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Missing-linker metal-organic frameworks
for oxygen evolution reaction
Ziqian Xue1,5, Kang Liu2,5, Qinglin Liu1, Yinle Li1, Manrong Li 1, Cheng-Yong Su 1, Naoki Ogiwara 3,

Hirokazu Kobayashi3,4, Hiroshi Kitagawa 3, Min Liu2* & Guangqin Li1*

Metal-organic frameworks (MOFs) have been recognized as compelling platforms for the

development of miscellaneous applications because of their structural diversity and func-

tional tunability. Here, we propose that the electrocatalytic properties could be well modified

by incorporating missing linkers into the MOF. Theoretical calculations suggest the electronic

structure of MOFs can be tuned by introducing missing linkers, which improves oxygen

evolution reaction (OER) performance of the MOF. Inspired by these aspects, we introduced

various missing linkers into a layered-pillared MOF Co2(OH)2(C8H4O4) (termed as CoBDC)

to prepare missing-linker MOFs. Transmission electron microscope and synchrotron X-ray

measurements confirmed that the missing linkers in the MOF could be introduced and well

controlled by our strategy. The self-supported MOF nanoarrays with missing linkers of car-

boxyferrocene exhibit excellent OER performance with ultralow overpotential of 241 mV at

100mA cm−2. This work opens a new prospect to develop efficient MOF-based electro-

catalysts by introducing missing linkers.
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D
eveloping efficient electrochemical conversion processes is
of great significance for storing and utilizing renewable
energy1. Electrochemical oxygen evolution reaction

(OER) plays an essential role in many energy conversion tech-
nologies involving metal–air batteries, water splitting, and CO2

reduction2–5. Unfortunately, the efficiency of OER was limited by
its sluggish kinetics and high over-potential. So, efficient elec-
trocatalysts are highly required to facilitate OER effectively6. To
date, noble metal catalysts including RuO2 and IrO2, have been
recognized as effective electrocatalysts for OER7. Nevertheless, the
large-scale application of noble metal catalysts was hindered by its
high-cost and scarcity. Therefore, exploring new high-efficiency
non-noble metal electrocatalysts for OER is of ongoing interest8.
Although tremendous efforts have been devoted to developing
cost-effective OER catalysts, current electrocatalysts still failed to
satisfy the industrial requires. So, the development of non-noble
metal electrocatalysts for OER with high catalytic activity and
stability is still a challenge9.

Metal-organic frameworks (MOFs), have served as the fasci-
nating material platform with versatile applications including gas
storage and separation10–12, drug delivery13, and catalysis14–19.
Benefiting from their isolated active site, large surface area, and
high porosity, MOFs have received broad research interest in the
field of heterogeneous electrochemical catalysis20–24. Never-
theless, most of MOFs show intrinsic poor electric conductivity
and electrocatalytic activity. Although there have been some
methods, such as metal node engineering25,26, hydroxide ligands
cooperate27, and lattice-strained MOF28 reported to regulate the
electrocatalytic activity of MOFs, the directly use of MOFs as
efficient OER catalysts is still in its infancy.

The electrocatalytic performance of solid materials is mainly
reflected by the number of active sites, electronic conductivity,
and the reaction energy barrier of the catalyst29. In addition to
regulate the morphology and crystal structure of the catalyst,
optimizing the electronic structure of catalytic metal is the most
straightforward way to change intrinsic characteristics of catalysts
such as electronic conductivity and the reaction energy barrier30.
The electronic structure of MOFs is mainly affected by topolo-
gical structure and coordination environment31. Owing to the
high design flexibility of MOFs, the missing linkers can be con-
trollably introduced into MOFs by partially substituting multi-
coordinating bridging linkers with nonbridging ligands to change
their coordination environment without loss of crystallinity and
porosity of materials32–35. So, incorporating missing linkers into
MOFs provides a promising strategy to tailor electronic structure
of MOFs36,37. This may open up new opportunities for regulating
the electrocatalytic property of MOFs.

Therefore, we introduce missing linkers to regulate electronic
structure of MOFs and report a universal strategy to enhance the
OER activity of MOFs (Fig. 1). Theoretical results demonstrate
that the electronic structure of CoBDC can be regulated effec-
tively by incorporating missing linkers such as carboxyferrocene
(Fc) into MOFs, changing the band gap and charge distribution
thus optimizing adsorption strength for the reaction inter-
mediates. In subsequent experiments, the MOFs with missing
linkers exhibited an enhanced catalytic activity, validating our
design.

