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Abstract—This paper compares several imputation methods for
missing data in network analysis on a diverse set of simulated
networks under several missing data mechanisms. Previous work
has highlighted the biases in descriptive statistics of networks
introduced by missing data. The results of the current study
indicate that the default methods (analysis of available cases
and null-tie imputation) do not perform well with moderate
or large amounts of missing data. The results further indicate
that multiple imputation using sophisticated imputation models
based on exponential random graph models (ERGMs) lead to
acceptable biases even under large amounts of missing data.

Index Terms—missing data, social networks, exponential ran-
dom graph model, Bayesian ERGM, multiple imputation

I. INTRODUCTION

Empirical network studies of social relations and their
structure is especially affected by missing data. First, missing
data is more likely to occur in network data collection, because
network questionnaires are complex and often touch upon
sensitive topics. Second, the refusal of one member of the
network to participate will automatically lead to missing data
for all members of the network. When participants provide
information about their outgoing links, they also provide
information about the incoming links of other members of the
network. Networks are therefore affected much more strongly
by missing data than non-network data. The effects of missing
data on network structure and analysis and the investigation
into treatment procedures are an ongoing field of research
[1], [2], [3]. In this study, we compare various techniques in
their ability to capture key network descriptives under missing
data. The methods (deletion, null-imputation and multiple
imputation using Bayesian ERGMs) compete on a diverse set
of simulated networks.

The paper is organized as follows. In Section II, we detail
the topic of network analysis and the family of exponential
random graph models. In Section III, we describe the non-
response problem and its specifics for missing data in net-
works. We continue with a description of the data generation
in Section IV. Section V presents the treatment methods used
in this study. In Section VI, we present the results and we

close the paper with a discussion of the findings and according
recommendations.

II. NETWORK ANALYSIS

Network analysis is the study of sets of nodes and their
links. These nodes can range from people to companies to
countries, and the links can represent any form of relation
from trade deals to interpersonal friendships. In the social
sciences, the most common model family used to analyze
cross-sectional social networks are exponential random graph
models (ERGMs) [4], [5].

A. ERGMs and BERGMs

In short, ERGMs are probability models for networks where
the probabilities depend on the frequency of occurrence of
substructures in the network such as subgraph counts, or other
statistics. Network structures are highly dependent upon each
other, therefore testing hypotheses about structural properties
of a network (e.g., girls are more likely to form cliques than
boys) require to also model other network properties (e.g.,
the general tendency to form friendships). A sophisticated
approach is needed because the dependencies between nodes
and ties need to be taken into account. Networks are expressed
as the random n×n adjacency matrix X with Xij = 1 when
there is tie from node i to node j and Xij = 0 when there is
no tie. Edges connecting nodes to themselves are not allowed
(Xii = 0). The networks can be directed or undirected (in
that case Xij = Xji). Let X denote the set of all possible
networks on n nodes and let x be a realization of X . In
Bayesian ERGMs (BERGMs), as introduced by Caimo and
Friel [6], the posterior conditional probability is given by

Pr(θ|x) = exp [θT s(x)]

z(θ)

p(θ)

p(x)
, (1)

with θ being a vector of model parameters, s(x) a vector of
corresponding sufficient statistics (e.g., number of edges or
number of reciprocated ties), z(θ) the normalizing constant,
p(θ) the prior distribution of the parameters and p(x) is the
marginal probability. See Lusher et al. for an introduction to
ERGMs [4].IEEE/ACM ASONAM 2018, August 28-31, 2018, Barcelona, Spain
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III. MISSING DATA

A. Missing Data Mechanisms

For an appropriate treatment of missing data in statistical
modeling, it is important to consider the probability dis-
tribution of the missingness. Rubin defined three types of
mechanisms for this probability distribution [7], which can
be translated to the network data context [8]. First, data are
missing completely at random (MCAR) if the probability of
it to be missing is independent from any observed variable
and also independent of the missing value itself. Second,
data are called missing at random (MAR) if the probability
of being missing is independent of the missing value but is
dependent on other observed variables. For non-network data,
treatment methods have been developed which yield unbiased
estimates under these two mechanisms. The third mechanism
is data missing not at random (MNAR). Data are MNAR if
the probability of being missing is related to the missing value
itself. This study will incorporate examples of all three missing
data mechanisms.

