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Abstract

Located in the critical 1p36 microdeletion region, the chromodomain helicase DNA-binding protein 5 (CHD5) gene encodes 

a subunit of the nucleosome remodeling and deacetylation (NuRD) complex required for neuronal development. Pathogenic 

variants in six of nine chromodomain (CHD) genes cause autosomal dominant neurodevelopmental disorders, while CHD5-

related disorders are still unknown. Thanks to GeneMatcher and international collaborations, we assembled a cohort of 16 

unrelated individuals harboring heterozygous CHD5 variants, all identified by exome sequencing. Twelve patients had de 

novo CHD5 variants, including ten missense and two splice site variants. Three familial cases had nonsense or missense 

variants segregating with speech delay, learning disabilities, and/or craniosynostosis. One patient carried a frameshift variant 

of unknown inheritance due to unavailability of the father. The most common clinical features included language deficits 

(81%), behavioral symptoms (69%), intellectual disability (64%), epilepsy (62%), and motor delay (56%). Epilepsy types 

were variable, with West syndrome observed in three patients, generalized tonic–clonic seizures in two, and other subtypes 

observed in one individual each. Our findings suggest that, in line with other CHD-related disorders, heterozygous CHD5 

variants are associated with a variable neurodevelopmental syndrome that includes intellectual disability with speech delay, 

epilepsy, and behavioral problems as main features.

Introduction

The chromodomain-helicase-DNA-binding protein 5 gene 

(CHD5) belongs to a highly conserved family of genes 

encoding ATP-dependent chromatin remodeling complex 

subunits comprising nine members, named CHD1–CHD9 

(Delmas et al. 1993; Woodage et al. 1997). CHD proteins 

carry out multiple functions essential for cell survival and 

embryonic development, including chromatin remodeling, 

transcriptional regulation, and DNA repair (Tyagi et al. 

2016). They are composed of two N-terminal chromodo-

mains important for histone tail binding, a central and con-

served SNF2-like helicase motif that uses ATP-hydrolysis 
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for chromatin remodeling, and a less-defined C-terminal 

DNA-binding domain (Delmas et al. 1993; Woodage et al. 

1997). The CHD protein family is further divided into three 

subfamilies based on the presence or absence of additional 

domains (Tyagi et al. 2016). Subfamily I (CHD1 and CHD2) 

features a C-terminal DNA-binding domain that preferen-

tially binds to AT-rich DNA motifs (Tyagi et al. 2016). Sub-

family III (CHD6 to CHD9) is characterized by the presence 

of additional C-terminal functional domains (BRK motif or 

SANT domain) that define their binding properties (Tyagi 

et al. 2016). CHD3, CHD4, and CHD5 are part of subfamily 

II, and, unlike other CHD members, they possess two N-ter-

minal Plant-Homeo Domains (PHD) with histone-binding 

activity. These three proteins represent mutually exclusive 

subunits of a large protein complex known as Nucleosome 

Remodeling and Deacetylase (NuRD) complex (Tyagi et al. 

2016).

Subfamily II members are characterized by different 

expression profiles, with CHD3 and CHD4 being ubiqui-

tously expressed, whereas CHD5 is mainly expressed in 

brain and testis (Marfella and Imbalzano 2007; Zhuang 

et al. 2014). Furthermore, the three encoded proteins have 

distinct, non-redundant properties and functions within the 

NuRD complex and neuronal defects induced by the specific 

knockdown of one subunit cannot be rescued by overex-

pression of another CHD protein (Nitarska et al. 2016). A 

coordinated sequential switch of these subunits is crucial for 

mouse cortical development (Nitarska et al. 2016). CHD3 

ensures proper layer specification,  CHD4 induces early pro-

liferation of the basal progenitors, while CHD5 mediates 

neuronal differentiation, radial migration, and neuronal cell 

identity (Nitarska et al. 2016). CHD5 is required both for 

activation of genes promoting neuronal differentiation pro-

grams and for repression of non-neuronal Polycomb target 

genes (Egan et al. 2013). Moreover, CHD5 directly interacts 

with the repressive H3K27me3 histone mark via its PHD 

and chromodomains (Egan et al. 2013).

All CHD genes are evolutionary constrained in human 

populations, with significantly fewer truncating and mis-

sense variants than expected by chance (Karczewski et al. 

