
Missing Data in Alcohol Clinical Trials: A Comparison of
Methods

Kevin A. Hallgren, MS and Katie Witkiewitz, PhD
Department of Psychology, University of New Mexico

Abstract

Background—The rate of participant attrition in alcohol clinical trials is often substantial and

can cause significant issues with regard to the handling of missing data in statistical analyses of

treatment effects. It is common for researchers to assume that missing data is indicative of

participant relapse and under that assumption many researchers have relied on setting all missing

values to the worst case scenario for the outcome (e.g., missing=heavy drinking). This sort of

single imputation method has been criticized for producing biased results in other areas of clinical

research, but has not been evaluated within the context of alcohol clinical trials and many alcohol

researchers continue to use the missing=heavy drinking assumption.

Methods—Data from the COMBINE study, a multisite randomized clinical trial, were used to

generate simulated situations of missing data under a variety of conditions and assumptions. We

manipulated the sample size (n = 200, n = 500, and n = 1000) and dropout rate (5%, 10%, 25%,

30%) under three missing data assumptions (missing completely at random, missing at random,

missing not at random). We then examined the association between receiving naltrexone and

heavy drinking during the first 10 weeks following treatment using five methods for treating

missing data (complete case analysis, last observation carried forward, missing=heavy drinking,

multiple imputation, and full information maximum likelihood).

Results—Complete case analysis, last observation carried forward, and missing=heavy drinking

produced the most biased naltrexone effect estimates and standard errors under conditions that are

likely to exist in randomized clinical trials. Multiple imputation and maximum likelihood

produced the least biased naltrexone effect estimates and standard errors.

Conclusions—Assuming that missing=heavy drinking produces biased results of the treatment

effect and should not be used to evaluate treatment effects in alcohol clinical trials.
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Introduction

Participant attrition (i.e., dropout) in alcohol clinical trials can be substantial, with typical

attrition rates ranging between 10% and 35% (e.g., Anton et al., 2006; Fertig et al., 2012;

Johnson et al., 2007). The reasons for dropout are usually unknown, although numerous

studies have evaluated predictors of dropout (Mackenzie et al., 1987; Postel et al., 2011;

Prisciandaro et al., 2011; Sobell et al., 1984; Suh et al., 2008). Regardless of the reason for

dropping out, participant attrition (or participant non-response at a specific assessment) can

cause significant issues with regard to the handling of missing data in statistical analyses of

treatment effects.

Missing Data: Mechanisms and Methods

The impact of missing data is often largely dependent on the process by which the data are

missing. Rubin and colleagues (Little and Rubin, 2002; Rubin, 1976) developed a taxonomy

of missing value mechanisms and simulation studies have provided guidance on the best

analytic techniques for specific missing data mechanisms (Collins et al., 2001; Enders, 2011;

Hedeker et al., 2007; Schafer and Graham, 2002). The recommendations from these studies

have also been supported by guidelines for handling missing data in clinical trials from the

National Research Council (2010).

According to Rubin and colleagues (Little and Rubin, 2002; Rubin, 1976), when the

mechanism of the missing data is missing completely at random (MCAR) all missing values

are unrelated to the observed values of the studied variables and unrelated to outcomes that

were unobserved. In other words, participant attrition is completely unrelated to any of the

constructs being studied. When the missing values are missing at random (MAR) then the

missing values may be related to the observed values of the studied variables, but are

completely unrelated to outcomes that were unobserved. Finally, when the missing values

are missing not at random (MNAR) then the missing values are related to outcomes that

were unobserved.

Unfortunately the mechanism of missingness is almost always unknown, thus the researcher

can only assume that data are MCAR, MAR, or MNAR, and utilize an analytic approach

that is best suited for the assumed missing data mechanism. Many methods have been

developed for analyzing missing data and the interested reader is referred to numerous

articles and books on the topic (Allison, 2001; Collins et al., 2001; Enders, 2011; Graham,

2009; Little et al., 2012; Schafer and Graham, 2002). In the current paper we focus on five

methods: complete case analyses, single imputation techniques (e.g., last observation carried

forward and the worst-case scenario of missing=heavy drinking), multiple imputation, and

full information maximum likelihood. The performance of each of these approaches has

been studied in numerous simulations and the findings consistently show that complete case

techniques only produce unbiased results when data are MCAR and perform poorly when

data are MAR or MNAR, while single imputation techniques are almost always problematic

(see Hedden et al., 2009; Lane, 2008; Liu and Gould, 2002; Mallinckrodt et al., 2001).

