
Misregistration sensitivity in clustered-dot color halftones

Basak Oztan
University of Rochester

Department of Electrical and Computer Engineering
Rochester, New York 14627-0216

E-mail: basak.oztan@rochester.edu

Gaurav Sharma
University of Rochester

Department of Electrical and Computer Engineering
and

Department of Biostatistics and Computational Biology
Rochester, New York 14627-0126

Robert P. Loce
Xerox Research Center Webster

Xerox Corporation
Webster, New York 14580

Abstract. Halftoned separations of individual colorants, typically
cyan, magenta, yellow, and black, are overlaid on a print substrate
in typical color printing systems. Displacements between these
separations, commonly referred to as “interseparation misregistra-
tion”, can cause objectionable color shifts in the prints. We study this
misregistration-induced color shift for periodic clustered-dot half-
tones using a spatiospectral model for the printed output that com-
bines the Neugebauer model with a periodic lattice representation
for the individual halftones. Using Fourier analysis in the framework
of this model, we obtain an analytic characterization for the condi-
tions for misregistration invariance in terms of colorant spectra, pe-
riodicity of the individual separation halftones, dot shapes, and mis-
registration displacements. We further exploit the framework in a
hybrid analytical-numerical simulation that allows us to obtain quan-
titative estimates of the color shifts due to misregistration, thereby
providing a characterization for these shifts as a function of the op-
tical dot gain, halftone periodicities, spot shapes, and intersepara-
tion misregistration amounts. We present simulation results that
demonstrate the impact of each of these parameters on the color
shift and demonstrate qualitative agreement between our approxi-
mation and experimental data. © 2008 SPIE and IS&T.
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1 Introduction
*
Halftoning is a method of encoding a continuous tone

�contone� image using a reduced number of quantization
levels, typically two, such that at normal viewing distances,

the perception of the printed or displayed halftone image
closely approximates that of the contone image. Color half-
toning is used in most printing processes for the production
of hardcopy prints. The halftoning operation is applied to
the colorant image separations or channels, which usually
correspond to the cyan �C�, magenta �M�, yellow �Y�, and
black �K� colorants. The halftoning operation produces a
bilevel output for each separation and the printing process
prints these colorant image separations in overlay on a
white substrate such as paper.

4,5
Halftoned images exercise

only two extremes of a printing device’s response corre-
sponding to on/off states that represent a saturated amount
of colorant or no colorant, respectively. Through process
controls, it is easier to maintain these extremes in a stable
condition over time, whereas, maintaining the stability of
the printer response at intermediate levels is much more
demanding. For a number of printing technologies, halfton-
ing thus enables the production of prints that are relatively
stable from print to print in color and tones and low in
noise.

In an idealized, noninteracting, printing process, the
halftoning algorithm for each colorant separation could be
designed independently.

6,7
In actual practice, however,

there are interactions among the colorant separations that
must be considered jointly in order to provide acceptable
image quality. The interactions are best understood by con-
sidering that the light reflected from the paper to the ob-
server is transmitted through the layer of toner or ink of
each colorant separation. At a given point on the printed
image, the resulting transmittance for each individual
wavelength of light is, to first-order, the multiplication of
transmittances from each colorant. For any wavelength that
is absorbed by more than one colorant, this multiplicative
phenomenon produces an interaction that varies spatially
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according to the halftone pattern produced by the halfton-
ing algorithm. The spatial implications can be understood
by recognizing that sum and difference frequency compo-
nents are produced in the Fourier spectrum �i.e., a spatial
Fourier spectrum per wavelength in the �visible� electro-
magnetic spectrum� via the convolution property of the
Fourier transform �The convolution theorem �see Ref. 8, p.
108� states that the Fourier transform of the convolution/
multiplication of two signals is the multiplication/
convolution of their Fourier transforms�. These additional
spatial frequency components could appear as undesirable
texture or moiré in the printed image.

Due to the halftone interactions just described, most
color halftoning methods in practice use halftone image
structures that are designed to minimize the negative visual
impact of low spatial frequency components that are the
sum or difference of frequency components of the indi-
vidual halftone separation images. A component at zero
spatial frequency �commonly referred to as the “DC com-
ponent”� that arises from the sum or difference of other
nonzero frequency components has, however, often not
been considered undesirable. One reason for this apparent
anomaly is that the color control of the printer eliminates
the impact of a fixed DC component through the process
used to map desired color values to printer CMYK combi-
nations. However, the color response of a printer at DC
�and in fact at any frequency� depends not only on the
frequency components in the individual separation half-
tones but also on their relative phase. Spatial misregistra-
tion between the halftone colorant separations corresponds
to a change in relative phase and can, therefore, alter the
value of the DC term, which manifests as a color shift.
Some amount and orientation of misregistration between
halftone image separations is unavoidable due to various
operations within a printing process such as mechanical
paper transport, paper shrinkage, and misalignment of im-
agers. In the present work, we investigate this intersepara-
tion misregistration-induced color shift by examining the
zero spatial frequency component produced in the overlay.
Our goal is to investigate the impact of misregistration both
analytically and by means of a simulation framework.

The preceding discussion is applicable to almost all half-
toning methods that process colorant separations indepen-
dently. Several techniques have been proposed for the half-
toning of individual separations �or equivalently
monochrome images� that fall under one of the following
three categories:

5 �1� point processes, �2� neighborhood al-
gorithms, and �3� iterative methods. The characteristics of
the printing technology, specific application requirements,
and computational complexity are some of the common
factors that impact the choice of a halftoning technique.
Due to their stability and predictability, clustered-dot half-
tones are commonly used in the two primary methods of
high volume printing: lithography and xerography.
Clustered-dot halftoning evolved from Talbot’s original
photographic screening process

9
and, for digital imagery, is

typically accomplished by pixel-by-pixel thresholding
against a periodic halftone threshold array. Conventional
clustered-dot halftones are considered amplitude modulated
�AM� signals in the sense that different gray levels are re-
produced by varying the size of halftone spots while keep-
ing their periodicity constant. In the present paper, we re-

strict our attention to methods used for xerographic and
offset printers and, thus, consider only clustered-dot half-
tones in our analysis of color variation with interseparation
misregistration.

The remainder of this paper is organized as follows.
Section 2 reviews the literature on this problem and con-
nects it to our contributions. In Sec. 3, we develop a char-
acterization of halftone color sensitivity to interseparation
misregistration using Fourier analysis in a lattice frame-
work. In Sec. 4, the conditions under which the average
color is invariant to displacement misregistration are de-
scribed. Next, in Sec. 5, we incorporate an analytic model
for the halftone screens in our lattice framework to develop
a numerical model for quantitative estimation of color
shifts due to misregistration in clustered-dot color half-
tones. We present results from the model along with com-
parisons to experimental data in Sec. 7. A discussion of the
additional practical implications and extensions is included
in Sec. 8. Based on that development, we also propose a
metric for evaluating misregistration sensitivity of two-
colorant halftone configurations. Finally, Sec. 9 summa-
rizes the main conclusions.

2 Related Work

The average spectrum of a halftone image may be modeled
�to first-order� using the Neugebauer equations.

10,11
Using

these equations, we can readily see that if the areas of over-
lap between the colorant separations can be modeled as
statistically random, that is, satisfy the Demichel
equations,

12
the average spectrum is independent of the in-

terseparation alignment. Therefore, randomization of the
interseparation overlaps eliminates the problem of
misregistration-induced color shift in color halftones. With
this motivation, rotated halftone screens, in which the half-
tones for different separations are rotated relative to each
other, are commonly used in practice. Though alternatives
to the Demichel equations have been proposed for nonro-
tated halftone configurations,

13,14
the validity of the

Demichel equations for the common rotated screen con-
figurations has not received much attention until recently.

Rogers
15

examined the validity of Demichel equations
for the superposition of two halftone screens with circular
halftone spots, where each screen has two orthogonal fre-
quency vectors and the four frequency vectors for the
screens have equal magnitudes. In this scenario, he demon-
strated that the equations hold only for certain angular
separations between the screens. Rogers achieved this re-
sult by deriving an expression for the neighbor distribution
of halftone spots and determining the conditions under
which this distribution is statistically random.

Amidror and Hersch
16

extend the work to the superpo-
sition of an arbitrary number of screens. They present a
general proposition that characterizes the failure of the
Demichel equations in the Fourier domain by a singular
configuration of frequency vectors �We provide a precise
mathematical definition of the term singular in the next
section�. Using computer simulations on a high resolution
pixel grid, they numerically demonstrate the validity of the
proposition. In particular, they verify that the conventional
30-deg angular separation equifrequency CMK halftone
configuration �see Ref. 6, pp. 339–341� used in lithographic
printing is not invariant to color misregistration. In related
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Fig. 1 Modeling framework for analyzing the effect of interseparation misregistration on the color
�average reflectance spectrum� of periodic clustered-dot halftone prints. �Color online only.�
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work,
17

they also consider the stability of the rosette struc-

ture, also known as microstructure, resulting from the over-

lap of multiple screens and demonstrate that the microstruc-

ture is sensitive to layer misregistration for singular

configurations and insensitive for nonsingular configura-

tions.

In the first part of our work, we build on the foundations

of Rogers
15

and Amidror and Hersch.
16,17

We cast the gen-

eral K-screen superposition problem in a lattice framework

that has previously been used for the frequency analysis of

halftone superpositions. Each halftone separation is mod-

eled as a periodic function with periodicity determined by a

two-dimensional �2D� lattice. Using Fourier analysis in our

lattice framework, we obtain mathematical expressions for

the average halftone color �spectrum� as a function of

screen periodicities, halftone spots, interseparation screen

displacements, and Neugebauer primary spectra. The analy-
sis provides a comprehensive framework for understanding
the conditions for color insensitivity to displacement mis-
registration. Conventionally, it is believed that misregistra-
tion insensitivity is achieved if either the colorants have
nonoverlapping absorption bands,

6
or if the halftone peri-

odicities meet a “nonsingularity” condition.
16

In addition to
validating these known criteria, our analysis reveals addi-
tional situations under which insensitivity to misregistration
is achievable despite these conditions being violated. In
particular, we demonstrate that in some scenarios, the half-
tone spot functions may provide invariance to misregistra-
tion. The analysis also reveals the existence of nontrivial
�different from an integral number of lattice periods� dis-
placements for which the invariance holds.

In the second part of our work, we address the quantita-
tive estimation of the color shift induced by misregistration.
For this purpose, we use the Neugebauer model in a semi-
analytic simulation that exploits the analysis from the first
part to obtain spatial domain expressions for the average
spectrum of the print expressed in terms of colorant overlap
areas. The latter are computed analytically for common dot
shapes. When combined with measured Neugebauer pri-
mary spectra, these allow for a quantification of the color
shift for different misregistrations. Prior work in this area
has also been based on the Neugebauer model with estima-
tion of the area coverages for the Neugebauer primaries
performed either experimentally by using a planimeter for
the dot-on-dot geometry,

18
or through computer simula-

tions, where halftone images are generated on a high reso-
lution digital grid and areas computed by pixel-counting

methods.
1,19,16

The experimental approach has only been
applied in a limited context due to measurement challenges.
The pixel-counting simulation approaches become quite
memory intensive for certain configurations and can also
suffer from a limitation in accuracy due to the use of a
finite grid. Our semianalytic methodology allows the model
to operate without the computationally expensive high res-
olution simulation, thereby enabling evaluation of numer-
ous screen configurations. Comparison of the framework
against experimental data with independent measurement
of misregistration demonstrates good qualitative agreement.

3 Color Halftone Misregistration Analysis
Framework

For our analysis, we assume that color printing is accom-
plished by halftoning K individual colorant separations,
where K=4 for the typical CMYK scenario, and printing
these in overlay. In Fig. 1, we schematically illustrate the
overall process for a typical clustered-dot color halftoning
with CMY colorants. We model individual colorant
clustered-dot halftones in terms of a lattice that represents
their periodicity and a spot function that represents the
shape of the halftone dots. The average color for the printed
overlay of these halftones is obtained by using the spectral
Neugebauer model.

