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Miss Distance Error Analysis of Exoatmospheric Interceptors

Hari B. Hablani∗ and David W. Pearson†
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A miss distance error analysis of exoatmospheric interceptors with liquid divert thrusters in endgame is pre-
sented. The analysis relates miss distance uncertainty to 1) infrared/electrooptic seeker noise, 2) seeker latencies
caused by image processing and motion compensation and integration to detect the target on the focal plane,
3) seeker scan angle measurement errors of gyro, 4) range error or time-to-go error, and 5) filtration of all these
errors through a Kalman filter for estimating the line-of-sight (LOS) rates. With the relationships developed, the
missile designer/analyst can predict a probable miss distance with the hardware parameters of the selected divert
thrusters and sensor suite, as well as software parameters of the selected guidance policy. The analyst can also
arrive at the LOS rate estimation accuracy requirements about the azimuth and elevation axes, to be achieved by
a tracking Kalman filter for specified miss distance statistics. The analysis provides insight and predicts reliably
the miss distances expected from Monte Carlo simulations and hardware-in-the-loop laboratory tests.

I. Introduction

M ISS distance error analysis of air missiles seems to be
well understood,1,2 but that of exoatmospheric interceptors

equipped with infrared sensors and liquid divert thrusters appears
to be lagging behind. To be sure, Refs. 3–6 provide a system en-
gineer design tools to arrive at hardware/software requirements for
exoatmospheric interceptors to meet a specific miss or hit accu-
racy without the use of an elaborate trajectory simulation. However,
these references do not specifically address unique features of exoat-
mospheric interceptors with liquid propulsion systems. This paper
attempts to fill this gap.

A brief review of the pertinent contributions of the past fol-
lows. Murtaugh and Criel7 considered proportional navigation with
a deadzone, and they related throttleable acceleration of the engine
with propellant weight and miss distance. Though insightful and
fundamental, divert thrusters of constant acceleration, seeker noise,
estimation errors, and inherent delays in the system are not con-
sidered. Salmon and Heine3 performed a tradeoff between missile
controllability and sensor noise by using reachable sets analysis.
However, they assumed accurate relative range measurements of
the target and, thus, ignored an important parameter, the time-to-go
error. More recently, Zarchan4 developed normalized miss distance
curves for exoatmospheric interceptors and modeling delays in guid-
ance and control system as a fifth-order binomial and accounted for
acceleration saturation. However, Ref. 4 is limited to proportional
navigation and is not applicable to divert thrusters of constant accel-
eration, with a threshold for commanded acceleration. Spencer and
Moore5 applied the covariance propagation technique for statistical
analysis of miss distance sensitivity of exoatmospheric interceptors.
However, Ref. 5, too, is not concerned with the pulsed proportional
navigation guidance. Lawrence6 conducted a miss distance error
analysis of exoatmospheric interceptor guidance. Though an ex-
cellent study pertinent to this paper, like Ref. 3, it does not cover
miss distance uncertainty arising from the time-to-go error, nor is it
concerned with the relationships between divert thrust, pulse width,
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line of sight (LOS) rate decrement by minimum impulse bit, and a
threshold for the commanded acceleration. The present study con-
siders all of the aspects of miss distance error analysis not covered
in Refs. 3–6.

The remainder of this paper comprises five sections. In Sec. II,
reasonable bounds are developed of LOS rate estimation accuracy
requirement for the parameters of the strategic interceptor at hand.
In Sec. III, analysis and estimates of uncertainty in miss distance
caused by LOS rate estimation error δω, time-to-go estimation error
δtgo, and closing velocity estimation error δVcl are presented. The
growth, if any, in the miss distance estimation error as the inter-
ceptor approaches the target is formulated and examined. Because
the LOS rate estimation error contributes significantly to the miss
distance uncertainty and because this error arises from the gyro and
electrooptic sensor measurements of azimuth and elevation angles
of the target relative to an inertial frame, the sources of this error
are identified, formularized, and elucidated in Sec. IV. Dependence
of the miss distance uncertainty on the estimation errors δω, δtgo,
and δVcl is illustrated and compared with Monte Carlo simulation
results in Sec. V. Section VI concludes the paper.