Results
Density functional theory (DFT) calculations. The layered-
pillared MOF Co2(OH)2(C8H4O4) (named as CoBDC) con-
structed by the coordinated octahedrally divalent cobalt and
terephthalic acid (H2BDC). The terephthalates are coordinated
and pillared directly to the cobalt hydroxide layers and form a
three-dimensional framework (Supplementary Fig. 1)38. owning

to its unique structure and good stability25, CoBDC is used as an
example to study the effects of missing linkers on its electronic
structure. DFT reveals that the terephthalic acid in CoBDC can be
repalced by missing linker of carboxyferrocene (Fc) and forms a
new stable MOF named by CoBDC–Fc (Fig. 2a, Supplementary
Fig. 2). After introducing missing linkers, CoBDC–Fc generates
new electronic states near the Fermi level, suggesting a more
conductive electronic structure (Fig. 2b). The partial density of
states (PDOS) showed that the generation of new electronic states
near the Fermi level can be ascribed to the change of electronic
structure of Co and O. 2D electron localization function (ELF)
analysis showed that a larger ELF value around the Co atom in
CoBDC–Fc compared with that of CoBDC can be observed
(Supplementary Fig. 3), indicating a higher electron localization
on Co in CoBDC-Fc (Fig. 2c).

Free energy difference (ΔG) for each elementary step was
calculated to estimate the OER activity on different sites. The
optimized pathways of various sites were shown in Supplemen-
tary Fig. 4. Based on the free energy diagram (Fig. 2d) of CoBDC,
the energy barrier (∆G1= 3.74 eV) for the formation of OH∗ is
the rate-determining step on the Co site of bulk phase (Co1 in
CoBDC–Fc), which is assigned to the weak adsorption energy of
OH* (Supplementary Table 1). The Co in bulk phase of
CoBDC–Fc showed similar activity with Co in bulk phase of
CoBDC. After introducing missing linkers into CoBDC, the
defect site (Co2 in CoBDC–Fc) generated and enhanced the
adsorption energy of the OER intermediates. As a result, the rate-
determining step for CoBDC–Fc is the oxidation of OH* to O*
with a smaller energy barrier of 1.85 eV. The decrease of energy
barrier after incorporating missing linkers into MOF catalyst
implies that the unique electronic structure in the defect site of
the MOF plays a vital role in improving OER activity.

Synthesis and characterization of missing-linker MOFs. In light
of DFT results, Fc was introduced into CoBDC to construct
MOFs containing missing linkers (named as “CoBDC–Fcx” where
x= the molar ratio of Fc:BDC) by modulation approach. In order
to improve the electric conductivity and mechanical stability of
MOF, self-supported CoBDC nanoarrays (CoBDC–NF) were
prepared by reacting H2BDC with Co(NO3)2·6H2O in the pre-
sence of nickel foam (NF) substrate. The appropriate amount of
Fc was introduced into CoBDC nanoarrays to construct defective
MOF arrays (CoBDC–Fc–NF). The ratio of BDC:Fc was about 6:1
in CoBDC-Fc0.17 and CoBDC–Fc–NF determined by the mea-
surement of inductively coupled plasma mass spectrometry
(ICP–MS) (Supplementary Table 2). X-ray diffraction (XRD)
patterns showed that the crystal structure of CoBDC is identical
with the previously reported Co2(OH)2(C8H4O4) MOFs (Sup-
plementary Fig. 5)38. The targeted incorporation of missing linker
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Fig. 1 Modulating electronic structure of MOFs via introducing missing

linkers for efficient OER
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defects led to the formation of highly crystalline CoBDC-Fc0.17
which have almost the same diffraction patterns as CoBDC. The
morphologies of as-prepared materials were investigated by
scanning electron microscopy (SEM). Both CoBDC and CoBDC-
Fc0.17 showed nanosheets morphologies (Supplementary Fig. 6).
Employing NF as a substrate, CoBDC nanosheets can be uni-
formly grown on NF and form nanosheet array (Fig. 3a, b). After
incorporating Fc as a modulator, CoBDC–Fc–NF shows similar

morphology to CoBDC–NF (Fig. 3d, e). While CoBDC–Fc–NF
was assembled by slightly thicker MOF nanosheets, compared to
CoBDC–NF. Transmission electron microscopy (TEM) images
further confirmed their nanosheet morphologies (Fig. 3c, f).
Energy-dispersive X-ray spectroscopy (EDX) mappings demon-
strate that the Fc can be uniformly incorporated into CoBDC
nanosheets (Fig. 3g). The N2 sorption isotherms of as-prepared
MOFs at 77 K showed that CoBDC–Fc0.17 had a smaller
Brunauer–Emmett–Teller (BET) surface area (16.03 m2 g−1) than
that of CoBDC (17.12 m2 g−1) (Supplementary Fig. 7).

