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ABSTRACT 

 

In recent years, scientists have discovered various techniques for building nanostructures, 

but they have only just begun to investigate their properties and potential applications. 

Moreover, to translate scientific discoveries from the laboratory to commercial products, 

it is imperative to address some of the fundamental scientific barriers to 

nanomanufacturing, in addition to the ongoing research in the field of nanotechnology. 

This thesis suggests that some of the above challenges can be addressed using 

experimental designs tailored to specific concerns. An instance of such a scenario is 

considered that involves a series of gas-phase nano-scale lubrication experiments for 

micro-electro-mechanical systems (MEMS) devices. Due to the physical unavailability of 

some of the C-6 alcohol molecules in the experiments, the experimenter is forced to deal 

with a design having one or more missing observations.  

In this study, new Bayesian algorithms are proposed that combine information 

from the traditional Bayesian screening algorithm used for identifying active factors and 

three existing algorithms for missing observations. The criterion used for estimating the 

missing observations is predictive ability in addition to minimization of residual sum of 

squares (RSS). These new algorithms are applied to simulated data sets that resemble the 

setup of the nano-scale lubrication experiment assuming one and two missing 

observations.  

The performance of the Bayesian algorithms are compared to the three existing 

algorithms that have minimal RSS as the only criterion with an appropriate performance 

measure, PRESSDiff. A comparison of the algorithms over the different positions of the 
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missing observations reveals that in all the cases, the Bayesian algorithms perform 

significantly better than the non-Bayesian algorithms. In the study the robustness of the 

proposed algorithms to the initial model specified by the Bayesian screening method, 

various mismatches of active factors were considered. In all the mismatches considered 

for one and two missing observations, the results indicate that the Bayesian algorithms 

still outperform the respective non-Bayesian ones. Finally, judging from the studies 

performed, the Bayesian Complete RSS minimization algorithm seems to yield the 

closest estimates of the missing observations, while yielding the maximum predictive 

ability. 

In some nanomanufacturing situations, due to the physical constraints in the 

process, it is impracticable to execute a full or fractional factorial experiment. In such 

cases, restriction on randomization is imposed and the experimenter is forced to resort to 

a split-plot design or some of its variants. Many processes in nanomanufacturing are 

conducted over a series of stages. Additionally, some of the process variables in some of 

the stages might be difficult or hard to change in terms of time, limited resources, or – in 

many cases – money.  

Specifically, a polymerization process for the fabrication of nano-films is 

investigated, where the fabrication is carried out over three stages. To execute efficient 

experimentation and fully understand the intricacies at the nano-scale, split-plot designs 

that can be applied effectively over multiple stages are proposed with the aim of reducing 

the cost of experimentation, and their characteristics examined. General expressions for 

some of the properties of these designs and analysis are developed. As common design 

ranking criteria such as resolution and minimum aberration do not provide the “best” 
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designs in all cases, two new design optimality criteria are proposed. Catalogs of split-

plot designs for three and four stages are created and ranked according to the proposed 

criteria. 
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PREFACE 

 

This research aims at developing advanced statistically based experimental designs and 

integrating them into the modeling and production for nanomanufacturing research to 

yield strategic advantages by speeding the research and development cycle, and help in 

creating more reliable, robust, and better performing products.  

 



 

 

xvi 

ACKNOWLEDGEMENTS 

  

First, I would like to thank God Almighty for giving me the patience, strength and 

courage to successfully achieve my goals in every walk of life. I thank my parents, my 

wife, and my siblings for their constant support, enduring love, and inspiration that keeps 

me motivated. 

 Many people have generously contributed towards this research. I would like to 

take this opportunity to thank my advisor, Dr. Harriet Black Nembhard who has been 

instrumental in the development of this research. Her exceptional style of mentoring 

aided me in formulating creative solutions to problems.  

I would also like to thank Dr. Dennis K. J. Lin, Dr. Timothy W. Simpson, and Dr. 

Seong H. Kim for agreeing to be an integral part of my Ph.D. committee. I thank them for 

sharing their time, energy, and knowledge. I have learnt a great deal not only from their 

classes, but also from their comments and critiques. 

I extend my sincere thanks to Dr. Kim and his research group for their 

participation and efforts in understanding the nano-scale lubrication experiments for 

MEMS devices. I also would like to thank Krishna Dronavajjala for his patience and 

willingness to share details of the multistage polymerization process, without which the 

illustration of a successful implementation of the proposed multistage experiments would 

not have been possible.  

Finally, I owe a debt of gratitude to my colleagues in the Industrial and 

Manufacturing Engineering department. In particular, I would like to thank members of 



 

 

xvii 

the Laboratory for Quality Engineering and Systems Transitions (QUEST): Shuohui 

Chen, Pannapa Changpetch, and Wenny Chandra, for their unconditional support. My 

special thanks to Vamsi Salaka, Atul Rangarajan, Piyush Goel, Dheeban Kannan, Chen-

Yang Cheng, and Parameshwaran Iyer for their camaraderie and feedback throughout the 

course of my PhD program. 



 

 

xviii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To My Family 
 

 

 



 

 

1 

1. INTRODUCTION 
 

Nanomanufacturing can be thought of as fabrication and assembly of nano-particles into 

devices and structures and integration of nano-particles into larger scale structures. The 

idea of making “nanostructures” that comprise just one or a few atoms has great appeal, 

both as a scientific challenge and for practical reasons. There is a lot of excellent 

nanoscience in the literature and in research labs, but there is a gap between it and 

nanotechnology. These barriers are widely recognized as problems related to viable 

commercial scale-up of production volumes. Some of the other technical barriers are low 

reliability and yield, lack of control in manufacturing processes, and too much batch-to-

batch variation (repeatability and reproducibility). 

In a nano-scale environment, the effects of design parameters on product 

characteristics usually cannot be known purely from phenomenological models and 

therefore, nanotechnology design often requires data collection and analysis. Often the 

experimentation used to build up the background of nanoscience is based on changing 

one key factor at a time while keeping others constant. While methodical, this approach is 

not efficient. Through interdisciplinary collaborations, the importance of statistically 

based design of experiments (DOE) to the research and development of 

nanomanufacturing has been identified. Drawing from these interactions as well as the 

literature, this research addresses two cases that closely link DOE with the needs of 

nanomanufacturing. These two research topics are discussed briefly below. Although the 

field of nanomanufacturing is the chosen context, we note that the research and 

development may not be exclusive to this field. 
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1.1 Research Topics 

 

1.1.1 Missing Observations in Experimental Designs 

In typical two-level factorial experiments, the design is balanced over every factor, which 

means that each factor column has an equal number of low and high levels. If all the runs 

in such a design can be executed, there will be no missing observations. However, in 

many real-world applications, not all the responses in an experiment are recorded. Such 

situations can arise due to many reasons: machine breakdown, illegible recording of 

response, damaged experimental resource, and so on. In certain nanomanufacturing 

situations, the experimenter is forced to deal with a design having one or more missing 

observations because the factor combination or molecular structure suggested by a 

randomized design simply does not exist.  

The general approach considered in traditional algorithms is to insert fictitious 

values in the missing cells and proceed with analysis of variance (ANOVA) as usual, 

reducing the degrees of freedom for error by the number of missing observations. 

Iterative and non-iterative algorithms for estimating values of the missing observations 

follow the principle that by choosing values that minimize the residual sum of squares, 

one can obtain the correct least squares estimates of all estimable parameters as well as 

the correct residual sum of squares.  

Figure 1.1 provides a flowchart to illustrate the proposed procedure to handle 

missing observations. Once the fractional factorial (2
n-k

) experiment is performed, the 

active factors are identified using a Bayesian screening algorithm. Assuming this 

information to be a priori, estimates of the missing observations are obtained using any 
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of the proposed Bayesian algorithms. Once the estimates are obtained, they are inserted 

into the missing cells and the response is said to be “pseudo-complete”. The experiment 

is then analyzed by the usual ANOVA, after reducing the corresponding degrees of 

freedom for the error term. Thus, the significant main effects and interaction terms can be 

identified and its effects estimated. In addition, an appropriate model can be obtained. 
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Figure 1.1: Proposed procedure for missing observations. 
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1.1.2 Multistage Split-Plot Experiments 

Randomization is one of the key statistical principles of DOE. It refers to the concept that 

both the allocation of the experimental material and the order in which the individual runs 

or trials of the experiment are to be performed are randomly determined. However, due to 

the physical constraints in nanomanufacturing applications, situations often arise when it 

is impossible to execute a completely randomized 2
k
 full factorial or a 2

k-p
 fractional 

factorial design. Potential reasons for the inability to execute fully randomized designs 

may be that the manufacturing system is actually a two-stage process, it is expensive or 

difficult to change the levels of some of the factors, or there are physical restrictions on 

the process. In such cases, the design can be treated as having a split-plot structure or, 

more specifically, a fractional factorial split-plot (FFSP) structure. Additionally, split-plot 

designs result in economical experimentation by reducing the consumption of resources. 