II. LOS Rate Estimation Accuracy Requirement
In Ref. 8, it is shown that an incremental velocity �V = adivτw in a

τw duration tk ≤ t ≤ tk + 1 will decrease the LOS rate by �ω given by

�ω ≈ adivτw

Vcltgo,k + 1
(1)

where adiv is the divert acceleration, Vcl is the closing velocity, tgo,k + 1

is the time-to-go at time t = tk + 1, and k denotes the kth sample.
Equation (1) reveals the required accuracy of the LOS rate esti-

mate to be provided by a Kalman filter to achieve a specified miss
distance. With each pulse of a 15 or 25 ms width near the clos-
est approach, the LOS rate decreases abruptly, and to minimize the
miss distance effectively, the LOS rate estimates must be able to
track the true LOS rate with small errors in the presence of seeker
latencies and noise and gyro and accelerometer measurement er-
rors. Lawrence6 developed an LOS rate accuracy requirement of
δω ≤ adiv/(2Vcl) which, for adiv = 30 m/s2 and Vcl = 7300 m/s, yields
δω ≤ 2 mrad/s. To check the adequacy of this requirement, consider
the following: For a miss distance requirement of 10 cm at tgo = 0.1s
(and, therefore, r = Vcltgo = 730 m), the relationship zero effort miss
(ZEM) = ωr tgo imposes an LOS rate as small as ω = 1.37 mrad/s.
Furthermore, if this is to be the residual rate after a 15-ms pulse from
the previous sample, tgo = 0.125 to 0.1 s, the LOS rate decrement
�ω then will be 0.5 mrad/s. In view of 1.37 mrad/s LOS rate and
0.5 mrad/s LOS rate decrement, the LOS rate estimation accuracy
requirement of δω ≤ 2 mrad/s is clearly inadequate. Instead, a re-
quirement of, for example, 0.1 µrad/s (100 µrad/s) appears more
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suitable. The requirement developed in Ref. 6 is lax because it ig-
nores discrete divert pulses, tgo error or range error, seeker latency,
and any other latencies. Also, in Ref. 6 it is assumed that the divert
remains on for the remaining tgo and produces a time-varying accel-
eration as required by the proportional navigation guidance policy,
instead of constant acceleration produced by a pulse.

III. Miss Distance Estimation Error Analysis
In a planar endgame, miss distance is given by ZEM = ωr tgo.

Hence, accuracy of the miss distance estimate is a function of the
accuracy of the estimates of ω, r, and tgo. In this section, we will ex-
amine how the estimation errors δω, δtgo, and δVcl influence a ZEM
estimate. Lawrence,6 in contrast, considers only δω in his miss dis-
tance error analysis. The LOS rate ω is estimated by a Kalman filter
by processing noisy LOS angle measurements from the seeker focal
plane with attitude measurements from a strapdown gyro. See Ref. 9
for a similar procedure for air missiles. The estimate of ω, denoted
ω̂, has an estimation error δω such that ω̂ = ω + δω. The estimation
accuracy of ω depends on, among other things, the accuracy of our
knowledge of tgo, which may not be high. Moreover, tgo may not
be estimated by the Kalman filter. Hence, the accuracy of the time-
to-go estimate is a function of in-flight target updates. Though the
proportional navigation guidance scheme has the appearance of not
requiring tgo for guidance, ω must still be estimated. Because this
estimation is to be performed by a Kalman filter and not by differ-
encing two successive LOS angle measurements, the Kalman filter
requires the current range estimate, or equivalently, the estimated
time-to-go t̂go, to transform the Cartesian state vector to a polar state
vector and vice versa and to calculate the tgo-dependent transition
matrix.8,10 Thus, the tgo estimation error δtgo influences ω̂ and δω.

Ineffective Time-to-Go
We now introduce an important parameter, tgo,ineff, that affects the

miss distance. It is the remaining time-to-go during which the LOS
rate estimation errors, the lags (or latencies) in processing seeker
electrooptic signals, the delay in transporting the LOS rate estimates
from the Kalman filter to the guidance module, the time-to-go error,
thruster delays, etc., are all so overwhelming that they render the
guidance system ineffective in decreasing the miss distance any fur-
ther, and therefore, the guidance is better turned off. The parameter
tgo,ineff pertains to the quantity rcritical introduced in Ref. 6, except
that rcritical therein is a function of the LOS rate uncertainty only
and ignores the other error sources just enumerated. The concept
of tgo,ineff is not new. While conducting finite time stability of pro-
portional navigation (singular at tgo = 0) using the circle criterion,
Gurfil et al.11 introduced a parameter called the shortest time-to-go
τ ∗ for which the guidance divergence might occur for a given flight
time and system parameters. Indeed, τ ∗ is the same as tgo,ineff. Sim-
ilarly, Shneydor12 analyzes stability of the guidance system in the
presence of delays by employing frozen range, Nyquist criterion,
and Popov criterion and relates tgo,ineff with the time delay.