In order to experimentally confirm the impact of introducing
missing linkers on the electronic states of MOFs, X-ray
photoelectron spectroscopy (XPS) was carried out to investigate
the electronic structure of the active center. In the full range
XPS spectra of CoBDC, the peaks of C1s, O1s, and Co 2p are
detected. Introducing the Fc as modulator led to an obvious
peak of Fe 2p in the XPS spectra of CoBDC–Fc0.17 (Supple-
mentary Fig. 8). The Co 2p3/2 of CoBDC and CoBDC–Fc0.17
demonstrated that Co cation was bivalent Co2+ state (Fig. 4a).
Compared with those of CoBDC, Co 2p3/2 and O1s in
CoBDC–Fc0.17 have higher binding energy and broadened
peaks, indicating the change of active center coordination
environment caused by the introduction of missing linkers
(Supplementary Fig. 9a)39. Furthermore, XPS valence band
spectra were measured to investigate the electronic properties
of the MOFs catalysts. As shown in Supplementary Fig. 9b, after
introducing missing linkers, the valence band maximum energy
of CoBDC–Fc0.17 blue shifts to the vacuum level at about
0.37 eV with respect to that of CoBDC (1.65 eV), suggesting
that introducing missing linkers can effectively modulate the
electronic structure of MOFs. Square resistance measurements
proved that the conductivity of the MOF increased after
introducing missing linkers (Supplementary Table 3).
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To understand the local structures of Co2+ in CoBDC and
CoBDC–Fc0.17, we performed Co K-edge X-ray absorption
spectroscopy (XAS). The observed X-ray absorption near-edge
structure (XANES) spectra are shown in Fig. 4b. The sharp lines
correspond to the electron transition from Co 1s to outer
unoccupied 4p orbitals. The energy position of the pre-edge peak
and white line peak for both CoBDC and CoBDC-Fc0.17 are about
at 7708.2 and 7723.6 eV, respectively. The spectral profile is very
similar to that of CoO, indicating average Co valence state of
+240. In contrast, the peak intensity of CoBDC–Fc0.17 is slightly
diminished relative to that of CoBDC, suggesting that introduc-
tion of the missing ligands changed the local coordination
geometry of Co2+ ions41. The similar Co K-edge k3χ data of
EXAFS oscillations are displayed from viewpoints of Cobalt
(Fig. 4c), suggesting Co for CoBDC and CoBDC–Fc0.17 are in
similar coordinated environments. Notably, CoBDC–Fc0.17 exhi-
bits less amplitude oscillations, indicating the average coordina-
tion number of Co atom decreases after introducing missing
linkers. To clarify the change of local coordination geometry of
Co2+ ions observed in XANES, we performed the curve fitting of
the Fourier transforms of the extended X-ray absorption fine
structure (EXAFS) for CoBDC and CoBDC-Fc0.17 (Fig. 4d,
Supplementary Table 4). The curve fitting revealed that the Co–O
distance of CoBDC–Fc0.17 (2.08 Å) is almost identical to that of
CoBDC (2.07 Å). On the other hand, the coordination number of
Co–O for CoBDC–Fc0.17 was 4.4, which is smaller than that of
CoBDC (6.2). These observations suggest introducing the missing
linkers generated unsaturated Co2+ sites, which is expected to
work as active sites for the OER.

