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Missing eddy feedback may explain weak signal-to-noise ratios
in climate predictions
Steven C. Hardiman1✉, Nick J. Dunstone1, Adam A. Scaife 1,2, Doug M. Smith 1, Ruth Comer1, Yu Nie3 and Hong-Li Ren4

The signal-to-noise paradox that climate models are better at predicting the real world than their own ensemble forecast members
highlights a serious and currently unresolved model error, adversely affecting climate predictions and introducing uncertainty into
climate projections. By computing the magnitude of feedback between transient eddies and large-scale flow anomalies in multiple
seasonal forecast systems, this study shows that current systems underestimate this positive eddy feedback, and that this
deficiency is strongly linked to weak signal-to-noise ratios in ensemble mean predictions. Improved eddy feedback is further shown
to be linked to greater teleconnection strength between the El Niño Southern Oscillation and the Arctic Oscillation and to stronger
predictable signals. We also present a technique to estimate the potential gain in skill that may come from eliminating eddy
feedback deficiency, showing that skill could double in some extratropical regions, significantly improving predictions of the Arctic
Oscillation.
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INTRODUCTION
The signal-to-noise paradox1,2 highlights a serious deficiency in
climate models and has recently generated a lot of interest in
the climate prediction community. In a perfect seasonal forecast
system, each forecast ensemble member should behave
equivalently to the observations, in the sense that the skill of
the model in predicting the observations (or the correlation of
the model ensemble mean with the observations, rmo) should be
statistically indistinguishable from the skill of the model in
predicting its own forecast ensemble members (or the average
correlation of any given ensemble member with the mean of all
other members, rmm). In other words the Ratio of Predictable
Components (RPC= rmo/rmm) should equal 1. The signal-to-
noise paradox occurs when RPC is greater than 1, as is found to
be the case in almost all current seasonal forecast systems3.
Forecasts in regions where RPC > 1 are ‘under-confident’, and
this leads to a number of issues, including the apparently
paradoxical result that the model is better at predicting the real
world than its own ensemble forecast members. The standard
metrics for forecast skill will then underestimate the skill that is
potentially available in a forecast system2. Additionally, a very
large ensemble is needed to extract the predictable signal, and
the variance of the ensemble mean must be inflated to match
the observed predictable signal1. Small signal-to-noise ratios
also lead to uncertainty in decadal predictions, and it requires
very large ensembles to remove this uncertainty. For example,
the North Atlantic Oscillation (NAO) predictable signals are
around 2–3 times too small in seasonal forecasts, and could be
as much as ten times too small in decadal forecasts4,5. Since the
error variance decreases linearly with ensemble size, such weak
signals require 4–9 (seasonal) and 100 (decadal) times more
ensemble members than would a perfect model, representing a
significant computational cost4,6,7. Therefore there is a current
need for large ensembles, and a significant effort in the seasonal

and decadal forecast communities to try to explain and resolve
the signal-to-noise paradox.
Currently, theories as to why the paradox exists include: a

deficiency of atmospheric eddy feedback in climate models due to
insufficient spatial resolution8, a deficiency in simulated ocean
eddies alongside weak ocean–atmosphere coupling9–11, a bias in
surface drag leading to too much baroclinic instability12, and
inaccurate regime persistence13,14. Some of these may be
interrelated15, but in this study, we focus on the first of these
ideas, a deficiency in atmospheric eddy feedback.
Eddy feedback is the process whereby interaction with small-

scale transient eddies amplifies large-scale quasi-stationary
climate anomalies in the mid-latitudes. It is an essential part of
the process whereby remote influences impact the tropospheric
jets16–27. Eddy feedback is therefore crucial for simulating the
correct strength of the change to the tropospheric jets caused by
remote influences in climate models, from monthly through to
centennial time scales. However, eddy feedback has been shown
to be deficient in current climate models8,24,28. Although there
have been several hypotheses relating to the interaction of wave
propagation and breaking with the latitudinal and vertical
structure of the jets in models29–31, none have yet suggested a
means of resolving this model deficiency.
By computing the magnitude of eddy feedback in a range of