Use of Refs. 4, 11, and 12 helps quantify the parameter tgo,ineff.
In Ref. 4, the lags in the guidance system are modeled as a time
constant TL comprising five TL/5 delays: TL/5 for the seeker, TL/5
for filtering noise in the measured LOS rate, and 3TL/5 for the
gyros, thrusters, and any other flight control delays. In Ref. 11, the
guidance and control system is modeled as a product of n first-order
systems in one example and a product of a first-order and a second-
order system in a different example. However, guidance, navigation,
and control operation of a real exoatmospheric interceptor with a
liquid propulsion system is far more complicated than the first- and
second-order transfer functions. The seeker and gyro operation of a
strategic interceptor to measure LOS angle is elaborated in Sec. IV,
and Table 1 presents a summary of relationships between the lag TL

and tgo,ineff based on the stability analyses in Refs. 4, 11, and 12. As
illustrated in Ref. 11, the frozen-range and Nyquist stability analyses
yield a shorter tgo,ineff than the Popov and circle criteria do. Nyquist
criterion shows that, as the number n of the first-order lags in the
complete closed-loop path increases from 2 to ∞ (sluggish closed
loop), keeping the total delay TL the same, the tgo,ineff increases
to the limit 0.64N TL , where N is navigation ratio. The ineffective

Table 1 According to stability analyses11,12 tgo,ineff and rineff

N = 4

Method tgo,ineff rineff tgo,ineff rineff

Frozen range and a 0.25N TL
a 0.25N VclTL TL VclTL

double-lag system
with each lag = TL/2

Nyquist criterion
Double-lag (n = 2) 0.25N TL 0.25N VclTL TL VclTL
Fourth-order lag 0.48N TL 0.48N VclTL 1.92TL 1.92VclTL

(n = 5), each lag
equal to TL/4

Sluggish guidance 0.64N TL 0.64N VclTL 2.55TL 2.55VclTL
and flight control
loop (n = ∞)

Popov and circle criteria N TL N VclTL 4TL 4VclTL

aTL = total lag in the system.

range, rgo,ineff = tgo,ineffVcl, increases correspondingly. For N = 4, the
tgo,ineff ranges from TL to 2.55TL . Popov stability analysis and circle
criterion predict a conservative limit, tgo,ineff = 4TL . The concept of
tgo,ineff is applied in the rest of the paper to predict miss distance for
given guidance and control parameters.

Miss Distance Uncertainty
The miss distance uncertainty δZEM is derived by taking variation

of ZEM = ωt2
goVcl,

δZEM = δωVclt
2
go + 2ωVcltgoδtgo + ωt2

goδVcl (2)

Our objective is to determine δZEM when tgo = tgo,ineff and its evo-
lution afterward. Suppose ω0 is the true or nominal LOS rate at
tgo = tgo,ineff and δω0 is its estimation error. To determine δω (t), re-
call that, on a near-collision course, the LOS rate ω is governed by
the classical equation of motion7

ω̇ ≈ (2/tgo)ω − adiv/r (3)

where miss distance is along the YL I axis, the relative range r is
along the xL I axis, and adiv is the divert acceleration along the yL I

axis.
We now take the variation of Eq. (3), with adiv = 0, and arrive at

δω̇ = (2/tgo)δω − 2ω
(
δtgo

/
t2
go

)
(4)

for which the initial conditions are as follows: At t = 0, tgo = tgo,ineff,

ω = ω0, δω = δω0, and ZEM = ω0Vclt2
go,ineff. Equation (4) is more

general than its counterpart Eq. (15) in Ref. 6, in that Eq. (4) includes
the δtgo error. Because ωt2

go = ω0t2
go,ineff, substitute the LOS rate ω(t)

from this integral in Eq. (4), and integrate the equation with the initial
conditions stated earlier. We then arrive at

