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Abstract. Kernel Principal Component Analysis (KPCA) is a widely
used technique for visualisation and feature extraction. Despite its suc-
cess and flexibility, the lack of a probabilistic interpretation means that
some problems, such as handling missing or corrupted data, are very
hard to deal with. In this paper we exploit the probabilistic interpreta-
tion of linear PCA together with recent results on latent variable models
in Gaussian Processes in order to introduce an objective function for
KPCA. This in turn allows a principled approach to the missing data
problem. Furthermore, this new approach can be extended to reconstruct
corrupted test data using fixed kernel feature extractors. The experimen-
tal results show strong improvements over widely used heuristics.

1 Introduction

Kernel PCA is a non-linear feature selection technique which extends the linear
statistical method of Principal Component Analysis (PCA) by elegantly using
the so called kernel trick [1]. However, while the flexibility of Kernel PCA has led
to very good performance on a number of problems, the lack of a probabilistic
interpretation for it means that it can be very difficult to adapt it in the presence
of missing or corrupted data.

In this paper we suggest a simple way of estimating missing data in Kernel
PCA. We start by reformulating Kernel PCA along the lines suggested in [2][3],
we then show how the derived objective function can be used in the face of miss-
ing data. We demonstrate the resulting approach on two widely used data sets:
the Tobamovirus data set used in [4] and [5] (where a missing data comparision
was also made) and the oil flow data set used in [6]. We compare our results
with other possible approaches: the crude but widely used heuristic of replacing
a missing value with the mean of the corresponding component across the data
set, a nearest neighbour approach and a reconstruction using linear probabilistic
PCA. Both the reconstruction error and the visualisation improve dramatically
through our approach.

We also consider the related problem of reconstructing missing test data:
assuming we have trained a Kernel PCA feature extractor, what is the best
guess for a data point with partially missing data? Our approach turns out to
produce a very reasonable solution to this problem, providing again dramatic
improvements in visualisation and reconstruction error.
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The remainder of the paper is organised as follows: we start by briefly review-
ing the probabilistic interpretation of PCA (PPCA, [5]) and its dual formulation.
We then show how a kernel version of dual PPCA leads naturally to an objective
function for KPCA and discuss how to use this information to deal with missing
data. In the third section, we present our experimental results. In the fourth
section we turn to the somewhat complementary problem of estimating missing
data in test data. We finally conclude by discussing the merits and limits of our
approach.

2 Cross Entropy and Reconstructing Missing Data

The key idea in PCA is to identify the directions of maximal variance in a data
set. This can be shown to be equivalent to an eigenvalue problem for the empirical
covariance matrix constructed from the data. Probabilistic PCA [5] assumes a
linear relationship between the observed variables yi and a latent variable xi,

yi = Wxi + ε, (1)

where W is a d × q matrix (d being the dimension of the observed variable and
q that of the latent variables) and ε is an error term assumed to be Gaussian
distributed with spherical covariance, ε ∼ N

(
0, σ2I

)
. For dimensonal reduction

we have d > q. Equation 1 then implies a Gaussian likelihood for the observed
variable,

yi ∼ N
(
Wxi, σ

2I
)
. (2)

Placing a Gaussian prior on the latent variables x leads to the marginal likelihood

y(j) ∼ N
(
0,WWT + σ2I

)
. (3)

It can be proved that the maximum of the marginal likelihood is achieved when
the columns of W span the directions of maximal variance in the data.

This picture can be reversed leading to the dual approach to probabilistic
PCA taken in [2][3]. We place a prior distribution on W in which each element
of W is Gaussian distributed, wij ∼ N (0, 1), the likelihood of equation 2 can
be marginalised with respect to W to yield a marginal likelihood for the data
set of the form

y(j) ∼ N
(
0,XXT + σ2I

)
, (4)

where y(j) is the jth column of Y and each column is independent. Maximum
likelihood estimation with respect to the embeddings, X, leads to an eigenvalue
problem for the inner product matrix K = 1

dYYT, which is well known to be
mathematically equivalent to the eigenvalue problem for the empirical covariance
matrix.

The likelihood for both PPCA and dual PPCA can be given an interest-
ing interpretation as the cross entropy between two Gaussian distributions, one
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Algorithm 1. The Missing Data reconstruction algorithm
Initialise the missing data;
Select the dimension of the latent space q;
repeat

Compute the kernel matrix K;
Compute the approximating matrix C = XXT + σ2I by computing the principal
components of K;
Minimise the cross entropy between K and C with respect to the missing data;

until convergence

specified by the empirical covariance S and the other by the approximating
covariance Σ = WWT + σ2I in the case of PPCA and C = XXT + σ2I in the
case of dual PPCA. This is given, up to an additive constant, by the formula

L (N (0,C) ||N (0,K)) = −1
2

(
log |C| + trace

(
KC−1)) . (5)

We note in passing that, when N > q, K will not be positive definite, however
this situation can be rectified without significant effect on the algorithm by
adding a spherical term to K (see [7]).