 When the experiment is comprised of several stages, wherein each stage consists 

of multiple factors, variants of split-plot designs like strip-plot (also known as strip-

block) and split-lot designs have been used recently for processes that demand 

restrictions on randomization. However, due to the nature of split-lot (and strip-plot), 

designs there is a severe limitation on degree of fractionation one could achieve. Thus, 

effects of interest may not be completely estimable. To counter the above limitation and 

to facilitate present-day experimentation in the field of nanomanufacturing, multistage 

fractional factorial split-plot designs are proposed. These designs require fewer runs than 

a split-lot design, while yielding greater information about the factors of interest. 
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1.2 Research Objectives 

Nanotechnology is a widely emerging field and its impact is predicted to be as much as 

the internet (Bhushan, 2004). The overall goal of the proposed research is to address 

some of the main challenges in nanomanufacturing through the development of specific 

statistical designs. The specific objectives of the research are as follows. 

 

a) Experimental Designs with Missing Observations:  

In a typical experimental set-up of a nanomanufacturing process, there is always some 

probability of not being able to record all the responses.  This phenomenon occurs due to 

the lack of proper knowledge in this developing field as newer products and processes are 

being discovered every day. These occurrences lead to missing observations in the 

design. The traditional analysis of factorial (full and fractional) designs is conducted 

assuming that all the responses are recorded and the design structure is orthogonal.  

 One specific goal of this research is to develop algorithms that are capable of 

analyzing a designed experiment even when one more observations are missing. These 

algorithms are to be developed under different criteria, such as minimum residual sum of 

squares and maximum predictive ability. It is also important to gain insight into the 

performance of the proposed algorithms over designs that are similar in structure to the 

motivating gas-phase nano-scale lubrication experiment. Trends in the performance of 

these algorithms are to be studied by varying conditions such as position of missing 

observation, number of missing observations, and different specification of active factors 

by the initial screening algorithm.  
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b) Experimental designs with Multiple Stages: 

Many processes in nanomanufacturing are conducted over a series of stages. 

Additionally, some of the process variables in some of the stages might be difficult or 

hard to change in terms of time, limited resources, or – in many cases – money. To 

execute efficient experimentation and to understand the intricacies at the nano-scale, a 

goal of this research is to develop and investigate split-plot designs that can be applied 

effectively over multiple stages. Depending on the overall objective of the 

experimentation, a goal is to document a catalog of such designs that might be useful for 

situations arising in nanomanufacturing. The catalog would entail optimal designs for 

different scenarios and under different criteria such as minimum aberration, maximum 

number of clear effects, and maximum number of specific two-way interactions. 

 Another main objective is to study the proposed designs in detail and provide 

general rules on the confounding pattern and assignment of effects in different stages to 

the different error terms. Finally, the last objective is to look at variants of these designs. 

For example, a modification of the proposed design to accommodate a hard-to-change 

factor in the latter stages of the experiment.  

 

1.3 Outline of the Thesis 

This thesis mainly constitutes three major topics. The first part of Chapter 2 provides a 

literature review of the techniques used to counter the problem of missing observations. 

Past research on missing observations in experimental designs are presented. An 

overview of split-plot, strip-plot, and split-lot designs is presented next in Chapter 2. 

Chapter 2 also provides literature review on some of the manufacturing processes at 
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nano-scale that utilize statistically based experimental designs. Some of the recent trends 

in nanomanufacturing, challenges faced by practitioners in realizing the full potential of 

this technology, and the role of DOE in the nanomanufacturing sector are brought to light 

in Chapter 3.  

 New algorithms based on a Bayesian screening algorithm are proposed in Chapter 

4. These algorithms are presented along with the motivating nano-scale lubrication 

experiment. Split-plot designs and some of its variants are discussed in Chapter 5, and a 

new class of designs for multistage processes is proposed. Chapter 6 draws conclusions 

on the proposed algorithms and designs, and a general discussion is provided as well. 

Finally, Chapter 6 provides the directions for further research.  
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2. LITERATURE REVIEW 
 

 

This chapter presents a review of the literature relevant to the topics in this thesis. 

Specifically, it traces the root of missing observations in datasets, both large and small, 

and reviews existing literature on the same. It provides insight on the evolution of the 

missing-observation problem that has perturbed statisticians for over half a century. In 

addition to missing observations, this section reviews deigns in which the experimenter is 

forced to resort to restrictions in randomization, yielding a split-plot design. Details on 

the variants of split-plot designs are also reviewed.  

 

2.1 Overview of Missing Observations 

The problem of missing observation arises everyday in almost any type of study. Two 

instances where the presence of missing observations is prominent are in surveys and 

statistically designed experiments. Missing observations in surveys occur due to a 

multitude of reasons, some of them being refusal to answer personal questions, 

ambiguous questions, and time restrictions. A brief overview of some of the techniques 

employed to tackle missing observations in large datasets is presented in Section 2.1.1. In 

experimental designs, machine malfunction, faulty reading, and physical constraints on 

the resources are among the causes that lead to missing observations. Existing algorithms 

proposed to encounter missing observations in experiments are classified as iterative and 

non-iterative and are reviewed in Sections 2.1.2 and 2.1.3, respectively.  
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2.1.1 Missing Observations in Large Datasets 

 

For a large data set, it is extremely common that not all information is present. This is the 

case especially in surveys in which some of the questions are related to one’s attitude or 

behavior. In addition, Cool (2000) reports that some of the other causes of missing 

observations are errors in the implementation of the study, illegible recording of 

responses, inadmissible multiple responses to a single question, and loss of instruments.  

Since mid 1970s, researchers have been considering various techniques to give a 

sense of completeness to the data, by either deleting or estimating the missing 

observations. Some of these techniques widely used are list-wise deletion, pair-wise 

deletion, mean substitution, regression, and more recently, multiple imputation and the 

EM (Expectation-Maximization) algorithm. These techniques are discussed below. 

One most obvious way to deal with missing observations is to simply delete the 

corresponding entries and proceed with the analysis of rest of the data. The main idea 

behind list-wise deletion is simply to discard any observation with missing information 

on one or more variables. The analysis of the rest of the data can be carried out in the 

usual way assuming complete data. Many statistical packages including SAS
®
 and SPSS

®
 

have this technique as the default setting for multivariate statistical procedures (Peng et 

al., 2002). This technique has shown to be effective by Buck (1960) for less than four 

variables and a small proportion of missing observations. On the contrary, Raymond and 

Roberts (1987) show that as the number of variables increases, an increased amount of 
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relevant data are discarded and might even result in complete data deletion in extreme 

cases. 

The pair-wise deletion technique uses all the non-missing (available) observations 

for each variable to compute means and variances. In addition, all the available pairs of 

values are used to compute covariances. Correlations are thus computed using only 

observations that have non-missing values on both the observations of a pair. Schafer and 

Graham (2002) discuss the properties of the pair-wise deletion technique and provide 

instances in which the technique can be extremely inefficient. 

An alternative to deleting portion of data would be to employ a strategy to 

estimate the missing values and continue with the analysis of the data. As the name 

suggests, the mean substitution technique estimates the value of the missing observation, 

for a given variable, using the overall mean of the particular variable (see Anderson et al., 

1983 for further discussion on mean substitution). Tabachnick and Fidell (2001) provide 

an interesting variant to the mean substitution technique that estimates the value of a 

missing observation using the mean of the sub-group. Although mean substitution seems 

to be the simplest, Little and Rubin (2002) firmly advocate never using this technique as 

it has many disadvantages, some of them being overestimation of sample size and 

underestimation of variance. 

In some cases, estimates of the missing observations can be obtained using a 

regression model. These estimates would be the predicted values derived from the 

regression model. This technique of estimating values of the missing observations is 

called regression estimation. The regression model is obtained from the non-missing 

observations. Thus, it uses information already existing in the data set. Kaiser (1990) 
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provides some variations to the regression estimation technique based on the number of 

variables and missing observations. Schafer and Schenker (2000) enumerate some of the 

disadvantages of using this technique. One major disadvantage is that correlations and 

covariances are inflated as the estimates are perfectly predicted from the regression 

model. 

One of the most recent and widely used techniques by researchers and 

practitioners is the expectation-maximization (EM) algorithm proposed by Dempster et 

al. (1976). The idea behind EM algorithm can be formalized as follows: 

 

i. Replace missing observations by estimated values. 

ii. Estimate parameters. 

iii. Re-estimate the values of the missing observations assuming the new parameters 

are correct. 

iv. Re-estimate parameters iteratively until convergence. 

 

2.1.2 Iterative Algorithms for Experimental Designs 

In addition to the algorithms developed to handle missing observations in large data sets, 

particularly surveys, a significant amount of research has been done to counter the 

presence of missing observations in experimental designs. Two of the most popular 

iterative algorithms are the ones proposed by Healy and Westmacott (1956) and Shearer 

(1973). Both these iterative algorithms are based on the principle of filling in values for 

the missing observations so that the original balance of the experimental design is 
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maintained. Standard analysis, typically analysis of variance (ANOVA), can be then 

performed. Little and Rubin (2002) state the advantages of using this principle: 

i. It is easier to specify the data structure using the terminology of experimental 

design. 

ii. It is easier to compute necessary statistical summaries. 

iii. It is easier to interpret the results of analyses since standard displays and 

summaries can be used. 

 

 Keeping these advantages in mind, Shearer (1973) proposed an iterative algorithm 

that minimizes the residual sum of squares. The proposed procedure is a two-stage 

iterative one and is given by 
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The second equation is just the main effect estimation procedure for a 2
m
 design. 