B. Missing Data Types

While missing data mechanisms describe the probability
distribution of the missing data, missing data types describe
how the missingness is spread over the data set. In cross-
sectional network research, two types of missing data can be
distinguished: actor non-response and tie non-response [8].
Actor non-response occurs if all outgoing ties of an actor
are missing. In tie non-response only some, but not all ties
of an actor are missing. This study will focus only on actor
non-response. However, the findings should also generalize to
tie-nonresponse.

C. Effects of Missing Network Data

The effects of missing data on descriptive network statistics
depend on the amount of missing data, on the network
structure, on the descriptive statistic in question and how the
missing data are treated. Some combinations of statistic and
network are more robust to missingness than others. Larger
and more centralized networks are usually more robust against
missing data [9], and measures based on in-degrees are found
to be generally reliable [3], [9], [10]. A notable difference
between network and non-network data can be seen under
the MCAR mechanism. While sample estimates of means,
variances, and model parameters are usually unbiased for
non-network data under MCAR, the same does not apply to
network data. There are considerable biases found, even if data
is missing completely at random [8], [9], [11].

D. Missing Data Treatments

Researchers have several options for handling missing data
in networks. These options can broadly be separated into
three categories: deletion, likelihood-based estimation and
imputation (for a general overview of missing data handling
see Schafer and Graham [12]). Deletion methods reduce the
network to a fully observed subsample (listwise deletion of
actors [8]) or ignore the missing data for some, but not all

statistical calculations (pairwise deletion). Although deletion
methods are commonly used and the default for most statistical
programs, they do not perform well in most situations as they
discard too much information [8], [11], [13].

Likelihood-based methods estimate the model parameters
from the marginal distribution of the observed data. Under
MAR this will lead to approximately unbiased estimates in
larger samples, given that the used model is well fitting
[12]. Likelihood-based estimation methods are available for
different families of network models [5], [14], [15]. However,
these methods are by definition model-based, and thus cannot
aid the calculation of descriptive statistics or estimation of
other models (e.g., blockmodels).

Imputation models replace the missing values with plausible
guesses (for an overview of imputation methods for network
data see Huisman and Krause [1]). Stochastic imputation
methods use draws from probability distributions to replace
missing values. These methods can be used for multiple
imputation, where missing values are imputed multiple times
based on a conditional probability model. This leads to a set of
imputed data sets, which are analyzed separately leading to a
distribution of model parameters. This allows for incorporat-
ing the uncertainty about the missing data imputation when
estimating standard errors (for an introduction to multiple
imputation see van Buuren [16]).

IV. NETWORK DATA

Before going into the missing data treatments compared in
this study, we describe the (simulation of the) network data in
more detail.

To be able to compare the performance of missing data
treatment techniques for different networks, missing data
mechanisms, and missing data rates, we simulated network
data. Although results obtained from simulated data are harder
to extrapolate to real, empirical data, they have several advan-
tages over real world networks in the study of missing data.

First, the boundaries of simulated networks are clearly
defined. While for data collection boundaries of empirical
networks are generally well defined, actors usually also have
links to actors outside the boundary. It is nearly impossible to
collect the complete true neighborhood of all actors in a study.
Although these effects are often marginal, simulations ensure
that they are zero for all networks.

Second, all covariates are known. In empirical research there
will always be a variable that has not been measured. Although
often unrelated to the study, the complexities of the real world
can be confounding factors and could lead to variations in the
performance of missing data treatments across networks.

Third, we have control over the data generating process.
This gives us experimental control over the network com-
positions in this study, thus allowing us to investigate the
performance of the treatment methods under experimentally
varying conditions. Further, it allows us to use the data
generating model for imputation and allows us to investigate
the performance of misspecified imputation models.



Fourth, using simulated networks ensures that there is no
missing data in the complete observed network. Empirical net-
work studies are likely to encounter missing data. Although it
is vital to study empirical patterns of missing data in networks,
they are a hindrance in evaluating missing data handling
techniques and may even bias analyses. Knowing the true
complete data allows the researcher to evaluate how well the
treatment method performs and gives complete control over
the missing data type and mechanism. In short, simulating the
networks ensures that we can test the missing data techniques
under optimal conditions.