δω(t) = (
t2
go,ineff

/
t2
go

)
δω0 − 2

(
ω0tgo,inefft

/
t3
go

)
δtgo (5)

where the instantaneous time-to-go is tgo = tgo,ineff − t and the closest
approach takes place when tgo = 0 and t = tgo,ineff. We now substitute
the solution δω(t), Eq. (5), in Eq. (2) and arrive at

δZEM(t) = δω0Vclt
2
go,ineff + 2ω0Vcltgo,ineffδtgo + ω0t2

go,ineff δVcl (6)

which, perhaps not surprisingly, is constant, equal to its initial value
at t = 0, just as the ZEM is constant, equal to its initial value
ZEMineff = ω0Vclt2

go,ineff at tgo = tgo,ineff and t = 0. The first term in
the right side of Eq. (6) is the same as the ZEM uncertainty, Eq. (22)
of Lawrence,6 caused by the LOS rate uncertainty; the remaining
two terms arise from the time-to-go estimation error and the closing
velocity estimation error.

Because estimating the inertial LOS rate from the seeker focal
plane measurement and gyro measurement of inertial attitude of
the focal plane is the principal purpose of the Kalman filter in a
guidance system, and because the LOS rate estimation error affects
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the miss distance profoundly, we next focus on 1) the LOS an-
gle measurement process of exoatmospheric interceptors scanning
the celestial sphere, 2) the errors in this measurement process, and
3) LOS rate estimation errors of the Kalman filter.

IV. LOS Rate Estimation Error
It will be shown in this section that the LOS rate estimation pro-

cess is far more complicated than the frequently used assumption in
a large number of papers that the measured and the true LOS rates
are related by a simple first-order transfer function.

LOS Angle Measurement Using a Scanning Seeker and a Gyro
We will first describe the process of measuring azimuth and ele-

vation angles of the target relative to an inertial frame and the associ-
ated noise characteristics. These inertial measurements, the azimuth
θz,m and the elevation θy,m, relative to a local inertial frame, are ob-
tained by combining the measurements from a seeker, which deter-
mines the coordinates of the target image on the focal plane with
respect to the focal plane center, and from a strapdown gyro, which
measures the focal plane orientation in the inertial frame.5,9 Figure 1
shows this process for the azimuth angle θz about the zL I axis. The
angle θz consists of θzb and θzs , where θzb is the attitude of the inter-
ceptor body measured by the gyro relative to an inertial frame and
θzs is the angle locating a target image on the focal plane measured
from the focal plane center along the yL I axis (actually, along the
interceptor body axis yb very nearly parallel to yL I ). Likewise, the el-
evation angle θy about the yL I axis consists of θyb, the pitch attitude,
and θys , equivalent to the location of the target image along the −zL I

axis (actually along a very nearly parallel −zb axis of the interceptor
body) measured from the focal plane center. Thus, elevation

θy = θyb + θys (7)

Fig. 1 LOS azimuth angle measurement with a seeker and a gyro (local
inertial frame, planar analysis).

Fig. 2 LOS angle measurement with a scanning seeker and an IMU; interceptor guidance architecture.

and azimuth

θz = θzb + θzs (8)

The focal plane angles θys and θzs are determined by a very com-
plex electrooptics process whose salient features are shown in Fig. 2.
If the endgame guidance sampling rate is f hertz (40 Hz, in this
study), the gyro may output the incremental attitude change of the
interceptor at 10 f (400-Hz) frequency but with some error and de-
lay. For example, a gyro may produce the following incremental
attitude change, �θ400, over a time period of 2.5 ms obtained by a
weighted average of nine 2000-Hz measurements of the interceptor
incremental angles about the axis in consideration:

�θ400 = �t2000(ωk − 1 + 2ωk − 2 + 3ωk − 3 + 4ωk − 4 + 5ωk − 5

+ 4ωk − 6 + 3ωk − 7 + 2ωk − 8 + ωk − 9)/5 (9)

