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Missing Image Data Reconstruction

Based on Adaptive Inverse Projection

via Sparse Representation
Takahiro Ogawa, Member, IEEE and Miki Haseyama, Senior Member, IEEE,

Abstract—In this paper, a missing image data reconstruction
method based on an adaptive inverse projection via sparse
representation is proposed. The proposed method utilizes sparse
representation for obtaining low-dimensional subspaces that
approximate target textures including missing areas. Then, by
using the obtained low-dimensional subspaces, inverse projection
for reconstructing missing areas can be derived to solve the
problem of not being able to directly estimate missing intensities.
Furthermore, in this approach, the proposed method monitors
errors caused by the derived inverse projection, and the low-
dimensional subspaces optimal for target textures are adaptively
selected. Therefore, we can apply adaptive inverse projection
via sparse representation to target missing textures, i.e., their
adaptive reconstruction becomes feasible. The proposed method
also introduces some schemes for color processing into the
calculation of subspaces on the basis of sparse representation
and attempts to avoid spurious color caused in the reconstruction
results. Consequently, successful reconstruction of missing areas
by the proposed method can be expected. Experimental results
show impressive improvement of our reconstruction method over
previously reported reconstruction methods.

Index Terms—Image reconstruction, image texture analysis,
interpolation, inverse projection, sparse representation.

I. INTRODUCTION

Reconstruction of missing image data affords numerous

applications in image processing, such as image enlarge-

ment and restoration of missing areas. Image enlargement is

achieved by various kinds of missing intensity interpolation,

and several interpolation-based resolution enhancement meth-

ods are included in commercial digital imaging software [1]–

[4]. Missing image data reconstruction also realizes restoration

of missing areas in digital images [5]–[18], and it is applied

to removal of unnecessary objects, error concealment for

video communications, etc. Compared to image enlargement,

it is difficult to obtain natural reconstruction results from

restoration of missing areas. Thus, only the restoration of

missing areas in digital images is discussed in this paper.
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Recently, many missing image data reconstruction methods

have been proposed for missing area restoration. Generally,

they can be broadly classified into two categories, structural

and textural reconstruction approaches, and many papers on

these approaches have been published. Attractive methods

that perform simultaneous reconstruction of missing structures

and textures in images have also been proposed [19]–[13].

Most of the algorithms so far reported are based on structural

inpainting techniques for accurate reconstruction of missing

edges [5]–[7]. These techniques are effective for pure structure

images. However, since general images also contain many

textures, different methods work better in these areas. Thus,

several methods have been proposed for accurate reconstruc-

tion of missing textures [8]–[17]. The remainder of this paper

focuses on the texture reconstruction approach with discussion

of its details.

Traditionally, missing texture reconstruction is realized as

one of the applications of texture synthesis. Efros et al.

firstly proposed a pioneered method for the texture synthesis

[8], [9]. Their approach models textures by using the MRF

(Markov Random Field) model and enables missing texture

reconstruction by copying pixels of a target image itself, i.e.,

non-parametric sampling in synthesis. Furthermore, Wei et

al. proposed a fast algorithm for the searching step in the

texture synthesis by using multi-resolution concepts [10]. Then

many methods which perform the exemplar-based inpainting

are mainly inspired by the non-parametric sampling in [8].

Drori et at. proposed a fragment-based algorithm for image

completion which could preserve structures and textures [11].

Furthermore, the exemplar-based image inpainting method

proposed by Criminisi et al. is a representative one based on

the texture synthesis [12], [13]. This method adopts a patch-

based greedy sampling scheme similar to the fragment based

completion, but it is simpler and faster. In recent years, faster

and more accurate reconstruction methods which improve the

approach shown in [12], [13] have been proposed [14], [16]. In

[14], Kwok et al. introduce decomposition of exemplars into

the frequency coefficients and select fewer coefficients that are

the most important for evaluating the matching score. Further-

more, a local gradient-based algorithm to interpolate missing

areas in a query patch is also proposed. Then these approaches

enable much faster exemplar-based image completion and

provide better results in several cases since selecting the most

significant coefficients in the frequency domain has a denois-

ing effect. In [16], Xu et al. newly introduce structure sparsity

to determine priorities for inpainting. Furthermore, sparse
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representation for reconstructing missing areas from selected

exemplars is performed to achieve accurate performance. A

good review of the exemplar-based inpainting methods based

on [8] is shown in [15].

Reconstruction of missing areas is an ill-posed problem,

and it is difficult to directly estimate missing intensities.

Thus, most reconstruction methods perform approximation of

textures within target images in lower-dimensional subspaces

and derive inverse projection for the corruption. Missing

areas can then be reconstructed by using the obtained in-

verse projection. Various algorithms including PCA, CCA,

and sparse representation have been used for obtaining low-

dimensional subspaces. Specifically, Amano et al. proposed

an effective PCA-based method for reconstructing missing

textures using back projection for lost pixels and achieved

accurate reconstruction performance [18]. Furthermore, kernel

methods have recently been developed and their achievements

have been reported in a number of papers [21]–[23]. Subspaces

constructed on the basis of kernel methods are also suitable

for approximating nonlinear texture features in target images.

Thus, several missing texture reconstruction methods that

utilize projection schemes onto nonlinear subspaces obtained

by kernel PCA and CCA have been proposed [24], [25]. In

these methods, known textures are previously clustered, and

the subspaces of the optimal clusters are adaptively selected for

reconstructing target missing textures. This scheme improves

the performance of missing texture reconstruction compared

to the performance of traditional methods using only one type

of subspace. However, it should be noted that the number of

subspaces utilized in these methods is only the same as the

number of clusters. Thus, since it is difficult to adaptively

generate the optimal subspace for reconstructing each miss-

ing texture, approximation performance in lower-dimensional

subspaces is not always satisfactory.

Recently, image reconstruction that utilizes sparse represen-

tation has been intensively studied [26], [27]. Sparse repre-

sentation enables the selection of optimal signal-atoms from

a dictionary for approximating target signals. Thus, by using

sparse representation, subspaces that are suitable for restoring

missing areas can be provided more adaptively than by conven-

tional methods. Therefore, several missing area reconstruction

methods based on sparse representation have been proposed

[16], [28]–[30]. However, it should be noted that conventional

methods select optimal signal-atoms for representing target

textures from only known neighboring areas. Thus, there is no

guarantee for providing subspaces optimal for reconstructing

missing textures. Furthermore, these methods estimate missing

textures based on the sparse representation that is derived from

only the known neighboring areas. This means they assume the

sparse representation coefficients become the same between

the target textures including missing areas and the neighboring

known textures. As the size of missing areas becomes larger,

there is a tendency for the assumption not to be satisfied, and

reconstruction performance of these methods tends to become

worse.

In this paper, a novel missing image data reconstruction

method based on an adaptive inverse projection via sparse

representation (IPVSR) is proposed. The proposed method

performs sparse representation of target textures including

missing areas and the corresponding original unknown textures

for obtaining their optimal subspaces. Then these two textures

can be approximated into lower-dimensional subspaces, and

derivation of the inverse projection for the corruption becomes

feasible. Since projection from the corrupted textures to their

original ones can be directly derived, our method does not

rely on the above conventional assumption. Furthermore, in

order to realize this approach, the optimal signal-atoms must

be selected for obtaining the optimal subspaces. Therefore, the

proposed method monitors errors caused by the derived inverse

projection and realizes adaptive selection of the optimal signal-

atoms, i.e., the subspaces utilized for estimating the inverse

projection are adaptively generated for each texture. This

approach provides a solution to the problem of conventional

methods not being able to correctly select optimal signal-

atoms suitable for reconstruction of the target textures. In

addition, the proposed method introduces some novel schemes

that avoid spurious color in reconstruction results into the

whole procedures of sparse representation. Consequently, the

proposed method performs reconstruction of missing areas

more successfully than do conventional methods.