10
The model computes the spatially av-

eraged reflectance for the print as a weighted average of
reflectances of all possible overlays of the colorants on the
substrate, where the overlays are referred to as the Neuge-
bauer primaries and the weights correspond to the frac-
tional areas of the Neugebauer primaries. A change in these
fractional areas due to interseparation misregistration is the
primary source of color shifts when the colorants have
overlapping absorption bands. We therefore derive our
model in this framework and obtain expressions for the
average reflectance spectrum and the fractional areas,
which we use in turn to characterize the conditions under
which the average spectrum is invariant to displacement
misregistration.

3.1 Individual Colorant Halftones

A halftone image hk�x� generated for the k’th colorant plane

of a constant gray-level contone image can be modeled as
the convolution of a planar lattice �k and a binary halftone

spot function sk�x�,20,21
where x= �x ,y�T represents the spa-

tial coordinates. �k represents the 2D periodicity of the k’th
halftone separation and is mathematically defined as

22

�k = �Vknk�nk � Z2� , �1�

where Z denotes the set of integers and Vk= �v1
k v2

k� is a

2�2 real-valued matrix, with two 2�1 linearly indepen-

dent vectors v1
k = �vx1

k ,vy1

k �T and v2
k = �vx2

k ,vy2

k �T as its col-

umns. Thus, �k is the �discrete� set of all integer linear
combinations of the vectors v1

k and v2
k in R2. The vectors v1

k

and v2
k represent a basis for the lattice �k and for any point

Vknk in the lattice, the vector nk= �nkx ,nky�T is the represen-

tation of the point in the lattice with respect to the basis Vk.
The halftone spot function sk�x� is confined within a unit

cell of �k, denoted by Uk, and takes values 1 or 0 corre-
sponding to the situation that ink k is, or is not, deposited at
the position x. hk�x� can accordingly be written as

hk�x� = sk�x� * �
nk

��x − Vknk� , �2�

where ��x� is the Dirac delta function. Displacement mis-

registration of the k’th separation by the vector dk

= ��xk ,�yk�T is readily incorporated in this representation

by replacing sk�x� with sk�x−dk�, where �xk and �yk are

the registration errors along the x and y axes, respectively.
The halftone separation hk�x� can accordingly be written as
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hk
�dk��x� = sk�x − dk� * �

nk

��x − Vknk� . �3�

3.2 Spectral Neugebauer Model

On a color print, these multiple halftone image separations
are overlaid, typically producing all possible 2K overlays of
K colorants. The colors associated with each of the 2K over-
lays are referred to as the Neugebauer primaries. Using the

Yule-Nielsen �YN� modified Neugebauer model,
10,11,23

the
average spectrum of the printed halftone is

Ravg��� = 	 �
i=0

2K−1

aiRi

1

� ���
�

, �4�

where ai and Ri��� are the fractional area coverage and the

spectral reflectance of the i’th Neugebauer primary, respec-
tively, and � is the empirical YN correction factor. This
factor accounts for optical dot gain, that is, the scattering of
the absorbed light within the paper due to which halftone
spots appear larger than their physical size on the paper.
Paper quality, spectral characteristics of the colorants, half-
tone periodicities, and spot shapes are some of the elements
that affect optical dot gain. Generally 1���2 is accepted
as physically meaningful,

24,25
although, empirically, values

of ��2 often provide better agreement with data, particu-
larly for high frequency printers.

26

To obtain expressions for the Neugebauer primary areas,
we first represent these areas in terms of an alternative but
equivalent �in the sense that either is obtainable from the

other� set of areas that are more readily amenable to analy-
sis. Figure 2 illustrates this alternate representation, which
we describe next. For notational convenience, in this pro-
cess, we index each of the 2K possible combinations of the
K colorants by a K-bit binary index string c=c1 . . .cK,
where ck=1 indicates the presence of the k’th colorant and
ck=0 its absence in the combination. Interpreting the string
as the binary representation of a Neugebauer primary index
between 0 and 2K−1, we can rewrite Eq. �4� as

Ravg��� = 	�
c1=0

1

¯ �
cK=0

1

ac1. . .cK
Rc1. . .cK

1/� ���
�

. �5�

Now if we denote by �k the fraction of the total area
covered by the k’th colorant �which is possibly covered by
additional colorants and, therefore, distinct from the area
for the corresponding Neugebauer primary�, we have

�k = �
�c1. . .cK�ck=1�

ac1. . .cK
. �6�

We extend this notation and use �k1. . .km
to represent the

fractional area covered by the colorants k1 . . .km �parts of
which are also possibly covered by additional colorants�,
where k1 . . .km is a set of distinct colorant indices drawn
from �1, . . . ,K�. For uniqueness, we consider only sub-

scripts k1 . . .km indices arranged in ascending order, that is
k1	k2	 ¯ 	km. Then, just as with the individual colorant
areas, these fractional areas can be represented in terms of
the Neugebauer primary areas as

1 2

3

(a) Colorant overlay

a100 a111a011a101a110a001a010

(b) Neugebauer primary area ac

β1 β123β23β13β12β3β2

(c) Colorant overlap area βk(c)

Fig. 2 Illustration of the relation between the Neugebauer primary areas ac and colorant overlap areas
�k�c� for K=3 with CMY colorants. �Color online only.�
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�k1. . .km
= �

�c1. . .cK�ck1
=1,. . .,ckm

=1�
ac1. . .cK

. �7�

The above system of equations can be inverted to obtain
an expression for the fractional areas of the primaries
ac1. . .cK

in terms of the fractional areas �k1. . .km
for the colo-

rant combinations. One can see that a1. . .1=�1. . .K and

ac1. . .cK
= �

1 − �
c�I+�c�

ac if c1 . . . cK = 0 . . . 0,

�k�c� − �
c�I+�c�

ac otherwise,

�8�

where the notation k�c�=k1 . . .km denotes the string of indi-

ces �kl�l=1
m for which ckl

is nonzero, and I+�c� is the set of

all indices that include the nonzero indices ckl
and at least

one additional �distinct� nonzero index �Note that each el-
ement of I+�c� denotes a combination of colorants that in-

clude the nonzero m colorants indicated by c as a subset
and at least one additional nonzero colorant�. The above
relation �Eq. �8�� can also be seen from Fig. 2, which illus-
trates the relation between the areas ac and �k�c� for K=3

with CMY colorants.
Due to the equivalence of the Neugebauer primary frac-

tional areas ac1. . .cK
to the colorant overlap areas �k�c�, in-

variance properties with respect to displacement misregis-
tration established for one are applicable to the other. We
therefore proceed by obtaining expressions for the areas
�k�c�. Note that we adopt this approach because it is easier

to directly obtain expressions for the terms �k�c�, as op-

posed to the Neugebauer primary areas ac.

3.3 Fractional Areas of Colorant Combinations

To compute �k�c�, consider the overlay of the halftones that

constitute k�c�. The function

hk�c��x;dk�c�� = �
k�k�c�

hk
�dk��x� �9�

indicates the spatial locations covered by the colorants in
k�c�, taking a value 1 if x is covered by the colorants in

k�c� and 0 otherwise, where dk�c�= �dk1
, . . . ,dkm

� are the

displacement vectors of the individual separations that con-
stitute k�c�. The fractional area �k�c� is the spatial average

of hk�c��x ;dk�c��.
If each of the matrices Vki

−1Vkj
has only rational numbers

as their elements for all pairs ki�k j in k�c�, the intersection

of the lattices �k�c�=�k�k�c��k is a 2D lattice,
27,28

whose

periodicity may be represented in terms of a basis matrix
Vk�c�. The basis matrix Vk�c� can be obtained using a least

common right multiple computation for integer matrices
�see Ref. 27 pp. 35–38�.29

As it can be seen from the illustration in Fig. 3, a period
of �k�c� includes at least one period of each of the constitu-

ent lattices. The overlay hk�c��x ;dk�c�� of the constituent

halftones is then periodic over this lattice and thus the spa-
tial average is obtained as

�k�c� =
1

�Uk�c��


x�Uk�c�

hk�c��x�dx , �10�

where Uk�c� denotes a unit cell of �k�c� and �Uk�c�� the area

of this unit cell. We note that for digital halftone screens,
that is, screens defined on a common discrete periodic grid
for any k , l� �1, . . . ,K�, Vk

−1Vl has only rational entries and

thus the above assumption holds for any colorant combina-
tion in c. Situations in which the assumption does not hold
may be viewed as a limiting case for out analysis, where
�Uk�c� � →
. Our ensuing frequency domain analysis �par-

ticularly Eq. �17�� still holds for these situations even
though the basis matrix Vk�c� does not exist.

From the Fourier transform properties it follows that

V1 =

�

1 2

2 −1

�

y

Λ1

v
1

2

v
1

1

x

(a)

V2 =

�

2 1

1 −2

�

y

Λ2

v
2

2

v
2

1

x

(b)

U12

y

x

Λ1 ∩ Λ2

(c)

Fig. 3 Example of lattice intersection. Panels �a� and �b� show points on lattices �1 and �2, respec-
tively. The larger blue circles in �c� show the intersection points of the overlaid lattices and the region
inscribed by the dashed lines shows a unit cell of the intersection denoted by U12.
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�k�c� = Hk�c��0� , �11�

where Hk�c��u� represents the Fourier transform of hk�c��x�
and u= �u ,v�T denotes the coordinates in frequency space.

In other words, �k�c� is the DC term of the frequency spec-

trum of the overlay of its constituent colorants. The Fourier
transform of Eq. �9� yields

Hk�c��u� = H
k1

�dk1
��u� * . . . * H

km

�dkm
��u� , �12�

where H
k

�dk��u� represents the Fourier transform of the half-

tone image h
k

�dk��x�. Let Sk�u� represent the Fourier trans-

form of the halftone spot function sk�x�. Applying the shift

and convolution property of the Fourier transform on Eq.

�3�, H
k

�dk��u� can be written as

Hk
�dk��u� =

1

�Vk�
Sk�u� exp�− 2�jdk

Tu��
nk

��u − Wknk� , �13�

where the Fourier transform of the “comb” function
�nk

��x−Vknk� takes nonzero values on the elements of the

reciprocal lattice of �k �see Ref. 22, pp. 23–24�,28
which is

represented by

�
k
* = �Wknk = �Vk

−1�Tnk�nk � Z2� , �14�

where Wk= �Vk
−1�T represents the basis matrix for the recip-

rocal lattice �
k
*.

Using these results we see that �see Appendix A�

Hk�c��u� = �
nk1

. . . �
nkm

�
k�k�c�

	 1

�Vk�
Sk�Wknk�

�exp�− 2�jdk
TWknk�
�	u − �

l�k�c�
Wlnl
 , �15�

which can only take nonzero values if u=�k�k�c�Wknk. Let

Nk�c� represent the set ��nk1
, . . . ,nkm

� ��i=1
m Wki

nki
=0�, which

includes the indices of all the frequency vectors that sum up
to the zero vector.

Then, Eq. �11� can be computed as

�k�c� = Hk�c��0�

= �
�nk1

,. . .,nkm
��Nk�c�

�
k�k�c�

1

�Vk�
Sk�Wknk� exp�− 2�jdk

TWknk�

= �
k�k�c�

1

�Vk�
Sk�0� + �

�nk1
,. . .,nkm

��Nk�c�\�0�
�

k�k�c�

1

�Vk�
Sk�Wknk�exp�− 2�jdk

TWknk� �16�

= �
k�k�c�

�k + �
�nk1

,. . .,nkm
��Nk�c�\�0�

�
k�k�c�

1

�Vk�
Sk�Wknk� exp�− 2�jdk

TWknk� , �17�

where Nk�c� \ �0� denotes the elements in Nk�c� with the ex-

clusion of the all-zero vector 0. If Nk�c� \ �0� is a nonempty

set, then the overlay of the halftones is said to be
singular.

16
Note that only terms indexed by variables of the

summation symbol in Eq. �17� depend on the intersepara-
tion misregistration amounts.

4 Conditions for Color Misregistration
Insensitivity

Denote by R
avg

�0� ��� and R
avg

�d� ���, the average spectra of

“prints” with interseparation displacements 0 �perfect reg-
istration� and d= �d1 , . . . ,dK� �misregistered�, respectively.

