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Abstract: A high-performance versatile computer-assisted pronunciation training (CAPT) system that
provides the learner immediate feedback as to whether their pronunciation is correct is very helpful
in learning correct pronunciation and allows learners to practice this at any time and with unlimited
repetitions, without the presence of an instructor. In this paper, we propose deep learning-based
techniques to build a high-performance versatile CAPT system for mispronunciation detection and
diagnosis (MDD) and articulatory feedback generation for non-native Arabic learners. The proposed
system can locate the error in pronunciation, recognize the mispronounced phonemes, and detect the
corresponding articulatory features (AFs), not only in words but even in sentences. We formulate
the recognition of phonemes and corresponding AFs as a multi-label object recognition problem,
where the objects are the phonemes and their AFs in a spectral image. Moreover, we investigate the
use of cutting-edge neural text-to-speech (TTS) technology to generate a new corpus of high-quality
speech from predefined text that has the most common substitution errors among Arabic learners.
The proposed model and its various enhanced versions achieved excellent results. We compared
the performance of the different proposed models with the state-of-the-art end-to-end technique of
MDD, and our system had a better performance. In addition, we proposed using fusion between
the proposed model and the end-to-end model and obtained a better performance. Our best model
achieved a 3.83% phoneme error rate (PER) in the phoneme recognition task, a 70.53% F1-score in the
MDD task, and a detection error rate (DER) of 2.6% for the AF detection task.

Keywords: mispronunciation detection and diagnosis; object detection; feedback generation; non-
native Arabic corpus; end-to-end MDD; TTS

MSC: 68T10

1. Introduction

The importance of online learning has increased in recent years, especially during the
current coronavirus pandemic (COVID-19), where many universities and learning centers
worldwide switched to online rather than face-to-face teaching [1,2]. A CAPT system is
an example of an online system for learning a second language without the need for a
direct human tutor [3–5]. The MDD module is a vital component of an enhanced versatile
CAPT system [6]. The MDD detects mispronounced phonemes and provides different
types of feedback to the learner. The CAPT system can be enhanced by providing artic-
ulatory feedback about the pronunciation error in addition to detecting and recognizing
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pronunciation errors. The effectiveness of articulatory feedback for CAPT systems was
shown by the authors of [7]. The authors of [8] studied the different types of feedback
in classrooms and selected those that are more effective in CAPT systems. In this paper,
we propose a high-performance versatile MDD for Arabic learners. The proposed system
can locate the error in pronunciation, recognize the mispronounced phonemes, and detect
the corresponding AFs, not only in words but even in sentences. The proposed system
can generate articulatory feedback. Recently, deep learning techniques have been used
successfully in different application areas [9]. A powerful and very successful example
is deep-learning-based object detectors in computer vision applications [10,11]. Object
detection techniques aim to recognize and localize different objects in an image and have
been used for many real applications, such as video surveillance [12], drone scene analysis,
and autonomous vehicle driving [11]. The use of object detectors in computer vision appli-
cations has been investigated extensively in the published research. In contrast, applying
object detection techniques for speech applications has rarely been used in previous studies,
except in a few applications, such as keyword spotting [13]. We studied the effectiveness
of applying object detection techniques for phoneme recognition [14] and multi-label ar-
ticulatory features (AF) detection [15], using a small amount of speech. The performance
and obtained results encouraged us to investigate the use of multi-label object detection
for MDD for non-native Arabic speech. Hence, in this study, we investigate the use of a
multi-label object detector to recognize the sequence of phonemes and their associated
AFs from non-native Arabic utterances. With multi-label detection, we can recognize the
phonemes and their corresponding AFs simultaneously, which is more time-efficient than
using one model for each task. The sequence of recognized phonemes was used to locate
pronunciation errors of non-native Arabic learners. Moreover, the proposed system has
the capability of providing feedback to learners by detecting the AFs of the pronounced
phoneme from the whole utterance rather than from isolated words or phonemes, as was
achieved by other works in the literature. We anticipate that the proposed system will have
a great impact on online Arabic learning for non-native sparkers. Moreover, in this study,
we investigate the use of the genetic algorithm (GA) to fine-tune the detector parameters to
enhance its performance.

CAPT systems have been studied extensively for non-Arabic languages [5–7], with
little attention having been given to the Arabic language. One of the challenges that the
CAPT system faces, in general, is the scarcity of non-native speech corpora compared
to the corpora for automatic speech recognition (ASR) systems, which recently achieved
promising results due to the availability of a considerable quantity of training data [16].
The authors of [16] proposed using cross-lingual transfer learning to overcome the scarcity
of non-native data, and they used a multitask learning framework where one task was for
phonetic modeling for mispronunciation detection and the second task was for articulatory
modeling for mispronunciation diagnosis. To address the problem of the scarcity of non-
native Arabic speech corpora, we developed the non-native Arabic-CAPT corpus (Arabic-
CAPT), which comprises speakers from 20 nationalities. We also investigated the use of
neural TTS to produce high-quality non-native Arabic speech to enhance the performance
of the proposed system.

The main contributions of this paper can be summarized as follows:

• We show the robustness of applying deep-learning-based object detectors for MDD
(we name this system MDD-Object) and providing articulatory feedback by treating
the phonemes and their AFs as objects with multiple labels within spectral images.

• We evaluate the proposed systems using the developed corpora, Arabic-CAPT and
Arabic-CAPT-S, and we compare the performance with a state-of-the-art end-to-end
MDD technique (we name this system MDD-E2E).

• We propose applying fusion between the proposed MDD-Object and end-to-end MDD
technique (we name this system MDD-Object -E2E) systems.

The rest of this paper is organized as follows. Section 2 presents the related work on
MDD for Arabic and non-Arabic speech. In Section 3, we show the details of developing
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non-native Arabic speech corpora. The details of the proposed systems and their different
models are presented in Sections 4–6. In Section 7, we provide the results and discussion of
the proposed systems. Finally, in Section 8, we conclude the paper and provide potential
directions for future work.

2. Related Work

In this section, we present an overview of the current research in MDD for non-native
Arabic speech using traditional methods and deep learning methods. Then, we present a
general look at the current work on MDD in other languages. We conclude this section by
noting some of the difficulties in this area of research and our contributions to address them.

2.1. MDD for the Arabic Language Using Traditional Methods

HAFSS is one of the earliest CAPT systems for learning Arabic pronunciation and
was developed in [17]. In more specific terms, the main goal of the HAFSS system was to
learn Holy Quran recitation. It used HMM for acoustic modeling and MLLR for speaker
adaptation. For detecting recitation errors, HAFSS used the confidence score of the speech
decoder and analysis of phoneme duration to detect the errors. In terms of the size of
the data, the authors of [17] mentioned only the size of the testing data, which include
507 utterances labeled by language experts. The system detected 62.4% pronunciation
errors with a 14.9% false acceptance rate. Another system for teaching Quran recitation
was proposed in [18], which used HMM for speech recognition and a classifier-based
method for detecting errors in recitation. In terms of the database, the authors of [18] used
6.5 h of recitation for training and one hour for testing, where the testing part contained
2689 words with 23,198 phonemes, and the system achieved a 97.6% accuracy at the word
level without considering the phoneme pronunciation errors, while the accuracy decreased
to 84% when considering the phoneme level pronunciation errors. For pronunciation
detection, they proposed two classifier-based methods: one for the discrimination of
emphasized phoneme/R// and non-emphasized phoneme/R/, and the other classifier
to detect the most confusing Arabic phonemes that have close articulatory features. By
using the above two classifiers, the accuracy increased to 91.2%. For the two classifier
situations, they investigated different machine learning techniques, such as SVM, MLP,
bagging, HMM, and random committee.

Pronunciation error detection of non-native Arabic speakers from Pakistan and India
was proposed in [19]. The authors studied the common pronunciation errors of these two
nationalities in the KSU Arabic speech database [20,21], and they found that the speakers
had more errors when they pronounced five Arabic phonemes; hence, the authors focused
on those phonemes in their research. They used a goodness of pronunciation (GOP) score of
HTK to decide whether the phonemes were pronounced correctly. In terms of the database,
they used a subset of the KSU Arabic speech database. They trained the model using mixed
native and non-native speech and used only non-native speech for testing. Seven language
experts performed the annotation of the selected five phonemes. The authors achieved
a PER of 28.8% for the phoneme recognition task. For the performance of pronunciation
error detection, they achieved 94.8%, 87.3%, 97.2%, 100%, and 75% scoring accuracy for the
selected five phonemes /θ/, /
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سْ [ فْ عْ نَ فْ شْ  نَ هْ صْ نِصْفْ نَ غْ حْ مَ ْ صْمْ مَ سْحْ فَ حْمْ فَ حْصْ فَ  [faHS faHam fasH faSm mazH magS niSf nahsh nafE nafs] ]فَ

حْسَانا[ ين إِ الِدَ الوَ ِ[ [bilwa2lidayni HZiHsa2nan] 
قِمْ مَا أمِرْتَ [  [HZistaqim kama HZumirta] ]اِستَ

ارَ [ لْ هَ  [hal ha2ra] ]هَ
مْ  [ فَ غَ تُ شَ  [Damintu shagafakum] ]ضَمِنْ

ظلِمْهُ [ لم َ انا وَ عَ َ ثُ َ  [HZabSara thuEba2nan walam yaZlimhu] ]أْ

We automatically segmented the utterances to sentences using the Aeneas segmen-
tation tool [38]. Then, we manually corrected the output of Aeneas. This was performed 
by an Arabic expert who adjusted the time boundaries of the output of Aeneas using Praat 
software and provided us the correct boundaries. Finally, we used Montreal forced aligner 
(MFA) version 1.0.0 [39] to perform force alignment to generate the word and phoneme 
time boundaries. For this whole process, we converted the Arabic text of all utterances to 
a phoneme sequence using the Arabic phonetiser developed by N. Halabi [40,41]. Arabic 
language has 34 phonemes (28 consonants and 6 vowels), and for processing, we used the 
corresponding English symbols, as presented in Table 2.  