2020), but only six of the nine CHD members have been 

associated with human disorders so far (Zentner et al. 2010; 

Merner et al. 2016; Weiss et al. 2016, 2020; Pilarowski et al. 

2018; Blok et al. 2018; Chen et al. 2020). Together with 

CHD6 and CHD9, CHD5 has not yet been associated with a 

human disease. However, CHD5 is located on chromosome 

1p36.31, a region commonly deleted in monosomy 1p36, 

and CHD5 haploinsufficiency was hypothesized to contrib-

ute to the clinical features of this syndrome, which include 

neurodevelopmental deficits (intellectual disability with 

limited language ability), delayed growth, hypotonia, sei-

zures, craniofacial and skeletal features, hearing and vision 

impairment, as well as cardiac anomalies (Shimada et al. 

2015). In this study, we assembled a cohort of 16 unrelated 

patients with de novo or inherited heterozygous variants in 

CHD5. Comparison of the clinical features of these affected 

subjects showed that genetic alterations of CHD5 are associ-

ated with a variable neurodevelopmental disorder frequently 

characterized by intellectual disability (ID), speech delay, 

motor delay, behavioral problems, and epilepsy.

Materials and methods

Following the identification by exome sequencing of a 

de novo missense variant in CHD5 in a patient with ID, 

autism spectrum disorder (ASD), and epilepsy, we col-

lected data from additional patients with CHD5 variants 

through GeneMatcher (Sobreira et al. 2015). We system-

atically included all patients with de novo variants as well 

as patients with either truncating or predicted damaging 

missense variants inherited from affected parents. Only 

patients without a detailed clinical history and/or inherit-

ance information were excluded from the study. Exome 

sequencing was performed at the respective institutions. 

Referring physicians provided detailed developmen-

tal, neurological, and behavioral history of the patients. 

Patient information was anonymized before data sharing. 

Variants were described on the CHD5 NM_015557.3 Ref-

Seq transcript using HGVS recommendations (den Dunnen 

et al. 2016) and classified according to ACMG guidelines 

(Richards et al. 2015). All variants have been submitted to 

the ClinVar Database and have been assigned the follow-

ing accession numbers: SCV001477999–SCV001478015. 

Multiple algorithms were used to assess the pathogenicity 

of CHD5 variants, including Mutation Taster, Polyphen-2, 

and SIFT (Ng 2003; Adzhubei et  al. 2010; Schwarz 

et al. 2014). Combined annotation-dependent depletion 

(CADD) scores (Rentzsch et al. 2019) were calculated 

for each variant using the GRCh37-v1.6 version (Online 

Resource Table 1). Prediction of the consequences of 

the two splicing variants were carried out with  Alamut® 

Visual, a mutation analysis software which includes a 

splicing module integrating a number of prediction algo-

rithms and splicing prediction data. Nucleotide conser-

vation across 100 vertebrate species was calculated for 

each variant using the PhastCons score obtained with the 

phastCons100way.UCSC.hg19 R package (Siepel 2005) 

and represents the probability that a given nucleotide is 

conserved (range 0–1). Codon conservation scores were 

calculated as the mean nucleotide conservation of each tri-

plet. Known CHD5 NM_015557.3 variants were retrieved 

from gnomAD v2.1.1 (Karczewski et al. 2020), restrict-

ing to loss-of-function, missense, and synonymous single 

nucleotide variants.
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Results

CHD5 variant spectrum

We report 16 different genetic alterations in CHD5, includ-

ing eleven missense variants [c.577C > T, p.(Arg193Trp); 

c.578G > A, p.(Arg193Gln), c.1279G > A, p.(Glu427Lys); 

c.2735C > T, p.(Ser912Phe); c.3250G > A, p.(Asp1084Asn); 