The first equation re-estimates the missing value using the new main effects estimates. 

The algorithm is initiated using any starting value ymiss
(0)

 and the latest estimate of ymiss is 

used to re-estimate the main effects and the cycle is repeated. The properties as discussed 

by Shearer (1973) are that the residual sum of squares is minimized and the method 

reduces to a non-iterative one in the presence of a single missing observation.  
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 A different algorithm targeted towards handling missing observations is the one 

proposed by Healy and Westmacott (1956). This algorithm is based on the fact that the 

fictitious values that are inserted are actually the expected values of the missing 

observations so that the residuals for the missing observations after fitting all the 

constants must all be zero.  

The residual sum of squares due to missing observation(s) in each iteration is zero 

and hence the total residual sum of squares is minimized. Little and Rubin (2002) show 

that Healy and Westmacott’s algorithm is an example of the EM algorithm with the “M” 

step corresponding to the least squares analysis on the original design and the “E” step 

corresponding to finding the expected values of the missing observation.  

 

2.1.3 Non-Iterative Algorithms for Experimental Designs 

Some of the more common non-iterative algorithms employed to address missing 

observations can be traced back to Allen and Wishart (1930). The authors presented a 

formula that estimates the value of a single missing observation. Yates (1933) extended 

this technique to obtain values of two or more missing observations. The approach 

considered in these algorithms was to insert fictitious values in the missing cells, such 

that the error variance obtained when unknowns are substituted is minimized, and 

proceed with ANOVA as usual, as if the data were complete. The degrees of freedom of 

the error must also be reduced by the corresponding number of missing observations. 

Using this approach, Yates (1933) showed that the correct least squares estimates of all 

estimable parameters as well as the correct residual sum of squares could be obtained. 

Furthermore, the contribution to the residual sum of squares in any missing cell must be 
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zero to avoid inflation of the residual sum of squares above the least squares value. Thus, 

the value to be inserted must be the least squares estimate of that cell. Over the years, 

many researchers have designed algorithms based on the above principle.  

 Rubin (1972, 1976) proposed a non-iterative algorithm for least squares 

estimation of missing observations. This algorithm has an advantage over iterative 

algorithms as it detects existence of a singular pattern of missing observations, whereas 

an iterative algorithm fails to produce a warning. In the case of m missing observations, 

the key idea is to find m values, x1, x2, ...., xm such that 0=− kk xx̂ , for k = 1, 2, ..., m, 

where kx̂  is the value predicted by the model in the k
th

 missing cell. Each kx̂  is a linear 

combination of x1, x2, ...., xm as well as the real data and is given by 
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where, yi represents the observed data (i = 1 ,2,..., N-m). The residual in the k
th

 missing 

cell is given by 
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 Rubin (1972) shows that the estimates of the missing observations can be 

obtained using the relationship given by 

 

-ρ = XR.      (2.4) 
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 X and ρ are (1*m) row vectors, R is an (m*m) matrix, and ρk is the residual in the 

k
th

 missing cell when all missing cells are assigned the value zero. The k
th

 row of R 

contains the residuals in the m missing cells when all cells are set to zero except the k
th

 

missing cell, which is set to one. This algorithm is similar to the estimation of missing 

values using dummy variables in an analysis of covariance, proposed by Bartlett (1937) 

and emphasized by John and Prescott (1975). John and Prescott (1975) provide an 

alternate proof and illustrate the algorithm on a 2
4
 full factorial experiment with two 

missing observations.  

 Draper and Stoneman (1964) proposed yet another non-iterative algorithm for 

factorial designs, specifically for full and fractional factorial designs. They suggest that 

the idea proposed by Cochran and Cox (1959)  to estimate the missing observations by 

minimizing the sum of squares for the interaction terms that are used as error may be 

difficult to implement. This might be due to the experimenter’s idea of the appropriate 

analysis and because the alias structure of the design might make prior choice of the 

interactions to be used as error impossible. To avoid this issue, Draper and Stoneman, 

and later Box (1990) employ the following algorithm: 

 Suppose a 2
k
 or a 2

k-p
 design is executed in n runs. If m observations are missing, 

only (n-m) effects can be estimated and once can choose which (n-m) of the original (n-1) 

effects are to be estimated and which m are to be sacrificed. This is the residual sum of 

squares, which arises from the sacrificed effects. Minimization of this residual sum of 

squares will provide m equations. This set of m simultaneous equations can be solved to 
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obtain the estimates of the m missing observations. Bias in incorrectly sacrificing a 

significant effect can be detected using a half-normal plot suggested by Daniel (1959).  

Chauhan and Bulmahn (1993) developed a simplified formula to estimate missing 

observations in an Ln(b
s
) orthogonal array (see Taguchi, 1987), of n rows, s columns, and 

factors at b levels. Let Yj be the missing observation. It is shown that the estimate of the 

missing observation, jŶ can be given by 
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where 

li is the number of matches between i
th

 and j
th

 row for fixed j, 

k is the number of factors, and 

'T  is the total of the available observations. 

Some of the properties of this algorithm are investigated by Bulmahn and 

Chauhan (1994). They report on the performance of the estimator for missing 

observations in a wide range of experimental circumstances (combination of factors and 

number of runs).  

 Finally, Box and Meyer (1993) proposed a Bayesian method to identify the active 

factors (factors that have a significant effect on the response) in a screening experiment. 

Various hypotheses of factors being active can be considered using this Bayesian method, 

irrespective of the degree of confounding in the design. This method was initially 

developed to analyze different types of screening experiments such as 2
k-p

 fractional 
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factorial experiments (Montgomery, 2005) and geometric and non-geometric Plackett-

Burman (Plackett and Burman, 1946) experiments. In addition, as this method can be 

applied to both orthogonal and non-orthogonal designs, it can be applied to situations 

where a fraction of the data is missing.  

 

2.2 Overview of Randomization and Restrictions in 
Experimental Designs 

 

Split-plot designs originated in the agricultural setting (see Yates, 1937; and Kempthorne, 

1952), in which a single level of one treatment is applied to a relatively large plot of 

ground and all levels of a second treatment are applied to sub-plots within the large plot 

(whole plot). Recently, one of the most well known references to split-plot design is that 

of Taguchi’s (1987) inner-outer array, forming a cross-product of two designs. The inner 

array usually contained the design factors and the outer array contained the 

environmental factors for a robust product experiment. Although, the Taguchi’s inner and 

outer array design resembled a split-pot design, a drawback was that the experiments 

were conducted in completely random order, thus violating the basic principle of a split-

plot design.  

 Bisgaard (2000) provides some detailed reasoning for not using the inner and 

outer array designs. One of the main disadvantages associated with these designs is that 

the size of the experiments often requires a substantial number of trials. Box and Jones 

(1992) provide alternate approaches to the inner-outer arrays. Specifically, they illustrate 

how split-plot designs and some of its variants can be helpful in saving runs. They 

provide two arrangements (a) and (b) of a full factorial split-plot design for a particular 



 

 

19 

experiment. In arrangement (a), whole plots constitute environmental factors and sub-plot 

constitutes the design factors. Alternatively, arrangement (b) illustrates the same 

experiment with the design factors now assigned to whole plots and environmental 

factors to sub-plots. For each of the arrangements, details about the model, error 

structure, and ANOVA table are provided. The relative efficiency of each design is also 

computed using the estimates of error variance for the designs.  

 Bingham and Sitter (1999) showed that even with a split-plot structure, it is 

possible to obtain a design that requires lot of runs. For this reason, they introduce the 

concept of fractional factorial split-plot (FFSP) design. These designs are obtained by 

combining two separate fractional factorial designs. The first design is referred to as the 

whole plot design, and the second as the sub-plot design. The authors emphasize that 

even though the design matrix for the split-plot design resembles a completely 

randomized design, the two designs differ in the manner in which they are executed. As 

the name suggests, in the completely randomized design, treatment combination of 

factors are applied randomly for all experimental units. On the contrary, in a split-plot 

design, a restriction of randomization is introduced before the treatment combinations of 

the sub-plot factors are applied. Catalogs of designs for different combinations of 

processing conditions are provided using the minimum aberration (MA) criterion 

proposed by Fries and Hunter (1980). 

 The concept of FFSP was investigated further by Bingham and Sitter (2001). The 

trade-off between cost of experimentation and degree of information obtained was 

considered. Through a real-life example, they consider the impact of restrictions on 

randomization, an innate characteristic of a split-plot design. It is suggested that in 
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selection of a FFSP design, not only does one have to consider the estimation issue 

captured by the MA criterion, but also the significance of the factorial effects with as 

much as precision as possible. Specifically, they demonstrate how issues like 

identifiability (ability to estimate as many of the main effects and two-way interactions) 

and precision (ability to detect significant effects with as much power as possible) affect 

the design selection. 

 An important application of split-plot designs, robust parameter experiments was 

investigated by Bingham and Sitter (2003). In a robust parameter design, primary interest 

is to study which control factors (C) have dispersion effects. The objective is to minimize 

process variation due to noise factors (N). The authors consider robust parameter designs 

for general factorial designs and extend the idea to split-plot designs (full and fractional 

factorial). They discuss the implications on design choice when robust parameter designs 

are run as split-plot designs and develop a catalog of such designs under the MA 

criterion.  

