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Abstract—This paper proposes a new strategy for missile 

attitude control using a hybridization of Linear Quadratic 
Gaussian (LQG), Loop Transfer Recovery (LTR), and Linear 
Quadratic Integral (LQI) control techniques. The LQG control 
design is carried out in two steps i.e. firstly applying Kalman 
filter for state estimation in noisy environment and then using the 
estimated states for an optimal state feedback control via Linear 
Quadratic Regulator (LQR). As further steps of performance 
improvement of the missile attitude control system, the LTR and 
LQI schemes are applied to increase the stability margins and 
guarantee set-point tracking performance respectively, while also 
preserving the optimality of the LQG. The weighting matrix (Q) 
and weighting factor (R) of LQG and the LTR fictitious noise 
coefficient (q) are tuned using Nelder-Mead Simplex optimization 
technique to make the closed-loop system act faster. Simulations 
are given to illustrate the validity of the proposed technique. 

Keywords—Attitude control; canard missile; LQG; LQI; LQR; 
LTR; optimal control; optimum weight selection 

I. INTRODUCTION 
Guidance and control law design for aerospace engineering 

and strategic applications has become a celebrated research 
topic in past few decades with its wide applicability both in 
industry and academia [1]-[2]. In this paper, a new control 
strategy for a canard configured missile is proposed using a 
hybrid approach of LQG, LTR and LQI schemes. The hybrid 
scheme retains the advantage of all these three individual 
control concepts and outperforms each of them for a step-
command attitude control problem of canard missile. The 
canard configuration is widely used in homing missiles [3]-[4] 
which motivates us to study the control problem of this 
particular configuration [5]. The canard is basically a small 
wing of an aircraft. In this configuration of the missile, it is 
placed in front of the center of gravity of the missile to provide 
addition wing lift for flexible maneuvering. But this makes the 
overall control system loose internal stability due the non-
minimum phase behavior i.e. having an open loop zero in the 
right-half s-plane. The system under study, being both 
controllable and observable [6], the task is now to design an 
efficient control scheme to track a step-input angle of attack 
command with stochastic observer based state-feedback control 
by varying the control inputs that directly affects the canard’s 
deflection. Control of canard missile has been previously 
studied using sliding mode [6] and LQG [7] controller. 

There are several attempts by contemporary researchers to 
design efficient control scheme for similar missile and 

guidance systems, using various techniques from control theory 
e.g. robust control [8], model predictive control [9], LQR [10], 
H∞ [11], sliding mode [12]-[14], fuzzy logic [15], particle filter 
[16], nonlinear control [17] etc. Among several approaches the 
LQG technique which is composed of optimal state estimation 
in the presence of process noise and measurement noise, 
followed by state-feedback regulator design using the observed 
states are quite popular [18]-[19]. The stochastic observer 
based state feedback control law can easily be implemented as 
an output feedback controller which is commonly known as the 
observer based controller [18]-[21]. The applicability of 
classical optimal and robust control theory like LQR, H2/H∞ in 
aerospace application is restricted due to their deterministic 
nature of system analysis and design. Also, several constraints 
are imposed due to the high level of noisy observation of the 
practical system’s input/output and unavailability of direct 
measurements for all the state variables. This motivates the use 
of Kalman filter or stochastic observer in such applications.  

The disadvantage of Kalman filter based LQR design or 
LQG control is that it makes the open-loop system have very 
low stability margins (gain and phase margin) which can be 
further improved using a technique known as LTR by 
increasing a fictitious noise coefficient (q) in the process-noise 
covariance matrix in the Kalman filter design. This makes the 
open-loop system asymptotically approach the response 
obtained using LQR which is popular in control engineering 
practice to alleviate the ill-effects of LQG design [22]. The 
only constraint using LQG/LTR technique is that choosing a 
high value of q makes the control signal large which might 
result in actuator saturation. Even with the LQG/LTR design, 
the set-point tracking performance is not guaranteed. The 
tracking can be enforced by externally tuning the LQR weights 
using an optimization algorithm but the tracking cannot be 
guaranteed under parametric variation in the system matrices 
unless the controller contains a built-in proportional-integral-
derivative (PID) type scheme or its variants like a simple PI or 
at least an integral control [23]-[24]. To overcome the tracking 
problem in state-feedback control, the LQI scheme is proposed 
which considers the presence of an integrator in the forward 
path and acts as an output feedback controller beside the state-
feedback controller implemented on either directly measured or 
observed states [25]-[27]. As a summary, the missile attitude 
control scheme must have a state-observer and state-feedback 
control (LQG), improved stability margin (LTR) and 
guaranteed tracking (LQI). The proposed LQG/LTR optimum 
weight selection and its fusion with LQI can be considered as a 