This paper is organized as follows. First, in Section II, we

briefly explain sparse representation of signals. Next, a missing

image data reconstruction method based on adaptive IPVSR

is proposed in Section III. Experimental results that verify the

performance of the proposed method are shown in Section IV.

Finally, conclusions are given in Section V.

II. SPARSE REPRESENTATION

Sparse representation of signals is explained in this section.

Given an overcomplete dictionary D ∈ Rn×K whose columns

are prototype signal-atoms d j ∈ Rn ( j = 1, 2, · · · ,K), a target

signal y ∈ Rn can be represented as a sparse linear combination

of these signal-atoms. Specifically, y can be approximated as

y � Dx
(

x ∈ RK
)

, (1)

where x is a vector containing the representation coefficients

of signal y, and it satisfies

||y − Dx||p ≤ ǫ. (2)

In this paper, we set p to two.

If n < K and D is a full-rank matrix, an infinite number of

solutions are available for the above representation problem.

Thus, new constraints are introduced into this problem, and

the sparsest solution is obtained by solving

(P0) min
x
||x||0 subject to y = Dx (3)

or

(P0,ǫ) min
x
||x||0 subject to ||y − Dx||2 ≤ ǫ, (4)

where || · ||0 represents the l0-norm, counting the non-zero

entries of a target vector. It is well known that the calculation

of the optimal solution in Eqs. (3) or (4) is an NP-hard problem

[31]. Thus, there have been several conventionally proposed

methods that approximately provide solutions of the above

problems, and their simplest ones are matching pursuit (MP)
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[32] and orthogonal matching pursuit (OMP) algorithms [33]–

[36]. The basis pursuit (BP) algorithm is also a representative

algorithm solving the problems in Eqs. (3) and (4) by replacing

the l0-norm with an l1-norm [37]. The focal underdetermined

system solver (FOCUSS) is a similar algorithm using lp-norm

(p ≤ 1) [38]–[40].

Next, given a set of signal vectors yi (i = 1, 2, · · · ,N),

there exist dictionary matrices providing the sparse solution xi.

The K-SVD algorithm [26] can provide the optimal dictionary

matrix D and coefficient vectors xi (i = 1, 2, · · · ,N) by solving

min
D,X

{

||A (Y − DX) ||2F
}

subject to ∀i, ||xi||0 ≤ T, (5)

where X = [x1, x2, · · · , xN] and Y = [y1, y2, · · · , yN], and || · ||F
represents the Frobenius norm. Furthermore, T determines the

sparsity of the signals. The K-SVD algorithm approximately

calculates the optimal solution of Eq. (5) by iterating the

calculation of xi based on the OMP algorithm and renewal

of the dictionary matrix D. Note that in the conventional K-

SVD algorithm, A is set to the identity matrix.

III. MISSING IMAGE DATA RECONSTRUCTION BASED

ON ADAPTIVE IPVSR

In this section, the missing image data reconstruction

method based on adaptive IPVSR is presented. The proposed

method clips a patch f̂ including missing areas from a target

image and estimates its missing intensities based on IPVSR.

The known and unknown areas within the target patch f̂ are

denoted as Ω̄ and Ω, respectively. Figure 1 shows the stage-

diagram of the proposed reconstruction method. In order to

perform accurate reconstruction for the target image containing

several kinds of textures, we have to calculate dictionary

matrices suitable for the target image and adaptively select the

optimal prototype signal-atoms for each target patch including

missing areas. Therefore, in this section, we first explain

the calculation of the dictionaries for sparse representation

(III-A). Specifically, we prepare two types of dictionaries for

representing corrupted patches including missing areas and

their corresponding original patches. It should be noted that the

dictionary of the original patches cannot be obtained directly.

Therefore, we estimate it by using known areas within the

target image. From the obtained dictionaries, the proposed

method adaptively selects the optimal signal-atoms and en-

ables the generation of subspaces for the target patch f̂ . Then

the IPVSR can be derived by using the obtained subspaces to

reconstruct the missing area Ω. Its details are shown in III-B.

Finally, in III-C, we discuss the effectiveness of the proposed

method equipped with the above novel approaches.

A. Calculation of Dictionary Matrices

In this subsection, the algorithm for designing dictionaries

is presented. First, we clip known patches fi (i = 1, 2, · · · ,N)

whose size is w × h pixels from the target image in the same

interval. Next, for each patch fi, a vector yi ∈ R3wh, whose

elements are raster-scanned pixel values, is defined. Note that

the first wh elements of this vector are raster-scanned R (red)

component values, and the second wh values are G (green)

component values, followed by B (blue) values. Using an

Adaptive IPVSR-based reconstruction (3.2)Information about        and

Clipped known patches ( )Nifi ,,2,1 K=

Target patch f̂

Ω Ω

Reconstruction result

…

Estimation of two dictionaries of 

original and corrupted textures (3.1)

Optimal prototype signal-atoms

Fig. 1. Stage-diagram of the proposed missing texture reconstruction method.

overcomplete dictionary matrix D ∈ R3wh×K that contains K

prototype signal-atoms d j ∈ R3wh ( j = 1, 2, · · · ,K), each

vector yi is represented as a sparse linear combination of these

atoms

Gyi � GDxi, (6)

where yi satisfies
∣

∣

∣

∣

∣

∣G (yi − Dxi)
∣

∣

∣

∣

∣

∣

2
≤ ǫ (7)

for a fixed value ǫ. The vector xi ∈ RK contains the represen-

tation coefficients of yi. In the above equations,

G = I + γK, (8)

where I is the 3wh × 3wh identity matrix and

K =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

J 0 0

0 J 0

0 0 J

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (9)

In the above equation, J is a wh×wh matrix filled with ones.

Furthermore, γ in Eq. (8) is a positive constant. As shown in

[28], the matrix G in Eqs. (6) and (7) is introduced for avoiding

spurious color in the sparse representation. The matrix G

defined in Eq. (8) is introduced for avoiding spurious color

in the sparse representation. This matrix contains two terms

I and γK. If we ignore the second term, i.e., G = I, the left

part in Eq. (7) becomes a simple Euclidean distance between

yi and Dxi. Thus, by focusing on this point, the left part of

Eq. (7) can be rewritten as follows:
∣

∣

∣

∣

∣

∣G (yi − Dxi)
∣

∣

∣

∣

∣

∣

2

=
∣

∣

∣

∣

∣

∣ (I + γK) (yi − Dxi)
∣

∣

∣

∣

∣

∣

2

=
∣

∣

∣

∣

∣

∣ (yi − Dxi) + γ (Kyi −KDxi)
∣

∣

∣

∣

∣

∣

2

=
∣

∣

∣

∣

∣

∣ (yi − Dxi) + whγ

(

1

wh
Kyi −

1

wh
KDxi

)

∣

∣

∣

∣

∣

∣

2
. (10)

From the above equation, the first wh elements, the second

wh elements, and the third wh elements in the vector 1
wh

Kyi

are respectively the average values of RGB components of

yi. Furthermore, the first wh elements, the second wh ele-

ments, and the third wh elements in the vector 1
wh

KDxi are

respectively the average values of RGB components of Dxi.

Therefore,
(

1
wh

Kyi −
1

wh
KDxi

)

in the above equation outputs



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 5, OCTOBER 2011 4

the differences of the average values for RGB components

between yi and Dxi. The proposed method takes into account

the average color and enables the sparse representation which

can avoid spurious color.

If 3wh < K and D is a full-rank matrix, an infinite number of

solutions are available for the representation problems. Thus,

in our method, the solution of

min
xi

||xi||0 subject to
∣

∣

∣

∣

∣

∣G (yi − Dxi)
∣

∣

∣

∣

∣

∣

2
≤ ǫ (11)

is adopted. The dictionary matrix D satisfying Eq. (11) is

obtained by solving the minimization problem in Eq. (5),

where A = G. In the proposed method, the optimal dictionary

matrix D is estimated by using the K-SVD algorithm [26].