seasonal forecast systems we demonstrate that these systems
are deficient in eddy feedback, and we show an important link
between this deficiency and the signal-to-noise error in those
systems. We consider how reducing the eddy feedback
deficiency in forecast systems has the potential to improve
their skill. A mechanism whereby this may occur, via the
influence of the El Niño Southern Oscillation (ENSO) on the
Arctic Oscillation32,33 is discussed. Finally, the potential for
more accurate eddy feedback to improve regional forecast skill
is considered.
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RESULTS
Signal-to-noise
In order to investigate a link between eddy feedback and signal-
to-noise ratio, data from seventeen seasonal forecast systems is
used, alongside the European Centre for Medium-Range Weather
Forecasts (ECMWF) Reanalysis version 5, ERA534,35 dataset. We
define an eddy feedback parameter (EFP) for ERA5 and for each
forecast system28, quantifying the link between atmospheric wave
driving and the zonal mean wind. Predictable components (rmm

and rmo) are formed from an Arctic Oscillation (AO) index. Details
of the reanalysis data and all forecast systems, equations for the
eddy feedback parameter, and definitions of the AO and the
predictable components are all given in the ‘Methods’ section.
We find that the forecast system predictable components, both

the model–observed skill (rmo) and the model–model skill (rmm),
are significantly positively correlated with eddy feedback (Fig. 1a
and b). Systems are all deficient in eddy feedback, thus Fig. 1
demonstrates that systems with greater and more realistic values
of EFP also exhibit increased skill. The values of rmm are around
0.25, lower than the values of rmo which are around 0.4,
demonstrating the signal-to-noise error. The RPC becomes ill-
defined as model skill (rmo) tends to zero2, thus we focus on
systems with significant skill when considering the RPC. Figure 1c
shows a significant negative correlation between eddy feedback

and RPC in these skilful systems. Again, since RPC is greater than 1
in the vast majority of systems (the signal-to-noise paradox), a
greater and more realistic value of EFP leads to a value of RPC
closer to 1 and, therefore, a reduced signal-to-noise error. Indeed,
the regression line in Fig. 1c crosses RPC= 1 very close to the
value of EFP calculated from observational reanalysis. This figure
supports the hypothesis that increased eddy feedback, potentially
through increased horizontal resolution, would improve weak
signal-to-noise ratios in forecast systems8.
Figure 1 shows results calculated at 850 hPa, but all results

shown are largely independent of height (see Table 1 where
results are shown using geopotential height (GPH) at 500 hPa and
850 hPa, and using mean sea-level pressure (MSLP)). It is stressed
that, throughout this study, it should be remembered that
correlations between two quantities do not demonstrate causality,
but rather show where there is a significant link or relationship
between those quantities. Nevertheless, Fig. 1 shows improve-
ments in simulated eddy feedback to be linked to improved
signal-to-noise ratios, and also linked to increased system skill.

ENSO teleconnection
The impact of ENSO on the AO is well documented, with
teleconnection pathways going via the troposphere and strato-
sphere. The importance of eddy feedback for the response via the

Fig. 1 Eddy feedback relation to skill and RPC. Eddy feedback parameter (EFP) correlated with model–model skill (rmm), model–observed
skill (rmo) and RPC (the ratio of predictable components, where RPC = rmo/rmm), as calculated from the AO index using geopotential height at
850 hPa (AO GPH850). EFP is defined as the correlation squared between the December–January–February horizontal EP-flux divergence and
the zonal mean zonal wind, at each latitude at 500 hPa, area weighted 25∘N–72∘N. The value of EFP computed from ERA5 reanalysis data is
shown with a black vertical line in a and b and as a black circle in c. Thick black lines show linear least squares regression lines. In b the point
where the regression line crosses the observed value of EFP is marked with a hollow black box as discussed in relation to Fig. 4. Models used
in c are those that have significance at the 90% level in b, equating to an rmo value greater than 0.277. In Table 1, the same subset of models is
used at all levels. See ‘Methods’ section for explanation of different symbols.
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tropospheric pathway has long been known36. In this study, we
focus on the stratospheric teleconnection pathway, for which the
mechanism is as follows. El Niño leads to an intensification and
eastward shift of the climatological Aleutian cyclone in the North
Pacific, causing increased planetary wave flux to enter the
stratosphere37, where it leads to a weaker than average winter

stratospheric polar vortex38. This weak vortex then projects onto a
negative AO25. The opposite occurs for La Niña. One way of
diagnosing this teleconnection is to consider GPH anomalies,
composited onto El Niño and La Niña years.
Figure 2 shows maps of the difference in GPH 500 hPa

anomalies between El Niño and La Niña years, for the reanalysis

Fig. 2 ENSO teleconnection. ENSO anomalies of the 500 hPa GPH field for a ERA5, composites over models with b strong and c weak eddy
feedback24, and d the difference between strong and weak composites (b–c). ENSO anomalies are formed by taking GPH anomalies in El Niño
years (Niño 3.4 index > 1.5K) minus those in La Niña years (Niño 3.4 index < 1.5K). Model composites based on eddy feedback are defined in
the Methods section. Stippling in d shows where the difference in model composites is statistically significant at the 95% level.