Electrocatalytic performance of missing-linker MOFs. Next, we
sought to verify the electronic structure change of Co active
center by introducing missing linkers to facilitate OER perfor-
mance. The electrocatalytic performance of as-prepared MOFs
was investigated with three-electrode system in alkaline condition
(1M KOH) by using commercially RuO2 as reference. CoBDC
and CoBDC–Fc0.17 were deposited onto a glassy-carbon electrode
with a loading of 0.35 mg cm−2. CoBDC–NF and CoBDC–Fc–NF
were directly used as a self-supported electrode. The loading mass
of CoBDC and CoBDC–Fc onto CoBDC–NF and CoBDC–Fc–NF
was about 2 mg cm−2. The polarization curves with iR-
compensation were recorded by linear sweep voltammetry
(LSV). As shown in Supplementary Fig. 10, the CoBDC existed low
OER performance with overpotential of 378mV at 10mA cm−2.
After introducing missing linkers, CoBDC–Fc0.17 showed
improved catalytic activity with overpotential of 291 mV at 10
mA cm−2 and smaller Tafel slope (61 mV dec−1). The direct
growth of MOF on NF will enhance transport kinetics and
electrical contact. As can be seen in Fig. 5a, CoBDC–NF showed
excellent electrocatalytic property for OER with an overpotential
of 318 mV at the large current density of 100 mA cm−2, which is
better than that of the commercial catalyst RuO2 (349 mV). After
introducing miss linkers (Fc), CoBDC–Fc–NF showed significantly
enhanced OER activity with the ultralow overpotential of 178 mV
to achieve 10mA cm−2 which is 74 and 57mV lower than that of
CoBDC–NF and commercial RuO2 (Fig. 5b), respectively. Fur-
thermore, very small overpotentials of 241 and 267mV can drive a
high current density of 100 and 500mA cm−2 for the
CoBDC–Fc–NF electrode which competes to the best OER elec-
trocatalysts previously reported (Supplementary Table 5)42–46.
Additionally, CoBDC–Fc–NF has a highest turnover frequency
(TOF) of 0.034 S−1 at an overpotential of 250 mV, further
demonstrating its improved OER performance (Supplementary
Fig. 11). The CoBDC–Fc–NF also shows smaller Tafel slope of 51
mV dec−1 compared with CoBDC-NF (63mV dec−1) and RuO2

(88 mV dec−1), indicating more superior OER reaction kinetics.
The stability of CoBDC-Fc-NF was tested by chronopotentiometry
and cyclic voltammetry (CV). As shown in Fig. 5d,
CoBDC–Fc–NF exhibited strong durability in a prolonged
chronopotentiometry test at a constant current density of 100 mA
cm−2 for 80 h. After CV between 1.20 and 1.45 V for 2000 cycles,
CoBDC–Fc–NF only showed slight degradation, demonstrating its
high durability (Supplementary Fig. 12). Additionally, the mor-
phology and crystal structure of CoBDC–Fc–NF showed limited
changes after 10 h electrocatalysis at a constant current density of
100mA cm−2 (Supplementary Figs. 13 and 14). After 5 h elec-
trocatalysis, the elemental composition of catalyst and chemical
environment of Co had very little changes (Supplementary
Fig. 15). XPS spectra of CoBDC–Fc–NF after 10 h electrocatalysis
showed that the peak width and satellites intensity of Co 2p
decreased slightly, indicating the formation of a small amount of
Co3+ after long-time OER process (Supplementary Fig. 15)47,48.
The peaks at binding energy of 779.8 and 795.0 eV are ascribed to
Co3+ in CoOOH, confirming the formation of amorphous
CoOOH during the long-time OER electrocatalytic process (Sup-
plementary Figs. 13 and 15b)47–49. The limited changes in ele-
mental composition and chemical environment of CoBDC–Fc–NF
after 10 h OER stability test indicate the MOF to be the main
component. Even so, the participation of CoOOH, widely known
as an active species for OER electrocatalysis, cannot be excluded at
this time.

The concentration of missing linkers can be controlled by
varying the addition amount of Fc. A series of CoBDC–Fcx
powders with different ratios of BDC:Fc were prepared. SEM
images showed that after introducing Fc into CoBDC the original
morphology of nanosheet basically remains (Supplementary
Fig. 16). The high crystallinity of CoBDC–Fcx was evident from
the XRD pattern, which was isostructural with CoBDC
(Supplementary Fig. 17). Introducing Fc into CoBDC can
obviously improve the electrocatalytic activity of MOFs (Supple-
mentary Fig. 18). A doping ratio of 0.14 (Fc:BDC), exhibited
optimal performance with an overpotential of 291 mV at 10 mA
cm−2.