Table 2. Arabic phonemes, IPA symbols, and the corresponding English symbols used in this re-
search. 

Arabic phoneme ظ ط ض ص ش س ز ر ذ د خ ح ج ث ت ب ء 
IPA symbol Ɂ b t θ ʒ ħ x d ð r z s ʃ sˁ dˁ tˁ ðˤ 

English symbol HZ b t th j H x d TH r z s sh S D T Z 
Arabic phoneme یاء مد واو مد الف مد  كسره  ضمة فتحھ ي و ه ن م ل ك ق ف غ ع 

IPA symbol ʕ ɣ f q k l m n h w j a u i a: u: i: 
English symbol E g f q k l m n h w y a u i a2 u2 i2 

The previous three steps were performed for the selected utterances of all 266 male 
speakers (native and non-native) in session 1 from the KSU speech corpus. For speech 
annotation, we focused only on the speech of non-native Arabic speakers, which included 
62 speakers from 20 different nationalities. Figure 1 shows the nationalities and the num-
ber of speakers from each nationality. We anticipate from the diversity of the speakers’ 
nationalities that the produced corpus will significantly contribute to the research com-
munity in the Arabic-CAPT systems.  

 
Figure 1. Nationality distribution of all speakers. 
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/, /sQ/, /dQ/, and /ðQ/, respectively. The authors of [22]
compared four classifier-based systems to detect Arabic mispronunciation phonemes using
acoustic-phonetic features (APFs). They focused only on the five most confusing Arabic
phonemes, which are /tQ/, /t/, /
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/, /x/, and /h/. In terms of the database, they recorded
speech from 200 Pakistani speakers, where the number of labeled phonemes in the database
was 5000. HTK was used to segment the phoneme automatically, and phonemes were
labeled as correct or incorrect by five language experts. The highest detection accuracy
achieved in this study was 95.4%. Another study by some of the authors of [22] proposed
using an artificial neural network (ANN) to detect mispronunciation using a discriminative
APF in [23]. They used a database with all 28 Arabic consonants, where the total number
of phonemes in the database was 5600, divided into 4450 for training and 1150 for testing,
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and approximately 35% of the databases were mispronounced phonemes. They achieved
an 82.27% overall average accuracy.

2.2. MDD for Arabic Language Using Deep Learning Methods

Despite the considerable development in deep learning applications in speech process-
ing, in general, and non-Arabic mispronunciation detection in particular, applying deep
learning techniques for learning Arabic pronunciation is rare. In this section, we present
the efforts in this regard, and we discuss the obstacles of using deep learning in MDD for
Arabic speech.

Detecting pronunciation errors in the Arabic consonant using a convolutional neural
network (CNN) was presented in [24]. They used a CNN as a backbone to extract the deep
features that were fed to different classifiers, such as KNN, SVM, and ANN. Moreover,
they improved the model performance by training the CNN using transfer learning. As
a baseline model, they used the same classifiers with handcrafted features. In terms of
the database used, speech from 400 Pakistani speakers was collected and labeled using
five Arabic experts. The total number of samples for all 28 Arabic phonemes used in the
study was 11,164. They achieved 82.9%, 91%, and 92% accuracy for the baseline, CNN, and
CNN with transfer learning, respectively. The authors of [25] proposed using deep CNN
features for Arabic mispronunciation detection at the word level. Features extracted from
different CNN layers were used as input to classifiers, such as SVM, KNN, and random
forest. They also investigated transfer learning. MFCC as an input to the classifiers was
used as a baseline. In terms of the database used, they recorded speech of Arabic words
that covered all Arabic phonemes. They recorded data from 30 Pakistanis speakers, each of
whom recorded 27 Arabic words. All recorded words were labeled by three experts, who
labeled 45% of the words as mispronounced. The best accuracy was obtained using SVM
based on CNN features, at 93.2%. The most recent study in this field was proposed in [26],
where they used a deep CNN (DCNN), AlexNet, and bidirectional long short-term memory
(BiLSTM) for the pronunciation detection of Arabic alphabets and alphabet classification.
In terms of the database, they used an in-house database collected from 20 native and
20 non-native speakers for pronunciation classification. Then, they augmented the samples
by another 120 samples per alphabet. The total number of audio samples in this database,
after augmentation, was 8120. The obtained pronunciation detection results were 97.88%,
99.14%, and 77.71% using DCNN, AlexNet, and BiLSTM, respectively.

2.3. Overview of Recent Works on MDD for Non-Arabic Languages

CAPT systems for learning languages other than the Arabic language have received
more attention in the literature compared to the Arabic language. In this section, we present
recent studies on MDD for other languages, and we identify the well-known corpora used
in the studies. The authors of [16] proposed a system for pronunciation error detection and
diagnosis for Japanese speakers learning the English language using DNN. The proposed
system consisted of two stages. In the first stage, a non-native speech recognition system
was used to generate confidence measures, such as GOP. Then, based on a predefined
threshold, phoneme pronunciation was recognized as correct or incorrect. Then, in the
second stage, based on the set of recognized articulatory attributes, the system diagnosed
the error and provided feedback to the learners. The authors addressed the scarcity of non-
native data by applying cross-lingual transfer learning between the L1 and L2 languages
of the learners. They also proposed using a multitask learning framework to train the
acoustic model and articulatory model jointly. To test the performance of the proposed
system, they used speech recordings of seven Japanese speakers, where each speaker
uttered 850 English words. With the success of end-to-end ASR systems [27,28], several
studies have been proposed for end-to-end MDD systems. For English learners, several
end-to-end MDD systems were proposed, such as [6,29–31], where they used the hybrid
CTC-attention model, CNN-RNN, CNN-RNN-CTC, and Transformer methods, respectively.
For Mandarin learners, a hybrid CTC-attention method for MDD was proposed in [29,32,33].
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In terms of databases, numerous benchmark corpora were released for CAPT systems for
languages other than Arabic, such as L2-ARCTIC [34], CU-CHLOE [35], iCALL [36], and
N4 NATO [37].

2.4. Limitations of Research on MDD for Non-Native Arabic Speech

From the aforementioned review, we observe the following research points regarding
MDD for non-native Arabic speech. To the best of our knowledge, there is no non-native
Arabic speech corpus that is fully annotated by experts and consists of the continuous
speech of speakers from numerous nationalities. The second point is that applying deep
learning techniques for MDD of non-native Arabic speech was investigated only in a few
works, such as [23–26], and these studies limited to speech consisting of words or phonemes
and not continuous speech. A third point is that, to the best of our knowledge, no work has
been performed to provide feedback to non-native Arabic learners at the articulatory level.

Therefore, we attempt herein to address some of these research points by means of the
following contributions. First, we develop a fully annotated non-native Arabic corpus that
consists of continuous utterances of 62 non-native Arabic speakers from 20 nationalities and
120 native speakers. We complement this database with a synthesized non-native Arabic
corpus using neural TTS. Second, we propose a fast deep-learning-based system suitable
for real-time MDD for non-native Arabic speech. Moreover, this system not only locates
and recognizes mispronounced phonemes from the whole utterance, but also provides
informative articulation-level feedback to learners.

3. The Developed Corpora: Arabic-CAPT and Arabic-CAPT-S
3.1. Non-Native Arabic Speech Corpus (Arabic-CAPT)

We studied in detail the existing Arabic speech corpora that contain non-native speech
regardless of whether they were designed for CAPT systems or other speech processing
applications, such as speaker recognition and speech recognition. From this study, we
found that the KSU speech corpus [21] was the most suitable to our research due to the
following reasons.

• The database was developed for Arabic speaker recognition as a main target, but it
was also designed to be useful for other applications, mainly speech recognition and
speech processing of non-native Arabic speech.

• The corpus was recorded over three different sessions in three different environments
and using four different channels.

• The corpus consisted of recording male and female speakers, where the male speakers
included Saudi, Arab, and non-Arab speakers.

In our study, we focused on the recording of male speakers in session 1 in an office
location, where the total number of speakers was 266 and 62 of them were non-native
speakers from 20 different nationalities. Another interesting feature of this corpus is that
each speaker uttered 16 lists; some lists were common between all speakers, and others were
distinct. In our study, we selected only the eight common lists. Table 1 shows the canonical
text and the corresponding phonetic transcription of some examples of the selected text.