 Similar to the split-plot designs, strip-plot designs also originated in the 

agricultural settings (Yates, 1937 and Finney, 1945). As noted by Vivacqua (2003), these 

designs are also referred to as strip-block designs (Cochran and Cox, 1957, and Box and 

Jones, 1992), split-unit designs (Taguchi, 1987), or split-block designs (Hering and 

Wang, 1998). Strip-plot designs can be effective in situations in which the process being 

investigated can be separated into two distinct stages and it is possible to apply the 

second stage simultaneously to groups of the first stage product. 

 A variant of the split-plot design, strip-plot design was studied in detail by Box 

and Jones (1992). Using an example of cake mixes, the properties of strip-plot designs 
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were detailed. Configurations for the strip-plot designs were considered by Miller (1997). 

The author proposes an effective way for constructing strip-plot arrangements of 

fractional factorial designs. The procedure can be summarized in three steps as follows: 

i. Identify a suitable row design. 

ii. Identify a suitable column design. 

iii. Select a Latin-square fraction of the product of the row and column designs. 

 

 Construction and analysis of strip-plot designs were also considered by Milliken 

et al. (1998). The authors considered only two-step processes, using a case study relating 

to an implanting-annealing process.  

 Strip-plot designs applied over multiple processing stages are commonly known 

as split-lot designs. The construction of split-lot designs were pioneered by Mee and 

Bates (1998). They illustrated the approach on the fabrication of integrated circuits on 

silicon wafers, involving a sequence of processing steps. An important aspect of such 

processes is that even though some processing steps are applied to individual wafers, for 

other steps several lots of wafers are processed simultaneously as a group. Mee and Bates 

(1998) present a generalized approach to construct 2
k
 and 2

k-p
 split-lot designs. Specific 

examples for up to nine processing steps are given, where each step contains a single 

factor. Although symmetric split-lot designs were provided, they were not verified for 

optimality.  

 Butler (2004a) extended the concept of split-lot designs and provided guidelines 

for construction of two-level fractional factorial split-lot designs. Examples having 

multiple factors in each stage were presented and split-lot designs for two, three, and four 
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stages were constructed using “grid representation”, first specified by Butler (2005). The 

author elucidates that in a split-lot experiment, settings of factors at each processing stage 

are used on multiple experimental units. Thus, at each processing stage, the design 

resembles a split-plot structure. Butler (2004a) employs the following four criteria to 

construct split-lot designs: 

i. Minimum aberration. 

ii. Main effects confounded only with the sub-lots for the stage they are in. 

iii. Minimization of the number of two-way interactions that are confounded with sub-

lots at each stage. 

iv. Minimization of the number of alias sets that are confounded with more that one set 

of sub-lots. 

 Using “grid representation”, a catalog of fractional factorial split-lot designs are 

constructed based on the above four criteria. The construction covers up to four 

processing stages and designs having a maximum of 64 runs.   

 

2.3 Experimental Design in Nanomanufacturing Processes 

Although the use of structured experimental designs is not widespread at the nano-scale, 

many researchers have employed various DOE techniques. These designs are used to 

investigate input variables of a particular process, or obtain a model to predict conditions 

that would yield desired results or optimize process conditions to successfully achieve 

scaling-up. A brief survey of the literature for the past few years that incorporate some 

form of experimental design is given below. 
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 Improvements in the rheological behavior of the nanosilica composite no-flow 

underfill were achieved by Sun et al. (2004) by investigating the experimental conditions 

of the surface treatment using silane-coupling agents with the help of a designed 

experiment. The objective was to obtain optimal conditions for nanosilica surface 

treatment to formulate nanocomposite no-flow underfill with low viscosity and good 

filler dispersion. Although no details on the choice of design were mentioned, it seems as 

though a fractional factorial design, with two baseline runs, was used for the four input 

variables. The significant main effects, along with an interaction term, were identified, 

and the input variables were set at corresponding operating conditions for further 

characterization. 

 Yong and Hahn (2005) examined the dependence of flexural properties of certain 

nanocomposites on dispersants and coupling agents. The authors first used a full factorial 

design as a screening experiment to identify potentially significant effects. Once the 

effects were identified, Response Surface Methodology was employed using a central 

composite design to determine the optimal dosage of the coupling agent and dispersant so 

that the flexural strength could be maximized. To test a possible curvature effect in the 

model, five center points and four axial points were also used. Once the optimal settings 

were obtained, confirmation runs were performed to validate the analysis. 

 In addition to processes at the nano-scale, characterization of some processes at 

the micro-scale is achieved with the help of statistical tools. For instance, Ji et al. (2006) 

have investigated behavior of isotropic etching in inductively coupled plasma etching 

tool. Their work bears application in microneedle fabrication for drug and gene delivery. 

Specifically, they study the behavior of four variables over five different output variables. 
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A 2
4
 full factorial design was executed, and the five responses measured on each 

experimental unit. Optimal operating conditions of the input variables were determined 

for each response considered. Finally, as the fabrication time is a function of the five 

responses, optimal settings were recommended to achieve short fabrication time. Four 

additional (confirmation) runs were also carried out to verify the etching results.  

 A framework for statistical design and analysis of experiments on gate poly-

silicon (basic component, consisting of a transistor, in an integrated circuit) critical 

dimension was presented by Park (2004). The framework aims to study the variation in 

the critical dimension by estimating the variances components and testing uniformity on 

the critical dimensions. The motivating factor for this work comes from the need to 

control gate poly-silicon critical dimension in order to achieve high net-die-per-wafer 

yield in a semiconductor wafer fabrication process. A two-stage nested design was used 

to estimate hierarchical variance components according to run-to-run, wafer-to-wafer, 

and die-to-die production unit changes. A factorial design assuming a reduced model 

(with the insignificant effects omitted) was then used to study the on-chip uniformity and 

on-wafer uniformity.  

 Another instance of the use of DOE is given in Kharbas et al. (2003). They 

present the influence of process conditions and nano-fillers on the microstructure and 

mechanical properties of a nanocomposite and its neat-resin counterpart. Two L16 

Taguchi orthogonal array fractional factorial designs were executed, one each for neat 

resin and nanocomposite. Five process parameters were varied over four levels each in 

the designs. Fractionation was chosen to ensure than maximum number of factors of 

interest could be identified. The presence of nano-clay, a nucleating agent, was also 
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statistically tested and found to be significant. Thus, through DOE, optimal process 

conditions that would result in desirable cell size and density, thus better mechanical 

properties, were attained.  

 In addition to obtaining optimal settings of input variables to yield desired output 

levels, DOE has also been used in instances where certain process variables are believed 

to affect output but are difficult to control. These factors are termed as “noise” or 

“external” variables. A robust process or product is said to be one in which the variation 

due to the “noise” factors is minimized. One such robustness study was considered by 

Jagarkal et al. (2004). The objective of the study was to improve the fatigue life of solder 

joints of Printed Wiring Board (PWB) level electronic package. A full factorial design 

and a central composite design are used to study the effects of the four input (design and 

noise) variables. 

 A similar robustness study was also conducted by Dewey et al. (2000) for 

modeling micro-eletro-mechanical systems (MEMS) to minimize effects of device 

parametric variability on overall performance. Taguchi designs were used effectively in 

identifying factors most influential to the process output and determining the settings of 

the parameters that yield both an acceptable performance metric and minimize variations. 

In other words, sensitivity to external variables is reduced by appropriately choosing 

levels of controllable factors. Along similar lines, Ren et al. (2001) propose a three-step 

technique for quality optimization of MEMS devices using Taguchi methods. 

Specifically, Taguchi designs are employed in the final step of the proposed technique to 

reduce deviations in device performance due to parameter variations induced by 

fluctuations in the fabrication process. Taguchi designs were also employed by Ahmed et 
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al. (2006) to optimize a time-modulated chemical vapor deposition (TMCVD) process. 

Time, money, and effort were saved by adopting the experimental design approach in the 

deposition process of nanocrystalline diamond coating. 

 In summary, a common trend seen is the application of structured experimental 

designs in investigating the behavior of processed being considered. Some designs are 

more advanced than others. Furthermore, in many other studies, there is an indication of 

some structure in the manner in which experiments were conducted, but no details 

mentioned. For instance, Grisolia et al. (2005) studied two annealing conditions by 

varying process parameters such as time, temperature, and ambient atmosphere. The 

experimental details hint the use of a multi-way ANOVA, but no discussion is provided. 

For more such examples, see Jancar and Suvorov (2006), Zhang et al. (2005), and Boal et 

al. (2006). 
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3. NANOMANUFACTURING ISSUES 

 

3.1 Advances in Nanomanufacturing  

Nanotechnology is the art and science of building structures atom by atom and molecule 

by molecule, thus providing an excellent opportunity for a bottom-up manufacturing 

approach. The Royal Society (2003) defines nanotechnology as the design, 

characterization, production, and application of structures, devices and systems by 

controlling shape and size at a nanometer scale. Nanomanufacturing promises to increase 

quality, productivity, and efficiency of existing technologies. In addition, manufacturing 

at the nano-scale has potential to accelerate commercialization of products and benefit 

industries such as semiconductor, pharmaceutical, and automotive. Realizing this 

potential of nanomanufacturing, there has been a tremendous increase in the amount of 

investments in nanotechnology research over the past few years by industrial giants like 

Hewlett-Packard, Intel, General Motors, and Motorola.  