In the proposed method, we have to estimate another

dictionary matrix. i.e., that of corrupted patches. For each

patch fi, the proposed method adds missing areas Ω at the

same position in f̂ , and a corrupted set of patches following

the pattern in f̂ , f̂i (i = 1, 2, · · · ,N) is obtained. Then, from ŷi

(i = 1, 2, · · · ,N) obtained in the same way as yi, a dictionary

matrix D̂ can be also estimated by solving

min
D̂,X̂

{

∣

∣

∣

∣

∣

∣Ĝ
(

Ŷ − D̂X̂
) ∣

∣

∣

∣

∣

∣

2

F

}

subject to ||x̂i||0 ≤ T (i = 1, 2, · · · ,N) (12)

based on the K-SVD algorithm, where Ŷ = [ŷ1, ŷ2, · · · , ŷN]

and X̂ = [x̂1, x̂2, · · · , x̂N]. Furthermore,

Ĝ = (I + γ̂K)Σ (13)

and γ̂ is a positive constant defined by

γ̂ =
wh

NΩ̄
γ. (14)

The value NΩ̄ is the number of pixels in Ω̄. Furthermore, Σ is a

diagonal matrix whose diagonal elements are zero or one. The

matrix Σ removes the intensities of the corresponding pixels

in Ω.

Note that if the size of the patches becomes larger, the

computational complexity also becomes higher. Thus, in such

a case, we calculate the dictionary matrix D̂ in the following

way:

1) Calculate D̃ from D by using the matrix Σ as follows:

D̃ = ΣD. (15)

2) Normalize each prototype signal-atom d̃ j ∈ R3wh in D̃ as

d̂ j =
d̃ j

||d̃ j||
( j = 1, 2, · · · ,K) (16)

and obtain D̂ whose columns are d̂ j ( j = 1, 2, · · · ,K).

Then, by using the above two procedures, we can simply

obtain the dictionary matrix D̂ from D.

As described above, we can obtain the dictionary matri-

ces for representing original patches and their corresponding

corrupted patches. By selecting optimal signal-atoms in the

dictionary matrices, the subspaces for representing original and

corrupted patches can be generated, and reconstruction on the

basis of IPVSR becomes feasible. The details of the proposed

reconstruction algorithm are shown in the following section.

y

ŷ

Σ 1−
ΣSingular matrix

Optimal subspace      for      whose dimension 

is smaller than rank of 

P ro jection  on to  subspace

L̂

L̂

A pproxim ation  in  subspace L

ŷ

Σ

Inverse projection corresponding to     

derived from two subspaces      and

1−
Σ

Optimal subspace      for      whose dimension 

is smaller than rank of 

L y

Σ

L L̂

Fig. 2. Visual illustration of the essential idea in the proposed reconstruction
algorithm based on adaptive inverse projection via sparse representation.

B. Missing Area Reconstruction Algorithm

The adaptive IPVSR-based missing area reconstruction al-

gorithm using the two dictionary matrices obtained in the

previous subsection is presented in this section. The proposed

method reconstructs the missing area Ω in f̂ and estimates its

original image f . First, we define vectors of the original patch

f and its corrupted image f̂ as y and ŷ, respectively, which

are obtained in the same way as yi and ŷi. These two vectors

satisfy the following equation:

ŷ = Σy, (17)

and we assume

Ĝŷ � ΣGy. (18)

In the above equations, Σ is singular and its inverse matrix

cannot be calculated directly to estimate the missing intensities

in Ω. Thus, in order to solve the problem due to the singular

matrix, the proposed method tries to estimate a smaller full-

rank matrix corresponding to Σ in Eq. (17), whose dimension

is smaller than the rank of Σ. A visual illustration of the pro-

posed reconstruction algorithm is given in Fig. 2. Furthermore,

we define the projection of ŷ onto lower-dimensional subspace

L̂ and also obtain the approximation relationship of y in lower-

dimensional subspace L. The details of the calculation of L̂

and L are shown later. Then, through the projection onto L̂,

the inverse projection based on the smaller full-rank matrix,

and the approximation in L, we can recover y from ŷ as shown

in Fig. 2. In order to realize this idea, we have to provide the

lower-dimensional subspaces suitable for deriving the inverse

projection. In [18], they utilize eigenspaces obtained from

training patches as the lower-dimensional subspaces in Fig.

2, and missing area reconstruction is realized. On the other

hand, the proposed method utilizes the sparse representation

for providing the two lower-dimensional subspaces suitable

for the two vectors y and ŷ. Since the adaptive estimation of

the optimal subspaces can be expected by using the sparse

representation, we adopt it for the derivation of the inverse

projection. In the rest of this subsection, the specific algorithms

of the proposed reconstruction method are shown.
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Using the dictionaries D and D̂, y and ŷ satisfy the following

equations:

Gy � GDx subject to ||x||0 ≤ T, (19)

Ĝŷ � ĜD̂x̂ subject to ||x̂||0 ≤ T. (20)

Furthermore, these two equations can be respectively rewritten

as

Gy � GDEp, (21)

Ĝŷ � ĜD̂Êp̂, (22)

where p and p̂ ∈ RT respectively contain non-zero elements

of x and x̂. Furthermore, E and Ê ∈ RK×T are extraction

matrices for obtaining signal-atoms d j and d̂ j ( j = 1, 2, · · · ,K)

utilized for approximating y and ŷ, respectively. Specifically,

the elements of the extraction matrices E and Ê are one

or zero. If ξ-th (ξ = 1, 2, · · · ,T ) nonzero element exists

in ζ-th (ζ = 1, 2, · · · ,K) element of x, (ζ, ξ)-th element of

E becomes one, and the other elements become zero. The

extraction matrix Ê is also defined in the same way as the

above explanation. Then they satisfy the following equations:

x = Ep, (23)

x̂ = Êp̂. (24)

Furthermore, DE and D̂Ê represent the matrices whose

columns are the signal-atoms only utilized for the sparse

representation of y and ŷ, respectively. Note that the subspaces

spanned by the columns of DE and D̂Ê respectively corre-

spond to L and L̂ in Fig. 2. For the following explanation, we

define S = GDE and Ŝ = ĜD̂Ê. Note that from Eq. (21), the

following equation is obtained:

Gy = Sp. (25)

Thus,

S′Gy = S′Sp, (26)

and

p =
(

S′S
)−1

S′Gy. (27)

Then since Gy can be approximated as

Gy � GDE
(

S′S
)−1

S′Gy, (28)

the following equation can be obtained:

y � DE
(

S′S
)−1

S′Gy. (29)

Therefore, from the above derivation, DE (S′S)−1 S′G becomes

the projection operator for L. Similarly, D̂Ê
(

Ŝ′Ŝ
)−1

Ŝ′Ĝ be-

comes the projection operator for L̂.

Next, by substituting Eqs. (21) and (22) into Eq. (18), the

following relation is obtained:

Ŝp̂ � ΣSp. (30)

Original image

Corrupted image

containing missing areas

T-dimensional subspace      of  original textures

{ }( )Σrankif ≤T

( )(30)Eq.

ˆˆ ΣSppS ≅ ( )
( ))33(Eq.

ˆˆ1*
pSΣSΣSSp ′′=

−

( )(22)Eq.

ˆˆˆˆ pSyG ≅

( )(21)Eq.
SpGy ≅

p

p̂

T-dimensional subspace      of  corrupted textures

L

L̂

( )(18)Eq.
ˆˆ ΣGyyG ≅

Fig. 3. Relationships shown in Eqs. (17)–(33) for deriving adaptive inverse
projection via sparse representation.

In the above equation, if T ≤ rank {Σ} is satisfied, the pseudo

inverse matrix can be calculated. Specifically, from the above

equation,

(ΣS)′ ΣSp � (ΣS)′ Ŝp̂, (31)

where vector/matrix transpose is denoted by the superscript ′

in this paper. Then Eq. (31) is rewritten as

S′ΣSp � S′ΣŜp̂. (32)

It should be noted that we utilize Σ′ = Σ and ΣΣ = Σ. In Eq.