Table 1. Correlation (r) between eddy feedback parameter (EFP) and skill/RPC.

AO (GPH500) AO (GPH850) AO (MSLP) NAO (MSLP)

r (rmm vs EFP) 0.48 (p = 0.050) 0.57 (p = 0.016) 0.53 (p = 0.028) 0.53 (p = 0.028)

r (rmo vs EFP) 0.53 (p = 0.028) 0.55 (p = 0.021) 0.42 (p = 0.092) 0.21 (p = 0.418)

r (RPC vs EFP) −0.52 (p = 0.080) −0.56 (p = 0.056) −0.58 (p = 0.046) −0.54 (p = 0.067)
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(Fig. 2a), and for composites across systems with strong eddy
feedback (Fig. 2b) and weak eddy feedback (Fig. 2c)—see
‘Methods’ section for details. As expected, the signal in the
reanalysis is that of a negative AO in response to El Niño,
particularly strong in the north Atlantic, projecting onto the NAO,
and in the north Pacific (strengthening of the climatological
Aleutian cyclone37). The same signal is captured in the forecast
systems, with both composites showing a deficiency in the
magnitude of the signal, but the strong eddy feedback composite
being closer to the reanalysis than the weak eddy feedback
composite, consistent with that found in earlier-generation
climate models24. In addition, the difference between the strong
and weak composites is a clear AO signal that looks very similar to
that in the reanalysis, and is statistically significant (Fig. 2d).
This is highly suggestive of a link between eddy feedback and

the strength of the ENSO teleconnection to the AO captured in a
forecast system, namely that the strength of the teleconnection
increases and becomes more realistic as the strength of the eddy
feedback increases and becomes more realistic. To quantify this,
the ENSO teleconnection ‘strength’ is defined as the regression
coefficient between the normalised Niño 3.4 index and the AO
index in a forecast system (see Methods section for details). A
strongly positive correlation of 0.69 is found between the ENSO
teleconnection strength and the eddy feedback parameter across
all the forecast systems33 (Fig. 3a).
To further investigate the implications of this link, we find a very

strong positive correlation between the ENSO teleconnection

strength and the predictable signal, measured by the ensemble
mean variance, in the forecast systems of 0.89 (Fig. 3b). Further,
we find a significantly positive correlation between eddy feedback
and the predictable signal in the forecast systems of 0.49 (Fig. 3c).
In summary, our results suggest that increased eddy feedback is
related to a stronger ENSO teleconnection which, in turn, leads to
stronger simulated predictable signals.

Potential gain in regional skill
We have shown that increased/more realistic eddy feedback is
associated with increased ENSO teleconnection strength,
improved signal-to-noise ratio, and increased AO forecast skill.
We now consider the potential gain in regional prediction skill if
the eddy feedback in forecast systems was at realistic levels.
Taking the AO as an example, we define the current average

model skill as the average, across all model systems, of rmo (i.e. the
average of all rmo values in Fig. 1b). It is also possible to calculate
the potential skill that could be achieved by increasing the eddy
feedback in forecast systems to equal that in the reanalysis. This is
defined as the skill value where the regression line across all
systems crosses the ERA5 value of eddy feedback parameter,
shown by a hollow black box in Fig. 1b. The potential gain in skill
is then simply the potential skill minus the current average model
skill. By using rmo scatter plots similar to Fig. 1b, but defined over
smaller regions, this approach is applied more generally to
consider the potential gain in regional prediction skill (further
details are given in the Methods section).

Fig. 3 EFP, teleconnection strength, and predictable signals. Correlation of ensemble mean a eddy feedback parameter (EFP) and ENSO
teleconnection strength, b ENSO teleconnection strength and the predicted AO signal (measured by the ensemble mean variance), and c EFP
and the predicted AO signal. The EFP and ENSO teleconnection strength are defined in the Methods section. The value of the EFP computed
from ERA5 reanalysis data is shown with a black vertical line in a and c.
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The current average model skill is found to be high in the
tropics and around the region of the Aleutian low in the
extratropics3 (Fig. 4a). It is generally lower in the extratropics,
but significant in the NAO regions (the Azores and Iceland6,39). The
potential gain in skill that arises from correct eddy feedback is
shown in Fig. 4b. In the extratropics this is comparable in
magnitude to the current average skill, particularly in the NAO
regions and east Asia, suggesting the potential to double the skill
of seasonal forecasts in these regions. As might be expected, the
regions where there is potentially the greatest skill to be gained
by improved eddy feedback correspond closely to those regions
where the signal-to-noise error is largest in the skilful forecast
systems (Fig. 4c)1,3, consistent with improved eddy feedbacks
driving larger predictable signals. There are also some regions (for
example central North America and continental northern Europe)
where improvement in eddy feedback would not lead to any
increase in model skill, and in these regions, the model is currently
over-confident (RPC < 1).