Doumanidis (2004) provides some illustrations of industries benefiting from 

nano-scale manufacturing. One such industry that can benefit, according to Doumanidis 

(2004), is the materials, textile, and chemical industry. Using the principles of 

nanotechnology, advanced materials such as nanostructured polymers, nanotubes, and 

non-woven fabrics from electrospun nanofibers can be developed. A second major 

application area is that of aerospace. Efforts are directed towards manufacturing 

nanostructured alloys and composite materials for structural elements of aircraft. In 
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addition to the above potential impacts, the author also provides several case studies in 

which nanotechnology has been successfully applied in several industries.  

Nanotechnology is defined by Bhushan (2004) as “any technology performed on a 

nano-scale having applications in the real world”. There is a popular belief that 

nanotechnology is likely to be the next industrial revolution, creating breakthroughs in 

areas like manufacturing, electronics, medicine, and biotechnology. One of the most 

promising devices at the nano-scale is nano-electro-mechanical-systems (NEMS). NEMS 

devices can be thought of as mechanical components on the nano scale that have the 

ability to measure small displacements and forces at a molecular scale. Generally, 

electromechanical systems have two principal components, viz. a mechanical element and 

transducers. The movement of the mechanical element is considered to be the output of 

the electromechanical system. An important characteristic of NEMS is that they dissipate 

very little energy, due to which they are extremely sensitive to external damping 

mechanisms, crucial to building many sensors. 

While NEMS have tremendous potential, its progress is hindered due to issues 

like reliability in adhesion, wear, and contamination arising from its large surface area to 

volume ratio. Bhushan (2004) advocates a multidisciplinary, system-oriented approach to 

manufacturing NEMS that function reliably. The author suggests that such an approach 

can be only achieved through cross-fertilization of ideas from different disciplines and 

the systematic flow of information and people among research groups. 
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3.2 Challenges in Nanomanufacturing 

 

As shown in Figure 3.1, nanomanufacturing is still in the conceptual stage of 

development, especially as compared to other mature technologies such as internet and 

semiconductors (see Busnaina et al., 2003). Researchers are currently looking at various 

techniques to manufacture devices at the nano-scale.  

 

 

Figure 3.1: Current state of nanomanufacturing. 

 

Two of the most common techniques of fabricating nanostructures are commonly 

known as top-down and bottom-up approaches. The top-down approach has been the 

only approach employed until recent times. It involves molding or etching materials into 

smaller components and has traditionally been used in making parts for computers and 

electronics. More formally, the top-down approach can be defined as reduction in 

structure sizes of microscopic elements to the nanometer scale by applying specific 

machining and etching techniques like lithography, etching, and grinding (see Anderson, 

2005). This approach has been known to offer more reliability although producing more 

waste than bottom-up approaches. 
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On the other hand, bottom-up nanomanufacturing combines several atoms or 

molecules to create new devices. Although this idea is only recently being explored, the 

origin dates back to Feynman (1960). The bottom-up approach can be defined as the 

controlled assembly of atomic and molecular aggregates into larger systems. Some 

examples of such approaches are self-assembly and molecular fabrication. This approach 

provides a crucial building block to create devices and structures atom-by-atom or 

molecule-by-molecule. Currently, processes employing bottom-up approach are been 

investigated by researchers and are considered as the state-of-the-art in fabrication of 

structures at the nano-scale. 

Scientific properties of the atoms combined to create a structure are still greatly 

unknown. As every atom being considered can potentially have a significant impact on 

the nanostructure, high-precision manufacturing techniques need to be considered at the 

nano-scale. Although the bottom-up approach has been applied with reasonable success, 

its application has been limited due to a host of reasons. A workshop conducted by the 

National Science Foundation (NSF) (see Busnaina et al., 2003) recognizes that one of the 

foremost challenges that nanomanufacturing faces is that of scaling-up. Scaling-up can be 

defined as the translation of the research discoveries in the laboratory to commercially 

available products. 

In order to effectively scale-up nanotechnology to achieve mass production, 

several key issues need to be addressed. Some of these key issues have been recognized 

as low reliability and yield for nano-scale devices, repeatability and reproducibility in 

yielding a particular product, and lack of control of the nanomanufacturing processes. As 
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this technology is still in its discovery stage, there is a tremendous amount of 

experimentation occurring every day. 

Consider a self-assembly process of creating patterns of wiring and transistor 

circuitry, where the structures and devices are fabricated via layer-by-layer self-assembly 

of molecules and atoms. These processes are typically conducted over multiple stages. 

Depending on the expertise in the area, the experimenter suggests a particular 

combination and constitution of elements to obtain a desirable output (usually width of 

the pattern).  

Often, the first experiment does not provide desired results and hence has to be 

repeated. This process might take several attempts before one can get a desired output. 

Moreover, even when a desired output is obtained, repeatability and reproducibility are 

always a concern. This can be attributed to the lack of comprehensive knowledge, not 

only about the scientific properties, but also the process conditions. For example, a 

change in room temperature or humidity can cause the same experimental setup to 

produce different sets of results. In addition, as only the final result is observed, the 

failure of an experiment cannot be attributed to any particular stage. 

Furthermore, Doumanidis (2002) suggests that a combination of theoretical and 

experimental methodologies is appropriate to address the key issues in successful scaling-

up of these nanomanufacturing processes. In particular, the author suggests that 

predictable fabrication with repeatable quality requires fundamental understanding, 

modeling, and control of phenomena during processing. It is imperative to establish a set 

of conditions for controlling a process to obtain high reproducibility. 
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This research proposes that, in addition to the growth in scientific knowledge, 

statistically based designs can be extremely helpful in expediting the translation of 

nanotechnology to robust products that can be mass produced. These designs are not only 

useful in comprehending the effects of design factors on the final result of the process but 

also help in studying the effect of environmental factors such as temperature and 

humidity on the process. Thorough understanding of such effects will eventually result in 

more robust processes that can be repeated under similar operating conditions. Nembhard 

et al. (2005) illustrate how statistically-based design of experiments can reveal otherwise 

unknown relationships between process parameters.  

As seen in Section 2.3, an increasing number of researchers are considering the 

use of structured DOE to investigate characteristics of processes and minimize variations 

due to external variables. However, many researchers studying the process lack expertise 

in designing and analyzing complex experiments and often times simple designs such as 

a full or a fractional factorial design is used. Similarly, there are many processes 

considered in the past literature for which an advanced design could yield equal or more 

information, while utilizing the same or fewer resources. These instances strongly 

advocate the use of DOE techniques, both basic and advanced to effectively investigate 

the processes and make them robust to uncontrollable factors. 

For instance, a study conducted by Basumallick et al. (2003) investigates the 

effects of various factors on the synthesis of nanocomposites. Three process variables, 

initial temperature, heating rate, and weight percent metal to be liberated by non-

isothermal reduction, were varied in accordance to a 2
3
 full factorial design, and the 

responses (fractional conversions of NiCl2 to Ni and CoCl2 to Co) measured. However, a 



 

 

33 

second set of factors involving final temperature, amount of dextrose, and volume ratio of 

ethyl alcohol solution were kept constant throughout the experiment, as they were 

believed not to affect the responses. Although the statistical experimental design was 

used successfully to predict future values, given as set of conditions, the interaction 

effects involving the two sets of factors were completely ignored. One possible reason for 

the ignorance could be the time involved in setting the levels of the second set of 

variables. As shown in Chapter 5, the use of a split-plot design could potentially yield 

much more information, thus making the prediction ever more accurate. 

Moreover, much of the work in nanomanufacturing utilizes one-factor-at-a-time 

(OFAT) approach to study the effects of the process parameters on the output (see Chen 

et al., 2006; Unalan and Chhowalla, 2005; Kim and Shahinpoor, 2003; and Huang et al., 

2006 for some examples). The biggest downfall of the OFAT approach is the complete 

ignorance of the interaction effects. Thus, an inherent assumption being made is that the 

interaction effects between these variables are inconsequential and can lead to severe bias 

in any conclusions drawn on the relation between the input and output variables.  

In summary, nanomanufacturing research could potentially benefit from well-

planned experimentation. In addition, with the inclusion of the external or environmental 

factors, sensitivity of the design variables can be examined, and could lead to significant 

increase in reproducibility and repeatability. Two such cases that demand the use of 

statistical experimentation are presented in Chapters 4 and 5. 
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4. MISSING OBSERVATIONS IN 2k AND 2n-k 

DESIGNS 
 

In a research environment, often times the behavior of the process variables are 

understood with the help of a statistical design. The designs advocate a structured method 

of testing appropriate combinations of the process variables of interest. When a fractional 

factorial design is used, it is possible to use any of the fractions of the design so that all 

the combinations of variables yield a response. However, obtaining such a fraction of a 

design is sometimes an impossible task. Hence, appropriate measures have to be taken to 

account for the missing observations. Such an instance in the investigation of a 

lubrication process is presented in the next section. The remainder of the chapter presents 

three new algorithms for the estimation of missing observations. Some theoretical 

relations between the algorithms are also discussed. Performance of the algorithms over 

different conditions is also examined.  