To demonstrate the universality of the missing linker
engineering of MOF for OER, other monocarboxylic acid
ligands including 4-nitrobenzoic acid (PNBA) and 4-
carboxybenzaldehyde (PCBA) were used for preparing defective
MOFs (CoBDC–PNBA, CoBDC–PCBA), which have the similar
morphology with CoBDC (Supplementary Fig. 19). XRD pattern
showed that CoBDC–PNBA and CoBDC–PCBA were isostruc-
tural with CoBDC (Supplementary Fig. 20). XPS showed that the
Co 2p3/2 of CoBDC–PNBA and CoBDC–PCBA had higher
binding energy and broadened peak than that of CoBDC
(Supplementary Fig. 21a). Compared with that of CoBDC, the
valence band maximum energy of CoBDC–PNBA and
CoBDC–PCBA blue shifts to the vacuum level at about 1.60 and
1.48 eV, respectively, indicating the change of electronic structure of
MOFs (Supplementary Fig. 21b). Encouraged by these results, we
tested the OER performance of CoBDC–PNBA and
CoBDC–PCBA. As shown in Supplementary Fig. 22, introduction
of missing linkers significantly improved the catalytic properties.
Moreover, CoBDC–PNBA and CoBDC–PCBA can grow in situ on
NF to form uniform films (CoBDC–PNBA–NF, CoBDC–PCBA–
NF) (Supplementary Fig. 23). The OER performance of
CoBDC–PNBA–NF, CoBDC–PCBA–NF was apparently better
than CoBDC–NF with overpotentials of 212 and 209mV at 10
mA cm−2 (Supplementary Figs. 24a and 25). The low Tafel slopes
of CoBDC-PNBA-NF (56mV dec−1) and CoBDC–PCBA–NF (62
mV dec−1) indicated favorable kinetic process (Supplementary
Fig. 24b). These results further demonstrate that tuning the
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electronic structure of MOFs by introducing missing linkers can
enhance the electrocatalytic activity.

To gain more insights into the outstanding catalytic activity of
defective MOFs, electrochemical impedance spectroscopy (EIS)
techniques were used to investigate the kinetics of electrode
reactions (Supplementary Fig. 26a). Introducing missing linkers
into MOFs led to smaller charge-transfer resistance (Rct) for
CoBDC-Fc-NF (2.21Ω), CoBDC–PNBA–NF (4.95Ω) and
CoBDC–PCBA–NF (5.67Ω) electrodes than that of CoBDC–NF
electrodes (6.92Ω), suggesting the lower activation energy for the
reactions on MOFs with missing linkers (Supplementary Table 6).
The electrochemically active surface area (ECSA) of as-prepared
materials were also evaluated by the electrochemical double-layer
capacitance (Cdl) (Supplementary Fig. 27). As seen in Supple-
mentary Fig. 26b, the Cdl of the sample of CoBDC–Fc–NF,
CoBDC–PNBA–NF, and CoBDC–PCBA–NF is even lower than
that of CoBDC–NF, indicating less electroactive surface of
defective MOFs films. However, better electrocatalytic perfor-
mance of missing-linker MOFs confirms that activity enhance-
ment should be attributed to the increase of intrinsic activity of
active sites by introducing missing linkers, which is consistent
with DFT results.

Discussion
In summary, we have developed a strategy to design efficient
MOF electrocatalysts containing missing linkers. DFT predicted
the regulation of electronic structure and OER activity in the
MOF after introducing missing linkers. Subsequently, a series of
MOFs with missing linkers can be successfully synthesized by
modulation approach. The concentration of missing linkers can
be well controlled by varying the addition amount of mono-
carboxylic acid. XPS and XAFS results verify the regulation of
electronic structure after incorporating missing linkers into
MOFs. The improved OER performance of missing-linkers MOFs
is providing evidence that OER activity of MOFs can be indeed
facilitated by modulating electronic structure via introducing
missing linkers. Importantly, this study gives a new strategy to
regulate the electronic structure of MOFs as high-efficiency
electrocatalysts for potential applications.

Methods
Chemicals. Cobalt (II) nitrate hexahydrate (98%), terephthalic acid (99%), ferro-
cenecarboxylic acid (98%), PNBA (99%), 4-carboxylbenzaldehyde (99%), NaOH
(97%), and commercial RuO2 (99.9%) were purchased from Aladdin (Shanghai,
China). Solvents were purchased from commercial sources. NF was ultrasonically
washed with HCl solution (3 M) for 30 min.