where �t2000 = 0.5 ms. The nine 2000-Hz samples span a 4.5-ms
interval or nearly two 400-Hz sample intervals, and therefore, the
�θ400 gyro measurement has a delay of ∼2.5 ms. Though the in-
cremental angle is quantized, the quantization errors will not be
discussed here. Next, as described, in Ref. 13, the seeker may per-
form a scan motion to collect and integrate photons emitted by the
target at, for example, 100 f frequency. To compensate for the scan
motion, the seeker receives attitude measurements from the gyro
at 10 f frequency, one measurement per packet of 10 focal plane
images, and determines, after extensive electrooptic computations,
the centroid of the target image on the focal plane at the guidance
frequency of f hertz. The data flow in Fig. 2 delineates this process
of measuring the focal plane coordinates of the target image aided
by the gyro with a technique called motion compensation and in-
tegration. At the end of each f hertz sample interval (1/ f second,
25 ms in this work), the seeker arrives at the measurements θys and
θzs , which locates the target relative to the focal plane axes at the
start of that sample, after a delay of 1/ f second. This delay is in-
evitable because, to sense a dull target against a bright, infrared hot
sky background, the seeker must accumulate enough photons from
the target over a large number, for example, 100, of frames accu-
mulated in a 1/ f -second sample interval. The inertial LOS angles
θy and θz (both small, less than 1 deg) are then obtained by combin-
ing θys and θzs , respectively, with the gyro measurements θyb and
θzb, stored in a buffer and delayed by 1/ f -second sample period
to be in sync with the seeker measurements. Also, a delta-velocity
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feedforward scheme referenced in Fig. 2 compensates, in guidance,
for the aforementioned measurement delay of 1/ f second (Ref. 8).

Seeker Measurement Noise
The seeker measurements θys and θzs are actually corrupted with

a zero-mean white noise, denoted wα,skr, of variance σ 2
skr: θαs,m =

θαs + wα,skr, where wα,skr ∼ (0, σ 2
skr) and α = y, z. The noise arises

from optical diffraction and aberration in optics. The facile white
noise assumption is not in depth, however, because the determina-
tion of its standard deviation σskr is a daunting task, nor is the noise
exactly white. It depends on the extraordinarily complex electrooptic
process described earlier of seeker pixels at 100 f Hz operating fre-
quency, gyro measurements at 10 f frequency, motion compensation
and integration, optical phenomena of pixel filling and sweeping,
etc.13 All of these processes are beyond the scope of this paper, but
the seeker noise, as their fallout, will be illustrated.

Gyro Scan Errors
The seeker scan motion enhances the signal-to-noise ratio of the

focal plane measurements. Suppose the scan is rectilinear, a limit-
cycle motion effected by a reaction jet controller, and that the scan
rate (the limit-cycle rate) is constant, equal to ±ωs , reversing its
sign periodically at some low frequency consistent with the seeker
operation and the target radiance properties. Because of an effec-
tive one sample delay of 1/(10 f ) second in the gyro measurements
explained earlier, the measured scan rate at the time of scan rever-
sal, according to Eq. (9), differs somewhat from the true scan rate.
Therefore, the rate error exhibits pronounced spikes over a 2.5-ms
sample period, and the spike amplitudes may be as much as, but gen-
erally less than, ±2ωs . These rate error spikes, shown in Ref. 14,
cause a difference of no more than a bias of ±ωs�tgyro between the
actual scan angle and the measured scan angle. Here, �tgyro is the
gyro measurement sample period, equal to 2.5 ms in this study. More
specifically, this error has the form of a rectangular wave of varying
height, and the height depends on at which of the nine most recent
2000-Hz samples of the measured delta-scan angles the seeker re-
verses its scan direction and on attitude dynamics and control of
the interceptor. The scan error, denoted νscan, will not be mathemat-
ically modeled here but it is shown later. From the standpoint of
LOS rate estimation, a rectangular bias error in a scan angle esti-
mate is unimportant, but its sign change at each scan reversal causes
a deterministic step change in the LOS angle measurement error at
the scan frequency, which, in turn, causes a cyclic oscillation in the
LOS rate estimates from the Kalman filter.