(32), the rank of E becomes T , and those of D and G are larger

than T . Therefore, if the above condition, i.e., T ≤ rank {Σ}, is

satisfied, the rank of S′ΣS becomes T . Then since it becomes a

full rank matrix, its inverse matrix can be obtained to calculate

the estimation result p∗ of p as

p∗ =
(

S′ΣS
)−1

S′ΣŜp̂, (33)

where (S′ΣS)−1 S′Σ is the pseudo-inverse matrix. Furthermore,

by substituting Eq. (33) into Eq. (21),

Gy∗ = Sp∗

= S
(

S′ΣS
)−1

S′ΣŜp̂. (34)

Then estimation result y∗ of y can be obtained by using

IPVSR. In Fig. 3, we show the relationships shown in the

above equations for deriving IPVSR.

In order to obtain the estimation result y∗ by the above

equation, we have to calculate the non-zero coefficient vector p̂

and the extraction matrices Ê and E. Note that the calculation

of p̂ and Ê corresponds to the calculation of x̂ as shown in Eqs.

(20) and (22). Therefore, the proposed method calculates the

solution of the problem in Eq. (12) for the fixed dictionary

matrix D̂. In this scheme, we use the OMP algorithm1 and

obtain the non-zero coefficient vector p̂ and the extraction

1In this paper, we utilize the OMP algorithm for its simplicity. Several
approaches for solving this problem can be adopted, and better estimation
results can be expected.
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Initialization:

y0 = 0, R0y = ŷ, D0 = {}, k = 0.

———————————————————————

(I) Compute
{

E jk ; d j ∈ D\Dk

}

, where

E jk =
∣

∣

∣

∣

∣

∣ĜRky − ΣGy∗j

∣

∣

∣

∣

∣

∣

2
,

and y∗
j

satisfies

Gy∗j =
Gd jd j

′G′ΣŜp̂

d j
′G′ΣGd j

.

(II) Find d jk+1
∈ D\Dk such that

d jk+1
= arg min

d j∈D\Dk

E jk .

(III) If k = T , then stop.

(IV) Set Dk+1 = Dk ∪ {d jk+1
} and compute the matrix DE

from Dk+1.

(V) Compute y∗
k

satisfying

Gy∗k = S
(

S′ΣS
)−1

S′ΣŜp̂

and update

Rk+1y = ŷ − y∗k.

(VI) Set k ← k + 1, and repeat (I)–(VI).

Fig. 4. Procedure of the algorithm solving Eq. (36) in our method.

matrix Ê. Next, we have to calculate the extraction matrix

E. Unfortunately, it is difficult to directly calculate E from the

solution of

min
x
||G (y − Dx) ||2 subject to ||x||0 ≤ T (35)

since the original vector y is unknown. Thus, in order to solve

this problem, the proposed method utilizes the solution of

min
E
||Ĝŷ − ΣS

(

S′ΣS
)−1

S′ΣŜp̂||2

subject to ||x∗||0 ≤ T (36)

as a substitute for Eq. (35), where

x∗ = Ep∗. (37)

It should be noted that Eq. (36) can be also rewritten as the

following simple equation from Eq. (34):

min
E
||Ĝŷ − ΣGy∗||2 subject to ||x∗||0 ≤ T. (38)

Then the solution of Eq. (36) can be obtained in a way similar

to that of the OMP algorithm. Its specific algorithm is shown

in Fig. 4. In Eq. (36), the criterion utilized for obtaining E

corresponds to the error caused in the known neighboring areas

of Ω by the derived inverse projection. Thus, by minimizing

Eq. (36), the optimal estimation of E can be expected. In this

way, we can obtain the non-zero coefficient vector p̂ and the

extraction matrices E and Ê, and restoration of the missing

area Ω from the estimation result y∗ becomes feasible.

As described above, we can reconstruct missing textures in

the target patch f̂ . The proposed method clips patches (w × h

pixels) including missing areas in a raster scanning order and

reconstructs them by using the above approach. Note that each

restored pixel has multiple estimation results if the clipping

interval is smaller than the size of the patches. In such a case,

we regard the result minimizing the cost function in Eq. (36)

as the final result.

C. Discussion of The Effectiveness

By using the above schemes based on sparse representa-

tion, we can adaptively generate subspaces for approximating

original and corrupted patches. This enables the derivation

of adaptive inverse projection for reconstructing the missing

area Ω. In the conventional methods in [18], [24], [25], one

or several subspaces are generated and the optimal one is

selected for reconstruction. However, the kinds of subspaces

utilized for reconstruction are limited to one or a few clusters.

Thus, it is difficult to adaptively obtain the optimal subspace

for each target texture. On the other hand, the proposed

method respectively selects the optimal T signal-atoms from

the dictionaries containing K prototype signal-atoms for the

original and corrupted patches. Therefore, it can effectively

solve the conventional problems.

Furthermore, the conventional methods based on the sparse

representation [16], [28]–[30] assume that the optimal sparse

representation of target textures and those of the known

neighboring areas are the same. Thus, they select optimal

signal-atoms for representing target textures from only the

known neighboring areas. It should be noted that the proposed

method does not rely on the above assumption. In the basic

idea of the conventional methods, x̂ is utilized for x, i.e., the

relationship of E and p becomes the same as that of Ê and

p̂.This tends to be satisfied if the missing area Ω is much

smaller than the other known area Ω̄ in f . Otherwise, the

assumption tends not to be satisfied. On the other hand, the

proposed method regards that E and p of the original patch are

respectively different from Ê and p̂ and enables the derivation

of p from p̂ by the inverse projection shown in Eq. (33).

In these procedures, Ê and p̂ (i.e., x̂) are obtained almost in

the same way as the conventional methods.However, in order

to obtain E that is necessary for estimating p, the proposed

method newly defines the criterion in Eq. (36). Specifically,

the optimal signal-atoms for representing the original vector

y are selected by monitoring errors caused by the derived

IPVSR. This means the selected signal-atoms minimize the

errors caused in the reconstruction process.

In this way, our method enables the adaptive generation

of the two subspaces of the selected signal-atoms to derive

the IPVSR, and thus this effectively solves the conventional

problem which needs the above assumption. Therefore, the

most novel approaches in the proposed method, i.e., the

biggest differences between our method and the conventional

methods are twofold:

1) Our method does not rely on the assumption utilized in

the conventional methods, and the calculation of p is

realized by the inverse projection.

2) The new criterion in Eq. (36) is defined for obtaining E

to estimate p by the inverse projection in 1).



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 5, OCTOBER 2011 7

In order to realize the first approach, we introduce the criterion

in Eq. (36) (i.e., the second approach). Thus, the key innova-

tion in our method is the introduction of Eq. (36). From the

above discussion, we conclude that the proposed method can

provide subspaces for representing original patches more ac-

curately than the conventional methods. This is also confirmed

in the experiments shown in the following section.

IV. EXPERIMENTAL RESULTS

In this section, we verify the performance of the proposed

method. First, in IV-A, we show the conventional methods,

which are utilized for the comparisons of the proposed method,

and the experimental conditions. Next, in IV-B, the results

of reconstruction based on the proposed method and the

conventional methods are shown, and the effectiveness of the

proposed method is discussed. Finally, in IV-C, the perfor-

mance limitation of the proposed method is discussed.

A. Experimental Conditions

In the subjective evaluation, we utilized the five conven-

tional methods [13], [18], [28], [14], [16]. The method in

[13] is one of the most influential works in the field of

exemplar-based texture reconstruction, and we utilized this

method for comparison with the proposed method. Further-

more, the methods in [14], [16] are proposed as improved

methods of [13], and we regard them as the state-of-the-

art approaches in this study field. The method in [18] is a

representative method that reconstructs missing areas by using

the eigenspace obtained by PCA. Furthermore, by introduc-

ing kernel methods into the PCA-based approach, nonlinear

subspaces can capture the nonlinear texture features [23]. Its

improvement has been achieved in [24], [25] by novel texture

classification approaches. Since it has been shown in [25] that

its performance is superior to that of [24], we utilized the

conventional methods in [23] and [25] as comparative methods

in quantitative evaluation shown later. In recent studies, sparse

representation has also been applied to the reconstruction

of missing areas. Thus, in this experiment, we utilized the

conventional method in [28], which is a representative method

using sparse representation, for comparison with the proposed

method. Furthermore, since the exemplar-based method in [16]

uses the sparse representation to fill missing areas, it also

becomes the comparison based on the sparse representation.