A difference in these terms represents a misregistration-
induced color shift �Strictly speaking, this is a shift in the
average spectrum that will typically produce a correspond-
ing color shift�. In this section, we consider the conditions
under which these terms do not differ, yielding insensitivity

to color misregistration in the average color. In Eq. �5�,
there are two elements that affect the value of these terms:
spectral reflectances of the Neugebauer primaries, and frac-
tional area coverages of the Neugebauer primaries. The
former is affected by the spectral interactions of the colo-
rants �inks� in their absorption bands of the spectra, the
latter is a function of individual halftone separation period-
icities, halftone spots, and the inter-separation misregistra-
tions as shown in Eq. �17�. These terms define conditions
under which Ravg��� is affected by interseparation misreg-

istration as we show in the following subsections. We also
observe here that the terms ��k�k=1

K , corresponding to the

total fractional area covered by the individual colorants, are
independent of misregistration.

4.1 Spectral Sufficiency Condition

If the colorants are transparent with nonoverlapping spec-
tral absorption bands, it is well known that the resulting
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color prints have no misregistration sensitivity.
6

In our
analysis, this can be seen by noting that in this scenario,
one can represent the reflectance of a Neugebauer primary
formed by the colorants in k�c� as Rk�c����
=RP����k�k�c��1−Ak����, where RP��� is the reflectance of

the paper substrate and Ak��� is the absorptance of the k’th

colorant. For a given wavelength �, then there exists a
single separation k� for which the colorant has nonzero
absorption at �. Using this property, the average reflectance
at � can be written as

R��� = ��k�
�1 − Ak�

����1/� + �1 − �k�
���RP��� . �18�

Because the �k terms corresponding to individual colo-
rant separation fractional area coverages are insensitive to
misregistration, R��� is not affected by the interseparation

misregistration. Thus, a color halftone is insensitive to in-
terseparation misregistration if the aforementioned condi-
tion is satisfied. However, in most color printing systems,
the colorants do not obey this condition �for instance, any
pair of colorants that include the black �K� colorant violates

this requirement�.

4.2 Periodicity Sufficiency Condition

Consider the expression in Eq. �17� in Sec. 3.3 for the
fractional area of the colorant combination k�c�. If

Nk�c� \ �0� is an empty set, or in other words, none of the

fundamental frequency vectors or their harmonics sum up
to the zero vector, then the corresponding fractional area
�k�c� does not depend on the displacements �dk�k�k�c�. If

this property �Nk�c� \ �0� empty� holds for every possible

colorant combination, then the equivalence between the
Neugebauer primary areas and areas of colorant combina-
tions ensures that the Neugebauer primary areas ac1. . .cK

do

not depend on the displacements �dk�k=1
K . Therefore, in this

scenario, the average spectrum of the printed halftone
Ravg��� is invariant to interseparation misregistration. A set

of halftone screens for which the above property �Nk�c� \ �0�
empty for all k�c�� holds is referred to as a nonsingular

halftone configuration.
16

Let us visualize this case by examining the conventional
30-deg angular separation equifrequency CMK halftone
screen overlay, which is commonly used in lithographic
printing systems. Let V1, V2, and V3, which are formed by
the basis vectors shown in Fig. 4�a�, represent the basis
matrices for the lattices �1, �2, and �3 for C, M, and K
separations, respectively. We first consider the superposi-
tion of any two of these separations—for example, C and
M. To compute �12, we first consider the set of indices
N12 \ �0� in Eq. �17�. From the frequency domain basis ma-

trices shown in Fig. 4�b�, it can be seen that there do not
exist any �n1 ,n2��Z2 that can satisfy W1n1+W2n2=0.

Thus, N12 \ �0� is an empty set and �12 is invariant to in-

terseparation misregistration. Similarly, it can be shown
that N13 \ �0� and N23 \ �0� are also empty sets and conse-

quently �13 and �23 are also invariant to interseparation
misregistration. Note that, in these cases, �k�c� terms are

only determined by the first term in Eq. �17�, which is the
multiplication of the DC terms in each individual separa-
tion that constitutes k�c� and, therefore, the statistical ran-

domness condition assumed by Demichel equations is sat-
isfied.

Now consider overlay of all three of the separations and
the �123. In this case, we can see that N123 \ �0� is not an

empty set and the overlay is singular. For example, n1

= �−1,0�T, n2= �1,0�T, and n3= �0,1�T is a member of

N123 \ �0�. The set N123 \ �0� has an infinite number of ele-

ments and color sensitivity to misregistration is expected
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Fig. 4 Basis vectors for CMK colorants in conventional screens. �Color online only.�
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for the overlay of these three separations. Figure 5 illus-
trates this behavior of the conventional CMK halftone over-
lay. The configuration of Fig. 5�a�, known as the clear-
centered rosette, transforms into the so-called dot-centered
rosette configuration of Fig. 5�b� when each of the separa-
tions is displaced by half its lattice period. The change from
Fig. 5�a� and 5�b� illustrates the substantial change in the
microstructure due to interseparation misregistration in a
singular overlay.

4.3 Spot Function Dependence

From Eq. �17�, we observe that if the set Nk�c� \ �0� is non-

empty, this alone does not ensure that R
avg

�d� ��� and R
avg

�0� ���
differ, because �k�c� terms are functions of the constituent

halftone spots and the interseparation misregistration
amounts. Depending on these, interseparation misregistra-
tion may still have no effect on the average color of the
halftone if the summation in Eq. �17� is either zero or re-
mains constant as the displacement d is varied. This condi-
tion holds trivially when colorant coverages take on only
values of 0 or 100%, but it can also hold for nontrivial
cases, as we illustrate next by means of an example.

Consider an overlay of two separations with lattices �1

and �2 having the basis matrices

V1 = �M 0

0 M
� and V2 = �M M

M − M
� ,

respectively. Let us define the corresponding halftone spot
functions s1�x� and s2�x� as shown in Fig. 6 within unit

cells of the constituent lattices outlined by the dashed lines.
These functions can also be represented as

s1�x� = rect	 x − y

M

 rect	 x + y

M

 �19�

and

s2�x� = rect	 x

M

 rect	 y

M

 . �20�

The respective Fourier transforms of these functions can be
written as

S1�u� =
M2

2
sinc	u − v

2
M
 sinc	u + v

2
M
 �21�

and

S2�u� = M2 sinc�uM� sinc�vM� . �22�

The summation in Eq. �17� requires the value of the previ-
ous functions at the frequency coordinates W1n1 and W2n2

S1�W1n1� = S1	 1

M
�n1x

n1y

�

=

M2

2
sinc	n1x − n1y

2

 sinc	n1x + n1y

2

 �23�

and

S2�W2n2� = S2	 1

2M
�n2x + n2y

n2x − n2y

�

= M2 sinc	n2x + n2y

2

 sinc	n2x − n2y

2

 . �24�

The indices n1 and n2 for the summation in Eq. �17� are
defined by the condition

W1n1 + W2n2 =
1

M�n1x +
n2x + n2y

2

n1y +
n2x − n2y

2
� = 0 . �25�

The previous relation implies that only indices such that n2x

or n2y are both odd or both even can contribute terms in
N12 \ �0�. However, in these cases, the value of the sinc

functions in Eq. �24� is zero. As Eq. �17� suggests, this
ensures �12 is the multiplication of the fractional area cov-
erages of the individual separations, and therefore, the char-
acteristics of the halftone spots can define a condition to
ensure that Ravg��� is insensitive to interseparation misreg-

istration. In Fig. 7, we show an example using this configu-
ration in which colorant overlap area does not change even
though the microstructure changes due to interseparation
misregistration. We note that for this specific configuration,
the invariance under misregistration depends only on the

Clear-centered rosette

(a)
Dot-centered rosette

(b)

Fig. 5 Sensitivity of CMK overlap in conventional screens to mis-
registration. A half period displacement of each of the screen trans-
forms the microstructure from the clear-centered rosette of �a� to the
dot-centered rosette in �b�. �Color online only.�
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Fig. 6 Spot functions s1�x� and s2�x� exhibit misregistration invari-
ance despite a potentially sensitive geometry.
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spot function s2�x� and holds for any arbitrary choice of the

spot function s1�x�.

4.4 Invariant Misregistrations

Now we consider the invariant misregistration combina-
tions, that is, the separation displacements for which we are
assured zero color shift with respect to the perfectly regis-
tered print. It is readily seen from Eq. �17� that if the dis-
placement of the k’th separation is a point on the corre-
sponding lattice, the term dk

TWknk is integer-valued and the
result of the summation is identical to that for a perfectly
registered halftone. This represents the trivial case when the
interseparation displacements are matched to the separa-
tions’ lattice periodicities. Invariance is, however, also
achievable for nontrivial displacements, as we illustrate
next. We assume in our analysis that for the lattices under
consideration, the basis matrices satisfy the constraint
Vki

−1Vkj
�Q2�2, where Q is the set of rational numbers so

that the intersection and sum lattices are defined for any
subset of lattices.

27,28

Consider, again, an overlay of two separations with lat-
tices �1 and �2. In this case, Eq. �17� simplifies to

�12 = �1�2 + �
�n1,n2��N12\�0�

1

�V1��V2�
S1�W1n1�S2�W2n2�

�exp�− 2�j�d1
TW1n1 + d2

TW2n2�� . �26�

If the terms exp�−2�j�d1
TW1n1+d2

TW2n2�� in the above

summation are unity for all �n1 ,n2��N12 \ �0�, then we can

readily see that the value of �12 is equal to the value ob-
tained for the perfectly registered case �d1=d2=0�.
We readily see that this happens if the terms
�d1

TW1n1+d2
TW2n2� are integer-valued for all �n1 ,n2�

�N12 \ �0�. Suppose �n1 ,n2��N12 \ �0�, that is, they are

nonzero integer vectors satisfying W1n1+W2n2=0.
Then, W2n2=−W1n1 and �d1

TW1n1+d2
TW2n2�

= �d1−d2�TW1n1= �d2−d1�TW2n2. Now W2n2��
2
* and

−W1n1��
1
*, hence w=W2n2=−W1n1��

1
*��

2
* and vice

versa if w��
1
*��

2
*, then there exists a w=W1n1�=

−W2n2�, whence �n1� ,n2���Z2 such that W1n1�+W2n2�=0.

From the definition of the reciprocal lattice, it follows that
�d1−d2�TW1n1 is an integer if and only if d2−d1 is an

element of ��
1
*��

2
*�*, that is, the reciprocal lattice of

�
1
*��

2
*. Because ��

1
*��

2
*�*=�1+�2, d1−d2��1+�2

defines a sufficient condition that ensures �12 is invariant to
misregistration, where

�1 + �2 =
def

�x1 + x2�x1 � �1,x2 � �2� �27�

is the sum lattice of �1 ,�2. One can also infer that the sum
lattice �1+�2 defines the periodicity of color shift in the
interseparation displacement. The color shift for any in-
terseparation displacement d12=d1−d2 is equal to the color
shift obtained with an equivalent displacement de

12 lying in
the unit cell of �1+�2. The equivalent displacement de

12 is
“d12 modulo �1+�2,” that is, the unique vector in the set
�d12+V�1+�2

n �n�Z2� that lies in the unit cell of the sum

Registered image Misregistered image 1 Misregistered image 2 Misregistered image 3

(a) (b) (c) (d)

Fig. 7 Halftone images generated by using the periodicities and
spot functions shown in Figs. 6�a� and 6�b� for C and M colorants,
respectively. Observe that Neugebauer primary areas do not
change for this configuration with change in misregistration dis-
placement. �Color online only.�
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x
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d2 = [−1, 0]T

y
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d2 = [1, 0]T
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Fig. 8 Invariant misregistrations. Panel �a� shows perfect registration, and �b�, �c�, and �d� show
nontrivial misregistrations under which average color is invariant. The top half of each subfigure shows
an integral number of periods of the intersection lattice and the lower half shows the displacement
misregistration vector d2 on the lattice �2. Note that d1=0 and d2��1+�2 for all configurations and
Neugebauer primary areas are invariant to misregistration in these cases. �Color online only.�
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lattice �1+�2, where V�1+�2
denotes the basis matrix for

�1+�2. A basis matrix for �1+�2 can be computed as the
greatest common left divisor �gcld� of the basis matrices for
�1 and �2.