Kernel PCA can be viewed as dual PCA on the images of the data set in a
(possibly infinite dimensional) feature space. As the inner product matrix in (4)
scales with the number of data points and not with their dimensionality, the
computational burden will remain unchanged by pre-applying a feature map.
Using the kernel trick, we have that the inner product matrix of the images of
the data via the feature map is given by the kernel matrix K (xi,xj), whose
spectral decomposition provides the nonlinear feature extractors.

Therefore, it is natural to consider the cross entropy of equation (5) as an
objective function for Kernel PCA. The implicit idea behind this is that nonlin-
ear data in the observed space can be mapped, through the feature map, to a
high dimensional space where the implied generative structure becomes approx-
imately Gaussian1. While we are not aware of a general proof of this fact, there
has been experimental evidence supporting it (see e.g. [8]).

Having obtained an objective function for Kernel PCA, we are in a position
to give principled answers to a number of problems. In particular, this suggests a
method for dealing with missing or corrupted data: the objective function can be
optimised with respect to both the images and the values of the missing points
(which are particular elements of Y).

We chose to take an iterative approach to the optimisation, using spectral
decomposition to compute principal components and a scaled conjugate gradient
algorithm to optimise with respect to the missing points. This is summed up
schematically in Algorithm 1.

1 More precisely, the generative structure becomes approximately Gaussian after pro-
jection onto a suitable finite dimensional space.
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3 Experimental Results

To test our approach we tried our algorithm on two well known Tobamovirus
data set. This was used in [4] to demonstrate PCA and further used in [5]
to demonstrate PPCA in the presence of missing data. It consists of 38 data
points, each of them 18 dimensional. In our experiment we removed at random
130 values by sampling from a uniform distribution. To capture 95% of the initial
variability we selected a latent dimension, q, of 8. We used an MLP kernel with
weight variance and bias both equal to 10 [9]. Further experimental results are
reported in [10].

Figure 1 (a-c) compares the reconstruction obtained with our method (b) with
the underlying truth (KPCA on the full data set,(c)) and with the widely used
heuristic of replacing missing components with the mean across the data set (a).
The improvement in visualisation is dramatic.

To quantify the effectiveness of our algorithm, we repeated the experiment
with ten different probabilities (from 0.05 to 0.5) and for ten different random
seeds. To measure the quality of the reconstruction, we estimated the squared
reconstruction error (given that we know the true positions of the points). We
compared our results with three different methods: the widely used heuristic of
the mean as above, a 1 nearest neighbour (1NN)2 method which replaces the
missing values with the values of the point with the nearest values in the known
features, and missing point estimation for linear probabilistic PCA (initialised
with the mean). The results for the Tobamovirus data set are summarised in
Figure 1 (d), plotting the deletion probabilities on the x-axis versus the recon-
struction error. The solid line is the mean initialisation, the dotted line is the
reconstruction using our method, the dashed line shows the reconstruction er-
rors using PPCA and the dotted and dashed line shows the reconstruction using
1NN (notice that 1NN is viable only up to deletion probabilities of 0.15).

4 Reconstructing Corrupted Test Data

Having introduced an objective function for Kernel PCA, the next question
is the following: suppose we have trained a KPCA feature extractor on some
training data set. If we are given a test point, we can use our feature extractors
on it. Suppose though the test data has some missing components, can we use
the knowledge of the feature extractors to deduce something about the missing
data? We are assuming that the test point comes from the same (unknown)
generative distribution as the training set; also, we do not want to recompute
the feature extractors anew (which would reduce us to the previous problem).

We can again draw inspiration by the linear picture; a trained PPCA feature
extractor gives us a generative distribution for the data

y|W, σ ∼ N
(
μ, WWT + σ2I

)
. (6)

2 It could be argued that a more sensible choice would be to use k -nearest neighbours.
However, when the deletion probability is high, it is impossible to find sufficient
uncorrupted data points to make k -NN viable.
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Fig. 1. KPCA with missing data. (a) shows the projection on the first two principal
components of the initialisation with 20% of the values removed and initialised to the
mean for the Tobamovirus data set. (b) shows the projection on the first two principal
components of the optimal reconstruction of the missing data for the Tobamovirus data
set. (c) shows KPCA on the Tobamovirus data set. (d) shows a comparison of the re-
construction squared errors using different methods for different deletion probabilities:
the mean substitution (solid line), PPCA (dashed), 1 nearest neighbour (dotted and
dashed) and our approach (dotted).

If we are given some of the entries in the test point yt, call them ytKnown, the
obvious best guess for the unknown entries would be given by the maximum
of the conditional probability p (ytnotKnown|ytKnown) (notice that this will also
provide an estimate of the uncertainty on the guess).