In this way, we used the methods in [13], [18], [28], [14],

[16] for comparison with the proposed method in subjective

evaluation. It should be noted that in the experiments, we

implemented both the proposed method and the conventional

methods by using Matlab, i.e., all of the conventional methods

in [13], [18], [23], [25], [28], [14], [16] were based on our own

implementation.

Next, we discuss the conditions of the experiments. The

parameters of the proposed method were set as w = 30, h = 30,

K = 3700, T = 40 and the clipping intervals of the patches

were 10 in width and 8 in height. Furthermore, we performed

the reconstruction by the conventional methods in [13], [18],

[23], [25], [28], [14], [16] in the following conditions:

• Conventional method in [28]:

This method is a representative approach using the sparse

representation, which is similar to the proposed method,

and it can be seen that our method is its improved ver-

sion. Thus, in order to directly compare the performance

between the proposed method and this method, we set the

size of patches, the number of training patches, and the

order of the reconstruction to the same values as those

of the proposed method, i.e., the same conditions were

used.

• Conventional methods in [18], [23], [25]:

These methods use eigenspaces and subspaces obtained

by kernel canonical correlation analysis to calculate in-

verse projection for reconstructing missing areas, and

their schemes are similar to the proposed method. There-

fore, we performed the reconstruction by using these

conventional methods in the same conditions as those of

the proposed method.

• Conventional methods in [13], [14], [16]

These methods adopt the exemplar-based inpainting ap-

proaches, and they need many training patches. Therefore,

the clipping intervals of training patches were set to 2 in

width and 2 in height. Then the number of the obtained

patches is much larger than that of the proposed method.

Next, the size of patches was set to 15 × 15 pixels (half

size of the proposed method). In [13], [14], [16], the

patch sizes were set to smaller values than those in this

experiment. If the proposed method and the conventional

methods in [18], [23], [25], [28] use smaller patches,

the expression abilities of textures become much better,

and the reconstruction performance is also improved.

However, in order to clearly show the difference of the

performance between these methods, we used larger size

patches. It should be noted that if the size of patches is

set to the same value as that of our method, it becomes

difficult for the exemplar-based reconstruction methods

to find the optimal training patches suitable for the

reconstruction of missing areas. Therefore, the half size

patches were used in this experiment. Furthermore, since

the order of reconstruction is the most important point in

these methods, it is determined in the same way as each

method.

In this way, we used the same conditions as those of our

method in [18], [23], [25], and [28]. In [13], [14], and [16],

their conditions are better than those of the other methods.

B. Discussions of Experimental Results

We utilized a test texture image (480 × 360 pixels, 24-

bit color levels) as shown in Fig. 5(a) and added missing

areas to this image for obtaining its corrupted image shown in

Fig. 5(b). In Fig. 5(b), the text regions ”Chain of Mountain”

correspond to missing areas (Fig. 5(c))2. For the target test

image, we applied the proposed method and obtained its

reconstruction result as shown in Fig. 5(d). Furthermore, Figs.

5(e)–(i) respectively show results obtained by the conventional

2Note that in this experiment, positions of the missing areas are previously
provided.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. (a) Original image (480×360 pixels, 24-bit color levels), (b) Corrupted image including text regions (8.9% loss), (c) Flag image whose white regions
correspond to missing areas, (d) Reconstructed image obtained by the proposed method, (e) Reconstructed image obtained by the conventional method in [13],
(f) Reconstructed image obtained by the conventional method in [18], (g) Reconstructed image obtained by the conventional method in [28], (h) Reconstructed
image obtained by the conventional method in [14], (i) Reconstructed image obtained by the conventional method in [16].

methods in [13], [18], [28], [14], [16]. For better subjective

evaluation, enlarged portions around the upper left of each

image are shown in Fig. 6. It can be seen that the use of

the proposed method has achieved noticeable improvements

compared to the conventional methods. Different experimental

results are shown in Figs. 7–12. Compared to the results

obtained by the conventional methods, it can be seen that

various kinds of textures are accurately restored by using

the proposed method. Therefore, high performance of the

proposed method was verified by the experiments.

In order to quantitatively evaluate the performance of the

proposed method, we show the PSNR and the SSIM index

[41] of the reconstruction results in Tables I and II. The SSIM

index is one of the representative measures in the field of

image quality assessment. It can be seen that our method

has achieved improvement over the conventional methods in

the SSIM index. Although the PSNR of the proposed method

tends to become worse than those of the conventional methods,

we can see that the results for the PSNR cannot correctly

reflect the visual quality in subjective evaluation. Here, we

discuss the difference of the performance between the subject

evaluation and MSE and PSNR-wise quantitative evaluation.

As shown in [41]–[43], the MSE, PSNR and their variants

cannot generally reflect perceptual distortions, and their values

become higher for images altered with some distortions such

as mean luminance shift, contrast stretch, spatial shift, spatial

scaling, and rotation, yet negligible loss of subjective image

quality. Furthermore, blurring severely deteriorates the image

quality, but their values become lower than those of the above

alternations. It is well known that most images contain more

low-frequency components than high-frequency components.

Thus, the MSE and PSNR-based criteria focus on these

low-frequency components and output lower values even if

target images severely suffer from some blurring artifacts. The

results obtained by several conventional methods suffer from

such artifacts, and their performance seems to be the worst,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6. (a) Zoomed portion of Fig. 5(a), (b) Zoomed portion of Fig. 5(b), (c) Zoomed portion of Fig. 5(c), (d) Zoomed portion of Fig. 5(d), (e) Zoomed
portion of Fig. 5(e), (f) Zoomed portion of Fig. 5(f), (g) Zoomed portion of Fig. 5(g), (h) Zoomed portion of Fig. 5(h), (i) Zoomed portion of Fig. 5(i).

TABLE I
Performance comparison (PSNR) of the proposed method and conventional

methods.

Method Figure 5 Figure 7 Figure 9 Figure 11

Reference [13] 28.76 20.94 24.63 26.35

Reference [18] 29.56 21.86 25.88 27.69

Reference [23] 29.98 22.20 26.23 27.39

Reference [25] 30.96 23.33 27.00 28.06

Reference [28] 30.39 22.43 25.85 27.28

Reference [14] 28.56 21.10 24.86 25.74

Reference [16] 29.54 21.18 25.76 27.01

Proposed method 29.27 22.15 26.12 26.93

but the PSNR-wise quantitative evaluation does not reflect

suitable performance. On the other hand, the SSIM index can

represent the visual quality more accurately. This has also been

pointed out by many researchers [41]–[43]. Therefore, we can

conclude that the use of the SSIM index as a visual quality

measure is appropriate for texture reconstruction.

We discuss the difference between the proposed method and

the conventional methods. The conventional methods in [18],

[23]–[25] generate one or several subspaces for reconstructing

missing areas. In these methods, the number of subspaces

available for reconstructing each texture is maximally limited

to the number of clusters obtained by previously performing

clustering of known local textures. This means these methods

cannot generate the optimal subspace for each texture includ-

ing missing areas. Therefore, by using sparse representation,

the optimal subspace can be provided for each texture. How-

ever, it should be noted that the selection of the optimal signal-

TABLE II
Performance comparison (SSIM) of the proposed method and conventional

methods.