In the general K-separation scenario, as shown in Ap-
pendix B, the invariant misregistrations are characterized as
constraints on the pairwise displacements expressed math-
ematically as

di − d j � �i + � j for all pairs i � j in �1, . . . ,K� . �28�

In addition, one can infer this also defines the periodicity of
the misregistration-induced color shift in the space of in-
terseparation displacement vectors di−d j, for all i , j

� �1, . . . ,K�. Thus, if �d1 , . . . ,dK� and �d1� , . . . ,dK� � are two

misregistration displacement vectors, their misregistration-
induced color shift is equal if for all pairs of separations i

and j, �di−d j� is congruent with �di�−d j�� modulo the sum

lattice �i+� j, that is, �di−d j�− �di�−d j����i+� j. In Fig.

8, we show color misregistration invariant configuration ex-
amples generated using the halftone periodicities shown in
Fig. 3.

5 Quantitative Evaluation of Misregistration-
Induced Color Shifts

The analysis of the preceding section characterized the con-
ditions under which misregistration sensitivity may be en-
countered without quantifying the amount of color shift
�i.e., sensitivity�. In this section, we consider a simulation
model that builds upon the analysis already presented and

allows quantitative evaluation of color misregistration sen-
sitivity. For this purpose, we compute the average reflec-
tance using our model of Eq. �5� for two cases: one corre-
sponding to perfectly registered separations and the other
for the shift in consideration. These values may then be
transformed to the approximately perceptually uniform
Commission Internationale d’ Eclairage L*a*b �CIELAB�
color space.

30
The color difference resulting from the mis-

registration can then be obtained in �E
ab
* units as the Eu-

clidean distance between the CIELAB pairs. We are inter-
ested in the dependence of this color difference on the
halftone lattices ��k�k=1

K , the colorant area coverages

��k�k=1
K , and the separation displacements �dk�k=1

K . The over-

all system for quantitative estimation of the color shift is
illustrated in Fig. 9. By repeating the process for different
values of these elements as well as Neugebauer primary
spectra, and YN parameter �, we can obtain quantitative
estimates of the misregistration-induced color shift as a
function of these parameters. The process requires a calcu-
lation of the colorant overlap areas �k�c�, which we con-

sider next.

5.1 Spatial Domain Computation of �k�c�

In Sec. 3.3, in the analysis culminating in Eq. �16�, we
illustrated how the fractional Neugebauer primary areas can
be computed in the frequency domain. Equivalent spatial
domain expressions that are more suitable for simulations
can be obtained through algebraic manipulation �see Ap-
pendix D�

�k�c� = � 1

�Uk�c��� �
�xk � ��k1

+ �k� � Uk�c��k�k�c�\�k1�
� �

nk2
,. . .,nkm

sk1
�x − dk1

� * 	 �
l�k�c�\�k1�

sl�− x − dl − xl − Vk�c�nl�
���
x=0

. �29�

The first summation in the previous equation may be inter-
preted as adding up overlap areas of a reference spot of
separation k1 with neighboring spots of all remaining sepa-
rations k2 , . . . ,km. The xk’s in the first summation represents
displacements of spots other than the k1’th separation that
potentially intersect with the spot sk1

�x−dk1
� of the k1’th

separation. In Rogers’s
15

analysis for the overlay of two-
screens, the “dot neighbor distribution” corresponds to a
“projection” of these displacements along the radial axis
�for K=2 case�.

5.2 Halftone Spot Model

The computation in Eq. �29� requires the halftone spot
functions �sk�x��k�k�c� for the respective separations. In

practice, these functions are produced as a result of thresh-
olding the contone image for the k’th separation �k�x�
against a threshold function for that separation Tk�x�. For

most reasonable threshold functions, the spot function sk�x�
may be uniquely determined by the corresponding colorant

area coverage �k. For orthogonal screens, a useful threshold
function was defined by Pellar and Green

31,32
as

T�x� = cos�2�fxx� + cos�2�fyy� , �30�

where fx and fy are the screen frequencies, x and y are the
respective spatial coordinates �along two orthogonal spatial
directions� �In digital halftoning, this threshold function is
usually defined as a discrete array on a discretized unit cell
of the corresponding lattice, we will however find the ana-
lytic representation more convenient for our purposes�. For
an arbitrary �possibly nonorthogonal� halftone, whose peri-
odicity is given by the lattice �k, we generalize the equa-
tion to obtain the threshold function

Tk�x� = cos�2��w1
k�x�� + cos�2��w2

k�y�� , �31�

where Wk= �w1
k w2

k�= �wx1

k wx2

k

wy1

k wy2

k � is the basis matrix of �
k
*.

The transformation
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�x�

y�
� = �cos�k

x� − sin�k
x�

sin�k
y� cos�k

y�
��x

y
� �32�

represents a shearing of the coordinate system that ensures
a period of Eq. �31� maps to a unit cell of �k, and
k

x=arctan�wy1

k
/wx1

k � and k
y = �wy2

k
/wx2

k �.
Individual colorant halftone separations may be obtained

by thresholding the contone value for the colorant channel
against the corresponding threshold function. Specifically,

hk�x� = �1 if �k�x� � Tk�x� ,

0 otherwise,
�33�

defines the k’th halftone separation. For spatially constant
contone images ��k�x�=�k , ∀x� the resulting halftone cor-

responds to the model of Eq. �2�, however, the correspond-
ing spot functions �sk�x��k=1

K do not allow for a closed form

computation of the convolution terms in Eq. �29� and these
must therefore be obtained by computer simulation.

For quantitative evaluation of the colorant overlap area
�k�c�, we consider a finely sampled representation of the

unit cell Uk�c� and corresponding to each pixel of this

sampled representation generate binary halftone separation
values using Eq. �33�. The area �k�c� may then be obtained

by counting the fraction of pixels at which the colorants
overlap.

Accurate computations using this methodology require
high resolution grids. In addition, in some configurations,
the size of Uk�c� may become unwieldy for the generation of

images. We therefore consider a further simplification and
in practice use either of these two approaches as appropri-
ate.

5.2.1 Simplified analytic halftone spot model

The computation and storage requirements can be signifi-
cantly reduced by using simple analytic spot functions that
provide realistic approximations to actual halftone spot
shapes for which overlap areas are obtained more readily
from geometric relations. For this simplified model, we as-
sume w1

k and w2
k are orthogonal to each other and �w1

k �
= �w2

k� because orthogonal equifrequency halftone screens
are commonly employed in clustered-dot color halftoning.
Under this assumption, we examine the dependence of the
spot function on the area coverage �k as shown in Fig. 10,
where a linear contone ramp �ranging from white to black�
has been thresholded using the function of Eq. �31�. We
observe that the gray levels progressing from highlight to
midtone can be modeled as growing black spots on a white
background up to �=0.5. From midtone to shadow gray
levels, the halftone spots can be modeled as shrinking white
holes on a black background, where the holes are displaced
by half the lattice period relative to the black spots. Based
on the observed shapes in Fig. 10, we model these spots
and holes as circles in highlights and shadows, and squares
in midtone gray levels. A closeness metric is employed to
determine the fractional area coverage at which the model
switches between the circle and square approximations.
Based on the symmetry, it suffices to consider area cover-
ages �� �0,0.5� to select the switch point. For a given �,

let s��x� denote the spot obtained from Eq. �33� with the

corresponding area coverage. The error in approximating
s��x� by a circular or square spot is then evaluated as the

area that lies in s��x� or the approximating spot function,

but not both �also called the symmetric difference or XOR�.
The shape �circle or square� providing the closest approxi-
mation is then used to approximate s��x� as illustrated in

Fig. 11�a�. For the gray level used in the figure, we can see
that the closer approximation for this specific case corre-
sponds to the circle. Overlap area difference between s��x�
and the closest circle and square approximation is shown in
Fig. 11�b� as a function of the area coverage �. As ex-
pected, in highlights and shadows, circular spots provide a
closer approximation than square spots and vice versa in
midtones. At approximately �=0.35, the error curves
for square and circular spots intersect. Therefore,
for �� �0.35,0.65�, we use the square halftone spot ap-

proximation for s��x�, and for �� �0,0.35�� �0.65,1�, we

use the circular approximation.
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Fig. 9 Simulation model for quantitative estimation of color shift in-
duced by interseparation misregistration for a clustered-dot color
halftone.

Fig. 10 Spot growth with the threshold function defined in Eq. �31� when �w1 � = �w2�, and w1 and w2 are
orthogonal.
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Assuming the halftone spot of a separation is either a
circle or a square, a composite halftone image is composed
of the overlay of these shapes at different displacements.
The intersection of circles and squares can be found using
simple algebraic methods,

15,33
and once these points are

determined, it is easy to compute the overlap area of these
halftone spots geometrically. In particular, circles and
squares are convex shapes, thus their intersection with
other circles or squares also generates a convex region.
Neighboring vertices of an intersection region are always
connected to each other by either a straight line or a circu-
lar arc depending on the shape of its constituent halftone
spots. Thus, an intersection region may be composed of a
polygon, circular segments, or both.

For the purpose of illustration, we show the intersection
of three halftone spots �two circles and a square� in Fig. 12.

In this figure, the intersection region is formed by the poly-
gon P1→P2→P3→P4→P1 and two circular segments at-
tached to this polygon, whose secant lines are P2P3 and
P3P4. Each of these regions is shown in Fig. 12 using dif-
ferent shades of gray. The areas for these regions are
readily computed, from which, the overlap area is directly
obtained by summing the three indicated areas together.
Within the unit cell U123, there are multiple instances of
halftone spots of separations 1 ,2, and 3. The aforemen-
tioned computation is repeated for each possible selection
that incorporates a spot from each of these separations. The
sum of the areas from these individual computations is di-
vided by the area of the unit cell U123 to obtain �123.

This geometric model does not have a resolution con-
straint and computes significantly faster than the pixel-
counting approach. We quantify this computational advan-
tage in Table 5 in Sec. 8.2.

6 Model Parameters

Parameter values necessary for an exercising model of Fig.
9 can be obtained from experimental data. We briefly out-
line this process here. The spectra of 2K Neugebauer pri-
maries can be directly measured from prints of patches of
each of the primaries. Single-colorant ramps for each of the
K separations are used to relate the digital control values
that drive the printer to the respective area coverages
��k�k=1

K . For a single-colorant halftone image hk�x�, the frac-

tional area coverage �k is derived from the Neugebauer
estimate of the spectrum using a least-squares procedure.

34

For a single-colorant image, Eq. �5� becomes

Ravg
1/� ��� − RP

1/���� = �k�Rk
1/���� − RP

1/����� , �34�

where Ravg��� ,Rk���, and RP��� are the reflective spectra

of the halftone image, k’th colorant, and paper substrate,
respectively. In vector form, this can be written as ravg

−rP=�k�rk−rP�, where ravg is a column vector of samples
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Fig. 11 Circle and square spot approximations to halftone spot function s��x�. Panel �a� shows an
example of best approximations, �b� shows the error for the best circle and square approximations to
s��x� as a function of fractional area coverage �, where the error corresponds to the area lying in s��x�
or the approximation, but not both.
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Fig. 12 An example of three intersecting halftone spots showing
computation of areas that contribute to �1 ,�2 ,�3, and �123.
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of Ravg���
1

� �at different values of the wavelength �� and

the other vectors are similarly the collections of samples of
corresponding spectra. In this convention, the least-squares
estimate of �k is obtained as

�k =
�ravg − rP�T�rk − rP�

�rk − rP�2 . �35�

The previous procedure requires the value of the YN
coefficient �. The optimal value of � is selected from a set
of candidate values by determining the value that mini-
mizes the average mean-square error between the predicted
reflectance value in Eq. �5� and the measured reflectance
values over the complete set of colorant ramps.