We automatically segmented the utterances to sentences using the Aeneas segmenta-
tion tool [38]. Then, we manually corrected the output of Aeneas. This was performed by
an Arabic expert who adjusted the time boundaries of the output of Aeneas using Praat
software and provided us the correct boundaries. Finally, we used Montreal forced aligner
(MFA) version 1.0.0 [39] to perform force alignment to generate the word and phoneme
time boundaries. For this whole process, we converted the Arabic text of all utterances to a
phoneme sequence using the Arabic phonetiser developed by N. Halabi [40,41]. Arabic
language has 34 phonemes (28 consonants and 6 vowels), and for processing, we used the
corresponding English symbols, as presented in Table 2.
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Table 1. Examples of the selected text.

Canonical Text Phonetic Transcription
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Table 2. Arabic phonemes, IPA symbols, and the corresponding English symbols used in this research.

Arabic
phoneme Z H.

�
H

�
H h. h p X

	
X P 	P �

�
� �

	
�  

	
 

IPA symbol

USV Symbol Macro(s) Description
0241 Ɂ \textglotstopvari LATIN CAPITAL LETTER GLOTTAL STOP

0242 ɂ \textglotstopvarii LATIN SMALL LETTER GLOTTAL STOP

0243 Ƀ \textbarcapitalb LATIN CAPITAL LETTER B WITH STROKE

0244 Ʉ \textbarcapitalu LATIN CAPITAL LETTER U BAR

0245 Ʌ \textturnedcapitalv LATIN CAPITAL LETTER TURNED V

0246 Ɇ \textstrokecapitale LATIN CAPITAL LETTER E WITH STROKE

0247 ɇ \textstrokee LATIN SMALL LETTER E WITH STROKE

0248 Ɉ \textbarcapitalj LATIN CAPITAL LETTER J WITH STROKE

0249 ɉ \textbarj LATIN SMALL LETTER J WITH STROKE

024A Ɋ \texthtcapitalq LATIN CAPITAL LETTER SMALL Q WITH HOOK TAIL

024B ɋ \texthtq LATIN SMALL LETTER Q WITH HOOK TAIL

024C Ɍ \textbarcapitalr LATIN CAPITAL LETTER R WITH STROKE

024D ɍ \textbarr LATIN SMALL LETTER R WITH STROKE

024E Ɏ \textbarcapitaly LATIN CAPITAL LETTER Y WITH STROKE

024F ɏ \textbary LATIN SMALL LETTER Y WITH STROKE

0250 ɐ \textturna LATIN SMALL LETTER TURNED A

0251 ɑ \textscripta LATIN SMALL LETTER ALPHA

0252 ɒ \textturnscripta LATIN SMALL LETTER TURNED ALPHA

0253 ɓ \m{b}
\m{b}
\texthtb
\textbhook

LATIN SMALL LETTER B WITH HOOK

0254 ɔ \m{o}
\textopeno
\textoopen

LATIN SMALL LETTER OPEN O

0255 ɕ \textctc LATIN SMALL LETTER C WITH CURL

0256 ɖ \M{d}
\textrtaild
\textdtail

LATIN SMALL LETTER D WITH TAIL

0257 ɗ \m{d}
\texthtd
\textdhook

LATIN SMALL LETTER D WITH HOOK

0258 ɘ \textreve LATIN SMALL LETTER REVERSED E

0259 ə \schwa
\textschwa

LATIN SMALL LETTER SCHWA

025A ɚ \m{\schwa}
\texthookabove{\schwa}
\textrhookschwa

LATIN SMALL LETTER SCHWA WITH HOOK

025B ɛ \m{e}
\textepsilon
\texteopen
\textniepsilon

LATIN SMALL LETTER OPEN E

025C ɜ \textrevepsilon LATIN SMALL LETTER REVERSED OPEN E

025D ɝ \texthookabove{\textrevepsilon}
\textrhookrevepsilon

LATIN SMALL LETTER REVERSED OPEN E WITH HOOK

025E ɞ \textcloserevepsilon LATIN SMALL LETTER CLOSED REVERSED OPEN E

025F ɟ \B{j}
\textbardotlessj
\textObardotlessj

LATIN SMALL LETTER DOTLESS J WITH STROKE

0260 ɠ \texthookabove{g}
\texthtg

LATIN SMALL LETTER G WITH HOOK

0261 ɡ \textscriptg LATIN SMALL LETTER SCRIPT G

0262 ɢ \textscg LATIN LETTER SMALL CAPITAL G

0263 ɣ \m{g}
\textbabygamma
\textgammalatinsmall
\textipagamma

LATIN SMALL LETTER GAMMA

0264 ɤ \textramshorns LATIN SMALL LETTER RAMS HORN

0265 ɥ \textturnh LATIN SMALL LETTER TURNED H
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We automatically segmented the utterances to sentences using the Aeneas segmen-
tation tool [38]. Then, we manually corrected the output of Aeneas. This was performed 
by an Arabic expert who adjusted the time boundaries of the output of Aeneas using Praat 
software and provided us the correct boundaries. Finally, we used Montreal forced aligner 
(MFA) version 1.0.0 [39] to perform force alignment to generate the word and phoneme 
time boundaries. For this whole process, we converted the Arabic text of all utterances to 
a phoneme sequence using the Arabic phonetiser developed by N. Halabi [40,41]. Arabic 
language has 34 phonemes (28 consonants and 6 vowels), and for processing, we used the 
corresponding English symbols, as presented in Table 2.  
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The previous three steps were performed for the selected utterances of all 266 male 
speakers (native and non-native) in session 1 from the KSU speech corpus. For speech 
annotation, we focused only on the speech of non-native Arabic speakers, which included 
62 speakers from 20 different nationalities. Figure 1 shows the nationalities and the num-
ber of speakers from each nationality. We anticipate from the diversity of the speakers’ 
nationalities that the produced corpus will significantly contribute to the research com-
munity in the Arabic-CAPT systems.  
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English symbol HZ b t th j H x d TH r z s sh S D T Z

Arabic phoneme ¨
	

¨
	

¬
�

� ¼ È Ð
	
à è ð ø



éj

�
J
	
¯

�
éÖÞ

	
� èQå�» YÓ

	
Ë@ YÓ ð@ð YÓ ZAK


IPA symbol Q G f q k l m n h w j a u i a: u: i:

English symbol E g f q k l m n h w y a u i a2 u2 i2

The previous three steps were performed for the selected utterances of all 266 male
speakers (native and non-native) in session 1 from the KSU speech corpus. For speech
annotation, we focused only on the speech of non-native Arabic speakers, which included
62 speakers from 20 different nationalities. Figure 1 shows the nationalities and the number
of speakers from each nationality. We anticipate from the diversity of the speakers’ nation-
alities that the produced corpus will significantly contribute to the research community in
the Arabic-CAPT systems.
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Figure 1. Nationality distribution of all speakers.

The annotation process is a core task for the corpora of CAPT applications, so we
asked three native Arabic experts to annotate the utterances of all non-native speakers
and decide the type of error: insertion, substitution, and deletion errors. We followed
the annotation scheme of L2-ARCTIC [34] and annotated the substitution, insertion, and
deletion errors in the following forms: (canonical phoneme, substituted phoneme, S), (@,
inserted phoneme, I), and (deleted phoneme, @, D), respectively.
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3.2. Synthesized Non-Native Arabic Speech Corpus (Arabic-CAPT-S)

Data augmentation techniques have been used to overcome the scarcity of training
data [42], to enhance the generalization of deep models [43], and to reduce overfitting [44].
In ASR systems, the synthesized speech was used as augmented data to solve the problem
of lack in labeled speech corpora and to enhance the performance of speech recognition
systems [45,46]. Recently, an investigation of using synthesized speech to augment the
speech corpus was performed by the authors of [47] who proposed using neural TTS to
augment non-native English data for lexical stress detection by means of synthesized words
with correct and incorrect lexical stress. The authors stated that their study was the first
effort in lexical error detection that used a neural TTS for data augmentation.

Due to the lack of non-native Arabic corpora, in general, and the low number of
pronunciation errors in our Arabic-CAPT corpus, we generated synthesized non-native
Arabic speech. Hence, we trained the recent neural TTS, FastSpeech2, to produce high-
quality non-native Arabic speech that contains some predefined substitution errors [48].
We selected the FastSpeech2 model because it is state-of-the-art, fast, and supports multi-
speaker embedding, so we could generate a synthesized speech using the style of all
non-native speakers of our Arabic-CAPT corpus. Because the size of the Arabic-CAPT
corpus is not efficient in training FastSpeech2 from scratch, we trained FastSpeech2 using
an Arabic native corpus. Hence, we selected 5 h of recording of Saudi speakers from
the KSU speech database to train FastSpeech2. Then, we fine-tuned the model using the
Arabic-CAPT corpus. Finally, we modified the canonical text of the Arabic-CAPT corpus
by embedding the most common pronunciation errors of non-native Arabic speakers to
produce text with substitution errors. Note that we focused on embedding substitution
errors in the synthesized corpus because they are common errors in learning Arabic. Then,
the generated text was fed to the trained TTS to generate high-quality synthesized speech.
Finally, we used the generated transcript and synthesized audio as input to MFA to segment
the synthesized Arabic-CAPT-S corpus at the word and phoneme levels.