In this study, the interceptor scans about the elevation y axis.
With the instantaneous gyro drift angle νdr and random walk νrw,
the measured y-attitude angle θyb,m about the elevation axis is
θyb,m = θyb + νy,dr + νy,rw + νscan. Combining the seeker measure-
ment θys,m = θys + wy,skr with the gyro measurement, the total mea-
sured LOS elevation angle θy,m is

θy,m = θyb,m + θys,m = θy + νscan + νy,dr + νy,rw + wy,skr (10)

The azimuth measurement equation does not have the scan angle
error and is given by

θz,m = θzb,m + θzs,m = θz + νz,dr + νz,rw + wy,skr (11)

Illustrations
Scan Error Noise

Consider a seeker with an ideal scan rate about the elevation axis
of ωs = ±34 mrad/s with a limit cycle period of 0.36 s. Assume
a reaction jet attitude controller with an instantaneous impulse to
change periodically the sign of the scan rate at an interval of 0.18 s.
The gyro exhibits a rate error for a 2.5-ms sample period only for
every scan reversal. Because the Kalman filter operates at 40 Hz
(25 ms), the filter is not exposed to the scan rate error directly,
but it encounters a bias angle error νscan in the measurement of the
scan angle (Fig. 3). This bias error alternates its sign; its magnitude
varies from scan to scan as explained earlier. The net change in the
bias scan angle error at the time of turnaround varies from 50 to

Fig. 3 Difference between measured and the true scan angles (40 Hz).

Fig. 4 True and one-sample delayed measured location of the target
on the focal plane: x coordinate.

80 µrad, as seen in Fig. 3. For a 40-Hz filter, a sudden change in
the bias error creates an effective input of 2–3.2 mrad/s (equal to
50–80 µrad/0.025 s) LOS rate measurement error.

Seeker Noise
The target image location on the seeker focal plane depends on

both the instantaneous scan angle of the focal plane and the inertial
location of the target. For simplicity, suppose the interceptor is on a
collision course; that is, the miss distance is zero. Then, the x compo-
nent of the true target image streak on a scanning focal plane and its
one-sample-delayed discrete measurement, both vs time, are shown
in Fig. 4 in arbitrary units. These results are obtained from a so-
phisticated code, developed over years, that simulates electro-optic
processes of the seeker and motion compensation and integration
of the target image using incremental attitude measurements from
a strapdown gyro, as explained earlier. The results in Fig. 4 are for
a gyro with zero drift and zero random walk. (The results with gyro
errors are shown in the next subsection.) The difference between the
true location of the target image at the start of a 40-Hz frame and its
measured location determined at the end of the same 40-Hz frame
for both axes of the focal plane is shown in Fig. 5. These errors are
generally within ±0.1 units, although once in a way they are far
outside when, during a turnaround, the target image does not cross
enough (two) pixels and the seeker software is then unable to locate
the target image on the focal plane. The focal plane measurement er-
rors in Fig. 5, transformed into the interceptor lateral axes, are what
were modeled earlier as white noise in the seeker measurements.



HABLANI AND PEARSON 287

Fig. 5 Seeker measurement error in centroiding the target image on
the xy focal plane.

Fig. 6 Seeker noise plus scan angle measurement error about elevation
axis and seeker noise about azimuth axis (gyro drift and random walk
zero).

Composite Seeker and Gyro Errors

The focal plane error transformed into the interceptor lateral axes
and combined with the bias scan angle error of gyros without drift
and random walk are shown in Fig. 6 for both azimuth and elevation
angles. Because of the additional scan error about the elevation axis,
the resultant elevation measurement error is biased and much larger
than the azimuth measurement error. Figure 7 shows the composite
elevation error until the closest approach at t = 4 s (tgo = 0) and com-
pares it with the gyro scan error illustrated earlier in Fig. 3. In Fig. 7,
the scan motion is terminated at t = 3.5 s because, by then, the target
image has bloomed and it covers several pixels on the focal plane.
We observe in Fig. 7 that the combined elevation measurement error
is approximately equal to the gyro scan error. In contrast, the azimuth
measurement error in Fig. 6 is essentially a white noise, generally
less than 20 µrad, with σskr ≈ 8 µrad. An estimate of the seeker rate
error in azimuth, then, is

√
2 × 8 µrad/0.025 s ≈ 0.5 mrad/s.

In these examples, the error parameters of the Litton LN-200
inertial measurement unit (IMU) are used. The IMU gyro’s drift
rate is 5 µrad/s and standard deviation σrwr of the gyro ran-
dom walk rate is 29 µrad/

√
s. For a guidance sample period of

25 ms, the random walk adds incrementally a measurement error
of

√
(σ 2

rwr × 0.025 s) = 4.6 µrad (1σ ). The meandering gyro ran-
dom walk with superimposed seeker azimuth error (seen in Fig. 6)
is shown in Fig. 8 for the same 4-s endgame scenario. From the
standpoint of motion compensation and integration (MCI) process

Table 2 Effective LOS rate error input to the Kalman filter (40 Hz)

Random walk
Scan rate error Seeker rate rate of IMU, Drift rate of

Parameter of IMU, mrad/s error, mrad/s mrad/s IMU, mrad/s

Elevation 2–3.2 0.5 0.2 0.005
Azimuth 0 0.5 0.2 0.005

Fig. 7 Composite elevation measurement error compared with scan
angle measurement error of the gyro.

