aligned parallel to the
cube axes such that R1 is parallel to [100]. The three-
dimensional fundamental zone of misorientation space
is plotted in planar sections perpendicular to R3 ([001])
and, in Fig. 3, the endpoint of each vector is indicated
by a point on the plot. According to these data, misori-
entation space is completely populated. However, note
that many of the data are superimposed so it is incorrect
to assume that Fig. 3 gives an accurate representation
of the population density.
In any particular volume ofmisorientation space that

we assume contains effectively equivalent misorienta-
tions, we can plot the boundary plane normals on an
inverse pole figure, as in Fig. 4. To account for the in-
version symmetry of the boundary plane, normal vec-
tors pointing in the negative direction were inverted.
Furthermore, to avoid any biasing of our description
of the boundary plane by arbitrarily selecting one of
the two crystallites as the reference frame, one normal
vector is plotted for each reference frame. Thus, each
boundary creates two points on the inverse pole figure.
Figure 4(a) shows an equal area projection of the distri-
bution of boundary planes for all grain boundaries with
amisorientationwithin 8.66◦ (Brandon’s criterion [18])
of the !3 misorientation. The !3 misorientation is a
60◦ rotation about [111]; in RF space this corresponds
to a vector with components R1 = 1/3, R2 = 1/3, and
R3 = 1/3. For comparison, Fig. 4(b) shows the distri-
bution of boundary planes for misorientations within
5◦ of a point within the fundamental zone (R1 = 0.3,
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Figure 3. Observed misorientations in a MgO polycrystal. 4665 misorientations are plotted in nine parallel sections of the fundamental zone
in RF space. The data points are shaded according to the value of the approximate grain boundary energy function at that misorientation. Black
indicates the zero of energy. The highest value, 1.24, is indicated by the lightest shade of gray.

Figure 4. Equal area projection inverse pole figures showing the
distributionof boundaryplanes for (a) grain boundarieswith amisori-
entationwithin 8.66◦ of the!3misorientation, R1 = 1/3, R2 = 1/3,
R3 = 1/3, and (b) grain boundaries with misorientations within 5◦

of R1 = 0.3, R2 = 0.2, R3 = 0.1. The gray areas show the ori-
entations of the misorientation axes of boundaries included in each
projection.

R2 = 0.2, and R3 = 0.1) that is not near a specialmisori-
entation. This apparently random distribution is char-
acteristic of most points in disorientation space.
The best fit coefficients for the series in Eq. (7) for

* = 12 are listed in Table 1. Based on these values,

we have calculated the value of the function γgb(&g) at
each of the observed misorientations. Each point rep-
resenting amisorientation in Fig. 3 is shaded according
to its relative energy, with black corresponding to zero
and the lightest gray corresponding to 1.24. Figure 5
shows the functional dependence of the relative grain
boundary energy for rotations around the 〈100〉, 〈110〉,
and 〈111〉 axes. For comparison, the fit to the RSmodel

Table 1. Coefficients for
the best fit grain boundary
energy function.

Coefficient Value

C6 1 1 −0.168
C8 1 1 −0.150
C9 1 1 0.248
C10 1 1 −0.113
C12 1 1 −0.240
C12 1 2 0.705
C12 2 1 −0.653
C12 2 2 −0.364
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Figure 5. Plots of the approximate grain boundary energy function along three low index axes. For each of the fixed axes, the fit to the model
data set generated on the basis of the RS model is included for comparison. The axes in the lower left correspond to each of the three graphs.

is shown on the same plots so that the magnitude of the
variations can be compared to the known artifacts in the
fit to the model data. There are two obvious differences
between the fit to the experimental data and the fit to
themodel data. The fit to the experimental data shows a
broadminimum at the!3misorientation and a reduced
average energy for rotations about the 〈100〉 axis.
The AFM measurements yielded an average value

of γ (&g)/γs of 1.08, with maximum and mini-
mum γ (&g)/γs values of 1.60 and 0.48, respectively.
Figure 6 shows the variation of γ (&g)/γs with the
smallest symmetrically equivalent misorientation an-
gle between the bounding grains. Low angle bound-
aries (<10◦) have relatively lower values of γ (&g)/γs .
The data set was probed to determine the values of
γ (&g)/γs for boundaries with misorientations within

Brandon’s criterion [18] (limiting angle = 15◦) of low
! CSLmisorientations (! ≤ 9). The average values for
γ (&g)/γs at these misorientations are listed in Table 2.
Only !3 has an average γ (&g)/γs value significantly
below the average of the distribution of the entire data
set.