Preparation of CoBDC–NF. Terephthalic acid (83 mg, 0.5 mmol) were dissolved in
5 mL N,N- dimethylformamide (DMF). Then, 1 mL 0.4 M NaOH was added under
stirring. The solution above was slowly mixed with 5 mL cobalt (II) nitrate hex-
ahydrate (145 mg, 0.5 mmol) DMF solution in a 30 mL Teflon-lined stainless-steel
autoclave with a piece of NF (1 cm × 3 cm) in it. After that, the Teflon-lined
stainless-steel autoclave was heated for 15 h at 100 °C. The resulting MOF film on
NF was washed with DMF and ethanol three times and dried naturally. The
loading amount of the MOF on NF was determined to be about 2.1 mg cm−2.

Preparation of CoBDC–Fc–NF. Terephthalic acid (125 mg, 0.75 mmol) and fer-
rocenecarboxylic acid (23 mg, 0.1 mmol) were dissolved in 5 mL DMF. Then, 1 mL
0.4 M NaOH was added under stirring. After that, the solution above was slowly
mixed with 5 mL cobalt (II) nitrate hexahydrate (218 mg, 0.75 mmol) DMF solu-
tion in a 30 mL Teflon-lined stainless-steel autoclave with a piece of NF (1 cm × 3
cm) in it. The Teflon-lined stainless-steel autoclave was heated for 15 h at 100 °C.
The resulting MOF film on NF was washed with DMF and ethanol three times and
dried naturally. The loading amount of the MOF on NF was determined to be
about 1.8 mg cm−2.

Preparation of CoBDC. Terephthalic acid (166 mg, 1 mmol) and cobalt (II) nitrate
hexahydrate (291 mg, 1 mmol) were dissolved in 5 mL N,N-DMF, respectively.
Then, the solution above was slowly mixed in a 30 mL Teflon-lined stainless-steel
autoclave. After that, the Teflon-lined stainless-steel autoclave was heated for 12 h

at 100 °C. The products were washed with DMF and methanol and dried at 60 °C
for 12 h.

Preparation of CoBDC–Fcx. Terephthalic acid (166 mg, 1 mmol) and various
amounts of ferrocenecarboxylic acid were dissolved in 5 mL DMF. Then, the
solution above was slowly mixed with 5 mL cobalt (II) nitrate hexahydrate (290 mg,
1 mmol) DMF solution in a 30 mL Teflon-lined stainless-steel autoclave. After that,
the Teflon-lined stainless-steel autoclave was heated for 12 h at 100 °C. The
resulting products were washed with DMF and ethanol three times and dried
naturally. The content of Co and Fe was measured by inductively coupled plasma
mass spectrometry (ICP–MS) to determine the ratio of terephthalic acid and
ferrocenecarboxylic acid.

Preparation of RuO2–NF. 5 mg RuO2, 950 μL ethanol and 50 μL Nafion were
mixed and dispersed by ultrasonic for 30 min. 200 μL RuO2 ink was depositing
onto NF (1 cm × 0.5 cm) with a loading amount of 2 mg cm−2.

Preparation of CoBDC–PNBA. Terephthalic acid (166 mg, 1 mmol) and PNBA
(17 mg, 0.1 mmol) were dissolved in 5 mL DMF. Then, the solution above was
slowly mixed with 5 mL cobalt (II) nitrate hexahydrate (290 mg, 1 mmol) DMF
solution in a 30 mL Teflon-lined stainless-steel autoclave. After that, the Teflon-
lined stainless-steel autoclave was heated for 12 h at 100 °C. The resulting products
were washed with DMF and ethanol three times and dried naturally.

Preparation of CoBDC–PCBA. Terephthalic acid (166 mg, 1 mmol) and 4-
carboxylbenzaldehyde (15 mg, 0.1 mmol) were dissolved in 5 mL DMF. Then, the
solution above was slowly mixed with 5 mL cobalt (II) nitrate hexahydrate (290 mg,
1 mmol) DMF solution in a 30 mL Teflon-lined stainless-steel autoclave. After that,
the Teflon-lined stainless-steel autoclave was heated for 12 h at 100 °C. The
resulting products were washed with DMF and ethanol three times and dried
naturally.

Preparation of CoBDC–PNBA–NF. Terephthalic acid (83 mg, 0.5 mmol) and
PNBA (17 mg, 0.1 mmol) were dissolved in 5 mL DMF. Then, the solution above
was slowly mixed with 5 mL cobalt (II) nitrate hexahydrate (145 mg, 0.5 mmol)
DMF solution in a 30 mL Teflon-lined stainless-steel autoclave with a piece of NF
(1 cm × 3 cm) in it. After that, the Teflon-lined stainless-steel autoclave was heated
for 12 h at 100 °C. The resulting MOF film on NF was washed with DMF and
ethanol three times and dried naturally. The loading amount of the MOF on NF
was determined to be about 1.9 mg cm−2.