unification of important but discretely available concepts in the 
literature viz. LQG-PI tracking control weight tuning [28], LTR 
integral control [29] and LQG weight selection [30]. 

The rest of the paper is organized as follows: section II 
outlines the missile attitude control system and proposes the 
hybrid LQG-LTR-LQI control scheme. Simulation results with 
classical LQG/LTR design have been reported in section III. 
The proposed LQG-LTR-LQI control results have been shown 
in section IV with optimal choice of Q, R and q. The paper 
ends with conclusions in section V, followed by the references. 

II. MISSILE ATTITUDE CONTROL SYSTEM DESCRIPTION 
AND PROPOSING A NEW HYBRID LQG-LTR-LQI SCHEME 

A. Missile Model in Canard Configuration 
 The linearized model of canard-configured missile [6] is 
described by the following state-space model in (1).    
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Here, the state variables are considered as the angle of attack 
(α ), pitch rate ( q ), canard’s deflection (δ ), while{ },u y are 
the control input and system output respectively. Other system 
parameters like seeker time constant ( sτ ), radome bore-sight 
error slope ( h ), different aerodynamic derivatives 
{ }, , , ,qZ Z M M Mα β α δ

 also affects the missile dynamics 

along with the unknown (but bounded) disturbances{ },ξ θ . In 
the canard-configured missile, typical parameters for the 
aerodynamic derivatives and model perturbation are given by: 
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B. LQG as a Combination of Kalman Filtering and LQR 
 Comparing the missile model (1) with the standard state-
space model (3), one can identify system matrices (state, input, 
output, feed-through matrices given by{ }, , ,A B C D ) and the 
matrix associated with the process-noise term ( Γ ). The process 
noise and measurement noise terms ( ) ( ){ },t tξ θ are assumed 
to be zero mean Gaussian with covariance matrices (Ξ, Θ) and 
also statistically independent. 
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The task is to control the missile such that it tracks a step-input 
angle of attack command, minimising the tracking error and 
rejecting the unknown disturbances. 
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 In LQG design there are two steps viz. state estimation, 
followed by LQ optimal state feedback. In the estimation 
phase, the task is to find out the optimal state estimate � ( )x t that 

minimizes the covariance �( ) �( )T
E x x x x⎡ ⎤− −⎢ ⎥⎣ ⎦

. The optimal 

estimate is achieved using Kalman filter, where the Kalman 
gain (

fK ) can be computed from (5) using the symmetric 
positive semi-definite matrix solution ( T

f fP P= ) of Algebraic 
Riccati Equation (ARE) reported in (6). Here in (5)-(6), 
subscript “f” denotes the Kalman filter to distinguish with 
similar ARE encountered in LQR controller (subscript “c”). 
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Fig. 1. LQG controller as combination of Kalman filtering based optimal 
state feedback controller.  

 As a next step of LQG design, estimated states � ( )x t are 
assumed to be a faithful representation of the original system 
states ( )x t in order to design an optimal state feedback law via 
LQR. The LQR design helps to keep the excursion of all the 
three state variables i.e. angle of attack, pitch deflection and 
canard’s deflection, as low as possible since they are associated 
with some mechanical systems. It also takes the required 
control input ( )u t  into account, producing an optimal control 
law minimizing the cost function given by (7). 
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Minimization of the cost function (7) turns out as finding 
symmetric positive semi-definite solution ( T

c cP P= ) of ARE 
(8) to obtain the optimal state feedback gain matrix cK in (9). 