Table 2. γ (&g)/γs for
special boundaries.

! γ (&g)/γs

3 0.63
5 1.14
7 1.05
9 1.13
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Figure 6. Plot of γ (&g)/γs , determined based on AFM measure-
ments of 184 randomly selected thermal grooves. The horizontal axis
is the minimum misorientation angle.

Discussion

Having measured the character of 4665 boundaries,
we are now in a position to comment on the natural
distribution of boundaries over the five parameter
space. While Fig. 3 shows that all regions in the fun-
damental zone of misorientation space are populated,
the distribution ofmisorientations is not consistentwith
an ideal randommisorientation distribution [19, 20]. In
fact, our analysis of the misorientations indicates that
the sample exhibits a higher than normal fraction of low
angle grain boundaries. The orientations themselves
show a weak 〈111〉 fiber texture that is 2.1 times ran-
dom. The distribution of boundary planes (see Fig. 4)
for a givenmisorientation appears to be largely random.
There is, however, one interesting point regarding the
distribution of planes near the !3 misorientation: few
boundaries are made up of {111} planes. This might be
related to the polar character of the {111} plane and its
relatively higher energy [21].
Grain boundary studies have traditionally focused

on special coincident site lattice (CSL) boundaries.
Therefore, it is useful to characterize our observations
with respect to this model. CSL boundaries occur when
the misorientation between adjacent crystallites per-
mits (with the appropriate translation) some fraction
of the lattice sites from the two grains to coincide;
CSL boundaries are named by a ! number, which
is the inverse of the fractional number of coincident
sites. In the sample we examined, fewer than 10% of
all of the boundaries are associated with a high coin-

Table 3. Population of special boundaries in a MgO polycrystal.

Population in present Expected in a random
Boundary dataa (%) populationb (%)

!1 4.8 1.98
!3 1.8 1.53
!5 1.5 1.07
!7 0.45 0.86
!9 0.86 0.88

aWithin Brandon’s criterion, assuming a cutoff of 15◦.
bFrom Ref. 22.

cidence (! ≤ 9) misorientation (see Table 3). Of the
CSL boundaries that we did observe, the populations
are generally within a factor of two of what one would
expect based on a completely random distribution [22].
The only exception was the population of !1 bound-
aries, which make up 4.8% of the data set.
The energies of the low angle boundaries increased

from zero at zero misorientation to an approximately
constant value after 20◦. This behavior is consistent
with both the RSmodel andwith previous observations
of MgO and NiO bicrystals [2–5]. The relatively lower
energies of the low angle grain boundaries in this sam-
ple were verified independently by the thermal groove
measurements. In Fig. 6, boundaries with low angles
of misorientation have a lower relative energy, and as
the misorientation angle increases, the γ (&g)/γs val-
ues become a constant band with a significant amount
of scatter.
The coincidence site lattice (CSL) model predicts

that grain boundary energy scales with the fraction of
lattice sites in the adjacent crystallites that coincide
in the boundary plane. The validity of this model has
been demonstrated in a number of previous studies.
Most relevant to the current work, we note that Kimura
et al. [5] andDhalenne et al. [3, 4] demonstrated that the
energies of 〈110〉 symmetric tilt boundaries with a high
degree of coincidence were relatively lower than those
that did not. However, one must exercise caution when
assuming a link between lattice coincidence and grain
boundary energy. While the fractional lattice coinci-
dence is determined by the misorientation alone, it is
only for certain special boundary planes that the atoms
in the intergranular region occupy coincident positions.
For other planes separating crystallites of the samemis-
orientation, there is no reason to anticipate that the
energy should scale with the lattice coincidence. For
example, rotations of 70.53◦ and 109.47◦ about [110]
are both!3 misorientations; however, a high degree of
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coincidence in the intergranular region occurs only for
symmetric {111} boundary planes. This configuration
is realized by a symmetric 70.53◦ rotation, but not for
the symmetric 109.47◦ rotation. The previous bicrystal
studies both demonstrate the significant effect of the
boundary plane on the boundary energy. In the case of
MgO, the energy of 109.47◦ !3 rotation was approx-
imately 40% higher than the 70.53◦ !3 rotation [5].
The effect was even larger in the NiO case where the
energy of the 109.47◦ !3 rotation was 300% higher
than the 70.53◦ !3 rotation [4]. In the current study,
we are averaging over all possible boundary planes and
because the special planes constitute an insignificant
part of the population, it does not necessarily follow
that we should expect boundaries with these misorien-
tations to have relatively lower energies. Furthermore,
we should point out that when all five degrees of free-
dom of the grain boundary character are determined,
those highly symmetric boundaries with high coinci-
dence are extraordinarily rare in a random polycrystal
and, therefore, are of questionable significance.
In spite of the fact that we are averaging over all