Multiple imputation and maximum likelihood have been shown to be statistically valid when

data are MCAR and MAR (Barnes et al., 2010; Hedden et al., 2009; Lane, 2008;

Mallinckrodt et al., 2001). As might be expected, all approaches generally perform poorly
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when data are MNAR, in which case sensitivity analyses (e.g., pattern mixture modeling

and/or selection models; Enders, 2011) are recommended (Little et al., 2012; Mallinckrodt et

al 2008; Molenberghs et al., 2004).

Missing Data in Alcohol Clinical Trials

In the alcohol and substance abuse fields it is common for researchers to assume that

missing data is indicative of relapse (Arndt, 2009). Under that assumption many researchers

have relied on setting all missing values to the worst case scenario for the outcome (e.g.,

missing=heavy drinking; Falk et al., 2010). It has been suggested that assuming the worst

case scenario will provide a conservative estimate of treatment effects (Papp et al., 2008),

yet numerous simulation studies have provided evidence that using a single value (e.g.,

heavy drinking) to replace, or impute, missing data leads to severely biased treatment effect

and standard error estimates (e.g., Barnes et al., 2010; Hedden et al., 2009; Hedeker et al.,

2007; Lane, 2008; Mallinckrodt et al., 2001). Importantly, the treatment effect bias can favor

the control or treatment group, and standard errors can be overestimated (increasing type-II

errors) or underestimated (increasing type-I errors). The degree of bias from these different

methods often depends on the patterns of missing data, rates of missing data in the treatment

and control groups, and the mechanism of the missing data.

Researchers have found the worst case scenario missing data assumption in smoking trials

(i.e., missing=smoking) to be strongly biased (Barnes et al., 2010; Hedeker et al., 2007), but

no studies have examined the worst case scenario assumption in alcohol treatment trials.

Importantly, alcohol and smoking clinical trials often differ, with studies of smoking often

using a dichotomous outcome (e.g., smoking or not) and many alcohol trials using a

continuous outcome (e.g., percent heavy drinking days). Previous research has consistently

shown that multiple imputation and full information maximum likelihood produce more

accurate results than complete case analysis and single-imputation methods, yet no studies

have examined how the assumption of missing=heavy drinking impacts the results from

alcohol clinical trials. Based on the prior research we anticipate that the assumption of

missing=heavy drinking, as a single imputation method, will produce extremely biased

results and that other methods of missing data analyses, such as multiple imputation and full

information maximum likelihood will produce more accurate results in the context of

missing data in alcohol clinical trials. It is particularly important to study the missing=heavy

drinking assumption because the Food and Drug Administration (FDA) considers percent of

subject with no heavy drinking days as the primary endpoint for Phase 3 Alcohol Clinical

trials and has used the missing=heavy drinking assumption in evaluating the efficacy of

alcohol treatment medications (FDA, 2006; also see Falk et al., 2010).

The goal of the current study was to examine various missing data assumptions and methods

for analyzing treatment outcomes with missing data in a randomized trial for alcohol

dependence. Specifically, we conducted simulations using real data from the COMBINE

study (Anton et al., 2006) to examine the effect of naltrexone on percent heavy drinking

days 10 weeks after treatment. Our primary focus was on assessing the performance of five

methods for handling missing data (complete case analysis, last observation carried forward,

missing=heavy drinking, multiple imputation, and full information maximum likelihood)
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when data were generated by MCAR, MAR, and MNAR mechanisms. We started with

observed data so that the observed distributions and covariance structures were maintained.

The generated data and resulting analyses were then evaluated with respect to the known

values observed in the complete dataset.