1 0T T
c c c cA P P A P BR B P Q−+ − + =            (8) 

( ) � ( )1 T
c c cK R B P u t K x t−= ⇒ = −            (9) 

 The two stage LQG control scheme of using the Kalman 
filter first for state estimation of a system with 
process/measurement noise and then using those estimated 
states for optimal LQR state feedback control is known as the 
separation principle. Details of the observer based LQG 



controller is shown in Fig. 1. The estimated states of the 
Kalman filter and also observer based LQG controller are 
given by (10) and (11) respectively. The observer based state-
feedback controller i.e. LQG can be translated as an output 
feedback controller where the system description along with 
noise inputs are shown in Fig. 2 and the corresponding 
controller structure in Fig. 1. 
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Fig. 2. Observer based LQG controller with external noise terms. 

C. LTR Technique to Increase Stability Margins 
The well-known problem of the LQG control design is its 

reduced stability margin which may destabilize the system 
even with a small amount of disturbance. This is due to the fact 
that often the dynamics of the Kalman filter is not much faster 
compared to the plant dynamics. Considering the feed-through 
matrix 0D = in the missile model (1), the open loop system 
with the LQG controller and plant can be represented as (12). 
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ol c f c fG K sI A K C BK K C sI A B

− −= − + + −    (12) 

Since the controller structure involves Kalman filter gain 
fK and LQR state-feedback matrix cK , wrong choice of the 

noise covariance matrices and weights may make the overall 
system have reduced stability margin or even lead to 
instability. The idea of LTR design is to use a fictitious-noise 
coefficient ( q ) along with the process noise covariance such 
that q′Ξ = Ξ  and then gradually increasing q → ∞ , so that the 
open loop system approaches to that of the LQR [22]. 
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The LTR controller design can be summarized in two steps: 

• Choose suitable{ },Q R to get a reasonably good LQR 
gain matrix cK , such that the open-loop transfer 

function ( ) 1
cK sI A B−− −  meets desired performance 

measure like sensitivity, complementary sensitivity, 
gain and phase margins.   

• Increase q  in q′Ξ = Ξ  and obtain
fK using (5)-(6) 

until the solution approaches to LQR open loop 
performance following equation (12). Compute the LTR 

controller using the LQG controller structure (11) for 
the chosen q.  

In practice, too large value of q affects the robustness of the 
system and makes the initial control input very high. In LTR 
theory, there might be two options of recovering the input side 
(Kalman filter) or output side (LQR controller) of the system 
given by (14). However, the two step separation approach is 
popular among contemporary research community [19]-[20]. 
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D. LQI Control for Guaranteed Tracking Performance 
 In Huerta et al. [25] a modified LQG as a servo controller 
has been proposed along with an integrator for guaranteed 
tracking performance. The concept can be considered as 
somewhat similar to the LQI scheme for the deterministic case 
[26]-[27]. The schematic diagram of classical state-feedback 
control to LQG regulator and finally LQG servo control as a 
hybridization of LQG and LQI is shown in Fig. 3. The novel 
control scheme proposed in this paper first designs the LQG-
LQI control scheme as in Fig. 3 and then by increasing 
q → ∞ , it brings the effect of LTR principles along with an 
optimization based tuning of LQR weights{ },Q R . In fact, 
within an optimisation framework and with a suitable initial 
guess of{ }, ,Q R q , the adopted hybrid LQG-LTR-LQI scheme 
can enjoy all the benefits of these three individual schemes.     

( )x t

( )y tx Ax By
y Cx Du

= +
= +
�

cK

( )u t

� ( )x t

( )y t
x Ax By
y Cx Du

= +
= +
�

cK

( )u t

( )tξ

( )tθ

� ( )x t

( )y t
x Ax By
y Cx Du

= +
= +
�

cK

( )u t

( )tξ

( )tθ
( )r t

+
−

1 s
+

−

( )e t

Γ

Γ

 
Fig. 3. Modified LQI scheme for LQG servo controller. 