 

4.1 Motivating Example:  Nano-scale Lubrication  

We consider a set of gas-phase nano-scale lubrication experiments for the study of 

tribological behaviors of C-6 alcohol molecules (alcohol molecules containing six carbon 

atoms). Lubrication problems in MEMS devices are typically solved using solid phase 

lubrication (e.g., Sullivan et al., 2001) or self-assembled monolayers (e.g., Ashurst et al., 

2001). However, these lubrication techniques have limitations particularly in their 

application to sidewalls and buried surfaces (refer to Figure 4.1).  
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Hence, a gas-phase lubrication approach is proposed by Strawhecker et al. (2006). 

The essence of the approach is to use adsorption equilibrium of gas-phase molecules for 

continuous formation of liquid films on the working device surface for lubrication and 

anti-stiction. Upon adsorption on substrate surfaces, these molecules form a nano-scale 

lubrication and anti-stiction film. Since the molecular structures of alcohols only exist in 

certain combinations, there will be missing values in the experimental design.  

 

Moving parts Moving parts

Substrate

Sidewalls and 

buried surfaces 

need lubrication

 

Figure 4.1: Nano-scale lubrication for MEMS devices. 

 

 

Strawhecker et al. (2006) investigate the vapor phase lubrication for MEMS 

surfaces. More specifically, they report on the effect of saturated alcohol vapors including 

ethanol, n-propanol, n-butanol, and n-penatanol on the tribological properties of a model 

MEMS surface: the native silicon oxide surface formed on a silicon wafer.  

We want to design an experiment to extend the study to understand the effect of 

molecular structure in C-6 alcohol molecules. These molecules have four main structural 

characteristics of interest listed as factors A, B, C, and D in Table 4.1. A full factorial 
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design to explore these characteristics would involve 2
4
 = 16 treatment combinations. 

Table 4.1 highlights only those molecules that are physically possible. For example, there 

exists no molecule that is linear, non-cyclic, alken (containing a double bond), and a 

secondary alcohol (corresponding to treatment combination ab).  

 

 

Table 4.1: Factors of Interest and Available Molecules 

A B C D

"+" linear "+" non "+" alkly "+" primary alcohol

"-" branched "-" cyclic "-" alken
"-" secondary OR 

tertiary alcohol

- - - - (I)

+ - - - a Phenol, Cyclohexenal

- + - - b 1-penten-3-ol, 4-methyl

+ + - - ab

- - + - c methylcyclopentanol

+ - + - ac cyclohexanol

- + + - bc 2,3-methyl-2-butanol

+ + + - abc 3-hexanol

- - - + d

+ - - + ad

- + - + bd cis-3-hexen-1-ol

+ + - + abd trans-3-hexen-1-ol

- - + + cd

+ - + + acd

- + + + bcd 3-ethyl-1-butanol

+ + + + abcd n - hexanol 

Treatment Molecule

 

 

Due to this physical unavailability of some of the C-6 alcohol molecules, if this 2
4
 

experiment was to be carried out, only 10 observations could be recorded and we would 

be left with 6 missing observations (over one-third missing). To reduce the proportion of 

missing observations, we considered a 2
4-1

 design. In this case, even the most efficient 
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combination of factor arrangement and generator choice yields at least two missing 

observations out of a total of eight runs. 

 

4.2 Estimating Missing Observations 

For the given data set with missing observations, the objective is to model the response as 

a function of the independent variables. A model not only helps in studying the optimal 

settings for the process, but aides in predicting values for a particular combination of a 

molecule. A number of techniques can be adopted to meet the above objective. One of 

the most familiar techniques is least squares regression (e.g. ordinary linear regression, 

stepwise regression, best subsets regression, etc.). However, as noted by Chipman (1998) 

and Samset and Tyssedal (1998), traditional approaches like least squares do not account 

for any uncertainty in the parameters of the model and the chosen model itself. There are 

several examples in the literature that show that, for a given data set, more than one 

model can be fit that yields approximately same values of the selection criteria. The 

problem of model uncertainty is even more acute in the case of a small data set 

(Rajagopal and del Castillo, 2005). Chipman (1998) states that the ignorance of model 

and parameter uncertainty can lead to unrealistic improvements and perhaps even sub-

optimal performance. The author illustrates the perils of ignoring the uncertainties 

through an example. When parameter uncertainty is not accounted for by a model, the 

variability in the parameter estimates is transmitted to the variation in the response 

variable.  
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 The above uncertainties can be accounted for through a Bayesian approach to 

model building. This approach involves the calculation of the posterior probabilities of 

the response based on assumed models. Consider a linear model represented by 

y = Xβ + ε                                                      (4.1) 

where 

y is the vector of responses, 

X is the matrix of independent variables, 

β is the matrix of coefficients, and  

ε are the errors assumed to be i.i.d. N(0, σ
2
).  

Let fi be the number of terms (out of k factors) for a model Mi. 

Let πj (j = 1,.., k) be the probability of effects being in a model. 

 

 Model uncertainty is accounted for through the specification of prior probabilities 

(πj) for a model. If the probabilities are assumed to be independent, then the prior 

probability of a model Mi can be written as 

ii tkt

iMP
−−= )1()( ππ .                                                    (4.2) 

  

 In many applications, the researcher conducting the study has some past belief 

about the significance of the variables being studied. Scientific knowledge of the process 

under consideration usually provides the probabilities of effects being active. In situations 

where no past beliefs can be entertained, an alternate technique known as model 

averaging can be used. In this approach, a weighted average of the posterior predictive 
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densities of all models is computed, using the posterior probabilities of the models as 

weights (Hoeting et al., 1999; Raftery et al., 1997).  

 To study the incorporation of parameter uncertainty in the model, let us look at 

the Bayesian approach in more detail. Using Bayes’ theorem, the posterior probability of 

model Mi, given the data is 
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 For a more detailed derivation, see (Box and Meyer, 1993; Rajagopal and Del 

Castillo, 2005). The posterior probability of the model Mi can then be written as 
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where 

C is the normalization constant, which forces all probabilities to sum to one, 

γ is the scale factor relating the magnitude of real effects to noise, 
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Iti is the identity matrix having dimension ti × ti, and  
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The parameter estimates for the model Mi can be calculated as    

y'XX'XΓβ iiiii

1ˆ −+= )( .                                                 (4.6) 

  

 The assumptions for the above calculations are that all elements of βi, except the 

constant term, are independent ~N(0, γ
2
σ

2
). The magnitude of effect relative to the 

experimental noise is captured through parameter γ. The constant term and log(σ
2
) are 

assumed to have non-informative priors. Thus, the posterior on βi, given σ, captures the 

parameter uncertainty for a given model (see Appendix of (Chipman, 1998) for more 

details).  

 When the assumption on the distribution of βi is relaxed and a non-informative 

prior is used, the parameter estimates from the Bayesian approach and the classical least 

squares approach are the same (Gelman et al., 1995). When the assumption is relaxed, the 

terms γ and Γi would not exist and the parameter estimates for the model Mi can be 

written as 

y'XX'Xβ iiii

1ˆ −= )( .                                                       (4.7) 

  

 These parameter estimates are the same results obtained from the traditional least 

squares regression (Kutner et al., 2005). Finally, the marginal posterior probability, Pj is 
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the sum of the posterior probabilities of all models in which factor j is active and is given 

by 

 

∑=
active  jfactor :i

)(
M

ij |MPP y
.                                                       

(4.8) 

 

 Factor j is said to be active only when the value of Pj is large. Box and Meyer 

(1993) show that this method can identify plausible explanations missed by conventional 

analysis (ANOVA using least squares approach). The foremost advantage of this method 

is that it can be applied to analyze any experiment, irrespective of the structure of the 

design. Furthermore, it can handle other irregularities such as missing observations. 

 One of the major limitations of this method is that it is most appropriate only for 

screening experiments, where the idea is to identify factors to be explored through 

subsequent experiments. If the objective of the experiment is to screen out potentially 

insignificant variables, then estimation might not be necessary. The Bayesian approach 

would work well to meet this objective.  

 However, when the objective is to obtain optimal settings of the variables and 

study the effects of noise variables on the design variables (interaction effects), the 

Bayesian approach might not yield desired results. Consider a 2
4-1

 design with defining 

relation I = ABCD. The corresponding design matrix is shown in Table 4.2. 
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Table 4.2: 2
4-1

 Design with I = ABCD 

Run A B C D AB AC AD

1 -1 -1 -1 -1 1 1 1

2 1 -1 -1 1 -1 -1 1

3 -1 1 -1 1 -1 1 -1

4 1 1 -1 -1 1 -1 -1

5 -1 -1 1 1 1 -1 -1

6 1 -1 1 -1 -1 1 -1

7 -1 1 1 -1 -1 -1 1

8 1 1 1 1 1 1 1  

 

 If runs 1 and 2 were missing, the resulting (X'X) matrix would not be positive 

definite and hence, not invertible. Some effect(s) need to be sacrificed for the inverse to 

exist. Goh (1997) and Draper and Stoneman (1964) advocate the use of assumptions that 

set some effects to be negligible and thereby yielding estimates of missing observations. 

Nembhard et al. (2006) have shown certain fractional factorial designs in which this 

technique fails. The next three sections present efficient algorithms that impute estimates 

of missing observations and estimate effects of interest.  