c . 3 3 7 1 C  >  T,  p . ( P ro 1 1 2 4 L e u ) ;  c . 3 4 0 7 G  >  A , 

p.(Arg1136His); c.3419A > T, p.(Asn1140Ile); c.4257C > G, 

p.(Ile1419Met); c.4463A > T, p.(Asp1488Val) and 

c.5141A > G, p.(Glu1714Gly)], one duplication of a single 

base leading to a frameshift [c.612dup, p.(Ser205Leufs*88)], 

two nonsense substitutions [c.940G > T, p.(Glu314*) and 

c.1786C > T, p.(Arg596*)], and two splice site variants 

(c.4079-3C > G and c.4171 + 1G > C). All variants were 

either absent from gnomAD or present with an allele fre-

quency below 0.0001% (Online Resource Table 1). All 

missense variants affect highly conserved amino acids of 

CHD5 (up to zebrafish, Online Resource Fig. 1), had CADD 

scores above 22, and were predicted to be damaging by at 

least two algorithms among Polyphen-2, SIFT, and Mutation 

Taster (Online Resource Table 1). The conservation score of 

nucleotides and corresponding codons calculated based on 

the alignment of 100 species additionally indicated that all 

the affected nucleotides, with the exception of c.4257C > G 

[resulting in p.(Ile1419Met)], were subject to a great level 

of conservation during evolution (score 1 in a 0 to 1 scale) 

(Online Resource Table 1).

Ten of the eleven missense substitutions and the two 

splice site variants occurred de novo in patients without 

family history, while one missense and the two nonsense 

variants segregated with neurodevelopmental phenotypes in 

three families (Fig. 1). The frameshift variant identified in 

Patient 3 was absent from her mother but inheritance could 

not be assessed further, since her father was not available 

for genetic analysis. Notably, one of the missense variants 

segregating in a larger family [p.(Arg193Trp)] occurred at 

the same highly conserved residue as one of the de novo 

missense variants [p.(Arg193Gln)]. Two de novo missense 

variants [p.(Asn1140Ile) and p.(Ile1419Met)] were mosaic 

in patients 11 and 14. Both mosaic variants, identified by 

WES, were present in less than 25% of the total reads on 

blood DNA and were confirmed by Sanger sequencing.

In addition to these sixteen predicted damaging variants, 

a de novo variant [c.815C > T, p.(Ala272Val)] absent from 

gnomAD was identified in a male patient (VUS 1, Online 

Resource Tables 1 and 2). This variant alters a poorly con-

served amino acid located outside of any known domain 

and is not predicted to alter splicing, but affects a highly 

Fig. 1  Family trees of the inherited mutations. In family 1, Individ-

ual III-3 corresponds to Patient 1. In family 2, Individual III-1 cor-

responds to Patient 4. In family 3, Individual III-1 corresponds to 

Patient 6. The variants in CHD5 identified in these three families are 

associated with incomplete penetrance and variable expressivity
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conserved nucleotide (score 1) (Online Resource Fig. 1). 

Because of consistent benign predictions by all algorithms 

and a CADD score below 20, this variant was considered 

as of unknown significance despite its de novo occurrence.

Missense variants in CHD5 tend to cluster 
in functional domains

CHD5 comprises nine protein domains: an N-terminal domain 

of chromo domain-associated helicases (CHDNT), two PHD 

domains (PHD1 and PHD2) and two chromodomains (Chd1 

and Chd2) important for histone binding, one bipartite Helicase 

domain with ATPase catalytic activity, two conserved Domains 

with Unknown Function (DUF1087 and DUF1086), and a 

C-terminal domain B of chromo domain-associated CHD-like 

helicases (CHDCT2) mediating the interaction with GATA2D 

(Pierson et al. 2019) (Fig. 2a). The helicase, PHD, and C-ter-

minal regions are the most conserved and constrained domains 

(Samocha et al. 2017; Havrilla et al. 2019). Strikingly, missense 

variants with CADD scores above or equal to 22 reported in 

Fig. 2  Distribution of the CHD5 variants based on position and 

conservation of the affected amino acids. a Schematic represen-

tation of the CHD5 protein and its domains, with position of the 

identified mutations relative to exon and domain distribution. The 

CHDNT domain is indicated in yellow, the PHD domains in red, the 

Chd domains in green, the helicase domains in light blue, the DUFs 

domains in purple, and the CHDCT2 domain in lilac. Inherited vari-

ants are indicated in blue and de novo variants in black. Putative loss-

of-function variants are indicated with a triangle, likely pathogenic 

missense substitutions with a filled circle and the VUS with an empty 

circle. b Comparison of the distribution of the variants identified in 

our cohort with the synonymous and missense variants reported in 

gnomAD, with relative position of each affected CHD5 residue across 

the protein domains. c Comparison of a portion of the highly con-

served C-terminal Helicase domain among yeast SNF2 (black) and 

human CHD3 (red), CHD4 (green), and CHD5 (blue). Pathogenic 

missense substitutions altering residues in this domain are indicated 

with the color corresponding to the CHD protein where the vari-

ant was identified. The amino acids altered by the substitutions are 

indicated with a square whose color corresponds to the CHD protein 

where the variant was identified
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gnomAD alter fewer residues in the helicase C-terminal domain 