Method Figure 5 Figure 7 Figure 9 Figure 11

Reference [13] 0.9539 0.9096 0.9292 0.9265

Reference [18] 0.9318 0.9042 0.9134 0.9137

Reference [23] 0.9309 0.8959 0.9100 0.9055

Reference [25] 0.9386 0.9114 0.9201 0.9138

Reference [28] 0.9384 0.9063 0.9202 0.9119

Reference [14] 0.9520 0.9098 0.9312 0.9204

Reference [16] 0.9579 0.9196 0.9369 0.9345

Proposed method 0.9583 0.9208 0.9438 0.9364

atoms is important for obtaining the subspaces, and its cor-

rectness affects the reconstruction performance. The conven-

tional method in [28] based on sparse representation performs

selection of the optimal signal-atoms from only the known

neighboring areas. Furthermore, it needs the assumption that

optimal sparse representation of target textures and those of

the known neighboring areas are the same. This problem also

occurs in [16] since they utilize similar schemes. However,

since the patch size is smaller than that of the proposed method

and the method in [28], it is less represented. On the other

hand, the proposed method enables adaptive generation of the

two subspaces for the target texture including missing areas

and its corresponding original texture.In addition, since our

method does not need the assumption by deriving the IPVSR

based on the obtained subspaces, it effectively solves the

problems of the conventional methods. In order to justify the

above discussion, we show some experimental results. In this
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7. (a) Original image (480 × 360 pixels, 24-bit color levels), (b) Corrupted image including text regions (11.3% loss), (c) Flag image whose white
regions correspond to missing areas, (d) Reconstructed image obtained by the proposed method, (e) Reconstructed image obtained by the conventional method
in [13], (f) Reconstructed image obtained by the conventional method in [18], (g) Reconstructed image obtained by the conventional method in [28], (h)
Reconstructed image obtained by the conventional method in [14], (i) Reconstructed image obtained by the conventional method in [16].

experiment, we focus on similarities of subspaces to measure

the accuracy of the signal-atoms selected by the proposed

method and the conventional methods. Even when the selected

signal-atoms are different from those obtained by using orig-

inal patches, missing areas can be accurately reconstructed if

the subspace of the selected signal-atoms is sufficiently similar

to the subspace spanned by the signal-atoms obtained from

original patches. Therefore, since the subspaces spanned by

the signal-atoms are the most important factors which affect

the accuracy of the reconstruction, we show their similarities

for measuring the accuracy of the selected signal-atoms. In

this experiment, we focus on the smallest canonical angle

which is often used for Mutual Subspace Method (MSM) [44],

[45]. Given two subspaces, one is the subspace spanned by

the signal-atoms selected by our method or the conventional

methods, and the other is the subspace spanned by the signal-

atoms obtained from original patches3, these T -dimensional

subspaces are respectively denoted as Lest and Lorg, where

Lest corresponds to L of Fig. 2 in our method. In MSM, the

similarity between the two subspaces Lest and Lorg is based on

their minimum canonical angle θ1, and it is defined as

cos2 θ1 = max
u∈Lest,v∈Lorg,||u||�0,||v||�0

(u′v)2

||u||2||v||2
. (39)

Note that T canonical angles can be defined between T -

dimensional subspaces, and θ1 in the above equation corre-

sponds to the minimum one, i.e., cos2 θ1 in the above equation

represents the maximum similarity. Furthermore, cos2 θ1 in Eq.

(39) is obtained as the maximum eigenvalue of Φest
Φ

org
Φ

est

or Φorg
Φ

est
Φ

org, where

Φ
est =

M
∑

m=1

φest
m φ

est
m

′
, (40)

3The signal-atoms suitable for original patches are obtained by using OMP
algorithm.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8. (a) Zoomed portion of Fig. 7(a), (b) Zoomed portion of Fig. 7(b), (c) Zoomed portion of Fig. 7(c), (d) Zoomed portion of Fig. 7(d), (e) Zoomed
portion of Fig. 7(e), (f) Zoomed portion of Fig. 7(f), (g) Zoomed portion of Fig. 7(g), (h) Zoomed portion of Fig. 7(h), (i) Zoomed portion of Fig. 7(i).

Φ
org =

M
∑

m=1

φ
org
m φ

org
m
′
. (41)

In the above equation, φest
m and φ

org
m (m = 1, 2, · · · ,M) are

respectively orthonormal bases of the subspaces Lest and Lorg.

We calculate M eigenvectors of the subspaces Lest and Lorg,

whose eigenvalues are larger than the other ones, and use them

as φest
m and φ

org
m , respectively. Then we change the value of

M and show the average values of the results in Eq. (39),

which are calculated from the subspace Lest obtained by the

proposed method and the conventional method [28], in Tables

III and IV. In this experiment, the similarities in Eq. (39) are

calculated for patches whose missing areas are more than 50%

within patches in order to clearly show the difference between

the two methods. In addition, the clipping interval was set

to 8 in both width and height for calculating the average

values from many examples. From the obtained results, it

can be seen that the proposed method has higher similarities

compared to the conventional method. Thus, we can conclude

the proposed method provides more accurate subspaces than

TABLE III
Similarities in Eq. (39) obtained from subspace Lest in the proposed method.

Test image M = 5 M = 10 M = 15 M = 20 M = 25

Figure 5 0.4830 0.6465 0.7437 0.8120 0.8996

Figure 7 0.6026 0.7411 0.8113 0.8622 0.9269

Figure 9 0.4175 0.6371 0.7594 0.8517 0.9062

Figure 11 0.5515 0.6939 0.7772 0.8467 0.8971

the conventional methods. Furthermore, Figs. 13–16 show the

reconstruction results whose similarities in Eq. (39) are quite

different between the two methods compared to the other areas,

where M = 20. Note that the patch size is 30 × 30 pixels,

and it is difficult to see the difference between such small

patches. Therefore, these figures show areas of size 90 × 90

pixels which contain target patches (30× 30 pixels). From the

obtained results, the difference between the two methods is

significant, and the effectiveness of our method can be also

confirmed.

Finally, in Figs. 17 and 18, we show some examples of
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 9. (a) Original image (480 × 360 pixels, 24-bit color levels), (b) Corrupted image including text regions (10.7% loss), (c) Flag image whose white
regions correspond to missing areas, (d) Reconstructed image obtained by the proposed method, (e) Reconstructed image obtained by the conventional method
in [13], (f) Reconstructed image obtained by the conventional method in [18], (g) Reconstructed image obtained by the conventional method in [28], (h)
Reconstructed image obtained by the conventional method in [14], (i) Reconstructed image obtained by the conventional method in [16].

TABLE IV
Similarities in Eq. (39) obtained from subspace Lest in the conventional

method [28].

Test image M = 5 M = 10 M = 15 M = 20 M = 25

Figure 5 0.4373 0.5772 0.6931 0.7713 0.8816

Figure 7 0.4742 0.5941 0.6923 0.7707 0.8746

Figure 9 0.3882 0.5386 0.6646 0.7749 0.8704

Figure 11 0.4245 0.5656 0.6763 0.7784 0.8627

restoration by the proposed method for images including text

regions in the whole areas. When missing areas exist all

over the target image, we cannot obtain sufficient training

patterns, and accurate sparse representation becomes difficult.

In such a case, the proposed method again uses the results of

reconstruction obtained by using our method for calculating

the dictionaries and iterates the reconstruction procedures.

From these figures, we can see that the proposed method

restores several kinds of missing areas, and many applications

such as removal of unnecessary objects and error concealment

can be expected.

C. Performance Limitation

In this subsection, we discuss the performance and its

limitation of the proposed method. First, we focus on the per-

centage of missing areas within target images. In the proposed

method, the number of training examples fi (i = 1, 2, · · · ,N)

must be lager than the number of the signal atoms d j and

d̂ j ( j = 1, 2, · · · ,K). This means N > K must be satisfied

for constructing dictionaries from the known patches fi. Thus,

although the percentages of missing areas within target images

are large, the proposed method can perform the calculation of

the dictionary matrices (Sec. III-A) when N > K is satisfied.