 

4.3 Finding Active Factors: Bayesian Screening Algorithm 

The Bayesian screening algorithm proposed by Box and Meyer (1993) suggests 

consideration of a set of models (usually an exhaustive set), M0, M1,...,Mm. Each model 

Mi has an associated vector of parameters θi so that the sampling distribution of data y, 

given the model Mi is described by the probability density P(y|Mi,θi). The prior 

probability of model Mi is given by P(Mi). The prior probability density of θi is P(θi | Mi). 

The posterior probability of model Mi, given the data is  
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where 
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To simplify calculations, Box and Meyer adopt an alternate approach and show that the 

posterior probability of the model Mi can be written as 
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where 

π is the prior probability that any one factor is active, 

Xi is the design matrix including a column for the mean, 

ti is the number of effects in a model excluding the mean, 

βi is the vector of true effects under Mi, 

C is the normalization constant, which forces all probabilities to sum to one, 

γ is the scale factor relating the magnitude of real effects to noise, and 

Iti is the identity matrix of dimension ti * ti. 
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Equation 4.11 can be solved using Equations 4.12, 4.13, and 4.14. 
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 The marginal posterior probability, Pj is the sum of the posterior probabilities of 

all models in which factor j is active and is given by 
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 Factor j is said to be active only when the value of Pj is large. Box and Meyer 

(1993) show that this method can identify plausible explanations missed by conventional 

analysis (ANOVA). The foremost advantage of this method is that it can be applied to 

analyze any experiment, irrespective of the structure of the design. Furthermore, it can 

handle other irregularities such as missing observations. 
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One of the major limitations of this method is that it is most appropriate only for 

screening experiments, where the idea is to identify factors to be explored through 

subsequent experiments. In the presence of missing observations, if the objective of the 

experiment is to obtain a model, like in the case of the C-6 alcohol molecules, this 

Bayesian method might fail (if certain observations are missing) as it is unable to 

estimate the effects (coefficients) of the model. Finally, the interaction effects are deemed 

to be significant or not solely based on the interaction plots. In the case of even a single 

missing observation, severe bias might be introduced into the interaction plot, which may 

hamper the identification of the significant interaction effects. New algorithms are 

proposed that overcome the limitations of the existing algorithms. The proposed 

algorithms extend the principle of the algorithms presented in Chapter 2 by including the 

information provided by the Bayesian screening algorithm. The next three sections 

explain the principle and limitations of the existing algorithms. Bayesian algorithms, 

which are extensions to the existing algorithms (by incorporating the information from 

the screening algorithm) are also presented.  

 

4.4 Bayesian Complete RSS Minimization Algorithm 

Shearer (1973) suggests an iterative algorithm to be used on full and fractional factorial 

designs in the case of missing observation(s). Rather than just minimizing a part of the 

residual sum of squares where the residual is estimated by the highest order interaction as 

in Draper and Stoneman (1964), the complete RSS minimization algorithm minimizes the 

complete residual sum of squares. It is a two-stage iterative algorithm given by 
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 Equation 4.16 re-estimates the missing value using the new main effects estimates 

and Equation 4.17 is just the main effect estimation procedure for a 2
m
 design. The 

principle behind the algorithm is that the estimate of the missing observation be found 

such that the residual sum of squares due to the missing observation is zero. As the total 

residual sum of squares is comprised of the residual sum of squares due to the existing 

and missing observations, if the residual sum of squares due to the missing observations 

is zero, the total residual sum of squares is minimized.  

 As the estimate of the missing observation is obtained using the information about 

the existing observations and an assumed model (that includes only the main effects), the 

residual sum of squares is minimized for the particular assumed model. Although the 

residual sum of squares is minimized, the predictive ability of the model may have 

decreased since there may be some insignificant terms in the model assumed to estimate 

the missing observation(s) (Kutner et al., 2005). The Bayesian complete RSS 

minimization algorithm is given by 
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where 

buv is the effect of interaction uv. 

 

 Equation 4.18 re-estimates the missing observation using the Bayesian-specified 

terms calculated iteratively from Equations 4.19 and 4.20. The proposed Bayesian 

complete RSS minimization algorithm combines information about the significant terms 

in the model from the initial Bayesian screening algorithm and the complete RSS 

minimization algorithm. The Bayesian complete RSS minimization algorithm estimates 

the missing observation(s) using a model that only includes terms specified by the 

Bayesian analysis. This ensures that the predictive ability of the model is maximized, as 

non-significant terms are not included in the model. 

 

4.5 Bayesian ANCOVA Algorithm using Dummy Variables 

John and Prescott (1975) present an algorithm that makes use of dummy variables in 

order to estimate missing observation(s). It considers a linear model given by 
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y = Xa + Zb + e     (4.21)  

 

where 

y is the vector of observations, 

X is the design matrix, 

Z is the matrix of dummy variables, 

e is the vector of errors, and 

a, b are parameter vectors. 

 

 This algorithm is based on Bartlett’s (1937) algorithm and is extremely easy to 

use with very little computation. This algorithm is non-iterative with every missing 

observation in y given by zero. The dummy matrix Z has a column for each missing 

observation such that the i
th

 column zi has a 1 corresponding to the i
th

 missing value and 0 

everywhere else. The principle behind this algorithm is to estimate the missing 

observation(s) by carrying out a standard analysis of covariance using a dummy covariate 

for each of the m missing values, a model for which is given by 

 

zi = Xa* + e      ( 4.22) 

 

where 

a* is a parameter vector, 

ri is the vector of residuals after fitting the model in Equation 4.22, and 

R is the matrix of residuals and is given by (r1, r2,......rm). 
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John and Prescott show that the vector of estimates of the missing observations, θ̂  is 

given by 
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 where ry is the vector of residuals after fitting the model y = Xa + e. The i
th

 

column of Z΄R, Z΄ri consists of the elements of ri, for those cells containing missing 

values. Z΄ry is the vector containing the corresponding residuals in ry.  

The residuals, ri and ry, are obtained through models that are assumed to have 

main effects and first-order interactions only. One of the main disadvantages of assuming 

such models is that there is a tendency to over-fit and hence in some cases, the residuals 

are zero. It is seen from Equations 4.22 and 4.23 that if any residual is zero, the estimate 

of the missing observation(s) is also zero, thus yielding inaccurate results. 

This drawback can be overcome by improving the predictive ability of the 

assumed models. One way to improve the predictive ability is to use the a priori 

information from Bayesian screening algorithm (Section 4.3). The Bayesian ANCOVA 

algorithm estimates the value(s) of the missing observation(s) non-iteratively through 

Equations. 4.24 and 4.25 given by 
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where ry* is the vector of residuals obtained from fitting the model y* = Xa + e. 

Furthermore, ri* is the vector of residuals obtained by fitting a model zi* = Xa* + e. The 

highlight of these models is that y* and zi* include only the terms specified by the 

Bayesian screening algorithm described in Section 4.3. As a result, the predictive ability 

of the models is maximized by adding only the significant terms in the models. Residuals 

obtained from these models would be more accurate (Kutner et al., 2005) and hence, 

from Equation 4.24, the estimates of the missing observations would be more accurate. In 

addition, the contribution of the missing observation(s) towards the total residual sum of 

squares is still zero and the residual sum of squares is minimized. 

 

4.6 Bayesian Expected Value Algorithm 

Healy and Westmacott (1956) describe a general iterative algorithm that is applicable to 

any analysis in which least squares estimates are derived. The theory behind the 

algorithm is that the fictitious values are actually the expected values of the missing 

observations so that the residuals for the missing observations after fitting all the 

constants must all be zero. The procedure is as follows: 

 

i. Insert a guessed value for the missing observation. 

ii. Determine the residuals assuming a model containing main effects and first-order 

terms. 

iii. Subtract the value of the residual from the guessed value of the missing 

observation. 
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iv. This replaces each guessed value by the corresponding expected value derived 

from the analysis based on the guessed values. 

v. This process is repeated as often as necessary. 

vi. When the residuals for the missing observations are small enough, the required 

fictitious values have been attained and the analysis of variance can be completed 

in the usual way.  

 

The residual sum of squares due to missing observation(s) in each iteration is 

zero, and hence the total residual sum of squares is minimized. However, if non-

significant terms are included in the model that is used to determine the estimate(s) of the 

missing observation(s), the predictive ability of the model will deteriorate. The additional 

terms just explain more variability and do not contribute towards the predictive ability of 

the model.  

In addition to minimizing the total residual sum of squares, if an additional 

criterion could be added - that of increasing prediction ability - the residuals would be 

more accurate and in turn, the estimates would be more accurate. Increased prediction 

ability for a model is achieved by including only the terms in the model those are 

statistically significant (Kutner et al., 2005 and Montgomery, 2005). Therefore, any a 

priori information pertaining to the significant terms in the model would be highly 

beneficial in improving the predictive ability of the model. This information can be 

obtained from the Bayesian screening algorithm. The iterative steps proposed in the 

Bayesian Expected value algorithm are given by Equations 4.26 through 4.29. 
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 The Bayesian expected value algorithm starts with an initial assumed value. The 

effects in Equation 4.27 are calculated using columns of the design matrix, Xj 

corresponding to the terms specified by the Bayesian screening method. Once the effects 

have been obtained, the residual for the missing observation(s) can be obtained from 

Equation 4.28. These residuals are then used (from Equation 4.29) to obtain newer 

estimate(s) of the missing observation(s). This process is repeated until convergence and 

the latest estimate(s) of the missing observation(s) is treated as the final estimate(s). 
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Healy and Westmacott (1956) provide a proof to show that the residual sum of 

squares is minimized. This minimization holds true for the proposed Bayesian expected 

value algorithm as well because in every iteration the value of the residual is subtracted 

from the guessed value. Thus, the total residual sum of squares is not artificially inflated 

above its least squares value.  