(17%) than in other regions (31–42%), contrary to gnomAD 

synonymous and missense variants with CADD scores below 

22, which appeared in 30% of the residues of this part of the 

helicase domain (other regions 25–60%) (Fig. 2b).

The 11 predicted damaging missense substitutions alter 

10 different amino acids and all but two affect a functional 

domain of CHD5: one variant affects the PHD2 domain, 

two variants each affect the CHDNT and the DUF1086 

domains, and four variants alter the C-terminal part of the 

helicase domain depleted in missense variants in gnomAD 

(Fig. 2a, b, Online Resource Fig. 1). Two missense sub-

stitutions in the helicase domain match positions altered 

by two previously published pathogenic variants in CHD3 

(Fig. 2c): CHD5-Asp1084 (Patient 8) corresponds to CHD3-

Asp1120, whereas CHD5-Arg1136 (Patient 10) corresponds 

to CHD3-Arg1172 (Blok et al. 2018). Additionally, Pro1124 

(Patient 9) is positioned within a stretch of amino acids that 

were found to be altered by missense substitutions of CHD3 

(Trp1158, Asn1159, and His1161) or CHD4 (Asp1147, 

Trp1148) (Blok et al. 2018; Weiss et al. 2020). Importantly, 

CHD3 residues Arg1172, Trp1158, and Asn1159 were 

proven essential for either the ATPase activity of or the abil-

ity to carry out chromatin remodeling (Blok et al. 2018).

The nonsense and frameshift variants identified in the 

present cohort are located in exons 5, 7, and 11, and are 

therefore predicted to result in transcripts that are subject to 

nonsense-mediated mRNA decay or to generate a truncated 

protein, if expressed. The two splice site variants are pre-

dicted to, respectively, abolish the acceptor and donor splice 

sites of exon 27 with high probability (Online Resource 

Fig. 2a, b). Since variants altering canonical splice sites fre-

quently lead to skipping of the corresponding exon, these 

two variants possibly induce the same in-frame deletion of 

the 93 nucleotides of exon 27. Given the preferential expres-

sion of CHD5 in brain and testis, we postulated that the 

effects of these two variants on CHD5 splicing could not 

be assessed. Surprisingly, we were able to amplify CHD5 

transcript from RNA extracted from blood and fibroblasts. A 

blood sample of Patient 13 could be subsequently obtained, 

and the resulting analysis showed the in-frame exclusion of 

exon 27 in the mutant allele, predicted to cause a deletion of 

31 amino acids at the protein level [p.(Glu1360_Ser1391de-

linsGly)] (Online Resource Fig.  2c). CHD5 splicing in 

Patient 12 could not be determined due to the impossibility 

to obtain additional material.

CHD5 variants are associated with developmental 
delay, intellectual disability, behavioral 
disturbances, epilepsy, and craniosynostosis

With the exclusion of Patient VUS1, the present cohort com-

prises seven females and nine males aged from 3 to 24 years 

(median age 9  years 6  months). Detailed phenotypical 

information for each patient is provided in Online Resource 

Table 2. For most patients, pregnancy was unremarkable, 

birth parameters were normal, and the neonatal period was 

uneventful. Measurements at the last evaluation were also 

mainly on average, with only two and four patients present-

ing with more than two standard deviations above the mean 

of growth standards for weight and height, respectively. 

The most frequent clinical features observed in this cohort 

are summarized in Table 1, and comprise speech delay 

(n = 13/16), behavioral disturbances (n = 11/16), epilepsy 

(n = 10/16), subtle facial dysmorphism (n = 11/16), motor 

delay (n = 9/16), intellectual disability (n = 9/14), hypoto-

nia (n = 7/14), and craniosynostosis (n = 3/7). The level of 

intellectual disability could be assessed for six of the nine 

patients and was moderate in two patients and severe in four. 