Materials and Methods

Participants

The data for this study are from the COMBINE study (COMBINE Study Research Group,

2003), a multi-site randomized trial. A total of 1383 subjects across 11 research sites were

randomized into nine treatment groups. Treatment was provided for 16 weeks and

participants were followed for one year following treatment.

The sample was recruited from inpatient and outpatient referrals at study sites and

throughout the community. The final sample included 1,383 participants, 31% were female,

23% of the study sample were ethnic minorities (76.3% Non-Hispanic White, 11.6%

Hispanic, 7.8% African American, and 4.1% Other). The subjects’ median age was 44 years,

71% had at least 12 years of education, and 42% were married. Within the treatment period,

94% completed all drinking assessments, while 82.1% (N = 1136) completed the drinking

assessment at ten weeks post-treatment. Only participants who completed the drinking

assessment at ten weeks post-treatment were retained for the simulation.

Upon meeting the study criteria, subjects completed a baseline assessment and were

randomly assigned to one of nine treatment groups. The Medical Management groups

(n=607) included: Naltrexone, Acamprosate, Naltrexone + Acamprosate, and Placebo. The

Combined Behavioral Intervention (CBI) groups (n=776) consisted of: Naltrexone + CBI,

Acamprosate + CBI, Naltrexone + Acamprosate + CBI, Placebo + CBI, and CBI-only.

Assessments

Outcome measure—Percent heavy drinking days (PHD) was used as the primary

outcome variable because it combines both frequency and intensity of drinking and is

commonly used in alcohol clinical trials (Falk et al., 2010). The Form-90 interview (Miller

and Del Boca, 1994) was used to calculate PHD. Heavy drinking was defined as 4 or more

drinks per day for women and 5 or more drinks per day for men. Drinking measures were

derived for the prior 30 days at each assessment point. In the current study we examined

heavy drinking over the 30 days prior to the 10 week post-treatment assessment.

Auxiliary measures—Auxiliary variables were used to generate data that were MAR and

to assist with the estimation of the multiple imputation and full information maximum

likelihood models. Previous simulations have shown that using many auxiliary variables

produces less biased results when multiple imputation and full information maximum

likelihood are used (Collins et al., 2001; van Buuren et al., 1999). In the current study,

auxiliary variables included alcohol dependence symptoms at baseline, treatment condition,

gender, age, naltrexone adherence, and measures of drinking frequency and PHD derived at

baseline and during the 16 weeks of treatment. Number of alcohol dependence symptoms

was determined by Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition

Hallgren and Witkiewitz Page 4

Alcohol Clin Exp Res. Author manuscript; available in PMC 2014 July 28.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(DSM-IV; American Psychiatric Association, 1994) criteria using the Structured Clinical

Interview for DSM-IV (SCID; First et al., 1997).

Simulation Design

To evaluate the effects of various methods for handling missing data, participant dropout

was simulated under various conditions (Burton et al., 2006; Hallgren, in press). In the

MCAR condition of the simulation, participants in each naltrexone treatment condition

(received naltrexone vs. did not receive naltrexone) dropped out at rates of 5% and 10% or

25% and 30%, with the probability of dropout unrelated to baseline or follow-up variables.

In the MAR condition, dropout rates were likewise manipulated at 5% and 10% or 25% and

30% for each naltrexone condition, and the proportion of participants who dropped out

within both conditions was also dependent on baseline alcohol dependence symptoms.

Specifically, the probability of dropout was manipulated such that either 25% or 75% of

participants who dropped out were above the median level of baseline alcohol dependence

symptoms. In the MNAR condition, the proportion of participants who dropped out within

both conditions was dependent on 10-week post-treatment PHD (the dependent variable in

this study), such that either 25% or 75% of participants who dropped out were above the

median post-treatment PHD. Sample size was manipulated at three levels by creating

datasets that randomly sampled 200, 500, and 1000 participants with complete data at the 10

week post-treatment follow-up. Two hundred simulations of participant dropout were

created within each of the 120 resulting conditions.