boundary planes, the relative energy at the !3 misori-
entation is significantly lower than most other places
in misorientation space. The value of the best fit func-
tion at this point falls below the oscillations produced
by the same fit to the RS model. The conclusion that
boundaries with this misorientation have lower energy
is verified by the thermal groove data, which also show
a minimum at !3. It should be noted that the shape of
the minimum at this point is not likely to be accurate.
Considering the characteristics of the basis functions,
we do not expect to resolve narrow cusps in the energy
function (narrower than the resolution limit of the func-
tion) and we also expect any cusps that are resolved to
be approximated as broad minima. Along the low in-
dex rotation axes, there are additional local minima in
the best fit function (see Fig. 5). However, when we
consider the results of the fit to the model data set (see
Fig. 3), the shallow local minima in our best fit function
must be attributed to the characteristics of the harmonic
series rather than the sample.
Another characteristic feature of the approximate en-

ergy function is that the energy of boundaries with ro-
tations about the 〈100〉 axis are significantly lower than
those about the 〈110〉 and 〈111〉 axes. This character-
istic is consistent with the previous bicrystal studies of
MgO and NiO which show that 〈100〉 twist boundaries
have lower energy on average than 〈110〉 tilt bound-
aries [3–5]. Again, we note that the energy function

derived in the present paper averages over grain bound-
ary planes while the bicrystal studies were carried out
on a subset of special boundary planes.
The approximate γgb(&g) function also exhibits

a broad minimum (at ⇀R= 〈0.4142, 0.2071, 0.074〉)
that is not associated with any low CSL misorienta-
tions. At this point in misorientation space, the energy
is approximately 60% of the average energy for all
other boundaries. This minimum was not reproduced
by the thermal groove measurements where the aver-
age γ (&g)/γs value for misorientations within 10◦ of
the minimum (1.11) was approximately the same as
the average value for the entire data set (1.09). It is un-
likely that the anisotropy of γs , which is about 7% at
1400◦C, could result in such a large deviation between
the measurement techniques [21]. It is also unlikely
that the measurement errors associated with either
of the techniques, which are assumed to be normally
distributed, could be responsible for the large differ-
ences. One possible explanation for the minimum is
that it is an artifact of the oscillatory basis functions
that we have used to approximate the grain boundary
energy function.
In this paper, the grain boundary energy of MgO is

presented as a function of three misorientation vari-
ables. Thus, each point in misorientation space rep-
resents the entire range of boundary planes that are
specified by the remaining two neglected parameters.
However, it is not appropriate to consider the energy to
be an average over the possible planes, since by ignor-
ing these two variables, we also neglect the differential
terms in the Herring [11] condition for local equilib-
rium (the so-called torque terms). The torque terms
account for the tendency of a boundary to rotate to
a plane of minimum energy. They are, therefore, an
important factor that determines the geometry of the
triple junction. Past studies of thermal grooves have
illustrated that the differential terms acting normal to
the boundary plane can have a magnitude that is simi-
lar to the interfacial tensions [21]. We estimate that to
evaluate the grain boundary energy function over all
five macroscopic degrees of freedom, it will be nec-
essary to characterize approximately 105 triple junc-
tions. Recent improvements in the MIMS suggest that
it will soon be possible to collect a data set of this size,
and recent advances in the analysis of five parameter
data sets suggest that it will be possible to derive the
grain boundary energy from such observations [23].
These improvements are expected to lead to a more
reliable approximation for the grain boundary energy
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with greater resolution over the entire space of macro-
scopic grain boundary parameters.

Conclusion

Characterization of 4665 grain boundaries in a well
annealed magnesia polycrystal indicates that the five
parameter grain boundary character space is fully occu-
pied. A finite series of symmetrized spherical harmon-
ics has been used to approximate the misorientation
dependence of the relative grain boundary energy. The
grain boundary energy function shows Read-Shockley
behavior at small misorientations and a broad mini-
mum near the!3misorientation. Furthermore, misori-
entations about the 〈100〉 axis create boundaries with
relative energies that are less than those created bymis-
orientations about the 〈110〉 or 〈111〉 axes.
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