Four patients presented with normal IQ, with a full-scale IQ 

ranged between 85 and 105, and one patient was reported to 

have an IQ above average. Developmental milestones were 

delayed in the majority of the patients, with language acqui-

sition being more affected than motor development. Sitting 

and walking independently were achieved at a median age 

of 13 and 28 months, respectively. The first words were pro-

nounced at a median age of 24 months. Three patients were 

still non-verbal at 3, 9, and 24 years of age. Four patients 

with an age range between 11 and 22 years could only speak 

a few words. Dysphasia, stuttering, and echolalia were also 

reported in single patients. Autism spectrum disorder and 

obsessive–compulsive tendencies were the most frequently 

observed behavioral problems in this cohort. Self-injurious 

behavior, poor eye contact, outbursts of anger, and aggres-

sive behavior were also noted. Seizures occurred in more 

than half of the patients (n = 10) with a median age of onset 

of 10 months. The earliest onset was at day one and the lat-

est at 16 years of age. Patients could be divided into three 

groups based on the severity of the seizures, although a sig-

nificant intra-group variability was also observed: (1) three 

patients experienced one to five seizures only and were not 

under antiepileptic therapy; (2) three others had a general-

ized epilepsy and were still receiving antiepileptic drugs at 

the time of description; (3) four patients had a diagnosis 

of developmental and epileptic encephalopathy, and their 

EEG showed a suppression-burst pattern or hypsarrhythmia. 

Seizure types included generalized tonic–clonic febrile and 

afebrile seizures, infantile spasms, generalized staring spells, 

and myoclonus. Most of the patients were seizure-free at the 

time of the study with or without specific therapy. Hypoto-

nia was the most frequent finding upon neurological exami-

nation (n = 7/14), while dysmetria and ataxia were each 

reported in single patients. Brain Magnetic Resonance Imag-

ing (MRI) were mainly normal (n = 8/12) or showed non-

specific abnormalities. Dysmorphic facial features (Fig. 3) 

were rather nonspecific and did not suggest 1p36 deletion 
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syndrome. They comprised ear anomalies (n = 4/16), includ-

ing low set and posteriorly rotated ears, mildly cupped or 

smaller ears, prominent nasal bridge and tip (n = 3/16), short 

philtrum (n = 3/16), thin upper lip (n = 3/16), upslanting pal-

pebral fissures (n = 3/16), synophrys (n = 2/16), epicanthic 

folds (n = 2/16), frontal bossing (n = 2/16), and micrognathia 

(n = 2/16). However, no distinctive facial gestalt emerges 

from the series. Eye anomalies/visual impairment were 

noted in some patients but appeared inconsistent within the 

cohort. Notably, three patients displayed craniosynostosis 

(Fig. 3). Specifically, Patient 1 displayed sagittal craniosyn-

ostosis, Patient 4 had metopic craniosynostosis, and Patient 

5 was diagnosed with trigonocephaly. Craniosynostosis of 

Patients 1 (and of her cousin Individual 1-III-2, see Fig. 1) 

and of Patient 4 was diagnosed via computed tomography 

scans by craniofacial surgeons and was surgically corrected 

by cranial vault remodeling. Patient 5 did not undergo sur-

gery. Malformations of other organs were rare and restricted 

to individual patients.

Inherited variants are associated with intra‑familial 
variability and incomplete penetrance

Intellectual disability was not diagnosed in any of Patients 

1 (family 1), 4 (family 2), and 6 (family 3), and the clini-

cal features were variable within families (Fig. 1). Patient 

1, corresponding to individual 1-III-3 (Family 1, Genera-

tion III, Individual 3), presented with speech delay, normal 

motor development, and craniosynostosis. Speech delay was 

observed also in her cousins 1-III-1 and 1-III-2. Individual 

1-III-2 also displayed craniosynostosis, while Individual 

1-III-1 was additionally characterized by motor delay and 

oppositional defiant disorder (detailed clinical data of these 

two individuals are available in Online Resource Table 2). 