Missing Data Handling Methods

Each simulated dataset was analyzed using five methods for handling missing data. For the

complete case analysis (CCA) condition, all participants with missing data at 10 weeks post-

treatment were dropped from the analysis. For the last observation carried forward (LOCF)

condition, values from the most recently available time point, typically the last four weeks

during the treatment period, were carried forward to replace the missing values at the 10-

week post-treatment time point. For the worst-case scenario (WCS) condition where it is

assumed that missing=heavy drinking, participants with missing data were assumed to have

relapsed to daily heavy drinking (100% PHD).

For the multiple imputation (MI) condition, missing data were imputed using chained

regression equations in the mice package (van Buuren and Groothuis-Oudshoorn, 2011) in

the R programming environment (R Development Core Team, 2012). mice estimated

plausible values for missing data based on the mean and covariance structures among the

missing data variable and the set of auxiliary variables listed above. For each simulated

dataset, five imputation datasets were created with missing values imputed within their

plausible ranges (e.g., 0 to 100 for PHD). Regression parameter estimates were then

computed for each of the imputation datasets and were pooled according to Rubin’s rules. A

tutorial and syntax for using MI in the mice package are provided by van Buuren et al.

(2001), and an example model with syntax is included as supplementary material.

For the full information maximum likelihood (FIML) condition the variance-covariance

matrix for all available data was analyzed using Mplus version 7 (Muthén and Muthén,
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2012). Through an expectation maximization algorithm, maximum likelihood uses all

available data to identify the values of the model parameters that maximize the fit of the

model to the observed data. Consistent with the idea of ordinary least square regression

(Baraldi and Enders, 2010), maximum likelihood seeks those values for the parameters that

minimize the distance between the observed data and the predicted data. The auxiliary

variables listed above were included in each model. Example Mplus syntax for using FIML

with auxiliary variables is included as supplementary material.

Analytic Plan

Linear regression models were analyzed for each simulated dataset with PHD as the

dependent variable and naltrexone condition (0 = did not receive naltrexone, 1 = received

naltrexone) as the independent variable. The average naltrexone effect (β) was computed

within each simulation condition to determine whether the missing data handling method

produced results that were systematically different from the dataset with no missing data.

The average standard error (SE) was also computed for each condition to determine the

effect of missing data on confidence of the parameter estimates and statistical power. Larger

standard errors would indicate lower confidence in the treatment effect estimate (i.e., wider

confidence intervals) and reduced statistical power. Smaller standard errors would indicate

inflated confidence in the treatment effect estimate (i.e., smaller confidence intervals) and

inflated statistical power. Finally, we calculated the root mean square error (RMSE) as a

measure of efficiency and bias (Collins et al., 2001). The RMSE quantifies the overall

degree of bias and inaccuracy in treatment effect estimates within each simulation condition.

It is calculated as the average squared difference between the observed effect and the true

effect. RMSE values closer to zero indicate less bias and greater accuracy, while larger

values indicate greater bias and less accuracy.

Results

Figure 1 displays the average naltrexone effect estimates (top figures), average SE estimates

(middle figures), and RMSE values (bottom figures) for all conditions with dropout rates of

5% and 10% and n = 1000. Missing data mechanisms are represented across the horizontal

axis of each figure, e.g., MAR-high represents the group of conditions with higher dropout

for participants with higher baseline dependence symptoms and MAR-low represents the

group of conditions with higher dropout for participants with lower baseline dependence

symptoms; MNAR-high represents conditions with higher dropout for participants with

higher follow-up PHD and MNAR-low represents conditions with higher dropout for

participants with lower follow-up PHD. Different rates of dropout within each condition of

the missing data mechanism are also presented on the horizontal axis (“a” = 5% dropout in

naltrexone and no-naltrexone conditions; “b” = 5% naltrexone dropout and 10% no-

naltrexone dropout; “c” = 10% naltrexone dropout and 5% no-naltrexone dropout; “d” =

10% dropout in both conditions). CCA, LOCF, and WCS results are presented on the left

side of the figures, and MI and FIML results are presented on the right side of the figures.