DISCUSSION
In this study, we have investigated one potential cause of the
signal-to-noise paradox—that of a deficiency in eddy feedback in
current seasonal forecast systems. We have considered the
impacts of improving the accuracy of the eddy feedback in these
systems.

We find that increased eddy feedback is strongly linked with a
reduced signal-to-noise error, with linear regression suggesting
that the error would be completely removed (RPC= 1) if the eddy
feedback in forecast systems was equal to that in the reanalysis.
Consistent with improving the RPC, we find that increased eddy

feedback increases model–model predictability (rmm) and
model–observed skill (rmo). In particular, increased and more
accurate eddy feedback is found to increase the strength of the
ENSO teleconnection to the AO in forecast systems which, in turn,
leads to stronger predictable signals. The potential gain in skill
from corrected eddy feedback is considered regionally. It is found
that correlation skill scores could roughly double in many
extratropical regions, particularly in the region of the NAO, if
eddy feedback were of a realistic magnitude. Thus, improving
eddy feedback in forecast systems may yield significant improve-
ment in the skill of seasonal forecasts in the extratropics.
The regions where there is potentially the greatest skill to be

gained by improved eddy feedback correspond closely to those
regions where the signal-to-noise error is largest. This emphasises
the point that improving eddy feedback in forecast systems may
be important for both improving the signal-to-noise error in these
systems, and increasing their skill.
It is important to note that our analysis does not prove cause

and effect - we cannot say that imposing the observed eddy
feedback in a forecast system, or including a parameterisation of
the missing eddy feedback, would cure the signal-to-noise

Fig. 4 Model skill. Maps of a Average model skill, b potential gain in skill by improving EFP to observed values (see Methods section for
details) and c Ratio of Predictable Components averaged across skilful models (those used in Fig. 1c). In b, red colours denote regions where
skill could potentially be improved by a more accurate simulation of the eddy feedback parameter. In c, red colours denote regions where the
signal-to-noise paradox is evident, and white indicates regions where model skill is negative for all models.
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paradox. For example, if larger predictable signals were achieved
by another means, this would impact the simulated jet stream and
therefore potentially be realised as increased eddy feedback.
Nevertheless, our results are still strongly suggestive of eddy
feedback deficiency contributing to the signal-to-noise error.
The eddy feedback parameter used in this study is a seasonal

mean, zonal mean, quantity as recently used to study the
atmospheric circulation response to climate change28. To investigate,
in addition, the transient component of the synoptic eddy forcing,
and the effects of eddy feedback on the full three-dimensional flow,
one might use the eddy-induced growth rate40,41. This may help in
better understanding the physical mechanisms underlying eddy
feedback, and is a topic for future research.
Since it is unlikely that model resolution will increase in the

near future to anything like that required to accurately and fully
resolve eddy feedback8, our results motivate an increased effort
to both understand the physical mechanisms underlying eddy
feedback and to conceive how to implement imposed eddy
feedback or a parameterisation of missing eddy feedback in
forecast systems.

METHODS
Data
The ECMWF Reanalysis version 5, ERA534,35, is used as the ‘observations’
or ‘truth’ in this study. Seasonal forecast systems are from a variety of
sources. The most up-to-date systems from the Copernicus Climate Data
Store (C3S) for which all required data is available are the ECMWF
SEAS5 system (ECMWF42), Météo-France System 7 (METEO43), the Centro
Euro-Mediterraneo sui Cambiamenti Climatici SPS3.5 (CMCC44), the
Deutscher Wetterdienst GCFS2.1 (DWD45), the National Centers for
Environmental Prediction CFS version 2 (NCEP46), the Japan Meteor-
ological Agency CPS2 (JMA47), and the land-initialised versions of the
UK Met Office Global Seasonal Forecast system version 5 (UKMOG-
C2LI48). These are shown as circles on all scatter plots in this study.
Older seasonal forecast system versions also obtained from C3S are
DWD GCFS2.0 (DWDSYS245), CMCC SPS3 (CMCCSYS349), METEO System
6 (METEOSYS650), and climatological-land versions of UKMO GloSea5
(UKMOGC248), denoted by squares on the scatter plots. There are three
systems from the DEMETER ensembles51 for which the required data is
available, denoted UKMO-D, SMPI-D, and SCNR-D. These are denoted by
crosses on the scatter plots. There are two systems from the North
American Multi-Model Ensemble (NMME) for which data was obtainable,
namely the CCCma climate model version 3 (CanCM352) and version 4