Table 3 shows the total number of phonemes, not including silence, and the total
number of errors for the Arabic-CAPT and Arabic-CAPT-S. For the Arabic-CAPT, we show
the number of each of the three types of error, while Arabic-CAPT-S has only substitution
errors. We noticed that the number of pronunciation errors in the Arabic-CAPT corpus
was 2899, which represented 5.1% of the total number of phonemes in the corpus, where
substitution and insertion errors were more frequent than deletion errors. The number of
substitution errors in the synthesized Arabic-CAPT-S corpus was 17,422, which represents
6.4% of the total number of phonemes, near the percentage of errors in the Arabic-CAPT. In
terms of duration in hours, we can see from Table 3 that the Arabic-CAPT-S consisted of
7.11 recording hours and the Arabic-CAPT consisted of only 2.36 h. We expect that training
the proposed system using real and synthesized corpora will make it more generalized
and able to detect the most common pronunciation errors of non-native Arabic learners,
especially for the most important type of pronunciation error, which is the substitution error.
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Table 3. Statistics of the developed corpora.

Arabic-CAPT Arabic-CAPT-S

Type of data Real Synthetic

Speakers 62 62

Utterances 1611 7254

Recording hours 2.36 7.11

Correct phonemes 54,171 255,502

Substitution Errors
# 1080 17,422

% 2 6.4

Insertions Errors
# 1139 -

% 2.1 -

Deletion Errors
# 690 -

% 1.3 -

Total Errors
# 2899 17,422

% 5.1 6.4

4. The Proposed Object Detection-Based MDD (MDD-Object)

In this section, we present the details of our proposed system, where we investigate the
use of a multi-label object detection technique for the simultaneous recognition of phonemes
and their corresponding AFs from the spectral image of the spoken utterance, and we call
it MDD-Object. From the recognized phonemes, we can detect and diagnose pronunciation
errors. From the recognized AFs, we can provide informative feedback to the learner about
the error, place, and manner of articulation. Our idea of training the phoneme and AFs
simultaneously coincides with the idea in [16], where a multitask learning framework for
MDD was used for phonetic modeling and articulatory modeling. The proposed system
and its different modules are shown in Figure 2. The first module performs speech-to-
image conversion and annotation, which produces three-channel spectral images for the
speech utterances and the corresponding multi-label bounding boxes (in the training phase).
The second module, which is the core of the proposed system, uses a multi-label object
detection technique to detect the phonemes and AFs as objects in the spectral image. In
the third module, we propose applying the greedy decoding technique to the outputs
of the multi-label object detection module to remove the duplicates phonemes and AFs
and deal with the overlap between the bounding boxes. In the fourth module, we align
the canonical, detected, and annotated sequence of phonemes to identify and diagnose
the pronunciation errors and calculate the performance metrics of the proposed system.
Finally, in the fifth module, once we detected the mispronounced phoneme, we used the
corresponding detected AFs to provide feedback at the articulatory level to the learners to
enable them to correct their pronunciation. In the following sections, we discuss the details
of each module. Moreover, at the end of this section, we show the details of applying
end-to-end MDD to non-native Arabic speech.
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4.1. Spectral Image Generation and Annotation

We propose addressing the phonemes and the associated AFs of utterances as objects
in spectral images and applying object detection techniques to detect them. To accomplish
this, we converted the speech utterances into three-channel spectral images to fulfill the
requirements of object detectors, as presented in more detail in our previous work [14],
where the log Mel-spectrogram was calculated, and its delta and delta–delta were also
calculated and appended to produce a three-channel image that is visually shown as an
RGB image.

To label the bounding boxes, in order to train the object detector, we used each
pronounced phoneme and its sequence of AFs as multi-label for the bounding boxes.
The process of representing the phonemes by their corresponding AFs for an end-to-end
automatic speech recognition system was performed by some researchers, such as in [49]
for the English language. In the literature, few researchers have investigated extracting
Arabic phonetics distinctive features (PDF), such as [15,50,51]. In this research, we focused
on selected AFs that are important to teach the correct pronunciation to non-native Arabic
learners [52]. We used the AFs of place and manner of articulation that were presented
in [53], and we grouped them into five categories: place, manner, manner–voice, and
manner–emphatic for consonant phonemes and vowel category for vowel phonemes so
that all classes inside the same category are disjointed, as shown in Table 4.
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Table 4. AF categories, classes of each category, and phonemes and their IPA of each class used in
this study.

AF Category
(# of Classes) Class Arabic Phonemes IPA

Place
(10)

Bilabial ð , H. , Ð m, b, w

Labio-dental 	
¬ f

Inter-dental 	
  ,

	
X ,

�
H θ, ð, ðQ

Alveo-dental 	
à , È,   ,

	
� , � , � , 	P ,P , X ,

�
H t, d, r, z, s, sQ, dQ, tQ, l, n

Palatal ø



j

Alveo-palatal �
� , h. Z, S

Velar ¼ k

Uvular �
� ,

	
¨ , p x, G, q

Pharyngeal ¨ , h
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USV Symbol Macro(s) Description
0241 Ɂ \textglotstopvari LATIN CAPITAL LETTER GLOTTAL STOP

0242 ɂ \textglotstopvarii LATIN SMALL LETTER GLOTTAL STOP

0243 Ƀ \textbarcapitalb LATIN CAPITAL LETTER B WITH STROKE

0244 Ʉ \textbarcapitalu LATIN CAPITAL LETTER U BAR

0245 Ʌ \textturnedcapitalv LATIN CAPITAL LETTER TURNED V

0246 Ɇ \textstrokecapitale LATIN CAPITAL LETTER E WITH STROKE

0247 ɇ \textstrokee LATIN SMALL LETTER E WITH STROKE

0248 Ɉ \textbarcapitalj LATIN CAPITAL LETTER J WITH STROKE

0249 ɉ \textbarj LATIN SMALL LETTER J WITH STROKE

024A Ɋ \texthtcapitalq LATIN CAPITAL LETTER SMALL Q WITH HOOK TAIL

024B ɋ \texthtq LATIN SMALL LETTER Q WITH HOOK TAIL

024C Ɍ \textbarcapitalr LATIN CAPITAL LETTER R WITH STROKE

024D ɍ \textbarr LATIN SMALL LETTER R WITH STROKE

024E Ɏ \textbarcapitaly LATIN CAPITAL LETTER Y WITH STROKE

024F ɏ \textbary LATIN SMALL LETTER Y WITH STROKE

0250 ɐ \textturna LATIN SMALL LETTER TURNED A

0251 ɑ \textscripta LATIN SMALL LETTER ALPHA

0252 ɒ \textturnscripta LATIN SMALL LETTER TURNED ALPHA

0253 ɓ \m{b}
\m{b}
\texthtb
\textbhook

LATIN SMALL LETTER B WITH HOOK

0254 ɔ \m{o}
\textopeno
\textoopen

LATIN SMALL LETTER OPEN O

0255 ɕ \textctc LATIN SMALL LETTER C WITH CURL

0256 ɖ \M{d}
\textrtaild
\textdtail

LATIN SMALL LETTER D WITH TAIL

0257 ɗ \m{d}
\texthtd
\textdhook

LATIN SMALL LETTER D WITH HOOK

0258 ɘ \textreve LATIN SMALL LETTER REVERSED E

0259 ə \schwa
\textschwa

LATIN SMALL LETTER SCHWA

025A ɚ \m{\schwa}
\texthookabove{\schwa}
\textrhookschwa

LATIN SMALL LETTER SCHWA WITH HOOK

025B ɛ \m{e}
\textepsilon
\texteopen
\textniepsilon

LATIN SMALL LETTER OPEN E

025C ɜ \textrevepsilon LATIN SMALL LETTER REVERSED OPEN E

025D ɝ \texthookabove{\textrevepsilon}
\textrhookrevepsilon

LATIN SMALL LETTER REVERSED OPEN E WITH HOOK

025E ɞ \textcloserevepsilon LATIN SMALL LETTER CLOSED REVERSED OPEN E

025F ɟ \B{j}
\textbardotlessj
\textObardotlessj

LATIN SMALL LETTER DOTLESS J WITH STROKE

0260 ɠ \texthookabove{g}
\texthtg

LATIN SMALL LETTER G WITH HOOK

0261 ɡ \textscriptg LATIN SMALL LETTER SCRIPT G

0262 ɢ \textscg LATIN LETTER SMALL CAPITAL G

0263 ɣ \m{g}
\textbabygamma
\textgammalatinsmall
\textipagamma

LATIN SMALL LETTER GAMMA

0264 ɤ \textramshorns LATIN SMALL LETTER RAMS HORN

0265 ɥ \textturnh LATIN SMALL LETTER TURNED H
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USV Symbol Macro(s) Description
0241 Ɂ \textglotstopvari LATIN CAPITAL LETTER GLOTTAL STOP