The p.(Arg193Trp) variant was inherited from the respective 

mothers, who are sisters. Detailed clinical features were not 

available for these subjects, but delayed speech was reported 

for 1-II-2, while her sister 1-II-3 was described as asympto-

matic. Suspected craniosynostosis was reported in the mater-

nal grand-mother 1-I-2, who was deceased.

Patient 4 (Individual 2-III-1) had normal development 

and intellectual abilities, but presented with a sensory pro-

cessing disorder, obsessive–compulsive tendencies, and was 

diagnosed with Asperger-like syndrome. He had hypotonia, 

metopic craniosynostosis, and tonic–clonic seizures over 

a period of 2 years that spontaneously resolved. His sister 

(2-III-2) displayed dyslexia, dysorthographia, dyscalculia, 

mood disorder, anxiety, and depression. The p.(Glu314*) 

variant present in the two siblings was inherited from their 

father (2-II-1), who showed dyslexia and borderline intel-

lectual disability.

Patient 6 (3-III-1) presented with mild motor delay and 

speech impairment, several behavioral problems, mild facial Ta
b
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dysmorphism, and strabismus. This family comprises three 

additional affected members: the proband’s sister (3-III-2) 

and his paternal uncle (3-II-1) displayed learning difficulties, 

while his father (3-II-2) had severe psychiatric issues and 

died from suicide.

Altogether, these data point to the existence of an intra-

familial phenotypic variability associated with inherited 

variants. Moreover, unaffected carriers were also reported 

in each family, indicating an incomplete penetrance. The 

lack of a thorough clinical history of each individual could 

also account for the reported differences.

Discussion

In this study, we report 13 sporadic cases and 3 families 

with predicted damaging variants altering highly conserved 

amino acids of CHD5. Patients with these genetic alterations 

display a broad spectrum of developmental disturbances, 

recurrently including developmental delay, learning diffi-

culties or intellectual disability, behavioral problems, sei-

zures, hypotonia, and craniosynostosis. Variants identified in 

patients include both missense substitutions altering highly 

conserved amino acids mainly located in functional domains 

and variants predicted to lead to haploinsufficiency by non-

sense-mediated mRNA decay (i.e., frameshift and nonsense 

variants). The probability that CHD5 is intolerant to haplo-

insufficiency, calculated by a recent study including 753,994 

individuals, is 0.93 (Collins et al. 2021). CHD5 is also 

catalogued among haploinsufficient genes by the Genome 

Aggregation Database (gnomAD), with a probability to be 

LOF intolerant (pLI) of 1 and an LOF observed/expected 

upper bound fraction (LOEUF) of 0.16. Furthermore, its 

missense Z-score (referring to the number of observed 

and expected missense variants within the same database) 

indicates that this gene is highly missense-constrained 

(Z-score = 5.32). These metrics indicate that variants dis-

rupting the coding sequence of CHD5 are counter-selected 

in human populations, and also suggest that they likely are 

disease-causing (Karczewski et al. 2020). Nevertheless, 25 

out of the 141,456 individuals present in gnomAD harbor 

CHD5 variants predicted to be associated with a LOF of 

the corresponding allele. Incomplete penetrance and vari-

able expressivity, as observed in the familial cases herein 

reported, could at least partially account for this finding. 

Furthermore, several of these truncating variants display an 

allelic imbalance lower than the 0.5 expected for heterozy-

gous variants, suggesting that some of them could be present 

only at the somatic state in older individuals.

CHD5 is known to play an important role in the con-

text of chromatin remodeling, which it achieves by means 

of its intrinsic ATPase activity and of its presence within 

the NuRD complex. Additionally, CHD5 is involved in the 

regulation of the expression of a subgroup of Polycomb 

target genes through the maintenance of the repressive 

H3K27me3 histone methylation mark (Egan et al. 2013). 