(CanCM453), denoted by triangles on the scatter plots. Finally, the new
Met Office Global Seasonal Forecast system version 6, also available on
C3S (UMKOGC348), is added as a hexagon on the scatter plots. The
number of ensemble members available from each system is listed in
Table 2.
For all of these systems, forecasts start at the beginning of November.

Daily zonal wind (u) and meridional wind (v) at 500 hPa, monthly mean
GPH at 500 hPa and 850 hPa, and monthly MSLP is used for all winter
months (December–January–February), a forecast lead time of
2–4 months. The years 1993–2016 are available for C3S systems (23
winters), 1970–2001 for DEMETER systems (31 winters), and 1981–2012
for NMME systems (31 winters). For each system, the corresponding
period is used from ERA5.

Eddy feedback parameter
Eddy feedback, the feedback between small-scale transient eddies and
large-scale quasi-stationary climate anomalies, can be quantified as the
link between resolved wave driving and the zonal mean wind in climate
models. Here, the eddy feedback parameter is defined as follows. Using
daily u and v data at 500 hPa, the zonal acceleration due to the quasi-
geostrophic component of the horizontal EP-flux divergence54 is
computed:

∇ � FH
ρa cosϕ

¼ �1
acos2ϕ

dðu0v0cos2ϕÞ
dϕ

(1)

where ρ is density, ϕ is latitude, a is the radius of the Earth, overbar
represents a zonal mean, and 0 represents the residual after removing
the zonal mean. The December–January–February mean of this zonal
acceleration is then formed from the daily values, for each year. Next,
the December–January–February mean of the zonal mean zonal wind,
u is computed for each year. Then the correlation at each latitude,
across years, between the zonal acceleration and u is calculated. The
area-weighted average, 25∘N–72∘N, of this correlation squared is the
eddy feedback parameter.
This definition is identical to that used previously28, except simplified

in two ways due to the limited amount of data available for some
systems. Firstly, we only use data at 500 hPa, as opposed to a vertical
integral between 600 hPa and 200 hPa. Data at 500 hPa is available for
all systems, and the signal has been found to be coherent across the
different vertical levels28. Secondly, only the quasi-geostrophic compo-
nent of the horizontal EP-flux divergence is included. However, the
other components of the horizontal EP-flux divergence are small. Thus,
these two simplifications make the calculations possible across many
more systems, and should not impact the results.

Predictable components
The ratio of predictable components is defined as

RPC ¼ rmo

rmm
(2)

where rmo, the skill of the model in predicting the observations, is defined
for each system as the correlation across years between ERA5 quantities
and those from the system ensemble mean1,2. The definition of rmm, the
model–model skill, has been previously given as1

rmm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2ens mean

σ2total

s
(3)

where σ2ens mean is the variance of the ensemble mean and σ2total is the total
variance of individual ensemble members. It has also been defined as the
average of the correlation of a single ensemble member with the mean of
all other ensemble members2.
Here we use an improved calculation of rmm that is less sensitive to

ensemble size. Equation (3) will be an over-estimate for rmm when the
number of ensemble members used is small1. Further, the average
ensemble member correlation2 is found to be an under-estimate when the
number of ensemble members used is small. Therefore, rmm, is here
defined as follows.

Table 2. Forecast system ensemble members.

Forecast system Number of ensemble members

DWD 30

CMCC 40

NCEP 24

JMA 10

ECMWF 25

METEO 25

UKMO-D 9

SMPI-D 9

SCNR-D 9

UKMOGC3 28

UKMOGC2 56

UKMOGC2LI 56

DWDSYS2 30

CMCCSYS3 40

METEOSYS6 25

CanCM3 10

CanCM4 10

S.C. Hardiman et al.
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Starting from equations for the total variance and the ensemble mean
variance55:

σ2total ¼ σ2signal þ σ2noise (4)

σ2ens mean ¼ σ2signal þ
σ2noise
N

(5)

combine and rearrange to obtain

σ2signal ¼
Nσ2ens mean � σ2total

N � 1
: (6)

Then rmm= σsignal/σtotal such that

rmm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nðσ2ens mean=σ

2
totalÞ � 1

N � 1
:

r
(7)

The total variance is computed, across years, by using the individual
ensemble members and bootstrapping using 1,000,000 random samples
with replacement. The ensemble mean variance is computed with a single
calculation. The equation for rmm used here takes a value in between the
estimates for equation (3) and the average ensemble member correlation,
and is found to be stable regardless of the number of ensemble members
(not shown).