It should be noted that even if we cannot obtain sufficient

training patterns, we can reconstruct missing areas by using

some alternative schemes, and their examples are shown in
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 10. (a) Zoomed portion of Fig. 9(a), (b) Zoomed portion of Fig. 9(b), (c) Zoomed portion of Fig. 9(c), (d) Zoomed portion of Fig. 9(d), (e) Zoomed
portion of Fig. 9(e), (f) Zoomed portion of Fig. 9(f), (g) Zoomed portion of Fig. 9(g), (h) Zoomed portion of Fig. 9(h), (i) Zoomed portion of Fig. 9(i).

Figs. 17 and 18. In order to perform accurate reconstruction,

we should calculate the dictionaries from various kinds of tex-

tures. Therefore, it is desirable that known patches be obtained

from various texture parts to guarantee the performance of

our method. Next, we focus on the number of known pixels

within the target patch f . For calculating the inverse projection

shown in Eq. (33), T ≤ rank {Σ} must be satisfied for obtaining

the pseudo inverse matrix. Note that the rank of the matrix Σ,

i.e., rank {Σ}, corresponds to the number of the known pixels in

Ω̄. Therefore, in order to perform the reconstruction based on

IPVSR, the number of the known pixels within the target patch

f must be larger than T . Otherwise, it becomes difficult to

directly calculate the inverse projection in Eq. (33), and some

regularization terms must be introduced into the calculation of

p∗. In the experiments of this section, if the above condition

is not satisfied, we skip the target patch and reconstruct its

missing area from the other patches. In the proposed method,

the clipping interval is smaller than the size of patches. Then

each reconstructed pixel has multiple estimation results, and

thus we can reconstruct all missing areas within target images

even if some patches do not satisfy the above condition.

Generally, when the size of missing areas becomes larger, the

above condition tends not to be satisfied. Thus, we have to set

the size of patches (w × h pixels) to larger values or set T to

a smaller value. In the former case, rank {Σ} tends to become

larger. However, in both cases, the representation abilities of

textures become lower, and it leads the degradation of the

reconstruction performance. Finally, the clipping interval of

patches for reconstructing missing areas must be equal to or

smaller than the patch size as described above. Otherwise, all

missing intensities may not be reconstructed. In the proposed

method, the clipping interval is smaller than the size of patches

in order to address the problem of the above condition not

being satisfied.

As described above, the number of training examples uti-

lized for the proposed method is much smaller than those of

the conventional methods [13], [14], [16]. Therefore, there is

a limitation for accurately reconstructing missing textures by

using the proposed method. This means by increasing the

number of the training examples, our method can achieve

more accurate reconstruction. It should be noted that the

computation time of the proposed method is still larger than

other methods, and thus the number of the training examples

should not be increased for saving the computation time.

The discussion of the computation time of our method is

shown later. Furthermore, if we adopt several schemes of

these conventional methods, such as the determination of the

order (priority) of reconstruction pixels, the performance of

our method becomes better. The current method only clips

patches including missing areas in a raster scanning order

and reconstructs them based on IPVSR. Therefore, in order

to further improve the reconstruction performance, we should

introduce the schemes used in the conventional exemplar-

based methods into our method. However, since this is not

the main focus of our paper, this will be addressed in the

future work.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 11. (a) Original image (480 × 360 pixels, 24-bit color levels), (b) Corrupted image including text regions (11.9% loss), (c) Flag image whose white
regions correspond to missing areas, (d) Reconstructed image obtained by the proposed method, (e) Reconstructed image obtained by the conventional method
in [13], (f) Reconstructed image obtained by the conventional method in [18], (g) Reconstructed image obtained by the conventional method in [28], (h)
Reconstructed image obtained by the conventional method in [14], (i) Reconstructed image obtained by the conventional method in [16].

Finally, from the above discussion, we show some results

whose missing areas cannot be successfully reconstructed by

the proposed method in Fig. 19. In this example, the size of

the missing areas within patches becomes larger, and thus

it becomes difficult for the proposed method to reconstruct

those missing areas, accurately. Thus, it is also difficult to

perfectly avoid spurious color even if the matrices G and Ĝ

are adopted. Furthermore, in this example, the target object

contains many structural components, i.e., edges. Since the

proposed method only focuses on the reconstruction of miss-

ing textures, the successful restoration of those components

cannot be realized. In order to solve these problems, we have

to introduce some approaches which consider the accurate

reconstruction of structural components into our method. Some

conventional methods [13], [14], [16] determine the priorities

for reconstructing corrupted patches to correctly restore both

of structural and texture components, and this scheme will

be easily implemented in the proposed method. Furthermore,

Bertalmio et al. [19] adopt an approach that determines

whether target areas are structural parts or texture parts and

adaptively select suitable reconstruction methods. Then this

also becomes the solution for solving the above problem.

In addition, we discuss the computation cost of the proposed

method. The experiments shown in Figs. 5–11 were performed

on a personal computer using Intel(R) Core(TM) i7 950 CPU

3.06 GHz with 8.0 Ggytes RAM. The proposed method was

implemented by using Matlab. The average computation time

to perform our algorithm for reconstructing missing areas

is 9.86 × 102 sec. From the obtained result, we can see it

is necessary to reduce the computational complexity of the

proposed method for its practical use.

Here, we show some rough estimation of the computational

complexity of the proposed method. In III-A, the proposed

method performs the calculation of the dictionary matrices

D and D̂. First, we focus on the calculation of D based on

the K-SVD algorithm which is composed of two parts: sparse
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(d) (e) (f)
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Fig. 12. (a) Zoomed portion of Fig. 11(a), (b) Zoomed portion of Fig. 11(b), (c) Zoomed portion of Fig. 11(c), (d) Zoomed portion of Fig. 11(d), (e) Zoomed
portion of Fig. 11(e), (f) Zoomed portion of Fig. 11(f), (g) Zoomed portion of Fig. 11(g), (h) Zoomed portion of Fig. 11(h), (i) Zoomed portion of Fig. 11(i).

coding part and dictionary renewal part. The sparse coding

part is dominated by the selection of the best matched signal-

atoms and the calculation of the optimal sparse representation

for each xi (i = 1, 2, · · · ,N), and their time complexities are

respectively O(KζT ) and O(kζ). Note that ζ = 3wh, and k

(k = 1, 2, · · · ,T ) means that the selection of k-th optimal signal

atom is performed. Furthermore, the dictionary renewal part is

dominated by the singular value decomposition, and this pro-

cedure is performed for each signal-atom d j ( j = 1, 2, · · · ,K).

Thus, its complexity is O(ζξ2
j
), where ξ j represents the number

of xi which use the signal-atom d j for its sparse representation.

In addition, the complexity of the calculation of the dictionary

matrix D̂ is O(ζK). Next, the proposed method performs the

reconstruction of the missing area Ω within the target patch f

in III-B, and it is mainly dominated by the calculation of Ê

and p̂ and that of E. These procedures are almost the same as

the sparse coding part, i.e., they are composed of the selection

of the best matched signal-atoms (O(KζT )) and the calculation

of the optimal sparse representation (O(kζ)).

Note that in the calculation of the dictionary matrix D, the

sparse coding part and the dictionary renewal part have high

computational complexities, and they are also iterated. Figure

20 shows the mean square error converged in the calculation

of the dictionary matrix D. From this figure, we can see the

error tends to gradually reduce as the number of the iteration

increases. However, in the proposed method, the number of

the iteration is set to 20 in order to reduce the computation

cost. Thus, by reducing the number of the iteration, the further

reduction of the computation time can be expected although

some performance degradation may occur.