Hence, variants that disrupt CHD5 activity may impact 

the epigenetic landscape of cells in a way that results in 

transcriptional disturbances and possibly generates one or 

several episignatures that are unique for CHD5-related dis-

orders. The pathogenic mechanism(s) by which the variants 

described in this study contribute to different neurodevelop-

mental disturbances remains to be defined. Truncating and 

missense variants could alter the activity of CHD5 and of 

the NuRD complex in different ways, i.e., by either loss- or 

gain-of-function, and affect distinct aspects of the epigenetic 

processes related to the NuRD complex. These mechanisms 

might include haploinsufficiency of CHD5 within the com-

plex, impaired assembly or composition of the NuRD com-

plex, impaired binding to nucleosomes, or impaired ability 

to carry out ATP-dependent nucleosome remodeling. The 

sample size of our cohort and in particular the number of 

LOF variants was unfortunately too small to establish sig-

nificant genotype–phenotype correlations based on type and 

position of the variants. However, from this small cohort, we 

anticipate that missense substitutions might be more prone 

to cause epileptic phenotypes. Indeed, approximately half of 

the patients with missense variants (6/11) had developmental 

and epileptic encephalopathy and/or an ongoing antiepileptic 

treatment. In particular, three out of four patients with vari-

ants within the helicase domain displayed severe epilepsy 

(all three patients with West syndrome), while only one 

patient with variants outside this domain had severe epilepsy 

(suppression-burst) and two had controlled seizures. Thus, 

it seems that missense variants, particularly those located in 

the helicase domain, predispose to early onset epilepsy with 

a higher likelihood than LOF or missense variants outside 

this domain. However, this observation needs to be con-

firmed on larger sample sizes.

CHD5 is located on chromosome 1p36.31. Patients with 

CHD5 variants share nonspecific clinical features with the 

1p36 deletion syndrome, a disorder characterized by moder-

ate-to-severe intellectual disability, language deficits, hypo-

tonia, seizures, and distinctive facial features. Depending 

on the extent of the chromosomal deletion, CHD5 haploin-

sufficiency could contribute to the clinical features of this 

disorder or worsen the severity of intellectual disability, as 

previously suggested (Shimada et al. 2015). Furthermore, 

the genes responsible for epilepsy, a frequent feature of the 

1p36 deletion syndrome, have not yet been fully character-

ized. GABRD and KCNAB2 are considered likely candi-

dates for the epileptic phenotype, because patients with a 

deletion of these genes are more frequently epileptic than 

those without (Heilstedt et al. 2002; Shimada et al. 2015). 

However, CHD5 might also be held accountable for differ-

ent reasons. With the exception of a single patient (Shimada 
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et  al. 2015), CHD5 was always reported to be deleted 

together with KCNAB2, as CHD5 is adjacent and proximal 

to KCNAB2. Additionally, point variants in KCNAB2 have 

never been described thus far in association with epilepsy. 

Finally, 16/21 patients with a 1p36 deletion encompassing 

CHD5 were reported to display epilepsy, while 19/29 with 

retained CHD5 copy do not have epilepsy (Shimada et al. 

2015). RERE haploinsufficiency might also play a role in the 

epilepsy of some patients with the 1p36 deletion (Fregeau 

et al. 2016), but this gene is located proximally to CHD5 

and deleted only in patients with very large deletions [8/50 

in (Shimada et al. 2015)]. Thus, RERE haploinsufficiency 

would not explain the epilepsy of most patients with 1p36 

deletion. A similar reasoning applies to SPEN, a newly iden-

tified ID-associated gene with rare seizures, which is proxi-

mal to RERE (Radio et al. 2021). Taken together, these data 

suggest that several genes may be involved in the epilepsy 

phenotype of the 1p36 deletion syndrome and that CHD5 

represents one of its potential modifiers. Notably, seizures 

are a frequent feature of patients with CHD5 point variants 

as well, hence supporting the epileptogenic role of CHD5 in 

the context of the 1p36 deletion syndrome.

Patients described in this study also show overlapping 

features with other neurodevelopmental disorders caused by 

de novo heterozygous variants in other CHD genes, which 

show intolerance to LOF and missense variants similar to 

that of CHD5. Pathogenic variants in CHD1 lead to a devel-

opmental disorder associated with developmental delay, 

speech apraxia, autism, hypotonia, and facial dysmorphic 

features (Pilarowski et al. 2018). CHD2 pathogenic variants 

cause a developmental and epileptic encephalopathy (Suls 

et al. 2013; Chen et al. 2020). Disease-causing variants in 

CHD7 and CHD8 cause CHARGE syndrome and a syndro-

mic form of autism spectrum disorder, respectively (Vissers 

et al. 2004; Zentner et al. 2010; O’Roak et al. 2011; Merner 

et al. 2016). Finally, pathogenic variants in CHD3 and CHD4 

have recently been described in patients with developmen-

tal delay, intellectual disability, macrocephaly, impaired 

speech, and dysmorphic features (Weiss et al. 2016, 2020; 