Fig. 8 Composite measurement error of the seeker and the gyro in
azimuth, compared with the gyro random walk and drift.

for identifying the target image, only the incremental random walk,
4.6 µrad (1σ ), in any 25-ms period adds on to the seeker mea-
surement noise; however, this error is negligible compared to the
seeker’s own “white” electrooptic noise shown in Fig. 6 for az-
imuth. The random walk about the elevation axis similarly affects
the elevation error, shown in Fig. 7.

LOS Rate Error Input to a Kalman Filter
All earlier elucidated sources of LOS rate errors are collected

in Table 2: The LOS rate errors caused by the white electrooptic
noise, the seeker scan rate measurement error of the gyro about
the elevation axis, and the gyros’ drift rate and random walk rate.
These input rate errors enter the Kalman filter indirectly via iner-
tial LOS angle measurement by the seeker and the gyro. The LOS
rate error arising from random walk in a guidance sample period is√

[σ 2
rwr/(0.025 s)] = 0.18 mrad/s. However, as far as miss distance

is concerned, it is the LOS rate estimation error, not LOS rate input
error, that is of paramount importance. This is discussed next.
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Table 3 Miss distance for tgo,ineff = 0.05 and 0.1 s

LOS rate Time-to-go ZEMnom, cm ZEMnom + δZEM, cm
estimation error

Axis error, µrad/s δtgo, s TL = 0.05 s 2TL = 0.1 s TL = 0.05 s 2TL = 0.1 s

Elevation 200 0.005 1.5 5 2 7
Azimuth 100 1.5 5 2 5
RSS 2.1 7 2.8 8.6
Elevation 200 0.2 1.5 5 6 14
Azimuth 100 1.5 5 6 13.5
RSS 2.1 7 8.5 19.5

Fig. 9 Azimuth and elevation rate estimationn error of Kalman filter
(guidance inactive).

LOS Rate Estimation Errors
This error depends on the filtration of the input errors just dis-

cussed by a Kalman filter. This filtration is predicated on the LOS
angle dynamics, Eq. (3), and the process noise matrix that statisti-
cally embodies modeling errors. A frequency- or time-domain anal-
ysis of the estimation process in not our intention; we illustrate the
azimuth and elevation LOS rate estimation errors via simulation re-
sults in Fig. 9. Unlike the scenario of Figs. 7 and 8, the miss distance
for the scenario in Fig. 9 is nonzero but the guidance is turned off.
Hence, the true LOS rates, their estimates, and the estimation errors
diverge as tgo decreases. Compared with the input scan rate error
(Table 2) of 2–3.2 mrad/s in elevation, the elevation rate estimation
error in steady state is ∼0.2 mrad/s. This error is larger during the
Kalman filter transients near t = 0 and when the target image did
not form during a scan reversal. Near the closest approach at t = 5 s,
because the guidance is inactive, the target exits the field of view.
The steady-state azimuth rate estimation error is below 0.1 mrad/s.

V. Comparison of Analytical Miss Distance Predictions
with Monte Carlo Results

Figure 10 shows ZEMnom (nominal) and ZEMnom + δZEM when
the LOS rate at a given tgo,ineff (0.025–0.25 s) is 300 µrad/s,
equal to the LOS rate threshold, and δtgo error is 0.005 or 0.2 s.
Figure 10 shows the miss distances for the LOS rate estimation
errors δω0 = 0.05, 0.1, 0.2, and 0.25 mrad/s. Here δZEM is pre-
dicted by using Eq. (6) and ZEMnom at tgo,ineff is calculated from
ZEM = ωt2

goVcl. In statistical analyses, the miss distance uncertainty
δZEM would be equivalent to a 1σ standard deviation of the nominal
ZEM.