In recent methods such as [14] and [16], they reported that

their methods could perform faster reconstruction. Particularly,

in [14], they introduce a DCT-domain decomposition scheme,

a local gradient-based algorithm, and parallel implementation

on GPU, and it achieves quite fast performance compared to

the other conventional methods and our method. Therefore, in

order to realize the practical use of the proposed method, we

have to introduce some techniques for reducing the computa-

tion cost. This will be addressed in the future work.
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Original patch

Corrupted patch

Reconstructed patch

by our method

Similarity in Eq. (37)

Reconstructed patch

by reference [28]

Similarity in Eq. (37)

0.8600 0.7793 0.9427 0.7557 0.7783

0.5780 0.5027 0.6929 0.5173 0.5673

0.2820 0.2766 0.2498 0.2404 0.2110
Difference between

two similarities

Fig. 13. Reconstruction results whose similarities in Eq. (39) are quite different between the proposed method and the conventional method [28]. The target
image is shown in Fig. 5.

Original patch

Corrupted patch

Reconstructed patch

by our method

Similarity in Eq. (37)

Reconstructed patch

by reference [28]

Similarity in Eq. (37)

0.8500 0.8039 0.7509 0.9374 0.8591

0.5555 0.5128 0.4683 0.6642 0.6279

0.2945 0.2911 0.2826 0.2732 0.2312
Difference between

two similarities

Fig. 14. Reconstruction results whose similarities in Eq. (39) are quite different between the proposed method and the conventional method [28]. The target
image is shown in Fig. 7.

V. CONCLUSIONS

In this paper, we have proposed a missing image data recon-

struction method based on an adaptive inverse projection via

sparse representation. In order to calculate the inverse projec-

tion for reconstructing missing areas, the proposed method per-

forms sparse representation of target textures including miss-

ing areas and their corresponding original textures and enables

the generation of subspaces. In this approach, the error caused

in the known neighboring textures by the inverse projection is

newly introduced as a new criterion, and adaptive generation

of subspaces becomes feasible. Then, by using the obtained

subspaces, the proposed method can apply the adaptive inverse

projection via sparse representation to the reconstruction of

target textures. The proposed method also introduces some

schemes for color processing into the selection of optimal

signal-atoms for obtaining subspaces. Consequently, since the

optimal subspaces providing the inverse projection can be
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Original patch

Corrupted patch

Reconstructed patch

by our method

Similarity in Eq. (37)

Reconstructed patch

by reference [28]

Similarity in Eq. (37)

0.9059 0.8476 0.9514 0.8619 0.7816

0.6295 0.6099 0.7176 0.6283 0.5727

0.2764 0.2377 0.2338 0.2336 0.2089
Difference between

two similarities

Fig. 15. Reconstruction results whose similarities in Eq. (39) are quite different between the proposed method and the conventional method [28]. The target
image is shown in Fig. 9.

Original patch

Corrupted patch

Reconstructed patch

by our method

Similarity in Eq. (37)

Reconstructed patch

by reference [28]

Similarity in Eq. (37)

0.9742 0.8844 0.9478 0.8020 0.8700

0.6754 0.6064 0.6749 0.5315 0.6051

0.2988 0.2780 0.2729 0.2705 0.2649
Difference between

two similarities

Fig. 16. Reconstruction results whose similarities in Eq. (39) are quite different between the proposed method and the conventional method [28]. The target
image is shown in Fig. 11.

adaptively obtained, impressive improvements by the proposed

method have been achieved.

In this study, we manually set parameters such as the size

of patches and the dimension of subspaces. It is desirable that

these values can be adaptively determined from the observed

images. Thus, we need to complement this determination al-

gorithm. We would like to study these ideas for reconstruction

in video data. These topics will be the subject of subsequent

reports.
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(a) (b) (c)

Fig. 19. Examples which cannot be successfully reconstructed by our method: (a) Target image, (b) Reconstructed image by the proposed method, (c)
Zoomed portion of (b).

References

[1] H.S. Hou, H.C. Andrews, “Cubic splines for image interpolation and
digital filtering,” IEEE Trans. on Acoustics, Speech, Signal Processing

ASSP-26 (6) pp.508–517, 1978.

[2] R.G. Keys, Cubic convolution interpolation for digital image processing,
IEEE Trans. on Acoustics, Speech, Signal Processing, 29 (6) pp.1153–
1160, 1981.

[3] F. Arandiga,R. Donat, P. Mulet, “Adaptive interpolation of images,” Signal

Processing, vol.83, no.2, pp.459-64, 2003.

[4] S. Battiato, G. Gallo, F. Stanco, “A locally adaptive zooming algorithm
for digital images,” Image and vision computing, vol.20, no.11, pp.805–
812, 2002.

[5] C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, “Filling-In by Joint
Interpolation of Vector Fields and Gray Levels,” IEEE Trans. on Image

Processing, vol.10, no.8, pp.1200–1211, 2001.

[6] T.F. Chan and Jianhong Shen, “Nontexture inpainting by curvature-driven
diffusions,” Journal of Visual Communication and Image Representation,

vol.12, no.4, pp.436–449, 2001.

[7] A. Rares, M.J.T. Reinders, and J. Biemond, “Edge-based image restora-
tion,” IEEE Trans. on Image Processing, vol.14, no.10, pp.1454–1468,
2005.

[8] A. A. Efros and T. K. Leung, “Texture synthesis by nonparametric
sampling,” IEEE Int. Conf. Computer Vision, Corfu, Greece, pp.1033–
1038, Sept. 1999.

[9] A. A. Efros and W. T. Freeman, ”Image quilting for texture synthesis
and transfer,” Proceedings of SIGGRAPH 2001, ACM SIGGRAPH, pp.
341–346, 2001.

[10] L.-W. Wey and M. Levoy, ”Fast texture synthesis using tree-structured
vector quantization,” in SIGGRAPH 2000, Computer Graphics Proceed-

ings, K. Akeley, Ed. ACM Press / ACM SIGGRAPH / Addison Wesley
Longman, pp. 479–488, 2000.

[11] I. Drori, D. Cohen-Or, and H. Teshurun, ”Fragment-based image com-
pletion,” in SIGGRAPH 2003: ACM SIGGRAPH 2003 Papers. New York,
USA: ACM Press, pp. 303–312, 2003.

[12] A. Criminisi, P. Perez, and K. Toyama, ”Object removal by exemplar-
based inpainting,” Proceedings of IEEE Computer Vision and Pattern

Recognition, Jun. 2003.

[13] A. Criminisi, P. Perez, and K. Toyama, ”Region filling and object
removal by exemplar-based image inpainting,” IEEE Trans. on Image

Processing, vol. 13, no. 9, pp. 1200–1212, 2004.

[14] T. H. Kwok, H. Sheung, and C. C. L. Wang, ”Fast query for exemplar-
based image completion,” IEEE Transactions on Image Processing, vol.
19, no. 12, 2010.

[15] I. B. Fidaner, ”A survey on variational image inpainting,
texture synthesis and image completion,” Available online:

http://www.scribd.com/doc/3012627/A-Survey-on-Variational-Image-
Inpainting-Texture-Synthesis-and-Image-Completion

[16] Z. Xu and J. Sun, ”Image Inpainting by Patch Propagation Using Patch
Sparsity,” IEEE Transactions on Image Processing, vol. 19, no. 5, 2010.

[17] A. Kokaram, “A statistical framework for picture reconstruction using
2D AR models,” Image and Vision Computing, vol.22, no.2, 1, pp.165–
171, Feb. 2004.

[18] T. Amano and Y. Sato, “Image interpolation using BPLP method on the
eigenspace,” Systems and Computers in Japan, vol.38, no.1, pp.87–96,
Jan. 2007.

[19] M. Bertalmio, L. Vese, G. Sapiro, and S. Ssher, “Simultaneous structure
and texture image inpainting,” IEEE Trans. on Image Processing, vol. 12,
no. 8, pp. 882–889, 2003.

[20] S. D. Rane, G. Sapiro, M. Bertalmio, “Structure and texture filling-
in of missing image blocks in wireless transmission and compression
applications,” IEEE Trans. on Image Processing, vol. 12, no.3, 2003.

[21] B. Schölkopf, S. Mika, C.J.C Burges, P. Knirsch, K.-R. Müller, G.
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Fig. 20. Relationship between iteration time and mean square error converged
in the calculation of the dictionary matrix D.
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