0242 ɂ \textglotstopvarii LATIN SMALL LETTER GLOTTAL STOP

0243 Ƀ \textbarcapitalb LATIN CAPITAL LETTER B WITH STROKE

0244 Ʉ \textbarcapitalu LATIN CAPITAL LETTER U BAR

0245 Ʌ \textturnedcapitalv LATIN CAPITAL LETTER TURNED V

0246 Ɇ \textstrokecapitale LATIN CAPITAL LETTER E WITH STROKE

0247 ɇ \textstrokee LATIN SMALL LETTER E WITH STROKE

0248 Ɉ \textbarcapitalj LATIN CAPITAL LETTER J WITH STROKE

0249 ɉ \textbarj LATIN SMALL LETTER J WITH STROKE

024A Ɋ \texthtcapitalq LATIN CAPITAL LETTER SMALL Q WITH HOOK TAIL

024B ɋ \texthtq LATIN SMALL LETTER Q WITH HOOK TAIL

024C Ɍ \textbarcapitalr LATIN CAPITAL LETTER R WITH STROKE

024D ɍ \textbarr LATIN SMALL LETTER R WITH STROKE

024E Ɏ \textbarcapitaly LATIN CAPITAL LETTER Y WITH STROKE

024F ɏ \textbary LATIN SMALL LETTER Y WITH STROKE

0250 ɐ \textturna LATIN SMALL LETTER TURNED A

0251 ɑ \textscripta LATIN SMALL LETTER ALPHA

0252 ɒ \textturnscripta LATIN SMALL LETTER TURNED ALPHA

0253 ɓ \m{b}
\m{b}
\texthtb
\textbhook

LATIN SMALL LETTER B WITH HOOK

0254 ɔ \m{o}
\textopeno
\textoopen

LATIN SMALL LETTER OPEN O

0255 ɕ \textctc LATIN SMALL LETTER C WITH CURL

0256 ɖ \M{d}
\textrtaild
\textdtail

LATIN SMALL LETTER D WITH TAIL

0257 ɗ \m{d}
\texthtd
\textdhook

LATIN SMALL LETTER D WITH HOOK

0258 ɘ \textreve LATIN SMALL LETTER REVERSED E

0259 ə \schwa
\textschwa

LATIN SMALL LETTER SCHWA

025A ɚ \m{\schwa}
\texthookabove{\schwa}
\textrhookschwa

LATIN SMALL LETTER SCHWA WITH HOOK

025B ɛ \m{e}
\textepsilon
\texteopen
\textniepsilon

LATIN SMALL LETTER OPEN E

025C ɜ \textrevepsilon LATIN SMALL LETTER REVERSED OPEN E

025D ɝ \texthookabove{\textrevepsilon}
\textrhookrevepsilon

LATIN SMALL LETTER REVERSED OPEN E WITH HOOK

025E ɞ \textcloserevepsilon LATIN SMALL LETTER CLOSED REVERSED OPEN E

025F ɟ \B{j}
\textbardotlessj
\textObardotlessj

LATIN SMALL LETTER DOTLESS J WITH STROKE

0260 ɠ \texthookabove{g}
\texthtg

LATIN SMALL LETTER G WITH HOOK

0261 ɡ \textscriptg LATIN SMALL LETTER SCRIPT G

0262 ɢ \textscg LATIN LETTER SMALL CAPITAL G

0263 ɣ \m{g}
\textbabygamma
\textgammalatinsmall
\textipagamma

LATIN SMALL LETTER GAMMA

0264 ɤ \textramshorns LATIN SMALL LETTER RAMS HORN

0265 ɥ \textturnh LATIN SMALL LETTER TURNED H
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The previous three steps were performed for the selected utterances of all 266 male 
speakers (native and non-native) in session 1 from the KSU speech corpus. For speech 
annotation, we focused only on the speech of non-native Arabic speakers, which included 
62 speakers from 20 different nationalities. Figure 1 shows the nationalities and the num-
ber of speakers from each nationality. We anticipate from the diversity of the speakers’ 
nationalities that the produced corpus will significantly contribute to the research com-
munity in the Arabic-CAPT systems.  

 
Figure 1. Nationality distribution of all speakers. 

9 8 8 7 5 3 3 3 2 2 2 2 1 1 1 1 1 1 1 1

N
um

be
r o

f S
pe

ak
er

s

Nationalities

, x, ð, z, s, S, sQ, ðQ, Q, G, f, h

Affricate h. Z

Nasal 	
à , Ð m, n

Laterals È l

Trill P r

Manner–Voice
(2)

Voiced ø



, ð ,
	
à , Ð , È ,

	
¨ , ¨ ,

	
  ,

	
� , 	P ,P ,

	
X , X , h. , H. b, Z, d, ð, r, z, dQ, ðQ, Q, G, l, m, n, w, j

Unvoiced �ë , ¼ ,
�

� ,
	

¬ ,   , � ,
�

� , � , p , h ,
�

H ,
�

H , Z

USV Symbol Macro(s) Description
0241 Ɂ \textglotstopvari LATIN CAPITAL LETTER GLOTTAL STOP

0242 ɂ \textglotstopvarii LATIN SMALL LETTER GLOTTAL STOP

0243 Ƀ \textbarcapitalb LATIN CAPITAL LETTER B WITH STROKE

0244 Ʉ \textbarcapitalu LATIN CAPITAL LETTER U BAR

0245 Ʌ \textturnedcapitalv LATIN CAPITAL LETTER TURNED V

0246 Ɇ \textstrokecapitale LATIN CAPITAL LETTER E WITH STROKE

0247 ɇ \textstrokee LATIN SMALL LETTER E WITH STROKE

0248 Ɉ \textbarcapitalj LATIN CAPITAL LETTER J WITH STROKE

0249 ɉ \textbarj LATIN SMALL LETTER J WITH STROKE

024A Ɋ \texthtcapitalq LATIN CAPITAL LETTER SMALL Q WITH HOOK TAIL

024B ɋ \texthtq LATIN SMALL LETTER Q WITH HOOK TAIL

024C Ɍ \textbarcapitalr LATIN CAPITAL LETTER R WITH STROKE

024D ɍ \textbarr LATIN SMALL LETTER R WITH STROKE

024E Ɏ \textbarcapitaly LATIN CAPITAL LETTER Y WITH STROKE

024F ɏ \textbary LATIN SMALL LETTER Y WITH STROKE

0250 ɐ \textturna LATIN SMALL LETTER TURNED A

0251 ɑ \textscripta LATIN SMALL LETTER ALPHA

0252 ɒ \textturnscripta LATIN SMALL LETTER TURNED ALPHA

0253 ɓ \m{b}
\m{b}
\texthtb
\textbhook

LATIN SMALL LETTER B WITH HOOK

0254 ɔ \m{o}
\textopeno
\textoopen

LATIN SMALL LETTER OPEN O

0255 ɕ \textctc LATIN SMALL LETTER C WITH CURL

0256 ɖ \M{d}
\textrtaild
\textdtail

LATIN SMALL LETTER D WITH TAIL

0257 ɗ \m{d}
\texthtd
\textdhook

LATIN SMALL LETTER D WITH HOOK

0258 ɘ \textreve LATIN SMALL LETTER REVERSED E

0259 ə \schwa
\textschwa

LATIN SMALL LETTER SCHWA

025A ɚ \m{\schwa}
\texthookabove{\schwa}
\textrhookschwa

LATIN SMALL LETTER SCHWA WITH HOOK

025B ɛ \m{e}
\textepsilon
\texteopen
\textniepsilon

LATIN SMALL LETTER OPEN E

025C ɜ \textrevepsilon LATIN SMALL LETTER REVERSED OPEN E

025D ɝ \texthookabove{\textrevepsilon}
\textrhookrevepsilon

LATIN SMALL LETTER REVERSED OPEN E WITH HOOK

025E ɞ \textcloserevepsilon LATIN SMALL LETTER CLOSED REVERSED OPEN E

025F ɟ \B{j}
\textbardotlessj
\textObardotlessj

LATIN SMALL LETTER DOTLESS J WITH STROKE

0260 ɠ \texthookabove{g}
\texthtg

LATIN SMALL LETTER G WITH HOOK

0261 ɡ \textscriptg LATIN SMALL LETTER SCRIPT G

0262 ɢ \textscg LATIN LETTER SMALL CAPITAL G

0263 ɣ \m{g}
\textbabygamma
\textgammalatinsmall
\textipagamma

LATIN SMALL LETTER GAMMA

0264 ɤ \textramshorns LATIN SMALL LETTER RAMS HORN

0265 ɥ \textturnh LATIN SMALL LETTER TURNED H
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USV Symbol Macro(s) Description
0241 Ɂ \textglotstopvari LATIN CAPITAL LETTER GLOTTAL STOP