III. SIMULATION STUDIES WITH LQG/LTR CONTROLLER 

A. Independence of Noise Covariances and LQR Weights 
To study the parametric influence of the noise covariance 

matrices and LQR weights, for the nominal missile model (1), 
in the design phase they are considered as 310−Ξ = , 710−Θ = , 



3 30.01Q I ×= , 0.01R = . The nominal system parameters are 
considered as 0, 0.5M hαΔ = =  in all simulations. It is evident 
from Fig. 4 that a higher h makes the system less oscillatory 
and the dynamics degrades to a greater extent with low h , 
compared to a wider variation in M αΔ . The step response LQG 
control and effect of varying LQR weights ( ,Q R ) are shown 
in Fig. 5. The impact of giving more penalties either on wider 
excursion of states or the controller effort is evident in Fig. 5 
which follows an inverse relationship as conflicting objectives.   

 
Fig. 4. Change in missile dynamics with variation in system parameters. 

 
Fig. 5. Effect of varying LQG weighting matrices Q and R for noisefree case. 

B. Using Noise Covariances as LQR Weights in LQG/LTR 
In the following simulations, the noise covariance matrices 

in Kalman filter design are considered as the LQR weights i.e. 
3 3,Q I R×= Ξ = Θ . Additionally, the effect of increasing the 

LQG/LTR fictitious noise coefficient q for step response 
simulation study in noisy environment is also explored. In the 
LTR design, it is well known that increasing the value of q 
pushes the Nyquist curve of the noise-free system to approach 
the LQR design [22]. Due to the presence of process noise and 
measurement noise terms, the frequency responses cannot be 
evaluated and therefore the focus here is on a realistic scenario 
of step input tracking of the LQG/LTR based missile attitude 
control system. Since with the LQR design the noise terms 
{ },ξ θ are not considered, therefore the time domain 
performance is expected to be worse than the LQG/LTR 
scheme. Fig. 6 shows that a high value of q increases the 
steady-state value of the system output but makes the control 
signal highly oscillatory. The corresponding frequency 
responses in Fig. 7 show that the gain margin increases with 

high value of q. The only disadvantage of this scheme, as can 
be seen from Fig. 6 that the steady-state offset cannot be 
removed even with a wide variation in LQR weights.   

 
Fig. 6. System output and control signal for increasing q in LTR. 

 

Fig. 7. Frequency response of the noise-free missile system with LTR. 

IV. HYBRID LQG-LTR-LQI CONTROL TO ENSURE SET-
POINT TRACKING PERFORMANCE OF THE MISSILE 

 
Fig. 8. Hybrid LQG-LTR-LQI response with a step input at t = 1 sec. 

 The LQG controller is optimal in a sense that given the 
noise covariance matrices, the Kalman filter produces optimal 
state estimates from noisy measurements and then the LQR 
enforces an optimal state feedback control law. But LQG 
suffers from reduced stability margin that can be improved 
using LTR by increasing the value of q as shown in Fig. 7. The 
LQI scheme based control loop in Fig. 3 is explored next for 
guaranteed tracking. Simulations are shown in Fig. 8 for the 
hybrid LQG-LTR-LQI scheme with increasing q and the 
nominal weighting matrices of LQR, as mentioned above. It is 
evident that for high value of q in LQG-LTR-LQI controller, 



the initial controller effort at t = 1 sec suddenly becomes large 
which may cause actuator saturation. The scheme with 
integrator enforces the set-point tracking performance along 
with rejection of process noise and measurement noise 
externally introduced in the control loop. But arbitrary choice 
of Q and R has made the system somewhat sluggish. The 
problem may be circumvented by choosing optimal values of Q 
and R with an optimization algorithm, as discussed next. 

A. Finding Optimal Q and R for LQG-LTR-LQI Scheme 
 The well-known Nelder-Mead Simplex optimisation 
algorithm is employed to search for the LTR fictitious noise 
coefficient (q), diagonal elements of LQR weighting matrix 
(Q1, Q2, Q3) and LQR weighting factor (R) by minimising the 
Integral of Squared Error (ISE) criterion (15) for the closed 
loop system. The ISE can be easily evaluated from the step 
response of the sensitivity function ( )S s using available 
numerical integration techniques like trapezoidal rule.   
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The control signal can be obtained from the inverse Laplace of 
the step input command to the control sensitivity function (16). 