7 Simulation and Experimental Results

Our experimental setup used a xerographic CMYK printer
with an addressability of 4800�600 dpi �For convenience,
we will state our lattice basis matrices in terms of a printer
having identical addressability of 600 dpi along each of the
two orthogonal directions. Equivalent numbers for the
4800�600 dpi case are readily obtained by multiplying the
first-rows of the basis matrices by a factor of 8 correspond-
ing to the ratio of addressabilities in the horizontal and
vertical directions�. The 16 Neugebauer primaries for the
printer were measured from printed targets. Digital halftone
screens with angular orientations close to the conventional
analog screens were used as the primary halftones for our
study although alternative halftone configurations were also
investigated. The lattice periodicities for these halftones are
specified by the basis matrices listed in Table 1. These or-
thogonal screens are oriented as C at tan−1�1 /3�
�18.4 deg, M at tan−1�3��71.6 deg, Y at tan−1�0�=0 deg,

and K at tan−1�1�=45 deg. These angles are chosen to ap-

proximate the conventional 30-deg difference between the
frequency vectors of analog C, M, and K screens shown in
Fig. 4�b�. Thus, this configuration is referred to as the digi-
tal conventional configuration throughout this section. In
addition to this configuration, we also explore two-colorant
dot-on-dot/dot-off-dot halftone configurations.

4
These con-

figurations employ the same lattice periodicity for the two-
colorant separations and maximize/minimize the overlap
between the halftone spots of the two separations, respec-
tively. The dot-on-dot configuration is obtained by using
the same threshold function for the two separations. If the
threshold function for one of the separations is displaced by
half a period, a corresponding dot-off-dot configuration is

obtained. The latter thus represents a misregistered version
of the former. This specific halftone configuration and mis-
registration typically leads to the largest change in color.

1,35

It is, therefore, particularly helpful for studying the effects
of parameters other than the halftone periodicities. In our
experiments, the basis matrix corresponding to the black
�K� separation of Table 1 is used when referring to dot-on-
dot and dot-off-dot geometries.

As outlined in Sec. 6, single-colorant ramps of the C, M,
Y, and K colorants that ranged in area coverage from 0 to
100% were printed and utilized to estimate the relationship
of digital CMYK values to the colorant fractional areas
��k�k=1

4 . The YN parameter � was estimated as 1.4 and used

throughout for the digital conventional halftone configura-
tion. Color computations were performed using the CIE
D50 standard illuminant

30
and with a white point corre-

sponding to the unprinted paper.
We carry out several simulations in which we investigate

the change in average halftone color due to interseparation
misregistration as a function of various experimental pa-
rameters. Specifically, we consider the impact of optical dot
gain, colorant combinations, periodicity of the individual
halftone separations, colorant area coverages, and misreg-
istration amounts. We present results that explore various
subsets of these factors. In doing so, we focus our attention
on two-screen combinations because this allows us to ex-
plore the remaining parameter space more comprehensively
and present results visually. We also consider specific ques-
tions of interest for three-screen CMK combinations toward
the end of this section.

7.1 Optical Dot Gain

We consider the impact of optical dot gain on color mis-
registration sensitivity by evaluating color shifts �using the
methodology of Fig. 9� for different values of the YN pa-
rameter �. In general, an increase in the optical dot gain
parameter � tends to reduce the magnitude of
misregistration-induced color shifts. This is in agreement
with physical intuition. As the optical dot gain increases,
there is greater mixing of light entering the paper through
the differently colored regions corresponding to the various
Neugebauer primaries. This mixing reduces the dependence
of the average spectrum/color on interseparation misregis-
tration.

In Fig. 13, we illustrate this dependence on � for the
sensitive CM dot-on-dot halftone configuration under the
situation, where the fractional area coverages �1 and �2

Table 1 CMYK halftone periodicities for the digital conventional configuration �for printer addressability
600�600 dpi; lpi�lines per inch�.

C M Y K

Lattice basis matrices �6 2

2 −6 � �2 6

6 −2 � �4 0

0 4 � �4 4

4 −4 �
Halftone frequency
�lpi�

94.9 94.9 150 106.1

Screen angle tan−1�1/3��18.4 deg tan−1�3��71.6 deg tan−1�0�=0 deg tan−1�1�=45 deg
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corresponding to the C and M separations are equal. The
abscissa of the graph in Fig. 13 represents this fractional
area coverage and the ordinate represents the change in
color in �E

ab
* units produced when one of the separations is

displaced by half the lattice period �producing a dot-off-dot
configuration�. The different plots on the graph represent
the color change due to this misregistration for different
values of the YN parameter �. Note that for a given area
coverage, as � increases, the amount of color shift reduces.
This effect is quite significant when an increase in � from
1.0 to 2.5 reduces the worst case misregistration-induced
color shift from 40 to approximately 21 in �E

ab
* units. Also,

in the absence of YN correction ��=1�, the corresponding

curve in this figure is highly asymmetric with respect to the
midtone gray level 0.5. In particular, shadow tones are sig-
nificantly more sensitive to misregistration than the sym-
metrically located values in the highlight tones �about 0.5�.
As the YN parameter � increases, these curves become
more symmetric and the amount of color shifts are also
reduced. By examining differences in Neugebauer primary

areas and spectra, instead of the �E
ab
* difference in

CIELAB coordinates, we see that the CIELAB cube-root
nonlinearity is the primary source of the asymmetry, which
is in effect compensated by the higher � values.

7.2 Dependence on Colorant Combinations

We investigate color misregistration sensitivities of the dif-
ferent two-colorant combinations by evaluating the
misregistration-induced color shifts for the dot-on-dot half-
tone configuration. In our simulations, we set the fractional
area coverages of each of the colorants equal to 0.5 and a
misregistration displacement for one of the screens equal to
half the lattice period �which produces the corresponding
dot-off-dot configuration�. This configuration is chosen be-
cause it yields the largest �worst case� misregistration-
induced color shift for the CM colorant pair for all values
of � in Fig. 13. All possible colorant pairs are considered.
For each of these pairs, the average color is computed for
the aforementioned perfectly registered and misregistered
configurations. The color differences between the two con-
figurations are computed in the individual CIELAB coordi-
nates and in overall �E

ab
* units. These are listed in Table 2.

It is clear that YK is the most and CY is the least sensitive
colorant combination to misregistration in terms of the
amount of color change. The MK combination, however, is
the most sensitive one in terms of the magnitude of changes
in the L* and a* coordinates. When different halftone ge-
ometries of these colorant combinations are tested �at dif-
ferent area coverages�, the relative sensitivities for the dif-
ferent colorants maintain the observed ordering. Therefore,
it would be advantageous to use less misregistration sensi-
tive geometries for YK and MK colorant combinations. The
relative sensitivities for colorant pairs observed in our
simulations are in agreement with intuition developed from
the registration insensitivity of colorants with nonoverlap-
ping spectral bands �see Sec. 4.1�. The CY combination has
low sensitivity because cyan and yellow colorants have the
least overlap in their spectral absorptance. Because black
absorbs strongly in all regions of the spectrum, all combi-
nations involving K demonstrate high sensitivity.
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Fig. 13 Effect of optical dot gain on the amount of change in aver-
age color between the dot-on-dot and dot-off-dot configurations of C
�k=1� and M �k=2� colorants when both colorants have equal frac-
tional area coverages.

Table 2 Effect of colorant combinations on the amount of color change between the dot-on-dot and
dot-off-dot halftone image of two colorants when both colorants have a fractional area coverage of 0.5.

Colorant Pair �L* �a* �b* �E
ab
*

CM −18.81 17.96 −20.50 33.12

CY −3.13 −3.63 11.19 12.17

CK −28.53 −22.48 −32.09 48.47

MY −3.52 1.82 33.20 33.44

MK −31.28 47.18 −7.92 57.16

YK −4.24 −4.94 66.07 66.39
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7.3 Impact of Halftone Geometry

We next consider the impact of halftone geometry �lattice�
on color misregistration sensitivity. For this purpose, we
use the CM colorant pair because it exhibits significant sen-
sitivity to misregistration in all three of the CIELAB coor-
dinates. A number of lattice basis matrices are chosen for C
and M separations, which are listed as V1 and V2, respec-
tively, in Table 3. Basis matrices for the intersection lattice
�1��2 and the sum lattice �1+�2 are also listed in the
table. For each pair of lattices, the maximum possible color
shift due to misregistration is determined by a computa-
tional search over the possible values of the colorant areas
and displacements. The corresponding colorant area cover-
ages �1 ,�2, and the largest amount of the color shift ob-
tained at these coverages are indicated in Table 3. Invari-
ably the displacement producing the largest color shift was
close to half a period of the sum lattice �1+�2. As ex-
pected, the largest amount of color shift is observed for the
dot-on-dot geometry �corresponding to row 1 of Table 3�,
whose average color is known as extremely sensitive to
interseparation misregistration. Relatively smaller color
shifts are observed for rotated halftone geometries. The last
column of the table lists a misregistration sensitivity metric
for two-colorant halftone combinations that we describe
subsequently in Sec. 8.1.

7.4 Dependence on Colorant Area Coverages

The dependence of misregistration-induced color shift on
the colorant area coverages is examined next. Because the
dependence on colorant area coverage exhibits significant
variations under changes in halftone geometry, we consider

it for the two-colorant dot-on-dot geometry and for each of
the distinct pairs of lattice combinations for the digital con-
ventional CMYK screen set. This latter set of combinations
corresponds to rows 2 �YK�, 4 �CY�, 5 �CK�, and 7 �CM�
of Table 3.

For each of the colorant pairs, we fixed the intersepara-
tion misregistration to half a period of the sum of the two
lattices and determined the color shift caused by this mis-
registration for different colorant area coverages �k1

,�k2
for

the two colorants. The plots in Fig. 14 present the results of
these computations, where a CM combination was used for
the dot-on-dot case �in Fig. 14�a�� �For the dot-on-dot con-
figuration geometry, the shape of the plot in Fig. 14�a� re-
mains largely unchanged for different colorant choices,
only the magnitudes of the shifts vary�. Observe that the
dynamic range of variation in Figs. 14�b� to 14�f� is much
smaller than the range in Figs. 14�a� and 14�g�: as expected
the digital conventional geometry exhibit significantly less
sensitivity to misregistration than the dot-on-dot configura-
tion except for the YK pair. Also, the completely different
topography of the surface plots in Figs. 14�a� to 14�g� dem-
onstrate that the dependence of misregistration sensitivity
on area coverage varies considerably with halftone geom-
etry. The behavior for the digital conventional geometry
indicates that the color change caused by misregistration
does not vary unimodally with the colorant areas.

7.5 Dependence on Amount of Displacement
Misregistration

With improving technologies for interseparation
registration,

36–38
only small displacements may actually be

Table 3 Maximum amount of color change �in �E
ab
* units� and misregistration sensitivity metric ��� for different geometries of C �k=1� and M

�k=2� colorants. �Lattice basis matrices are listed for printer addressability 600�600 dpi; lpi�lines per inch.�

Lattice Basis Matrices Frequencies �lpi� Angles �deg�

Row V1 V2 V12=V�1��2
V�1+�2

f1 f2 1 2 �1 �2 Max. �E
ab
* �12

1 �4 4

4 −4 � �4 4

4 −4 � �4 4

4 −4 � �4 4

4 −4 � 106.1 106.1 45 45 0.50 0.50 31.35 1

2 �4 0

0 −4 � �4 4

4 −4 � �4 4

4 −4 � �4 0

0 −4 � 150 106.1 0 45 0.50 0.78 15.55 2

3 �8 8

8 −8 � �4 4

4 −4 � �8 8

8 −8 � �4 4

4 −4 � 53 106.1 45 45 0.88 0.58 7.96 4

4 �6 2

2 −6 � �4 0

0 −4 � �8 4

4 −8 � �2 2

2 −2 � 94.9 150 18.4 0 0.50 0.78 3.44 10

5 �6 2

2 −6 � �4 4

4 −4 � �12 4

4 −12 � �2 2

2 −2 � 94.9 106.1 18.4 45 0.91 0.89 2.16 20

6 �4 2

2 −4 � �2 4

4 −2 � �10 0

0 −10 � �2 0

0 −2 � 134.2 134.2 26.6 63.4 0.55 0.55 2.21 25

7 �6 2

2 −6 � �2 6

6 −2 � �10 10

10 −10 � �2 2

2 −2 � 94.9 94.9 18.4 71.6 0.55 0.55 2.22 25

8 �8 2

2 −8 � �2 8

8 −2 � �34 0

0 −34 � �2 0

0 −2 � 72.8 72.8 14 76 0.88 0.88 0.25 289
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encountered in practice making the worst case computa-
tions of Table 3 overly pessimistic. We therefore consider
the dependence of interseparation displacement amount on
the misregistration-induced color shift.