0242 ɂ \textglotstopvarii LATIN SMALL LETTER GLOTTAL STOP

0243 Ƀ \textbarcapitalb LATIN CAPITAL LETTER B WITH STROKE

0244 Ʉ \textbarcapitalu LATIN CAPITAL LETTER U BAR

0245 Ʌ \textturnedcapitalv LATIN CAPITAL LETTER TURNED V

0246 Ɇ \textstrokecapitale LATIN CAPITAL LETTER E WITH STROKE

0247 ɇ \textstrokee LATIN SMALL LETTER E WITH STROKE

0248 Ɉ \textbarcapitalj LATIN CAPITAL LETTER J WITH STROKE

0249 ɉ \textbarj LATIN SMALL LETTER J WITH STROKE

024A Ɋ \texthtcapitalq LATIN CAPITAL LETTER SMALL Q WITH HOOK TAIL

024B ɋ \texthtq LATIN SMALL LETTER Q WITH HOOK TAIL

024C Ɍ \textbarcapitalr LATIN CAPITAL LETTER R WITH STROKE

024D ɍ \textbarr LATIN SMALL LETTER R WITH STROKE

024E Ɏ \textbarcapitaly LATIN CAPITAL LETTER Y WITH STROKE

024F ɏ \textbary LATIN SMALL LETTER Y WITH STROKE

0250 ɐ \textturna LATIN SMALL LETTER TURNED A

0251 ɑ \textscripta LATIN SMALL LETTER ALPHA

0252 ɒ \textturnscripta LATIN SMALL LETTER TURNED ALPHA

0253 ɓ \m{b}
\m{b}
\texthtb
\textbhook

LATIN SMALL LETTER B WITH HOOK

0254 ɔ \m{o}
\textopeno
\textoopen

LATIN SMALL LETTER OPEN O

0255 ɕ \textctc LATIN SMALL LETTER C WITH CURL

0256 ɖ \M{d}
\textrtaild
\textdtail

LATIN SMALL LETTER D WITH TAIL

0257 ɗ \m{d}
\texthtd
\textdhook

LATIN SMALL LETTER D WITH HOOK

0258 ɘ \textreve LATIN SMALL LETTER REVERSED E

0259 ə \schwa
\textschwa

LATIN SMALL LETTER SCHWA

025A ɚ \m{\schwa}
\texthookabove{\schwa}
\textrhookschwa

LATIN SMALL LETTER SCHWA WITH HOOK

025B ɛ \m{e}
\textepsilon
\texteopen
\textniepsilon

LATIN SMALL LETTER OPEN E

025C ɜ \textrevepsilon LATIN SMALL LETTER REVERSED OPEN E

025D ɝ \texthookabove{\textrevepsilon}
\textrhookrevepsilon

LATIN SMALL LETTER REVERSED OPEN E WITH HOOK

025E ɞ \textcloserevepsilon LATIN SMALL LETTER CLOSED REVERSED OPEN E

025F ɟ \B{j}
\textbardotlessj
\textObardotlessj

LATIN SMALL LETTER DOTLESS J WITH STROKE
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LATIN SMALL LETTER G WITH HOOK

0261 ɡ \textscriptg LATIN SMALL LETTER SCRIPT G

0262 ɢ \textscg LATIN LETTER SMALL CAPITAL G
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\textbabygamma
\textgammalatinsmall
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LATIN SMALL LETTER GAMMA

0264 ɤ \textramshorns LATIN SMALL LETTER RAMS HORN

0265 ɥ \textturnh LATIN SMALL LETTER TURNED H
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For each phoneme, we extracted the corresponding AF labels based on the mapping

of Table 4. For example, the Arabic word “ �
�

�
m

�	
¯” consists of the following phonemes (/f/,

/a/, /H/, /S/), and each phoneme is represented by multi-label AFs, as presented in
Table 5. Then, using the time boundary of each phoneme, we calculated the bounding box
coordinates of the phoneme and its corresponding AFs to create the annotation file of each
utterance, as we presented in [14].

The spectral images and the corresponding annotations were used for training the model.
To test the model, we used only the audio utterances to create the spectral image, and then we
fed the spectral image to the trained model, as shown in the test part of Figure 2.
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Table 5. Examples of mapping phonemes to their corresponding AFs.

AFs Categories

Place Manner Manner–Voice Manner–Emphatic Vowel

Ph
on

em
es

/f/ Labio-dental Fricative Unvoiced Non-emphatic -

/a/ - - - - Vowel

/H/ Pharyngeal Fricative Unvoiced Non-emphatic -

/S/ Alveo-dental Fricative Unvoiced Emphatic-fricative -

4.2. Multi-Label Object Detector: Selection, Optimization, and Training

In this section, we present the details of using multi-label object detection for phoneme
and AF recognition. We also justify our selection of the object detector and present the
process of choosing the detector hyper-parameters using a GA to enhance the performance
of the detector. The training process of the various proposed models is also shown.

4.2.1. Selection of Object Detector and Hyper-Parameter Optimization

To select the object detector for our proposed system, we considered two conditions:
the system should operate in real-time and should be able to detect multi-label objects.
Based on our observations in our published work [15], we selected the tiny version of the
third YOLO (YOLOv3-tiny) as the detector of our proposed system, since it best satisfied
the above two conditions.

The YOLO detector was proposed for computer vision tasks, so we needed to fine-tune
the detector’s parameters to adapt it to work with speech applications. Due to the existence
of a vast number of parameters and the large number of possibilities, it is difficult to apply
simple grid search algorithms to select the best hyper-parameters. Therefore, we proposed
using a GA for selecting the optimal parameters of the YOLOv3-tiny detector. Table 6
shows the hyper-parameters that selected using the GA.

Table 6. Hyper-parameters of YOLO architecture.

Parameter Default Values Best Values Selected by GA

Learning rate 0.001 0.000482

Momentum 0.9 0.898543

Decay 0.0005 0.000567

Flip 0 False

blur 0 True

Gaussian_noise 0 True

mixup 0 False

mosaic 0 False

Saturation 1.5 0.709779

Exposure 1.5 0.760187

Hue 0.1 0.039356

Activation function leaky swish

Filter size 3 7

Maximum objects 200 226

Jitter 0.3 0.100393

Ignore threshold 0.7 0.551836

Anchors
(4,7), (7,15), (13,25),

(25,42), (41,67), (75,49), (91,162),
(158,205), (250,332)

(9,32), (14,32), (19,32),
(24,32), (30,32), (40,32), (61,32), (127,32),

(325,32)
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To perform the hyper-parameter selection using GA, we used 20 population sizes,
where each population corresponds to a YOLO architecture. The created model for each
architecture was trained for 2K iterations for non-native phoneme recognition using the
training and validation sets of the developed Arabic-CAPT corpus. We ran the GA for
50 generations. We showed in our previous study [14] that there is a direct relationship
between the mean average precision (mAP), which is a famous metric in the object detection
area, and the phoneme error rate (PER), which is a famous metric in the speech area, so
we used the mAP as the fitness function. The best hyper-parameters selected by GA are
shown in the last column of Table 6.

4.2.2. Model Training

We demonstrated in our previous work [14] the effectiveness of transfer learning
between corpora of the same language or corpora of different languages. Hence, we trained
different models from the selected detector with and without different types of transfer
learning. In the following, we present the different models that we investigated, and then
we present how we trained these models.

We used the detector with default parameters as a baseline, and we called it the MDD-
Object model. We trained the MDD-Object model using only real non-native speech without
any initial training. In the second model, MDD-Object-G, which was produced from the
optimization process in the previous section, we trained the model from scratch without
any initial training using the developed Arabic-CAPT corpus. Then, we trained various
versions of it by initially training the detector using native speech, synthesized speech, and
a combination of native and synthesized speech, and we called these versions MDD-Object-
G/N, MDD-Object-G/S, and MDD-Object-G/NS, respectively. In the MDD-Object-G/N
model, we initially trained using native speech, and then we transferred the weights by
freezing the first four layers of the backbone network of the detector and fine-tune the
remaining layers using the real non-native Arabic-CAPT corpus. In MDD-Object-G/S,
we trained the model using synthesized speech from the Arabic-CAPT-S corpus, which
is approximately four times the size of the original Arabic-CAPT corpus, as shown in
Table 3. Then, we transferred the weights of the detector and fine-tuned them using the
real Arabic-CAPT corpus. Finally, in MDD-Object-G/NS, we initially trained the model
using the combination of native speech and synthesized speech. Then, we also transferred
the weights of the detector and fine-tuned them using the real Arabic-CAPT corpus.

For the third model, we observed in our previous work [14] that the long version of
YOLOv3, which is called YOLOv3, achieved better results than the tiny version; hence, we
also investigated this detector using the same selected hyper-parameters as in the previous
section, and we called this model MDD-Object-G-Large/NS. We also initially trained it
using the combination of native speech and synthesized speech. Then, we transferred the
weights of the detector and fine-tuned them using the Arabic-CAPT corpus. Table 7 shows
the type of speech that was used for the initial training and fine-tuning phases for each of
the proposed models.

Table 7. Speech type for the proposed models. N: native speech; S: synthesized speech; NN: non-
native speech.

Initial Training Phase Fine Tuning Phase

Training Set Validation Set Training Set Validation Set Testing Set

MDD-object (baseline) - -

NN NN NN

MDD-object-G - -

MDD-object-G/N N N

MDD-object-G/S S S

MDD-object-G/NS N+S N+S

MDD-object-G-Large/NS N+S N+S
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For a fair comparison, we fixed some parameters among all models, such as the
number of epochs, batch size, and width/height of the network.

Table 8 presents the statistics of non-native, synthesized, and native corpora that were
used for the training, validation, and testing of the proposed models. For the Arabic-CAPT
corpus, we used 75% of speakers for training and validation and the remaining 25% for
testing. All speakers in training, validation, and testing were distinct. We attempted to map
the diversity of the nationalities in the database in the test set; hence, the 15 speakers of the
test set belonged to 12 different nationalities. In Arabic-CAPT-S, we used the synthesized
speech of the speakers of the training and validation sets of Arabic-CAPT, as shown in
Table 8. In native speech, we used all 146 Saudi speakers in session 1 from the KSU speech
database and divided them into 132 for training and 14 for validation.