Figure 2 displays results for the conditions with dropout rates of 25% and 30% and n = 1000

in a similar manner. The patterns of results in Figures 1 and 2 were similar for the smaller
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sample sizes with n = 200 and 500 and are not presented here but are available in the

supplementary tables to this manuscript.

Treatment effect (β) estimates

Mean naltrexone effects (top rows of Figures 1 and 2) estimated with CCA (left figure, solid

line) had little deviation from the observed naltrexone effect in the dataset with no dropout

(i.e., β = −3.46 in complete dataset; indicated by the horizontal dashed line) when data were

MCAR. However, CCA results deviated more substantially from the observed naltrexone

effect with no dropout when missing data were MAR or MNAR. Naltrexone effects

estimated using LOCF (left figure, dashed line) deviated from the effect estimates with no

dropout across missing data mechanisms, and typically overestimated the magnitude of the

treatment effect (i.e., suggested a greater reduction in PHD due to receiving naltrexone than

what actually occurred), especially when overall dropout rates were higher or when a greater

proportion of participants who dropped out were in the naltrexone condition. Naltrexone

effects estimated using WCS (left figure, dotted line) had the most substantial deviations

from the estimates obtained with no dropout across all missing data mechanisms. Treatment

effects estimated using WCS were highly inaccurate, at times doubling the magnitude of

treatment effects and at other times reducing it to zero. Naltrexone effects estimated using

MI and FIML (right figure, solid and dashed lines, respectively) were closest to the

treatment effect estimated with no dropout under MCAR and MAR conditions. When data

were MNAR, MI and FIML treatment effect estimates had some deviation, but the

magnitude of the deviation was smaller compared to the CCA, LOCF, and WCS conditions

(represented in the left figure). Treatment effect estimates obtained using MI and FIML

were nearly identical.

Standard error (SE)

Mean SE estimates (see middle rows of Figures 1 and 2) estimated using CCA and WCS

were always larger compared to the SE estimate from the dataset with no dropout (i.e., SE =

2.00 in complete dataset). As dropout rates increased, the magnitude of the SE inflation

created by using CCA and WCS become larger, corresponding with larger reductions in

statistical power and increased type-II errors. Alternatively, using LOCF slightly

underestimated the magnitude of SE values, corresponding with artificially increased

statistical power and increased type-I errors. Higher rates of dropout increased the

magnitude by which SE values were underestimated when LOCF was used. Using MI and

FIML produced SE estimates that were slightly inflated, corresponding with some loss of

statistical power compared to the dataset with no dropout. However, the magnitude of

inflation was smaller than when CCA and WCS were used, corresponding with smaller

reductions in statistical power and type-II errors. SE estimates obtained using MI and FIML

were nearly identical.

Root mean square error (RMSE)

RMSE values, which indicate inaccuracy in treatment effect estimates due to bias and

variability of treatment effect estimates, were substantially higher when WCS was used

compared to any other method. RMSE values also were higher for CCA and LOCF
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compared to MI and FIML. For all methods, RMSE values were higher when data were

MNAR. Averaged across all conditions, RMSE values were lowest in the MI (RMSE =

1.10) and FIML (1.01) conditions, and were highest in the CCA (1.48), LOCF (1.44), and

WCS (3.06) conditions.

Discussion

The present study examined the effect of five methods for handling missing data under a

variety of conditions on treatment effect estimates in a multisite randomized clinical trial for

alcohol dependence. The results indicated that even with a modest amount of participant

dropout (e.g., 5–10%), treatment effect estimates and standard errors computed from the

same dataset can vary substantially based on the method one uses to handle missing data. As

dropout rates become higher (e.g., 25–30%), the variability in treatment effect estimates and

standard errors increases even more.

Across simulation conditions, the amount of bias in treatment effect estimates was highest

when WCS was used to handle missing data. Even when participant dropout was equal

between treatment groups, WCS often resulted in more biased treatment effect estimates

than the other missing-data handling methods. Based on average estimates of the RMSE,

using WCS produced results that were more than three-times more biased than the FIML

approach and more than two-times more biased than the MI, CCA, and LOCF approaches.