To explore how the misregistration-induced color shift
varies with different interseparation displacements, we once
again consider the two-colorant CM dot-on-dot configura-
tion, and each of the distinct colorant pairs for the digital
conventional CMYK screen set. For these seven configura-
tions, we set the fractional area coverages of each of these
colorants to the area coverages corresponding to the highest
peaks observed in Fig. 14. Figures 15�a� to 15�g� show
plots of the magnitude of color shift �in �E

ab
* units� as a

function of the interseparation displacement coordinates
�xk2

and �yk2
of the k2’th separation along the x and y

directions, respectively.
Note that the dynamic range of variations and x and y

axes in these plots are different. As in Fig. 14, the two-
colorant CM dot-on-dot and the digital conventional YK
pair demonstrate high sensitivity to misregistration,
whereas other colorant pairs from the digital conventional
CMYK screen set are less sensitive. However, a larger
amount of misregistration is needed to reach the highest
peaks of Figs. 15�a� and 15�g� than the remaining digital
conventional pairs shown in Figs. 15�b� to 15�f�. These
results can also help establish misregistration tolerances
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Fig. 14 Amount of color change �in �E
ab
* units� between a perfectly registered and a misregistered

composite halftone image of two colorants as a function of the fractional area coverages of C �k=1�,
M �k=2�, Y �k=3�, and K �k=4� colorants. In each configuration, k2’th separation is misregistered by a
half period of the sum of the lattices in the misregistered halftone image. Note the differences in the
dynamic ranges of the different subfigures.
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Fig. 15 Amount of color change �in �E
ab
* units� between a perfectly registered and a misregistered

composite halftone image of distinct pairs of C �k=1�, M �k=2�, Y �k=3�, and K �k=4� colorants as a
function of the displacement amounts in one of the separations. In each configuration, fractional area
coverages of the colorants are set to the area coverages corresponding to the peaks observed in Fig.
14. Panels �a� to �g� represent the color errors as surface plots for the two-colorant CM dot-on-dot and
the two-colorant digital conventional halftone configurations of distinct colorant pairs. Panels �h� to �n�
are contour maps corresponding to the topographies in �a� to �g�, respectively. Labels on the contour
lines in �h� to �n� plots correspond to the amount of color change �in �E

ab
* units�. Thus, contours

represent “misregistration tolerances”: misregistrations confined inside a contour result in a color shift
that is less than the label for the contour. Note that misregistration amounts are varied within the unit
cell of the sum lattice �k1

+�k2
of each configuration and given in micrometers. Note the differences in

the dynamic ranges of the different subfigures.
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based on known color tolerances. We illustrate this in Figs.
15�h� to 15�n�, which show the contour maps of the topog-
raphies shown in Figs. 15�a� to 15. The contours about the
origin ��xk2

=0,�yk2
=0� in Figs. 15�h� to 15�n� represent

the region of registration displacements for which the color
shift is less than or equal to the �E

ab
* tolerance indicated on

the contour lines.

7.6 Model Predictions Versus Experimentally
Measured Color Shifts

Experimental validation of the model predictions is chal-
lenging for multiple reasons. First, spatially varying in-
terseparation misregistration is inevitable in the printing
systems we use for any experimental study. Thus, it is not
feasible to obtain prints with a specific desired amount of

Fig. 16 Comparison of experimentally measured data versus simulation results for Y �k=3� and K
�k=4� combination in the digital conventional orientation. Note the differences in the dynamic ranges of
the different subfigures.
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interseparation misregistration. Second, our model for color
halftones incorporates only the first-order effects of geom-
etry and optics and provides predictions of color change
due to interseparation misregistration based on these ef-
fects. Actual printing systems, however, include additional
physical effects that influence the color of the printed out-
put and the color shifts caused by interseparation misregis-
tration. In the present investigation, we do not attempt to
model these additional physical effects, which usually de-
pend on the printing technology used. As a result, the
model predictions of color shifts can be masked by these
other effects, particularly in scenarios where the predicted
color changes are relatively small.

We addressed the first of the above challenges by using
methods that allow us to estimate the interseparation mis-
registration in our printed samples.

39
We addressed the is-

sue of potential masking of predicted effects by other
physical phenomena by focusing the experiments on sce-
narios where the predictions of misregistration-induced
color shift were rather large �and therefore less likely to be
masked�. Specifically, we selected the YK two-colorant
combination from the digital conventional CMYK screen
set. As can be seen from Figs. 14�g� and 15�g�, the pre-
dicted color shifts due to misregistration are rather large for
this colorant pair in this halftone configuration.

For our experiment, we generated targets with combina-
tions of yellow �Y� and black �K� colorants, where the area
coverages for the two colorants ranged from approximately
0.3 through 0.8. Each target was composed of multiple
patches. The colorant area coverages for the two colorants
were constant over the patches in a target. The individual Y
and K separations in a patch were halftoned using the cor-
responding screens for the digital conventional geometry
and a different interseparation misregistration was deliber-
ately introduced in each of the patches, except one. These
deliberate misregistrations covered the values allowed by
the device addressability. In addition, to allow an estima-
tion of the uncontrolled �nondeliberate� interseparation mis-
registration as a function of spatial location, we included on
each printed page a grid of fiducial markers.

39

From the printed targets, average color values were mea-
sured for each patch. The interseparation misregistration for
each patch was also estimated by adding together the de-
liberate misregistration introduced in the target and the es-
timate of the uncontrolled misregistration in the printer,
where the latter was obtained from the fiducial markers
using the method of Ref. 39. Predictions of average color
were made for each patch using the simulation framework
of Fig. 9 with the estimated interseparation misregistration
for the patch and the corresponding colorant coverage val-
ues. Color differences were then computed between each of
the patches in a target and the first patch in the target, for
both the measured and the predicted values. Figure 16 com-
pares these measured versus predicted color shifts for the
YK colorant combination �which exhibited the most sensi-
tivity to misregistration�.

From the plots, several observations can be made. First,
on an absolute basis, the agreement between the predictions
and the measured values is rather poor. As mentioned ear-
lier, this is due to physical effects that our simple model
ignores. On the other hand, we observe that the relative
shapes of the plots for the predictions and the measure-

ments are in general agreement. This indicates that the pro-
posed methodology is still useful in halftone design, where
often only the relative amounts of errors are of interest.

Specifically, the plots of Fig. 16�c� demonstrate rather
poor agreement between the simulations and experiments.
This is because for an area coverage of 0.5, for the ideal
square dot shapes, these two halftone configurations are
theoretically misregistration invariant. They correspond ex-
actly to the configuration shown in Fig. 7 and discussed in
Sec. 4.3. In practice, however, by examining the prints un-
der a microscope, we observed that in this case, the change
in misregistration caused a significant change in the shape
and sizes of the dots of the separations �possibly due to
xerographic development interactions�.

7.7 Three-Colorant Combinations

For combinations having more than two colorants, a
graphical presentation of the color misregistration sensitiv-
ity becomes infeasible due to the large number of variables
�which cannot be readily represented as 2D or 3D perspec-
tive plots�. We therefore considered two specific questions
of interest, for three-colorant CMK combinations. First, we
consider equi-colorant-area configurations ��k1

=�k2
=�k3

�
and evaluate the change in color caused by a half period
displacement in each of the separations, which transforms
the microstructure from the clear-centered rosette to the
dot-centered rosette �As shown in Sec. 4.4, smaller dis-
placements may also produce the same microstructure�.
Figure 17 illustrates specific instances of these configura-
tions for our digital conventional CMK screens.

Figure 18�a� shows a plot of the magnitude of color shift
between these two extreme rosettes as a function of the
fractional area for the three colorants. For the purpose of
comparison, we also show in Fig. 18�b� the corresponding
plot obtained for the case of conventional CMK analog

screens that was previously investigated by Daels et al.
19

�Conventional screens require 
 measurement aperture. Be-
cause this is impossible to realize in simulations, we choose
the regions corresponding to the images shown in Fig. 5 as
the unit cell of the overlay, which is almost periodic within
the overall image�. Recall that the two rosettes for this case
were shown earlier in Fig. 5. A comparison of Figs. 18�a�
and 18�b� show that with respect to misregistration-induced
color shifts, digital CMK screens surprisingly behave quite
differently than the conventional analog screens they are
designed to approximate. Specifically, the conventional
analog configuration shows a unimodal behavior with
variation in colorant area coverage, whereas multiple

Clear-centered rosette Dot-centered rosette

( a ) ( b )

Fig. 17 Rosettes in digital conventional CMK halftone screens.
�Color online only.�
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maxima and minima are observed for the digital screens.
The maximum color shift for the two cases �across the
range of colorant coverages� are also quite different with
the maximal color shift for the digital configuration �2.5
�E

ab
* units� being significantly lower than the maximal

color shift for the analog conventional �6.2 �E
ab
* units�.

Next, we tested the conjecture whether the two extremes
of clear-centered and dot-centered rosettes for equal colo-
rant configurations represent the worst case scenarios. Our
simulations indicate that these do not in fact represent the
situation with largest color shifts; it is possible to obtain
color shifts around 7 �E

ab
* units for the conventional and

5.3 �E
ab
* units for the digital conventional configurations

between a perfectly registered and a misregistered compos-
ite CMK halftone image �These corresponded to �1=0.55,
�2=0.63, �4=0.59 for the conventional and �1=0.09, �2

=0.53, �4=0.89 for the digital conventional C �k=1�, M

�k=2�, K �k=4� screen configurations�.

8 Discussion

In this work, we characterized the sensitivity of clustered-
dot color halftones to interseparation misregistration using
a simple representation that combines a periodic lattice rep-
resentation for individual halftones with an overlay-based
Neugebauer model. Although the representation allowed us
to characterize misregistration sensitivity as a function of
several factors, it ignores several additional physical effects
that come into play in practical printing systems:

1. Actual halftone dots in printing systems do not dis-
play a “hard profile” corresponding to the on/off
states. Instead, actual dots show variation in colorant
density particularly close to the edges. More sophis-
ticated models �e.g., Ref. 40� can incorporate these
effects, but these models tend to be much more com-
putation intensive. Our simpler model allows us to
more readily explore the parameter space that influ-
ences misregistration-induced color shifts.

2. In some printing systems, intercolorant suppression
may be encountered.

6,41
For instance, within an offset

printing process, spatial positions on paper that are
covered with wet ink arrayed in a halftone pattern can
be less efficient in trapping ink than dry locations on
paper. Thus, the presence of a first halftone image
separation modulates, or suppresses, a second half-
tone image separation. Analogous suppression occurs
in electrophotographic processes in steps such as de-
velopment and transfer. This suppression phenom-
enon is not considered explicitly in our work. How-
ever, we note that the Neugebauer primary
reflectances are measured from prints that also incor-
porate this suppression ensuring that it is accounted
for to a first-order approximation.

3. As described in Sec. 4.2, nonsingular halftone con-
figurations are insensitive to interseparation misregis-
tration. With this motivation, one might wish to
search for a nonsingular lattice configuration for the
colorants. Although this may be feasible for an ana-
log printing device, addressable device locations of a
digital printer are confined to a rectilinear grid and
the singularity condition is always satisfied for any
two periodicity lattices. Thus, digital clustered-dot
color halftones are typically sensitive to intersepara-
tion misregistration.

4. In Sec. 4.3, we illustrated that misregistration invari-
ance may be obtained for specific spot functions. The
practical significance of this result is limited by the
fact that the spot function conditions cannot be uni-
versally met for a halftone screen when arbitrary gray
levels are considered. However, the result may be
useful in the design of tints and gradations of tints,
where the use of a threshold halftone screen function
is not mandated.

5. Our computation of the colorant overlap areas as-
sumes a “measurement aperture” that corresponds to
a unit cell of the intersection lattice of the colorant
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Fig. 18 Amount of color change �in �E
ab
* units� between clear-centered and dot-centered rosettes of

C �k=1�, M �k=2�, and K �k=4� halftones when all separations have equal fractional area coverage.
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lattices involved �or an integer multiple thereof�. The
size of this unit cell is not constrained in our analysis.
In practice, however, the aperture size of a color mea-
surement device is finite. If the size of a unit cell of
the aforementioned intersection lattice is large in
comparison to the measurement aperture, practically
one may observe registration sensitivity for configu-
rations that are insensitive under the current analysis.
However, these configurations would also typically
demonstrate perceptible local variations in halftone
color even with perfect interseparation misregistra-
tion.