A. Network Simulation

Networks were simulated using the ergm package in R
[17], [18] including parameters for reciprocity, homophily,
GWESP (geometrically weighted edgewise shared partners
[19]) and GWDSP (geometrically weighted dyadwise shared
partners [19]) while keeping the number of ties fixed. The
networks differ in size (30 vs. 80 nodes), density (average
degree 3 vs. 6), reciprocity (30% vs. 50% reciprocated ties)
and homophily on a binary nodal covariate with half the group
having the value 0 and the other half having the value 1 (50%
vs. 70% homophilous ties). All networks have 30% transitive
ties. This leads to 16 different configurations in total. For each
configuration, ten complete networks were simulated, leading
to 160 networks in total. The simulated networks were allowed
to differ at maximum by 2.5% on any of the descriptive
statistics. These configurations were selected such that the
resulting simulated networks are similar in their structure to
social networks that are often observed in small groups (e.g.,
classrooms).

B. Missing Data Creation

Missing data were created using six different mechanisms
and five different missing data rates (10-50%). All missing data
were generated as actor non-response (i.e., missing all outgo-
ing ties of an actor), and the the binary covariate was always
observed. The six missing data mechanisms are MCAR, MAR
related to the covariate, MNAR related to high out-degree, and
MNAR related to low out-degree. Further, actors were missing
related to high and low in-degree1.

V. TESTED TREATMENTS

In this study, we compare two commonly used naive missing
data treatments with multiple imputation.

A. Common Methods

Although the (in)effectiveness of deletion methods has
already been explored in multiple studies [8], [11], [13], we
incorporate listwise deletion (available cases) in this study, be-
cause it is commonly used in network research. It is therefore
important to contrast its performance with other methods.

1The definitions of MAR and MNAR are problematic in regard to actors
missing due to high or low in-degree. The in-degree of all actors is technically
unknown when two or more actors are missing, because it is unclear who these
actors would have nominated. However, it is still partially observed.

Another commonly used method for handling missing net-
work data is null-tie imputation [13]. In null-tie imputation, all
missing links are imputed with zeros. This is comparable to
imputing unconditional modes in non-network data, as social
networks tend to be sparse with a density below 50%, thus
not observing a tie between two actors is the most likely case,
ignoring everything else.

B. Multiple Imputation

Multiple imputation is performed using BERGMs following
the procedure outlined by Koskinen et al. [15] embedded
in the Bergm package in R [6], [20]. In this procedure,
the missing network data is imputed using draws from the
posterior distribution of the tie variable that is generated to
obtain parameter estimates. This procedure was developed
for estimation of BERGMs under missing data, however, it
is possible to retain the augmented networks, thus achieving
proper multiple imputations [21], which contrasts the chosen
method from alternatively proposed imputation methods based
on ERGMs [22].

For the imputation, we employed two models: A simple
model with parameters for density, reciprocity and homophily,
and more complex model in which parameters for triadic
closure (GWESP) and two-paths (GWDSP) are added to
the simple model. In general, multiple imputation should be
performed with a model that is at least as complex at the data
generating process and contains all parameters that are to be
tested in a later step. This ensures that the relationship between
the variables is preserved in the imputation. For estimating the
imputation models, weakly informative priors N(0, σ = 2)
were used.

VI. RESULTS

A. Descriptive Outcomes

The performance of the imputation models was inspected
for the following descriptive statistics: Average degree, reci-
procity (percentage of reciprocated ties), transitivity (percent-
age of closed two-paths of all two-paths), homophily (per-
centage of within-group ties on all ties). Further, we evaluate
both in-degree and out-degree variance. To measure how the
connectivity of the network is preserved by the treatment
methods, the average inverse geodesic distance (shortest path
from one node to another; both the directed and undirected
version) was chosen. Although none of the complete networks
has isolated nodes or subgraphs, the inverse geodesic was
used because these structures will inevitably appear for higher
missing data rates, thus making the shortest path between
subgraphs undefined. By taking the inverse these distances
will be set to 0. The directed version only follows paths in
the direction of the ties, while the undirected version ignores
the direction of ties when calculating the geodesics.

Because of spatial limitations we only present the results on
an aggregate level combining the results for the 160 networks
under each combination missing data mechanism and missing
data rate. The pattern of results did not meaningfully differ
for the 16 configurations. A detailed analysis of the structural



properties revealed that in most situations, the effect on biases
were negligible (< 5%), thus an aggregation was deemed
justifiable. The results are presented as average relative bias
compared to the statistic calculated on the complete network
( treated−complete

complete ), to obtain comparable results across differ-
ent network structures2. Taking the relative bias is applicable
for these statistics because all of them have non-negative scales
with 0 as a meaningful endpoint.