In some cases when participant dropout was uneven between groups, the amount of bias due

to using WCS was large enough to cause the size of the treatment effect to be doubled or

reduced to be effectively zero. Importantly, larger sample sizes (i.e., n = 500; n = 1000) did

not protect against the bias caused by WCS. Further, WCS also resulted in the largest

standard errors across simulation conditions due to the increased standard deviation caused

by imputing missing = 100% heavy drinking. This indicates that WCS creates substantially

larger confidence intervals of treatment effect estimates and reduces statistical power.

The use of CCA also resulted in biased treatment effect estimates except in the case when

data were MCAR, in which case CCA produced unbiased effect estimates. Unfortunately,

the mechanism of missingness is unknown in many clinical trials and the MCAR assumption

often may be unreasonable, thus CCA is likely to produce biased results in the situations that

are typical of most clinical trials. Further, due to decreased sample size, the use of CCA

increased the size of standard errors and reduced statistical power.

The use of LOCF resulted in biased treatment effect estimates that typically overestimated

the size of the naltrexone effect on reducing PHD. As the overall rate of dropout increased,

the degree to which LOCF over-estimated the treatment effect also increased. The use of

LOCF also underestimated standard error values, implying greater confidence in the

treatment effect estimate than is actually warranted. Together, the tendency for LOCF to

over-estimate treatment effects and yield smaller standard errors can lead to increased type-I

errors, where ineffective treatments are perceived to be more effective than they actually are,

and the degree of confidence in the treatment effect estimate is inflated.
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In contrast, the use of MI and FIML produced the most accurate treatment effect and

standard error estimates, indicating that these methods produce the most accurate results and

retain most of the statistical power that would be present in a complete dataset without

increasing type-I error rates. Even though all conditions produced biased results when data

were MNAR, the deviation of treatment effects from their true values was still typically

lower when MI or FIML were used compared to other methods.

The current findings are consistent with prior simulation studies of missing data in clinical

trials (e.g., Lane, 2008; Mallinckrodt et al., 2001) and we echo the recommendations of

many others to use MI, FIML, or other recommended modern missing data analytic tools

(e.g., weighted estimating equations) in the analysis of alcohol clinical trial data when there

are missing data (Little et al., 2012; Mallinckrodt et al., 2008; Molenberghs et al., 2004). We

also caution against the use of CCA or LOCF, and especially discourage researchers from

using the WCS (missing=heavy drinking) assumption.

Many people continue to use CCA because it is the default in many statistical programs

(e.g., SPSS) or because modern missing data methods (e.g., MI, FIML) may be perceived as

inaccessible. Numerous software programs (including Stata, SAS, SPSS, Mplus, and R) now

incorporate MI and FIML, and there are many tutorials and reviews that describe the proper

use of these methods in various software programs (e.g., Asparouhov and Muthén, 2010;

Graham, 2009; van Buuren and Groothuis-Oudshoort, 2011; Zhang and Yiu-Fai, 2011).

Many people continue to use LOCF or WCS because it is assumed that these approaches are

more “conservative” and/or because single imputation is easy to implement. The results

from the current study and many prior studies (e.g., Lane, 2008; Hedeker et al., 2007;

Siddiqui 2011; Siddiqui et al., 2009) soundly refute the notion that LOCF and WCS produce

conservative estimates of the treatment effect.

Limitations and Strengths

The primary limitation of the current study, and other simulation studies of missing data, is

that reasons for missingness are rarely known by the researcher. The simulated conditions

were developed to reflect possible real world scenarios, but in the real world the analyst

does not know the missingness mechanism. Methods have been developed for examining the

sensitivity of models to various missing data assumptions (Enders, 2011;Hedeker &

Gibbons, 1997; Wu & Carroll, 1988) ) and researchers are encouraged to consider using

these methods to analyze longitudinal data (see Witkiewitz et al., 2012 for an example).

This study was also limited to only five approaches for handling missing data even though

other approaches exist and are used. For example, there are numerous other single

imputation approaches (e.g., group-mean imputation, baseline carried forward,

missing=50% PHD) that were not considered, although based on prior studies we presume

that these approaches would have also performed poorly in comparison to MI and FIML.