Blok et al. 2018; Drivas et al. 2020). Specifically, CHD3 

mutations cause Snijders Blok–Campeau syndrome, which 

is frequently characterized by autism and signs of connective 

tissue laxity (Blok et al. 2018; Drivas et al. 2020). CHD4 

mutations cause Sifrim–Hitz–Weiss syndrome, frequently 

Fig. 3  Facial profiles of patients with CHD5 variants. a–c Patient 1 

age 6 months. d, e Patient 2 age 11 years 4 months. f Patient 4 age 

1 year. g, h Patient 7 age 24 years. i, j Patient 10 age 3 (i) and 5 years 

(j). k–n Patient 13 age 9 months (k), 9 years (l) and 22 years (m, n). 

o, p Patient 14 age 3 years six months (o) and 6 years (p). Facial dys-

morphism was related to craniosynostosis in Patients 1 and 4. Other 

patients displayed subtle facial features, such as high forehead, but no 

consistent facial dysmorphism emerges from the whole panel
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associated with heart malformations as well as numerous 

other findings (Chiari malformation, Moyamoya disease, 

hypogonadism, deafness, and limb malformation) (Weiss 

et al. 2016, 2020). Interestingly, there is an important clini-

cal variability for most CHD-related disorders, which makes 

recognition of these syndromes complicated but yet possible. 

Notably, seizures are rarely observed in patients with CHD4 

variants and occur only in a minority of patient with CHD3 

alterations. Also craniosynostosis has been rarely reported 

in association with variants in other CHD genes (Siakallis 

et al. 2019; Tønne et al. 2020). In our cohort, craniosyn-

ostosis was observed in two individuals belonging to dif-

ferent families and in one patient with a de novo variant. 

The specific association of CHD5 defects with craniosyn-

ostosis remains puzzling based on the reported preferential 

expression of this gene in brain and testis, but possibly sug-

gests that CHD5 might be expressed more broadly at some 

stages of embryonic development or that craniosynostosis 

is linked to an indirect effect of CHD5 alterations on gene 

expression programs that coordinate boundary formation 

or differentiation of overlying cranial neural crest. Interest-

ingly, the knockdown of chd5, which shows an expression 

pattern in adult zebrafish resembling that of CHD5 in adult 

human individuals, results in craniofacial development 

defects including reduced head size and decreased cartilage 

formation in the head, raising the possibility of additional 

conserved roles of CHD5 during vertebrate embryogenesis 

(Bishop et al. 2015). The splicing analysis performed in the 

present study led to the detection of CHD5 transcripts also 

in blood and fibroblasts, suggesting that CHD5 expression 

might not be restricted to brain and testis. Hence, a CHD5 

expression pattern that is broader than previously reported 

could account for the non-brain-related phenotypes observed 

in this cohort of patients.

CHD5 is also a known tumor suppressor gene frequently 

deleted or silenced in diverse human cancers (Bagchi et al. 

2007). None of the patients included in this study have 

had tumors so far, suggesting that germline alterations of 

CHD5, contrary to somatic alterations, do not predispose 

to a higher risk of tumorigenesis, as previously reported for 

other tumor suppressor genes, including for instance genes 

encoding subunits of the SWI–SNF complex or ASXL1 

(Romero and Sanchez-Cespedes 2014; Carlston et  al. 

2017). However, considering the relatively young age of 

this cohort, we cannot rule out an increased risk to develop 

tumors in adult life.

In conclusion, we describe the first cohort of patients with 

heterozygous variants in CHD5, associated with a new syn-

drome mainly characterized by developmental delay, intel-

lectual disability, behavioral symptoms, and epilepsy. Elabo-

rated functional studies are required to understand the impact 

of the variants reported in this study on CHD5 protein levels 

and the NuRD complex during brain development.

Supplementary Information The online version contains supplemen-

tary material available at https:// doi. org/ 10. 1007/ s00439- 021- 02283-2.
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