Table 8. Specifications of the developed corpora used in the training and testing phases.

Arabic-CAPT Arabic-CAPT-S Native Speech

Set Train Valid Test Train Valid Train Valid
Speakers 42 5 15 42 5 132 14

Utterances 1091 130 390 4914 585 3426 361

Duration
(Hours) 1.65 0.16 0.54 4.79 0.6 4.11 0.43

4.3. Decoder

The output of the previous module is a sequence of bounding boxes, where each
box has a multi-label (i.e., phonemes and AFs), and some of these boxes overlap and
lead to duplicate phonemes and AFs. To deal with this, we propose using decoding
techniques that are used in sequence-to-sequence acoustic models, such as CTC. These
decoding techniques need a matrix of probabilities for the phonemes of the frames, and so
to accomplish this, we started by converting the confidence scores matrix to a matrix of
probabilities by applying softmax so that the sum of the probabilities in each frame is equal
to one. In this study, we investigated the fast and simplest decoding technique, which is
greedy search decoding. The greedy decoder was applied on the matrix of probabilities
and selected the best recognition in each time step (i.e., frames F), leading to the best path
of decoding calculated from the output of detector (YOLO) given the image of spectrogram
(X) [54].

4.4. Phoneme Alignment and Performance Metrics Evaluation

In this step, we aligned the detected phonemes of the proposed system, the canonical
phoneme, and the annotated phoneme of the human experts to calculate the system
performance and evaluation metrics, as shown in Figure 2. We calculated the performance
metrics of the proposed models for the non-native phoneme recognition task and MDD
task as follows:

For the phoneme recognition task, we used a well-known metric in this field, PER,
and calculated it as in Equation (1) [55].

PER = 100 − N − S − D − I
N

(1)

where N, S, D, and I are the number of samples, substitution errors, deletion errors, and
insertion errors, respectively. Once we detected any mispronounced phonemes, these
phonemes were sent to the mispronunciation correction and feedback module to provide
corrective feedback.

For the MDD task, we used a hierarchical evaluation that was presented in [56] and
used in many MDD studies such as [36,57], where the phonemes of the sequence annotated
by the experts were classified as correct and mispronounced. By comparing the output
of our proposed models with the annotations of the experts, we obtained four cases: true
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acceptance (TA), false acceptance (FA), false rejection (FR), and true rejection (TR). TR
was divided into correct diagnosis (CD) and diagnosis error (DE). CD corresponded to
the annotator agreeing with system in the recognized mispronounced phoneme, while
DE corresponded to the annotator disagreeing with system in the recognized mispro-
nounced phoneme. We calculated the performance metrics of the MDD task using the
following equations:

Precision =
TR

TR + FR
(2)

Recall =
TR

TR + FA
(3)

F1 = 2 × Precision × Recall
Precision + Recall

(4)

FAR = 1 − Recall (5)

FRR =
FR

TA + FR
(6)

Diagnosis Accuracy (DA) =
CD

CD + DE
(7)

4.5. Mispronunciation Correction and Feedback

We aimed in this phase to correct the mispronunciation of the learner and provide
feedback at the articulatory level. The mispronounced phonemes are detected in the previ-
ous step and the purpose of this step is to compare the detected AFs of the mispronounced
phoneme with the AFs of the canonical phoneme. From this comparison, we provided
corrective feedback to the learner at the articulatory level. As shown in the example in
Figure 3, the canonical phoneme (/S/) has the following AF classes, fricative, unvoiced,
emphatic-fricative, and alveo-dental, and the detected phoneme /s/ has the detected AF
classes, fricative, unvoiced, non-emphatic, and alveo-dental. Hence, the learner had a
problem with an emphatic class, while there was no problem with other classes. Therefore,
feedback can be provided and a 2D/3D animation of the correct pronunciation of phoneme
/S/ can be shown to the learners.
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An interesting point is that our system provides the score of detection of each phoneme
and AF, which is called the objectness score in YOLO. This score can be used as a measure
of the goodness of pronunciation of each pronounced phoneme.

5. Application of End-to-End MDD to Non-Native Arabic Speech (MDD-E2E)

End-to-end deep learning systems have achieved promising results in automatic
speech recognition [58,59] and MDD [29,30,33]. Hence, to evaluate the performance of the
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proposed system, we compared its performance with a state-of-the-art end-to-end model
using the developed Arabic-CAPT corpus. Many of the researchers on end-to-end MDD
methods [29,60–62], used CNN-RNN-CTC [30]; hence, we selected it as the end-to-end
method for comparison. The original CNN-RNN-CTC was proposed for the end-to-end
MDD task for Chinese learners of English using the CU-CHLOE corpus. We used the
implementation provided by [63] to train and evaluate the CNN-RNN-CTC using our
developed corpora. To the best of our knowledge, this is the first investigation of applying
end-to-end deep learning techniques in an MDD system for non-native Arabic speech.
Note that, because the CNN-RNN-CTC model is not a multi-label model, we used it for the
phoneme recognition task only and not the AF detection task.

Furthermore, we enhanced the performance of the CNN-RNN-CTC model by using
different combinations of native, synthesized, and non-native speech. We trained the
baseline model CNN-RNN-CTC using only the non-native Arabic-CAPT corpus, while we
trained other models, namely CNN-RNN-CTC/N, CNN-RNN-CTC/T, and CNN-RNN-
CTC/NT, using combinations of the data, as shown in Table 9.

Table 9. End-to-End MDD models for non-native Arabic speech. N: native speech; S: synthesized
speech; NN: non-native speech.

Training Set Validation Set Testing Set

CNN-RNN-CTC NN NN NN

CNN-RNN-CTC/N N + NN NN NN

CNN-RNN-CTC/S S + NN NN NN

CNN-RNN-CTC/NS N + S + NN NN NN

6. Application of Decision Level Fusion between MDD-Object and MDD-E2E
(MDD-Object-E2E)

Fusion techniques have been successfully used and applied to improve the generaliza-
tion of the machine learning models [64]. Our MDD-Object system and MDD-E2E system
have different structures and are based on different principles, and hence to benefit from
the performance of the two systems, we propose applying the fusion technique between
the MDD-Object system and MDD-E2E system. We used the decision level fusion between
the best model of the MDD-Object system, which is MDD-Object-G-Large/NS, and the best
model of the E2E-MDD system, which is CNN-RNN-CTC/NS. To achieve this, we calcu-
lated the weighted average of the output probabilities of the two models before decoding
the final output (i.e., sequence of phonemes).

To make the output of the two models more consistent in the number of frames in
the output, we set the frame length and number of Mels of the CNN-RNN-CTC system to
the same values of the MDD-Object system. This change in the CNN-RNN-CTC system
made it necessary to change the size of the input RNN layer. These changes improved the
performance of the CNN-RNN-CTC system, as will be shown later.

Another point that we addressed to achieve fusion between the two systems is that
the CNN-RNN-CTC model reduces the number of frames by a factor of 4. We dealt with
this by down sampling the output of the MDD-Object by a factor of 4. Next, we applied a
weighted average to the probabilities of the two models as in Equation (8).

ProbsAVG = α × ProbsE2E + (1 − α)× ProbsYOLO (8)

where Probs is the logsoftmax array output with the dimensions number of frames ×
number of phonemes. To find the optimum weight (α), we used a basic grid search to find
the best value of alpha that resulted in the lowest phoneme error rate from the following
values of α: (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1). From Figure 4, we chose α to be 0.1.
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7. Experimental Results

In this section, we present the performance of the proposed system and its different
models for MDD of non-native Arabic speech. We first present the performance of the
proposed models and the baseline model for the non-native phoneme recognition task.
Next, we present the performance of the proposed models for the MDD task. In both
sections, we compare our different models with an end-to-end system and our different
enhanced versions of it. Finally, in Section 7.3, we present the performance of the proposed
system for the AF detection task.

7.1. Results of the Non-Native Phoneme Recognition Task

The performance of MDD-Object models, the MDD-E2E models, and the MDD-Object-
E2E model for the non-native phoneme recognition task is presented in Table 10. For our
proposed MDD-Object system, the PER of the baseline MDD-Object model was 7.56%,
as shown in Table 10. This value improved to 4.93% when we used the GA to select the
optimal parameters of the model in MDD-Object-G. When we used native and synthesized
speech for the initial training of the model, the PERs improved to 4.75% and 4.71% using
MDD-Object-G/N and MDD-Object-G/S, respectively. The result of the MDD-Object-
G/S confirmed our anticipation of the benefit of using synthesized speech in transfer
learning to solve the scarcity of non-native speech. When we used the combination of
native and synthesized speech for the initial training of MDD-Object-G/NS, we achieved
PERs of 4.54% resulting in relative improvements of 40% compared to the baseline. Though
using the native and synthesized speech did not offer a better result than MDD-Object-
G/N, it resulted in a better performance for the MDD task, as will be shown later in
Section 7.2. The best performance of our proposed system was achieved by MDD-Object-G-
Large/NS, which achieved 4.05%, resulting in relative improvements of 46.42% compared
to the baseline.