6. Throughout this paper, interseparation misregistration
is assumed to be a constant displacement of a sepa-
ration with respect to another that does not vary spa-
tially. In practice, however, there might be spatial
variations in misregistration within a separation. In
addition, there might also be small angular misregis-

tration, which might lead to color moiré. These types
of misregistrations are beyond the scope of this paper
and not considered in our analysis.

7. We noted in our simulation results in Sec. 7.1 that the
misregistration-induced color shifts are reduced as
the optical dot gain increases. It is known that low
frequency halftone screens suffer less from optical
dot gain than high frequency halftone screens.

6

Therefore, one may expect that the low frequency
halftone screens exhibit more sensitivity to misregis-
tration than the high frequency halftone screens.
However, at the same time, because the periods of the
low frequency halftones are larger than the periods of
the high frequency halftones, the worst case misreg-
istration displacement for the former are larger in
magnitude than the worst case misregistration dis-
placements for the latter. These worst case displace-
ments may not actually be attained in practical sys-
tems. Table 4 shows examples of maximum expected
misregistration amounts of some printing technolo-
gies, circa 1995.

42
Current technologies for xero-

graphic printing can further confine registration er-
rors around the 40 to 50-�m range, which can still
yield relatively large amounts of color shifts as
shown in Figs. 15�h� to 15�n�.

8.1 A Misregistration Sensitivity Metric for
Clustered-Dot Halftone Geometries

The goal of halftone screen design is to ensure the printed
image does not exhibit any objectionable color moiré and
color sensitivity to interseparation misregistration and
achieves a large color gamut while keeping the parameters
such as lattice periodicities within the specifications. Some
configurations, such as dot-off-dot halftones, may not ex-
hibit any color moiré and offer larger gamut than other

Table 5 Average computation time required to compute Neuge-
bauer primary fractional areas by using pixel-counting and proposed
method. A 2.8-GHz Intel Pentium 4 PC system with 2 GBytes of
main memory running on Microsoft Windows XP was used for timing
simulations in MATLAB 7.0.1.

Pixel-Count Method Algebraic Method

�1 �2 tavg �sec� �E
ab
* tavg �sec� �E

ab
*

0.4 0.4 5.88 1.74 0.22 1.63

0.3 0.3 5.88 0.35 0.13 0.46

0.4 0.3 5.88 0.69 0.33 0.60

Table 4 Maximum misregistration for some printing technologies �see Ref. 42� �lpi�lines per inch�.

Method of Printing Substrate Frequency �lpi� Max. Misregistration ��m�

Sheet-fed offset Gloss coated 150 80

Sheet-fed offset Uncoated 150 80

Web-fed offset Gloss coated 150 100

Web-fed offset Uncoated commercial 133 130

Web-fed offset Newsprint 100 150

Flexography Coated 133 150

Flexography Newsprint 100 200

Flexography Kraft �corrugated, other� 65 250

Screen printing �wet-on-wet� Fabric any 0

Screen printing �dried� Paper, fabric, other 100 150

Gravure Gloss coated 150 80

Oztan, Sharma, and Loce: Misregistration sensitivity in clustered-dot color halftones
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configurations, such as rotated halftone screens; however,
these can be extremely sensitive to interseparation
misregistration.

35
Thus, despite their limitations, halftone

periodicities that are less sensitive to interseparation mis-
registration are preferable and commonly used in practice.
Using computer-aided design software, it is possible to find
configurations subject to certain frequency, gamut, and
moiré constraints.

43
In addition, if available, a misregistra-

tion sensitivity constraint could also play a significant role
in selecting color halftone configurations, which satisfy the
aforementioned requirements. For this purpose, we suggest
a readily computable metric for the color misregistration
sensitivity of an overlay of two-colorant halftone separa-
tions based on their geometry alone.

Equation �29� for the spatial domain computation of area
coverages of colorant combinations averages the areas of
every possible spot intersection within Uk�c�. As the number

of distinct terms contributing to this averaging increases,
we expect that fractional areas �thus, average halftone
color� exhibit less sensitivity to interseparation misregistra-
tion. Thus, for a two-colorant halftone overlay, the number
of possible spot overlaps contributing to the averaging may
be thought of as a simple metric for the misregistration
sensitivity. This number is bounded by the pairwise dis-
placements of the halftone spots within Uk�c�. Consider an

overlay of two halftone separations with lattices �k1
and

�k2
. As Eq. �29� suggests, the number of distinct terms

included in the averaging is equal to the number of ele-
ments of the sum lattice �k1

+�k2
in Uk1k2

. Let U�k1
+�k2

represent a unit cell of the lattice �k1
+�k2

. We define a

metric �k1k2
indicating denseness of U�k1

+�k2

in Uk1k2
as the

total number of unit cells U�k1
+�k2

of the sum lattice that are

needed to tile a unit cell Uk1k2
of the intersection lattice. The

metric �k1k2
can be computed as the ratio between the areas

of Uk1k2
and U�k1

+�k2

and is referred to as the index of

�k1
+�k2

in �k1
��k2

.
28

The quantitative amount of misregistration-induced
color shift is not determined by the geometry alone and
depends, among other factors, on the spectral characteris-
tics of the colorants, shapes of the halftone spots, and the
interseparation misregistration amounts. Thus, we cannot
expect the metric � to directly indicate the amount of color
shift. Nevertheless, for a given colorant pair, this metric can
be expected to be related to the maximum achievable color
shift for the corresponding halftone geometry. Table 3
shows the maximum achievable color shift and the metric �
for the overlay of C and M halftone screens in different
halftone geometries. One can see that the metric offers
good correlation with the maximum color shift for the ge-
ometry. The dot-on-dot halftone configuration �row 1� ex-
hibits the most sensitivity to misregistration and has the
lowest value of �. In general, the configurations with
smaller values for the maximum color shift have higher
values of �, maintaining a monotonic relation with one ex-
ception.

8.2 Computational Considerations

In Sec. 5.2, we proposed an approximation that allows ana-
lytic computation of colorant overlap areas with the objec-

tive of reducing computations. We next quantify the com-
putational advantage and concurrently evaluate the
accuracy of the approximation. Table 5 indicates the aver-
age computation time required to calculate the Neugebauer
primary areas for a two-colorant digital conventional CM
halftone configuration for the pixel-counting and analytic
computation methods. For the pixel-counting method, we
set the unit cell size of the intersection lattice to 1280
�1280 pixels to reduce the pixelation effects. To evaluate
the performance of the analytic computation method with
different spot functions, we consider all possible scenarios:
square-square, circle-circle, and square-circle spot intersec-
tions and these results for these scenarios are listed in the
respective order in the table.

It can be seen that analytic computation significantly
reduces the computation time compared to the pixel-
counting technique with a good approximation to the
amount of color shift. This computational advantage is par-
ticularly useful in simulations, which require long compu-
tation times. However, pixel-counting technique is particu-
larly useful to evaluate the misregistration-induced color
shifts in arbitrary lattice periodicity configurations such as
uniform rosette halftones

44
or frequency vector sharing

methods, where nonorthogonal halftone geometries are em-
ployed.

9 Conclusion

In this paper, we examined interseparation misregistration-
induced color shifts in periodic clustered-dot color half-
tones. Thorough analysis of the problem requires under-
standing of both spectral and spatial interactions between
the colorant separations of the printed image. We present a
mathematical characterization of the problem that reveals
scenarios under which color invariance to misregistration
can be achieved depending on the colorant spectra, separa-
tion periodicities, halftone spot functions, and displacement
amounts. Specifically, our analysis revealed conditions on
halftone spot shapes and misregistration amounts under
which invariance can be achieved, in spite of having colo-
rant spectra and individual separation halftone periodicities
that would otherwise indicate sensitivity. For simulations,
we presented a computationally efficient hybrid analytical-
numerical framework that allows us to obtain quantitative
estimates of color shifts due to misregistration as a function
of spectral and spatial characteristics of the separations.
Our experimental results indicate that several physical ef-
fects that are not included within our model can have a
significant influence on the color shifts due to intersepara-
tion misregistration. As a result, the model’s predictions are
not quantitatively accurate though they are in qualitative
agreement with experimental data when the predicted
variations are large enough to avoid masking by the other
factors.

Appendix A: Fourier Transform of Halftone
Overlay hk„c…„x…

The convolution of two functions H1�u� and H2�u� can be

written in integral form as
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�H1 * H2��u� = H1�u1�H2�u − u1�du1

=  H1�u1�H2�u2���u − �u1 + u2��du1du2.

�36�

Similarly, convolution of K functions can be computed as

�H1 * ¯ * HK��u� = ¯ H1�u1� . . . HK�uK��	u − �
k=1

K

uk
du1 . . . duK. �37�

Equation �12� can be written using the individual colorant halftone separation model given in Eq. �13� as

Hk�c��u� = ¯ H
k1

�dk1
��uk1

� . . . H
km

�dkm
��ukm

��	u − �
k�k�c�

uk
duk1
. . . dukm

= ¯ �
k�k�c�

	 1

�Vk�
Sk�uk�exp�− 2�jdk

Tuk��
nk

��uk − Wknk�
�	u − �
l�k�c�

ul
duk1
. . . dukm

= �
k�k�c�

	 1

�Vk��nk

Sk�Wknk�exp�− 2�jdk
TWknk�
�	u − �

l�k�c�
Wlnl
 = �

nk1

¯ �
nkm

�
k�k�c�

	 1

�Vk�
Sk�Wknk�

�exp�− 2�jdk
TWknk�
�	u − �

l�k�c�
Wlnl
 .

Appendix B: Invariant Misregistrations for K-Colorant Configuration

Consider the summation in Eq. �16� for the scenario where k�c�=k1k2 . . .km. Denoting

Sk�c� = ���u1,u2, . . . ,um� � �
k1

* � �
k2

* � ¯ � �
km

* ��
l

ul = 0� , �38�

we can rewrite Eq. �16� as

�k�c� =
1

�k�k�c� �Vk�
�

�u1,. . .,um��Sk�c�

Sk1
�u1�Sk2

�u2� . . . Skm
�um� � exp�− 2�j�dk1

T u1 + dk2

T u2 + ¯ + dkm

T um�� . �39�

It follows that for displacements for which the term

dk1

T u1 + dk2

T u2 + ¯ + dkm

T um �40�

is integer-valued, the exponential becomes unity, which is
identical to the perfectly registered case. Thus, dk�c�

= �dk1
, . . . ,dkm

� is an invariant displacement for the frac-

tional area �k�c� if the following condition holds

∀�u1,u2, . . . ,um� � �
k1

* � �
k2

* � ¯ � �
km

* ,

� �
l

ul = 0,

�
l

dkl
ul � Z . �41�

Next, we show that �41� is equivalent to

�dkj
− dki

�u j � Z, ∀ u j � �
kj

* � �
ki

* , �42�

for all pairs i� j in �1, . . . ,m�. To show that �41� implies

�42�, we rewrite �l=1
m ul=0 as ui=−� j=1,j�i

m u j and substitute
in �41� to obtain

�
j=1
j�i

m

�dkj
− dki

�Tu j � Z, ∀ �u j� j�i, � u j � �
kj

* ,

and �
j�i

u j � �
ki

* . �43�

Setting u j =0 for all j=1, . . . ,m, j� i , l, we see that �43�
implies �dkl

−dki
�Tu j �Z, for all ul��

kl

* ��
ki

*. This estab-

lishes that �41� implies �42�. To show �42� implies �41�, we
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note that using Lemma 1 from Appendix C, any
�u1 ,u2 , . . . ,um��Sk�c� can be decomposed into the form

ui=� j�iui
j, i=1, . . . ,m, j=1, . . . ,m, j� i such that ui

j

��
ki

* ��
kj

* and ui
j =−u j

i �Note that when Vi
−1V j is a matrix

of rational numbers, we can assume without loss of gener-
ality that �i and � j represent integer lattices�. Using this
expression, we can write �40� as

� dki

T ui = dk1

T 	�
j�1

u1
j
 + dk2

T 	�
j�2

u2
j
 + ¯ + dkm

T 	�
j�m

um
j 


= �
i=1

m−1

�
j=i+1

m

�dki
− dkj

�Tui
j . �44�

Using the definition of the reciprocal lattice, if dki
−dkj

� ��
ki

* ��
kj

* �*=�ki
+�kj

for all colorant pairs ki�k j in

k�c�, then �dki
−dkj

�Tui
j is integer-valued. This establishes

that �42� implies �41�. Therefore, dk�c�= �dk1
, . . . ,dkm

� is an

invariant misregistration for the fractional area �k�c� if

dki
− dkj

� �ki
+ �kj

for all pairs ki � k j in �k1, . . . ,km� .