Although it is in general impossible to estimate the conditional distribution (6)
for Kernel PCA, we can still obtain a kernel version of the optimisation problem
by looking back at PPCA from a geometric perspective. The maximum of the
conditional probability is given by the minimum of the Mahalanobis distance of
yt from the mean μ, the Mahalanobis distance being measured with the inverse
covariance matrix

C−1 =
(
WWT + σ2I

)−1
.
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Therefore we can recover the maximum by optimising the quantity

yT
t C−1yt =

q∑

i=1

(
λ−1

i − σ−2) (yt · ui)
2 + σ−2‖yt‖2 (7)

where q is the number of principal components included in the model, ui are the
principal eigenvectors and λi are the corresponding eigenvalues.

As equation (7) makes clear, this distance can be expressed uniquely in terms
of dot products of the test point with the principal components (and with itself),
hence it is readily transferred to the kernel situation. In the RBF case, there is
the further advantage that k (y,y) = 1 ∀y so that the second term in (7) needs
not be included.

Recalling that the KPCA feature extractors in feature space are given by
ui =

∑Ntrain
j=1 αi

jΦ (yj) where αi is the i-th eigenvector of the Gram matrix
k (yi,yj) (normalised so that λi

(
αi · αi

)
= 1), we obtain the following objective

function for a missing test point

L =
q∑

i=1

(
λ−1

i − σ−2)
⎛

⎝
Ntrain∑

j=1

αi
jk (yj ,yt)

⎞

⎠

2

. (8)

Notice that we need both the KPCA feature extractors and the off subspace
variance σ2 to formulate our optimisation problem, which can be obtained us-
ing our approach to Kernel PCA but not using the standard non-probabilistic
formulation.

To test this approach we used the oil flow data set of [6]. This consists of
1000 12 dimensional synthetically generated data points modelling the flow of
a mixture of oil, water and gas in a pipeline. The points are labelled in three
different classes, according to the flow being laminar, annular or homogeneous. In
this case we used an RBF kernel with inverse width 0.075. The results are shown
in Figure 2. We selected the points corresponding to a laminar flow in the oil flow
data set. We removed a point at random and performed KPCA on the remaining
data set, retaining two principal components. We then treated the point we
removed as a test point and artificially corrupted its first five coordinates by
multiplying them by a constant factor. The point recovered through optimising
the objective function (8) is very close indeed.

To quantify the efficacy of our method, we repeated the example of Figure
2 removing a different point at random fifty times and replacing its first five
coordinates with random numbers. We also increased the number of features
extracted from two to ten. The results are summarised in Table 1, where a com-
parison with the mean substitution and 1 nearest neighbour is made. Notice that
the reconstruction error tends to decrease as the number of extracted features
is increased, as well as the reconstruction becoming more consistent (smaller
fluctuations in the mean error).
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Fig. 2. Reconstructing test points with Kernel PCA:(a) training points (crosses) and
original position of the test point (circle); (b) corrupted position of the test point
(circle) and reconstructed position of the test point (diamond)

Table 1. Reconstructing corrupted test points using KPCA feature extractors. The
first column shows the number of principal components retained, the second to fourth
columns show the mean reconstruction error across 50 runs using our method, mean
substitution and 1 nearest neighbour respectively. Notice that the reconstruction error
using our method decreases as the number of principal components is increased; with
more than three retained components our method gives the best performance.

Features extracted KPCA Mean 1NN

2 0.55±0.28 0.76±0.33 0.29±0.20

3 0.38±0.22 0.76±0.33 0.29±0.20

4 0.28±0.17 0.76±0.33 0.29±0.20

5 0.24±0.16 0.76±0.33 0.29±0.20

5 Discussion

In this paper we introduced an objective function for Kernel PCA, building on
previous work on probabilistic PCA [5] and latent variable models in Gaussian
Processes [2] [3]. This in turns allows to extend important inference techniques,
such as the estimation of missing data, to the case where the features are nonlinear.

Experimental results on two benchmark data sets show that this approach
yields far better results than the often recommended heuristic of replacing a
missing value with the mean (which we used as our initialisation), and consis-
tently outperforms other methods such as 1 NN and probabilistic PCA. Further-
more, the same ideas lead to a very natural solution of the related problem of
estimated missing or corrupted components in test data.

Despite these positive results, our approach still falls short of providing a full
probabilistic interpretation for Kernel PCA. The Gordian knot of the feature
map has been severed by integrating out the nonlinear mapping. This comes
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at the cost of no longer being able to predict the positions of new observed
points from the latent ones. The link between the primal and the dual PCA
problems in the kernelised case requires the explicit knowledge of the feature
map. Similarly, the elegant interpretation in terms of probability distributions
is harder to recover.

Acknowledgements. G.S. gratefully acknowledges support from a BBSRC award
“Improved processing of microarray data using probabilistic models”.
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