AO and NAO indices
The AO index is defined as the zonal mean area-weighted 30∘N–60∘N mean
minus the zonal mean area-weighted 60∘N–90∘N mean48, and computed
using GPH at 500 hPa and 850 hPa, and MSLP. The NAO index is defined as
an area-weighted mean centred around the Azores (28.5–20∘W, 36–40∘N)
minus an area-weighted mean centred around Iceland (25–16.5∘W,
63.5–70∘N) 56, and computed using MSLP.

ENSO teleconnection
The El Niño Southern Oscillation (ENSO57) index used in this study is the
December–January–February mean of sea surface temperature anomalies
in the Niño 3.4 region (5∘N-5∘S, 120-170∘W) obtained from https://
origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/
ONI_v5.php. The regression coefficient, across years, of this normalised
Niño 3.4 index with the AO index (calculated using GPH 850 hPa) is used to
define the strength of the ENSO teleconnection. For each system, the
ensemble mean AO index is regressed against the Niño 3.4 index to give
the value of the teleconnection strength (in metres) shown in Fig. 3a and b.
For the maps in Fig. 2, we first divide the systems into three roughly

equal-sized groups: those with high values of the eddy feedback
parameter (DWD, CMCC, DWDSYS2, CMCCSYS3, and CanCM4)—a ‘Strong’
model composite, those with low values of the eddy feedback parameter
(NCEP, SMPI-D, SCNR-D, METEOSYS6, and CanCM3)—a ‘Weak’ model
composite, and the remaining seven form a ‘neutral‘ composite (although
this composite is not used). Next, we define years for which there were El
Niño events and La Niña events. In order to have roughly equal numbers of
events, we here define the threshold such that an event is said to have
occurred if the magnitude of the Niño 3.4 index is greater than 1.5K. Using
ERA5, and each system individually, we form El Niño minus La Niña
differences of the GPH 500 hPa field. In the case of the models, these are
then averaged to form the composite maps shown in Fig. 2b and c. In the
case of the observations, El Niño minus La Niña differences are formed
using ERA5 for each of the three model periods (1993–2016, 1970–2001,
and 1981–2012) with the average of these differences shown in Fig. 2a.
The result is found to be insensitive to the exact period chosen.

Potential skill and RPC maps
In order to compute the skill maps in Fig. 4, the following method is used.
Using the GPH 850 hPa field, a scatter plot, equivalent to that shown in Fig.
1b, is computed for each area-weighted 10∘ longitude × 5∘ latitude region
of the globe (a total of 36 × 36= 1296 plots). For each plot, the average
model skill (shown in Fig. 4a) is the straight average, across all model
systems, of rmo. The potential skill is the value of rmo where the linear least-
squares best fit line crosses the ERA5 value of eddy feedback parameter
(equivalent to that shown by a hollow black box in Fig. 1b). This makes the
assumption that the relationship between eddy feedback and skill remains
linear at least up to the observed value of eddy feedback. The potential
gain in skill (shown in Fig. 4b) is then the potential skill minus the average
model skill, in each region.

RPC maps are computed by dividing average model–observed skill (rmo,
shown in Fig. 4a) by average model–model skill (rmm, computed in the
same way) for each region for each model. The RPC values in each region
are then averaged across all skilful models (those included in Fig. 1c) to
produce the RPC map shown in Fig. 4c.

DATA AVAILABILITY
ERA5 data and data for all C3S systems are available from the Copernicus Climate
Data Store, https://cds.climate.copernicus.eu/. Data for the DEMETER systems can be
obtained from https://www.ecmwf.int/en/forecasts/dataset/development-european-
multimodel-ensemble-system-seasonal-interannual-prediction, and data for the
NMME systems can be obtained from https://www.cpc.ncep.noaa.gov/products/
NMME/.

CODE AVAILABILITY
For Python code used to produce all graphs in this study, please see https://
zenodo.org/record/6472589
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