For the MDD-E2E system, the baseline model CNN-RNN-CTC achieved 8.93% PER.
This value decreased to 5.17%, resulting in a relative improvement of 42.1% when we added
native speech for training the CNN-RNN-CTC/N model. The same observation is made
when we added synthesized speech for training the CNN-RNN-CTC/S model, where we
achieved a PER of 6.17%, resulting in a relative improvement of 30.9% compared to the
baseline. This improvement confirms our anticipation of the usefulness of synthesized
speech for solving the scarcity of non-native speech. When we added native speech and
synthesized speech for training the CNN-RNN-CTC/NS model, we achieved a 4.59% PER,
which was a relative improvement of 48.6% compared to the baseline.

It should be noted that our proposed model MDD-Object-G-Large/NS achieved better
results than all the models of the state-of-the-art end-to-end technique CNN-RNN-CTC.
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Table 10. PER of the proposed MDD-object models MDD-E2E models and the fusion model.

System Model PER (%)

MDD-Object

MDD-Object (baseline) 7.56

MDD-Object-G 4.93

MDD-Object-G/N 4.75

MDD-Object-G/S 4.71

MDD-Object-G/NS 4.54

MDD-Object-G-Large/NS 4.05

MDD-E2E

CNN-RNN-CTC (baseline) 8.93

CNN-RNN-CTC/N 5.17

CNN-RNN-CTC/S 6.17

CNN-RNN-CTC/NS 4.59

MDD-Object-E2E YOLO-CNN-RNN-CTC 3.83

The fusion system between the CNN-RNN-CTC/NS and MDD-Object-G-Large/NS
models achieved the best PER of 3.83% amounting to 16.5% relative improvement compared
to the performance of CNN-RNN-CTC/NS and 5.4% relative improvement compared to the
performance of MDD-Object-G-Large/NS. This result demonstrates the benefit of applying
the decision-level fusion.

For a better analysis of the performance of each phoneme, we present in Figure 5
the confusion matrix of our best model YOLO-CNN-RNN-CTC using the test set of the
Arabic-CAPT corpus. The total number of phonemes in the test set, without leading and
trailing silence, is 13590 phonemes belonging to 390 utterances.
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The confusion matrix in Figure 5 asserts the effectiveness of the proposed system,
where most of the phonemes were classified correctly. The percentage of confusion was very
small where confusion occurred between two similar Arabic phonemes. For example, the
phoneme /s/ was wrongly classified seven times as /S/ and phoneme /S/ was wrongly
classified four times as /s/, where the two phonemes had the same place, manner, and
manner–voice, and they differ only by manner–emphatic. The same observation occurs
with the phoneme /h/, which was wrongly classified 14 times as /H/.

To study the effect of the nationality on the PER, we present in Figure 6 the PER for
each speaker of the test set using our best model YOLO-CNN-RNN-CTC. The four worst
values in PER were for speakers NS260, NS255, NS253, and NS252, who were from Togo,
Guinea Bissau, Kenya, and Liberia, respectively. Speakers of these nationalities were not
included in the speakers of the training set, except for the speaker from Kenya. Nonetheless,
speakers NS250 and NS251 were from the Ivory Coast and Senegal, and the system had
PERs of 4.9% and 3.1% for them, respectively, although there were no speakers from these
nationalities in the training set. Achieving these values without any speaker from these
nationalities in the training dataset shows the effectiveness of our system.
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7.2. Results of MDD Task

In Table 11, we present the performance of the various models of the proposed MDD-
Object system, MDD-E2E system, and their fusion for the MDD task.

For the MDD-Object system, we can see that the results for our baseline model MDD-
Object for FAR, FRR, and P were 29.33%, 5.26%, and 40.29%, respectively. These results
improved to 24.16%, 2.04%, and 65.06%, respectively, using our best model MDD-Object-G-
Large/NS. Our baseline model obtained 76.99% diagnostic accuracy (DA), while our best
model MDD-Object-G-Large/NS achieved a DA of 84.97%. Our best model MDD-Object-
G-Large/NS obtained a 70.04% F1-score with relative improvement of 36.47% compared to
our baseline model which achieved a F1-score of 51.32%.

For the MDD-E2E system, we can see from Table 11 that the CNN-RNN-CTC/NS
model achieved the best result among the CNN-RNN-CTC models in FAR, FRR, P, and F1
with values of 24.92%, 1.91%, 66.31%, and 70.42%, respectively. The model also achieved
the best result in the mispronunciation diagnosis, where the DA was 84.01%.
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Table 11. MDD results of the proposed models and the baselines.

System Model TA
(%)

FAR
(%)

FRR
(%)

DA
(%)

DER
(%)

P
(%)

R
(%)

F1
(%)

M
D

D
-O

bj
ec

t

MDD-object (baseline) 94.74 29.33 5.26 76.99 23.01 40.29 70.67 51.32

MDD-object-G 97.55 29.79 2.45 82.68 17.32 59.0 70.21 64.12

MDD-object-G/N 97.99 32.83 2.01 81.22 18.78 62.70 67.17 64.86

MDD-object-G/S 97.63 30.55 2.37 81.62 18.38 59.51 69.45 64.10

MDD-object-G/NS 97.84 28.88 2.16 84.19 15.81 62.32 71.12 66.43

MDD-object-G-Large/NS 97.96 24.16 2.04 84.97 15.03 65.06 75.84 70.04

M
D

D
-E

2E

CNN-RNN-CTC (baseline) 94.14 20.67 5.86 75.10 24.9 40.47 79.33 53.59

CNN-RNN-CTC/N 97.62 24.32 2.38 82.53 17.47 61.48 75.68 67.85

CNN-RNN-CTC/S 96.44 23.40 3.56 82.74 17.26 51.91 76.60 61.88

CNN-RNN-CTC/NS 98.09 24.92 1.91 84.01 15.99 66.31 75.08 70.42

M
D

D
-o

bj
ec

t-
E2

E

YOLO-CNN-RNN-CTC 98.12 25.08 1.88 85.19 14.81 66.62 74.92 70.53

In general, we can see from Table 11 the improvement in the performance of the
systems due to using different enhancements of fine-tuning the hyper-parameters and
training using synthesized and native speech. Moreover, we noticed that our fusion
system achieved the best performance in all metrics, which indicates the usefulness of
applying fusion.

It should be noted that in educational applications such as CAPT systems, achieving
low FRR is more important, as discussed in [31,65]. Our best model of MDD-Object system
achieved the best trade-off between FAR and FRR.

7.3. Result of AF Detection Task

In this section, we present the performance of the proposed model for the AF detection
task. As the performance metric, we used the detection error rate (DER), which was used
in some previous work, such as [49]. Figure 7 shows the DER of the five AF categories
using our six proposed models. Note that, because the CNN-RNN-CTC model is not a
multi-label model, we did not use it for the AF detection task.
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We can see from Figure 7 that our best model MDD-Object-G-Large/NS achieved
DERs of 3.47, 2.71, 2.09, 2.5, and 2.19 for all five categories, place, manner, emphatic, voice,
and vowel, respectively. Similar to the phoneme recognition task, we can clearly notice the
usefulness of fine-tuning the hyper-parameters and using synthesized speech to enhance
the performance of the proposed system.

Figure 8 presents the confusion matrix of each of the five AF categories using our
best model, MDD-Object-G-Large/NS. These confusion matrices show the ability of the
proposed system to distinguish between the different classes within the categories with
little confusion. In the matrices, we can see that the confusion is between near classes. For
example, for the place category, the highest confusion occurs in the glottal vs. pharyngeal
and alveo-dental vs. interdental classes, and these two pairs of places are near to each other.
Another example is that in the manner category, the highest confusion occurs between
stop and fricative classes, which are near to each other, and this is consistent with what
was shown in English AF detection in [66]. From these interesting results, we can see that
our proposed system provides us with the capability of using the detected AFs to teach
non-native Arabic learners the correct pronunciation by providing suitable feedback at the
articulatory level.
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8. Conclusions

An efficient system for MDD and feedback generation is proposed in this paper by
adapting the object detection technique for phoneme recognition and AF detection. For
a better adaptation of the selected detector to this new task, we applied GA to select the
best hyper-parameters of the model, and the obtained results show the effectiveness of
this process. Due to the scarcity of a non-native Arabic speech corpus, we developed
an L1 diversified and fully annotated non-native speech corpus, Arabic-CAPT. Then, to
solve the problem of a small amount of non-native Arabic speech, we investigated using
a synthesized non-native Arabic speech corpus to improve the system performance. The
different results for the different systems proved the advantage of using synthesized speech
to improve the performance of the proposed MDD models.

The ability of our MDD-Object system to detect phonemes and the corresponding AFs
concurrently makes the proposed system more effective in teaching the Arabic language
as a second language because it will have the capability to provide additional informative
articulatory feedback to learners. We compared the performance of our system to the
performance of the state-of-the-art end-to-end technique for the MDD task of non-native
Arabic speech and our proposed system had better performance. The enhancement of
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the end-to-end technique using the developed synthesized corpus was also investigated
and showed that the developed synthesized corpus improves the results. Moreover, we
investigated fusing our MDD-Object and MDD-E2E systems and obtained excellent results
that were better than each of the two systems alone.

In future work, we aim to examine the proposed MDD-Object system for other lan-
guages, such as English and Mandarin. We may also investigate the advantage of adding a
language model to our proposed system.
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