All results are presented graphically using grid plots [23],
[24]. An example is presented in Fig. 1. Positive values of
the relative bias (shown in green) represent an overestimation
of the statistics by the treatment and negative values (shown
in red) represent an underestimation. For each combination
of descriptive statistic and treatment (imputation) method,
we created six plots, one for each missing data mechanism,
showing the average relative bias for each missing data rate
(10-50%). The level of bias is expressed by the saturation of
the color, with higher saturation indicating stronger bias. The
resulting 48 plots (eight statistics × six treatment methods)
were combined in Fig. 2, presenting all results of the simula-
tion study.

B. Performance of Treatment Methods

The results are presented in Fig. 2. They replicate previous
findings (for actor non-response) that measures based on in-
degree are more robust than measures based on out-degree,
with high degree missing nodes having the strongest effects
[3]. Three main conclusions can be drawn: First, for all
descriptive statistics, multiple imputation using the complex
BERGM performs on average better or equally well compared
to any of the other treatment methods. Second, the results
indicate that low amounts of missing data (10-20%) can
be handled reasonably well by all methods (on average the
absolute bias is below 20% over all networks, mechanisms
and imputations for all descriptives3). Third, homophily was
estimated without any relevant bias with all methods under
all mechanisms, and is therefore not included in Fig. 2. This
does not mean that missing data generally has no effect on
measurement of homophily. Specific missing data mechanisms
targeting hetero- or homophilous actors or ties can still lead
to biased estimates.

Overall, the simple treatments (available cases, null-tie) did
not perform well with higher missing data rates. Although in
some specific situations they only gave small biases, the nature
of missing data mechanisms makes it usually impossible to
know which mechanism applies in an empirical setting and
thus using these methods is not recommended.

Multiple imputation using the small imputation model per-
formed very well for average degree and reciprocity, but was
unable to recover transitivity. The the complex BERGM im-
putation with the GWESP and GWDSP parameters performed
far better on transitivity and other network measures.

2We also investigated the average relative absolute bias. Overall, the pattern
of results did not change meaningfully.

3The exception is the average absolute bias for null-tie imputation for
average directed geodesic distance, where the average bias is 22%

Fig. 1. Example of a grid plot. The six groups consisting of five bars
represent the six missing data mechanisms. Each bar stands for 10% missing
data, ranging from 10 to 50% missing data. A color scale is given for the
interpretation of the colors. The saturation was scaled to 80% as this was the
largest average bias observed. Stronger saturation represents larger bias.

VII. DISCUSSION

In this study, we evaluated several missing data treatments
for missing network data in a cross-sectional setting. The
results indicate that multiple imputation with a sufficiently
complex Bayesian ERGM outperforms commonly used tech-
niques. It showed less bias than alternative, naive methods
on descriptive statistics, which perform poorly compared to
multiple imputation. We expect that the advantage of multiple
imputation using Bayesian ERGMs is even stronger in the
context of statistical inference, because it is expected to
provide more reliable standard errors.

This study focused on a limited number of networks from a
restricted set of possible configurations. Moreover, we tested
these methods under ideal situations. The biases presented
here will probably be larger in empirical data, where the
data generating model is not known. Multiple imputation with
BERGMs performed especially well, because it represented
the data generating model. The results indicated that an
insufficiently specified model will not be able to lead to the
same reduction in bias than a well-specified imputation model.
However, the insufficient model clearly provides more accurate
results than the naive methods.

Despite these limitations multiple imputation using
BERGMs seems superior to current alternatives in providing
unbiased (or less biased) descriptive statistics of networks. The
multiple imputation procedure can also be extended to handle
missing data in hierarchical [25], longitudinal [26], [27], [28],
multilevel [29] and multiplex ERGMs [30]. Future research
needs to develop guidelines on the selection of the imputation
model and on assessing the sensitivity of the results to model
specifications. The results indicate that the imputation with a
too simple model will still lead to less bias than the default



Fig. 2. Average relative bias for each descriptive statistic by treatment method. For interpretation of the plots, consult Fig. 1.

procedures (null-tie imputation and available cases) for the
majority of analyzed descriptives.
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