( ) ( ) ( ) ( )( )( )1 1 1c olu t s G s G s− ⎡ ⎤= +⎣ ⎦L                  (16) 

In literature, the popular method is to set TQ C C= and 
varying R to meet design specifications. The other approach 
includes simultaneous tuning of both{ },Q R as in [23]-[24]. 
For the present study the following two cases are compared:  

• Tuning all , ,Q R q simultaneously 

• Assuming TQ C C= and then tuning only R and q   

TABLE I.  OPTIMISATION RSULTS FOR ALL CONTROLLER PARAMETERS 

Ĵmin q0
ini qopt Q1 Q2 Q3 R 

5.067 1 0.933 0.354 1.852 0.123 1.809 

5.132 10 10.082 0.959 1.023 1.048 1.011 

4.916 100 96.698 0.481 1.477 1.511 0.268 

4.992 1000 1174.847 0.702 1.389 1.301 0.441 

TABLE II.  OPTIMISATION RESULTS OF THE PARAMETERS WITH Q=CTC   

Ĵmin q0
ini qopt R 

5.777 1 1.250 1.300 

5.850 10 30.869 1.123 

5.743 100 100.036 1.474 

5.811 1000 1024.804 1.248 
 

The Nelder-mead simplex optimisation algorithm runs with an 
initial guess and then it converges to the minima using an 
iterative method. The initial guess for the{ },Q R are set to 

unity for all cases, except for the LTR where the initial value of 
fictitious noise coefficient in the Kalman filter design is chosen 
as { }0 1,10,100,1000iniq ∈ . For the two cases, as mentioned 
above, the optimisation results are shown in Table I and II 
respectively where it shows that in both cases the 

0 100iniq = gives the best tracking performance, judged by the 

minimum ISE or lminJ . The effect of increase in q shows 
improvement in gain margin in Fig. 9-10, for the two cases of 
optimization. However, the practically implementable values 
should be judged from the tracking performance and required 
controller effort which has turned out as the corresponding 
optimal weights in the third row of both Table I-II. Also the 
advantages of tuning all the parameters rather than tuning only 
R, q0 is evident from Fig. 9-10 and Table I-II, as the former 
produces consistently better tracking and stability margins.        

 
Fig. 9. Response with tuned weights Q, R, q0 corresponding to Table I. 

 
Fig. 10. Response with tuned values of R, q0 corresponding to Table II. 

B. Effect of Wrong Estimate of Noise Covariances 

 
Fig. 11. Canard deflection for gradual increase in Ξ and Θ.    



The best control scheme i.e. the proposed LQG-LTR-LQI 
scheme with Qopt = diag([1.477, 1.511, 0.268]), Ropt = 0.268, 
qopt = 96.698 has now to be tested with a wrong estimate of the 
noise covariance matrix. The resulted transfer function of the 
hybrid optimal controller for the present canard missile attitude 
control problem has been computed as (17). 

( ) ( )
( ) ( )

2

2

548.94 17.8 159.1

39.95 31.48 1090
opt
c

s s
G s

s s s s

− + +
=

+ + +
        (17) 

In a practical scenario, the noise covariance must be 
continuously updated affecting the Kalman gain in (5). The 
LQG controller should also be updated for the best noise 
rejection performance. Here in Fig. 11, the effects of increasing 
the noise covariance matrices on the system output, control 
input and canard deflection are studied, keeping the controller 
tuned at a lower noise specification 3 710 , 10− −Ξ = Θ = . It is 
evident that the scheme is capable of keeping the canard 
deflection at lower level for a range of noise characteristics.   

V. CONCLUSION 
An efficient attitude control system for the canard missile 

has been proposed in this paper as a fusion LQG, LTR and LQI 
techniques with an optimization based weight selection. The 
controller guarantees set-point tracking, rejects process noise 
and measurement noise and also provides better stability 
margins than that can be achieved from each of the techniques 
separately. The optimization procedure reduces the manual 
heuristics needed while tuning of the proposed LQG-LTR-LQI 
controller. Future work may be directed towards extending the 
concept for correlated noise terms and nonlinear missile model. 
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