Because seeker processes impose one guidance sample lag and
because the flight computer delays transporting the LOS rate esti-
mate to the guidance module by an additional sample period, the
total lag is two guidance sample periods (TL = 0.05 s). According to

Fig. 10 Nominal plus 1σ miss distance estimation uncertainty vs
tgo,ineffective.

Table 1 then, tgo,ineff = TL -4TL = 0.05–0.20 s. Consequently, Fig. 10
considers tgo,ineff from 0.025 to 0.25 s. The δtgo error is a function
of the assets (ground-tracking radars, satellites, etc.) employed to
determine the in-flight target updates. Specifically, if the GPS satel-
lites are employed, δtgo = 0.005 s, and if a ground tracking radar
is used, then δtgo = 0.2 s. The guidance system suppresses the esti-
mated LOS rate in the neighborhood of its threshold, and as seen in
Fig. 9, the LOS rate estimation error will be about 0.1–0.2 mrad/s.
Accordingly, in Fig. 10, it is assumed that when tgo = tgo,ineff, the
true LOS rate is equal to the threshold, 300 µrad/s, and the LOS
rate estimation errors range from 0.05 to 0.25 mrad/s. The clos-
ing velocity Vcl is 7300 m/s and δVcl = 7.3 m/s, and therefore, its
contribution to δZEM is negligible. For all of these parameters,
Fig. 10 shows both ZEMnom and ZEMnom + δZEM vs tgo,ineff. The
two miss distances vary quadratically with tgo,ineff. For example, for
tgo,ineff = 2TL = 0.1 s (according to the Nyquist criterion, Table 1),
when the ground-tracking assets are used with δtgo = 0.2 s, the miss
distance corresponding to the elevation axis for δω = 0.2 mrad/s is
14 cm. Likewise, the miss distance corresponding to the azimuth
axis for δω = 0.1 mrad/s is 13.5 cm. The rss miss is then 19.5 cm.
These results, as well as those for δtgo = 0.005, are summarized in
Table 3. It is evident from these results that the predicted miss dis-
tances will be optimistic if δtgo error is ignored (∼8 cm for δtgo = 0
compared to ∼20 cm for δtgo = 0.25 s).

This study stemmed from the need to be able to predict by back-
of-the-envelope calculations reliable miss distances accounting for
all realistic error soruces. This need arises because building a huge,
comprehessive six-degree-of-freedom (6-DOF) simulation is a mul-
tiyear task and generating miss distances based on Monte Carlo
runs entails extraordinary efforts. Therefore, it is instructive to com-
pare the miss distances predicted by the two approaches. Figure 11
shows the rss miss distance vs a scalar factor q of the process noise
matrix of the Kalman filter. These results are based on a 6-DOF
end-to-end simulation. Two cases8 are considered in Fig. 11: 1) a
constant process noise matrix multiplied with a factor q and a con-
stant transition matrix and 2) both matrices varying with time as a
function of tgo. For both cases, the minimum miss distance is ∼17–
18 cm against the prediction of 19.5 cm from the simple analysis, a
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Fig. 11 Miss distance vs the process noise matrix coefficent q for
time-invariant and time-varying process noise matrix Q and transition
matrix Φ.

remarkable agreement in the two approaches indeed, despite that
the two approaches involve vastly different orders of labor.

VI. Conclusions
With use of the proceeding analysis, the expected miss distance

and its uncertainty can be calculated for the known bounds of seeker
latencies, time-to-go error, LOS rate estimation error, and the LOS
rate at a time-to-go where due to noise and delays the guidance
becomes ineffective. These predictions compare remarkably well
with the miss distances obtained from a comprehensive 6-DOF
simulation and hardware-in-the-loop laboratory tests. The analysis
presented here is valuable because it facilitates a reliable back-of-
the-envelope determination of miss distance for given hardware and
software guidance parameters, which obviates the need in the early
stages of a program for developing a sophisticated, comprehensive
trajectory simulation of guidance, navigation, and control system
and Monte Carlo runs. More specifically, the relationships devel-
oped here can be used to determine the hardware parameters such
as divert thrust and minimum impulse bit and software parameters
such as LOS rate threshold, LOS rate estimation accuracy require-
ment, range and range rate accuracy requirement (that is, acceptable
time-to-go error), and seeker latencies to meet a miss distance re-
quirement. Also, the analysis decreases significantly the efforts of

the designer or analyst and provides prompt insight and tools to
evaluate soundness of the Monte Carlo and laboratory test results.
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