Preparation of CoBDC–PCBA–NF. Terephthalic acid (83 mg, 0.5 mmol) and 4-
carboxylbenzaldehyde (15 mg, 0.1 mmol) were dissolved in 5 mL DMF. Then, the
solution above was slowly mixed with 5 mL cobalt (II) nitrate hexahydrate (145 mg,
0.5 mmol) DMF solution in a 30 mL Teflon-lined stainless-steel autoclave with a
piece of NF (1 cm × 3 cm) in it. After that, the Teflon-lined stainless-steel autoclave
was heated for 12 h at 100 °C. The resulting MOF film on NF was washed with
DMF and ethanol three times and dried naturally. The loading amount of the MOF
on NF was determined to be about 1.9 mg cm−2.

Characterization. Powder XRD was measured on Rigaku SmartLab diffractometer
with Cu Kα X-ray source (λ= 1.540598 Å). SEM images were measured with a
Hitachi SU8010 system. TEM images were taken on a JEM-1400Plus TEM. STEM
and EDX mapping images were recorded from a JEOL JEM-ARM200F equipped
with energy-dispersive X-ray spectrometer, operating at 200 kV. XPS were per-
formed on a VG Scientific ESCALAB 250 instrument. X-ray absorption spectra
were collected at the BL14B2 beamline, SPring-8. in transmission mode under
ambient conditions, using a Si (311) double crystal monochromator for Co K-edge.
The data were processed with IFEFFIT50. Fourier transformation was k3-weighted
in the k range from 2.9 to 11.7 Å–1. Gas sorption isotherms measurements were
measured with a Micromeritics 3Flex Version 4.02 instrument. ICP–MS data were
obtained from Thermo Scientific iCAP RQ instrument. Square resistance was
measured with a FT-331 Series four-probe resistance ratio test instrument.

Electrochemical measurements. Electrochemical measurements were performed
in a three-electrode system controlled by a CHI 760E electrochemistry workstation.
The Ag/AgCl and platinum plate electrode were used as the reference and counter
electrode respectively. The measured potentials were converted vs. RHE, ERHE=

EAg/AgCl+ 0.197+ 0.059 × pH. The MOF nanoarrays were directly used as a
working electrode. LSV curves were recorded at a scan rate of 2 mV/s. The
potential in the LSV polarization curves were corrected for iR losses. The ECSA
were investigated by double-layer capacitance (Cdl) in the potential range from 0.82
to 0.94 V vs. RHE. EIS were measured in a frequency range from 105 to 0.01 Hz at
1.45 V vs. RHE with 5 mV amplitude. The TOF was calculated by the equation:
TOF= (J × A)/(4 × F ×m), where J represents the current density (A cm−2) at an
overpotential of 250 mV, A and m represent the area of the electrode and the
number of moles of the active materials.
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Computation method. All spin-polarized density-functional theory (DFT) calcu-
lations were performed using the Vienna ab initio simulation package (VASP)51.
Electron–ion interactions were described using standard PAW potentials52. For the
electron–electron exchange and correlation functional was described through the
generalized gradient approximation of Perdew–Burke–Ernzerhof (PBE)53. A plane
wave cutoff energy of 520 eV was applied in our calculations. Due to insufficient
consideration of the on-site Columbic repulsion, between Co d electrons, the
GGA+U approach was used with U−J= 4.0 for the Co atoms54,55.

To study the mechanism of OERs, a (3 × 2 × 2) supercell containing 264 atoms
is used. The Brillouin-zone integrations were performed using the Gamma-point-
only grid during the optimization. The iterative process considered was
convergences, when the force on the atom was <0.02 eV Å−1 and the energy change
was <10–5 eV per atom. The Gibbs free energy of each elementary step was
calculated as

ΔG ¼ ΔE þ ΔZPE� T � ΔS ð1Þ

where ΔE is the reaction energy calculated by the DFT method. ΔZPE and ΔS are
the changes in zero-point energies and entropy during the reaction, respectively56.

Data availability
Full data supporting the findings of this study are available within the article and
its Supplementary Information, as well as from the corresponding author upon
reasonable request.
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