�45�

The displacement misregistrations for which the com-
plete set of areas ��k�c��c are invariant, define the invariant

misregistrations for the general K colorant case. From our
analysis for a single colorant pair in Sec. 4.4, the two-
colorant overlap area �ij is invariant if displacement mis-
registrations satisfy the condition di−d j ��i+� j. Thus,
this condition must hold for each colorant pair �i , j� to en-

sure that the corresponding colorant overlap areas are in-
variant. We demonstrated above that these sets of condi-
tions on the pairwise displacements are in fact sufficient to
ensure invariance of the fractional area �k�c� for any colo-

rant combination k�c�. Thus, we see that misregistrations

for which any combination of colorants is guaranteed to be
invariant are characterized by

di − d j � �i + � j for all pairs i � j in �1, . . . ,K� . �46�

Appendix C: An Antisymmetric Decomposition

Lemma 1 Suppose �1 ,�2 , . . . ,�m are integer lattices, that
is, �i�Z2, i=1, . . . ,m, and �u1 ,u2 , . . . ,um���1��2

� ¯ ��m satisfy �ul=0. Then, there exists ui
j, i

=1, . . . ,m, j=1, . . . ,m, j� i such that

1. ui
j
��i�� j

2. ui=� j=1
j�i

m
ui

j

3. ui
j =−u j

i.

Proof We shall establish this result by using induction
on m.

First consider the case m=2. We have u1��1, u2��2,
and u1+u2=0. It follows that u1=−u2. If we set u1

2=u1 and
u2

1=u2, then u1
2
��1��2 and u2

1
��2��1, and u1

2=−u2
1.

Thus, the result holds for m=2.

Next assuming the lemma holds for m� �l−1�, we con-

sider the case m= l. We have �i=1
l ui=0 and ui��i for i

�1, . . . , l. Rewriting the above equation as

ul = − �
i=1

�l−1�

ui, �47�

we observe that the left-hand side �LHS� lies in �l and the

right-hand side �RHS� lies in �
i=1
�l−1�

�i. Thus, ul

��l� ��
i=1
�l−1�

�i�=�
i=1
�l−1���l��i�.

The last equality above follows from the distributivity of
lattice intersection over summation for integer lattices. This
distributivity follows from the distributivity of the least
common right multiple �lcrm� over the greatest common
left divisor �gcld� for integer matrices and the fact that, for
integer lattices the basis matrix for the intersection lattice
�i�� j is V�i��j

=lcrm�Vi ,V j� and the basis matrix for the

summation lattice �i+� j is V�i+�j
=gcld�Vi ,V j� �see Ref.

27, pp. 35–38�.45

Now, because ul��
i=1
�l−1���l��i�, there exists ul

j, j

=1, . . . , �l−1�, such that ul
j
��l�� j and ul=�

j=1
�l−1�

ul
j. For

i=1, . . . , �l−1�, define wi=ui+ul
i. Then, wi��i, for all i

=1, . . . , l and

�
i=1

�l−1�

wi = �
i=1

�l−1�

ui + �
i=1

�l−1�

ul
i

=�
i=1

l

ui = 0 .

Thus, by the induction hypothesis there exists wi
j, i

=1, . . . , �l−1�, j=1, . . . , �l−1�, j� i such that wi
j
��i�� j,

wi=�
j=1,j�i

�l−1�
wi

j, and wi
j =−w j

i. Define

ui
j = � wi

j for i = 1, . . . ,�l − 1�, j = 1, . . . ,�l − 1�, j � i ,

− ul
i for j = l, i = 1, . . . ,�l − 1� .

�48�

Then, u j
i
��i�� j and � j=1,j�i

l ui
j =ui. The latter equation

holds trivially for i= l. For i� �l−1�, LHS=�
j=1,j�i

�l−1�
wi

j −ul
i

=wi−ul
i=ui �from the definition of wi�. Finally, we can

readily see that ui
j =−u j

i, i=1, . . . , l, j=1, . . . , l, j� i. This
completes the induction step and the proof.

Appendix D: Computation of Fractional Area �k„c…

in Spatial Domain

Consider the overlay of the halftone screens that constitutes
k�c�. Assume that �k�c�=�k�k�c��k is a 2D lattice, whose

periodicity is given by Vk�c� and unit cell by Uk�c�. First, we

consider the representation of a single separation halftone
screen in Eq. �3� and express this in alternate form as
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hk
�dk��x� = s̃k�x − dk� * 	�

nk

��x − Vk�c�nk�
 , �49�

where the term s̃k�x−dk� includes repetitions of the half-

tone spot function of the k’th separation in Uk�c� and can be

written as

s̃k�x − dk� = sk�x − dk� * 	 �
xk��k�Uk�c�

��x − xk�
 . �50�

Using this convention, the Fourier transform of h
k

�dk��x� can

be written as

Hk
�dk��u� = Sk�u� exp�− 2�jdk

Tu�

�	 �
xk��k�Uk�c�

exp�− 2�jxk
Tu�


�	 1

�Uk�c��
�
nk

��u − Wk�c�nk�
 , �51�

where Wk�c� is the basis matrix for the lattice �
k�c�
* . Using

this expression, Eq. �16� can be rewritten as

�k�c� =
1

�Uk�c��
m �

nk1
,. . .,nkm

	 �
k�k�c�

Sk�Wk�c�nk� exp�− 2�jdk
TWk�c�nk�	 �

xk��k�Uk�c�

exp�− 2�jxk
TWk�c�nk�
��nk1

+ ¯ + nkm
�
 . �52�

The set of indices satisfying nk1
+nk2

+ ¯ +nkm
=0 can equivalently be defined by the condition nk1

=−�nk2
+ ¯ +nkm

�. Thus,

the summation in Eq. �52� can be written as

�k�c� =
1

�Uk�c��
m �

�xk � �k � Uk�c��k�k�c�

�
nk2

,. . .,nkm

Sk1
�− Wk�c��nk2

+ ¯ + nkm
��Sk2

�Wk�c�nk2
� . . . Skm

�Wk�c�nkm
�

�exp�− 2�j��dk2
+ xk2

− dk1
− xk1

�TWk�c�nk2
+ ¯ + �dkm

+ xkm
− dk1

− xk1
�TWk�c�nkm

��

= �
�xk � �k � Uk�c��k�k�c�

�
k�c�
�xk1

,. . .,xkm
�
, �53�

where

�
k�c�
�xk1

,. . .,xkm
�
=

1

�Uk�c��
m  Sk1

�uk1
� exp�− 2�j�dk1

+ xk1
�Tuk1

�	Sk2
�uk2

� exp�− 2�j�dk2
+ xk2

�Tuk2
��

nk2

��uk2
− Wk�c�nk2

�
 ¯

	Skm
�ukm

� exp�− 2�j�dkm
+ xkm

�Tukm
��

nkm

��ukm
− Wk�c�nkm

�
 ��uk1
+ uk2

+ ¯ + ukm
�duk1

. �54�

Following Eq. �37�, Eq. �54� can be modified such that it represents the value of a convolution integral at u=0 as

�
k�c�
�xk1

,. . .,xkm
�
=

1

�Uk�c��
m

Sk1
�u� exp�− 2�j�dk1

+ xk1
�Tu� * �Sk2

�u� exp�− 2�j�dk2
+ xk2

�Tu�

��
nk2

��u − Wk�c�nk2
�� * ¯ � * 	Skm

�u� exp�− 2�j�dkm
+ xkm

�Tu��
nkm

��u − Wk�c�nkm
�
�

u=0

.

The value of the convolution integral at u=0 can be written as the spatial average of the inverse Fourier transform of the
function as

�
k�c�
�xk1

,. . .,xkm
�
=

1

�Uk�c��
�

nk2
,. . .,nkm

 sk1
�� − dk1

− xk1
� �

k�k�c�\�k1�
sk�� − dk − xk − Vk�c�nk�d� .

If all displacement vectors are constrained to the unit cells of �ki
+�kj

, then it can be shown that these multiplications are

zero unless the indices of the summation nk2
, . . . ,nkm

take values from the set �−1,0 ,1�. Similar to Eq. �37�, this function is

modified such that it represents the value of a function at x=0 as

Oztan, Sharma, and Loce: Misregistration sensitivity in clustered-dot color halftones

Journal of Electronic Imaging Apr–Jun 2008/Vol. 17(2)023004-27



�
k�c�
�xk1

,. . .,xkm
�
=

1

�Uk�c��
� �

nk2
,. . .,nkm

 sk1
�� − dk1

− xk1
� �

k�k�c�\�k1�
sk�� − dk − xk − Vk�c�nk − x�d��

x=0

=
1

�Uk�c��� �
nk2

,. . .,nkm

sk1
�x − dk1

− xk1
� * 	 �

k�k�c�\�k1�
sk�− x − dk − xk − Vk�c�nk�
�

x=0

.

Then, �k�c� can be computed following Eq. �53� as

�k�c� =
1

�Uk�c��� �
�xk � �k � Uk�c��k�k�c�

�
nk2

,. . .,nkm

sk1
�x − dk1

− xk1
� * 	 �

l�k�c�\�k1�
sl�− x − dl − xl − Vk�c�nl�
�

x=0

.

This equation can be equivalently written as that

�k�c� =
1

�Uk�c��� �
�xk��k�Uk�c��

k�k�c� �
nk2

,. . .,nkm

sk1
�x − dk1

� * 	 �
l�k�c�\�k1�

sl�− x − dl − �xl − xk1
� − Vk�c�nl�
�

x=0

,

=
1

�Uk�c���� �
�xk � ��k1

+ �k� � Uk�c��k�k�c�\�k1�
� �

nk2
,. . .,nkm

sk1
�x − dk1

� * 	 �
l�k�c�\�k1�

sl�− x − dl − xl − Vk�c�nl�
���
x=0

.

Appendix E: List of Symbols
K � Number of colorant separations in the

contone/halftone image
k � Index of the k’th colorant separation of

the contone/halftone image
x � Vector of 2D spatial coordinates x

= �x ,y�T

hk�x� � Halftone separation of the kth colorant
separation of the contone image

�k � Periodicity lattice for the k’th halftone
separation

Vk � Basis matrix for the lattice �k

nk � Coordinate index for point Vknk in the
lattice �k

Uk � Unit cell of the lattice �k

sk�x� � Halftone spot function of the k’th half-
tone separation

�k � Fractional area covered by the k’th half-
tone separation

dk � Displacement misregistration of the k’th
halftone separation

� � Optical wavelength
� � Yule-Nielsen correction factor
c � K-bit binary index string c1¯cK repre-

senting a Neugebauer primary, where
the binary value ck indicates presence/
absence of the k’th colorant in the Neu-
gebauer primary

Rc��� � Reflective spectrum of the Neugebauer
primary c

ac � Fractional area covered by the Neuge-
bauer primary c

k�c� � k1¯km string of colorant indices for
which ckl

is non-zero

hk�c��x� � Halftone overlay obtained by the super-
position of the halftone separations that
constitute k�c�

�k�c� � Periodicity lattice for the halftone over-
lay hk�c��x�

Vk�c� � Basis matrix for the lattice �k�c�

Uk�c� � Unit cell of the lattice �k�c�

�k�c� � Fractional area covered by the overlay
of the colorants in k�c�

u � Vector of 2D frequency coordinates u
= �u ,v�T

Hk�u� � Fourier transform of the halftone sepa-
ration hk�x�

�
k
* � Reciprocal lattice of the lattice �k

Wk � Basis matrix for the lattice �
k
*

Sk�u� � Fourier transform of the halftone spot
function sk�x�

Hk�c��u� � Fourier transform of the halftone over-
lay hk�c��x�
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