There are also alternatives to MI and FIML that have proven useful and less biased than

LOCF, CCA, and other approaches. For example, weighted estimating equations, which

have also been supported as a favored method by the National Research Council (2010;

Little et al., 2012), were not tested in the current study and similar approaches have been

useful in studying missing data in substance abuse clinical trials (Hedden, 2009).
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Finally, we view the use of real data in the current study as both a limitation and strength.

The use of real complete data is limiting because it includes the drinking data of participants

who did not dropout and their data could be dissimilar to those participants who dropped out

of the study. An analysis of the full COMBINE dataset with those with missing data at 10

weeks posttreatment compared to those with complete data indicated no significant

differences between groups in baseline drinking rates, alcohol dependence severity,

demographic variables, readiness to change, social support, social network drinking, or

quality of life. The groups were different on baseline drinking consequences (t (1379) =

−2.17, p = 0.03) with individuals with missing data reporting approximately 3 more

consequences, on average.

The use of real data is also a major strength of the current study because we retained the

real-world features of clinical trial data. The use of real data also allowed us to compare the

treatment effect that was estimated under various conditions to the treatment effect observed

in the complete dataset. A related strength is the use of the COMBINE data, which is being

analyzed in many secondary data analytic studies. Finally, the current study adds to the

literature on approaches for handling missing data by examining the effect of the WCS

(missing=heavy drinking) assumption on non-dichotomous treatment outcomes.

Summary

Participant attrition is common in alcohol clinical trials and there are several methods for

handling missing data. The results from the current study, in addition to several prior

studies, provide evidence that using CCA, LOCF, or WCS will bias results when there are

missing data, particularly if data are MAR or MNAR. These techniques do not bring us any

closer to identifying reliably effective treatments for alcohol use disorders and, in the case of

assuming missing=heavy drinking, also discredit those clients who are successful following

treatment by stigmatizing and stereotyping them as treatment failures for dropping out of a

clinical trial (Arndt, 2009). Researchers are encouraged to consider missing data techniques,

such as FIML and MI, which are readily available in many popular software programs.

Recommendations to not use CCA and single imputation methods (e.g., LOCF, WCS) have

been voiced for decades and we urge the alcohol treatment research community to consider

these recommendations when conducting analyses.
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Figure 1.
Model results for percentage of heavy drinking days (PHD) predicted by naltrexone

condition. CCA = complete case analysis; LOCF = last observation carried forward; WCS =

worst case scenario; MI = multiple imputation; FIML = full information maximum

likelihood; MCAR = missing completely at random; MAR-high = missing at random with

higher dropout rates in high-baseline dependence group; MAR-low = missing at random

with higher dropout rates in low-baseline dependence group; MNAR-high missing not at

random with higher dropout rates in high-post-treatment PHD group; MNAR-low missing

not at random with higher dropout rates in low-post-treatment PHD group; a = 5% dropout

in both naltrexone and no-naltrexone groups; b = 5% dropout in naltrexone group and 10%

dropout in no-naltrexone group; c = 10% dropout in naltrexone group and 5% dropout in no-

naltrexone group; d = 10% dropout in both groups.
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Figure 2.
Model results for percentage of heavy drinking days (PHD) predicted by naltrexone

condition. CCA = complete case analysis; LOCF = last observation carried forward; WCS =

worst case scenario; MI = multiple imputation; FIML = full information maximum

likelihood; MCAR = missing completely at random; MAR-high = missing at random with

higher dropout rates in high-baseline dependence group; MAR-low = missing at random

with higher dropout rates in low-baseline dependence group; MNAR-high missing not at

random with higher dropout rates in high-post-treatment PHD group; MNAR-low missing

not at random with higher dropout rates in low-post-treatment PHD group; a = 25% dropout

in both naltrexone and no-naltrexone groups; b = 25% dropout in naltrexone group and 30%

dropout in no-naltrexone group; c = 30% dropout in naltrexone group and 25% dropout in

no-naltrexone group; d = 30% dropout in both groups.
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