 

4.7 Properties of Bayesian Algorithms  

To further understand missing observations, the properties of the proposed Bayesian 

algorithms are explored. 

 

4.7.1 Equality for a single missing observation 

The relationship between the values obtained by the Bayesian Complete RSS 

Minimization and the Bayesian ANCOVA algorithms in the presence of a single missing 

observation is explained by the following theorem. 

Theorem 1:  

If one observation is missing in an n-run design, then 

ANCOVARSS ŷ  ŷ =                                                               (4.30) 

where 

 ŷRSS  is the estimate of the missing observation obtained by using the Bayesian 

Complete RSS minimization algorithm, and  
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ANCOVAŷ  is the estimate of the missing observation obtained by using the Bayesian 

ANCOVA algorithm. 

 

Proof: 

Let n be the number of runs for the design and m be the number of effects in the model 

specified by the Bayesian screening algorithm. Let )i(

RSSŷ  be the estimate in the i
th

 iteration 

and Y represent the limit of the sequence )i(

RSSŷ . If
n

1mn
p
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= , then Shearer (1973) shows 
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 This means that each estimate reduces the distance to Y by p. the estimate of the 

missing observation is then shown to be 
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 In Equation 4.31,  ŷRSS

)1(  needs to be calculated using an initial arbitrary value for 

 ŷRSS

)0( . For ease of calculation, let us assume 

 ŷRSS 0)0( = .                                                                     (4.32) 

Therefore, 

p

ŷ
Y RSS )( )1(

= .                                                                 (4.33) 



 

 

55 

  

 Estimates for missing observations using Bayesian ANCOVA are given by 

Equation 4.23. Hence, the estimate in the case where only one observation is missing is 

given by 

1

1
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yzANCOVA
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r
rrŷ −=−= −

                                                (4.34) 

where 

1z
r  is the residual obtained by fitting a model, having terms specified by the Bayesian 

screening algorithm, to a covariate vector containing 1 corresponding to the missing 

observation and 0 everywhere else, and 

yr  is the residual obtained by fitting a model, having terms specified by the Bayesian 

screening algorithm, to the response having 0 corresponding to the missing observation. 

 

Hence, 
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In addition, Equation 4.18 can be re-written as 
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From Equation 4.32 and by comparing Equations 4.35 and 4.37, it can be seen that 

)1(

RSSy ŷr −= .                                                               (4.38) 

 

Due to the result in Equation 4.38, Theorem 1 is true iff p = 
1z

r .  

  In order to calculate
1z

r , βi’s need to be calculated. For a particular missing 

observation, the corresponding row is a combination of –1 and +1. If the cell 

corresponding to the missing observation and an effect k is –1, then βj = –1/n. On the 

other hand, If the cell corresponding to the missing observation and effect k is +1, then βj 

= 1/n. Furthermore, as only one cell has the value 1 and others 0, βj = 1/n. In 

calculating
1z

r , the βi’s are multiplied by the sign of the corresponding effects. Hence, 
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Therefore, from Equation 4.39, and as p = [(n – m – 1)/n],  

prz =
1

.                                                                     (4.40) 
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 Hence, the estimates obtained from Bayesian Complete RSS minimization and 

Bayesian ANCOVA algorithms are exactly the same in the case of a single missing 

observation.  

 

4.7.2 Equality of Iterative Algorithms 

For any number of missing observations in a data set, the relationship between the 

Bayesian Complete RSS Minimization and the Bayesian Expected Value algorithms is 

explained by the following theorem. 

Theorem 2: 

If m observations are missing in an n-run design such that 0 < m < n, then 

EVRSS ŷ  ŷ =                                                                  (4.41) 

where 

 ŷRSS  is the estimate of the missing observation obtained by using the Bayesian 

Complete RSS minimization algorithm, and  

EVŷ  is the estimate of the missing observation obtained by using the Bayesian Expected 

Value algorithm. 

 

Proof: 

The two equations for obtaining the estimates of missing observations using Bayesian 

Expect Value algorithm are given in Section 4.6 and are as follows: 
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−−= ββ                    (4.42)  
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)()()1( i

miss

i

miss

i

miss ryy −=+ .                               (4.43) 

 

Notice that EVŷ  is the limit of the sequence )(i

missy . Re-writing Equation 4.43 and 

substituting in Equation 4.42, we get 
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Therefore, 
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 The first term in the right-hand side of Equation 4.45 is the average of all the 

observations in the i
th

 iteration and hence can be written as 

∑
=

=
n

k
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k
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n 1

0

1
β .                                                (4.46) 

 

 The second term in the right-hand side of Equation 4.45 represents parameter 

estimates for all effects (main and interaction) specified by the Bayesian screening 

algorithm and can be written as 
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Hence, from Equations 4.46 and 4.47, we get 
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 It is easy to see that the left-hand side and right-hand side represent the estimates 

obtained from Bayesian Expected Value and Bayesian Complete RSS minimization 

algorithms. Hence,  

EVRSS ŷ  ŷ = . 

 

 

4.8 Case Study: Performance of Bayesian Algorithms in a Nano-

scale Lubrication Process 

 

We return now to the gas-phase lubrication problem presented in Section 4.1. Since the 

process is still in the discovery phase, we simulate the application of the six algorithms 

that we have presented – Bayesian and non-Bayesian versions of complete RSS 

minimization, Bayesian and non-Bayesian versions of ANCOVA, and Bayesian and non-

Bayesian versions of expected value – on the process. This case study leads to an 

understanding of how the algorithms perform. 
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4.8.1 Performance Criterion 

In each of the algorithms, the estimate of the missing observation is obtained using the 

respective algorithm. This estimate is plugged into the response, and the “pseudo-

complete” data is analyzed as usual after decreasing the degrees of freedom of the error 

term by the number of missing observations. From this analysis, significant terms are 

identified, and a model for the data is obtained. These models differ in the inclusion of 

significant effects and their corresponding parameter estimates. In all, models obtained 

through the non-Bayesian algorithms need to be compared to their respective Bayesian 

counterparts.  

Since the models obtained may be used to predict future values, it is important to 

evaluate the predictive ability of these models so that an appropriate algorithm can be 

suggested. In order to rank these algorithms, the prediction sum of squares (PRESS) 

criterion can be used. Some of the reasons for choosing the PRESS statistic are small 

sample size, unbiased measure of the model’s predictive ability, and deletion of one 

observation at a time. It is well known (e.g., see Kutner et al., 2005) that the PRESS 

criterion is a measure of how well the use of the fitted values for a subset model can 

predict the observed responses, Yi. It is obtained by deleting the i
th

 case from the data set, 

estimating the regression function for the subset model from the remaining (n-1) cases, 

and then using the fitted regression function to obtain the predicted value, )i(iŶ  for the i
th

 

case. The first subscript, i in )(
ˆ

iiY  indicates that it is a predicted value for the i
th

 case and 

the second subscript i indicates that the i
th

 case was omitted when the regression function 

was fitted. Properties of the PRESS statistic such as expected value and relationship 
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between ordinary residual and the deleted residual are studied by Liu et al. (1999). The 

PRESS criterion over all observations can be defined as 

 

∑
=

−=
n

i

)i(ii )ŶY(PRESS
1

2
.                                                   (4.49) 

  

 Estimates of the missing observations are obtained through the six Bayesian and 

non-Bayesian algorithms and imputed into the data set. Thus, there are six different data 

sets. In the case of a single missing observation, all observations except the estimate of 

the missing observation are the same. Hence, any difference in the PRESS statistics for 

the data sets can be attributed to the estimates of the missing observations. Let the PRESS 

statistic for the data sets corresponding to the Bayesian algorithms be denoted by 

PRESSB1, PRESSB2, and PRESSB3. Similarly, let PRESSNB1, PRESSNB2, and PRESSNB3 

denote the statistics corresponding to the non-Bayesian algorithms. Consider two data 

sets obtained using a non-Bayesian algorithm and its Bayesian counterpart. If the first 

observation is assumed missing in an eight-run design,  
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 As )(
ˆ

iiY  is obtained by omitting the i
th

 observation and as all observations other 

than the estimate of the missing observation are equal, 
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 This result can be extended to a general case of n observations with the j
th

 

observation being missing. 

∑
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n

ji

B)i(iiNB)i(iiBNBDiff ŶYŶYPRESSPRESSPRESS
22

)()( .         (4.54) 

  

 As a lower value of the PRESS criterion represents better predictive ability for a 

model, a positive value of PRESSDiff indicates that the model obtained using the Bayesian 

algorithm to estimate the missing observation has better predictive ability than the model 

obtained by using the non-Bayesian algorithm. PRESSDiff could be calculated in a similar 

fashion when there are two missing observations in the data set. 

 In addition to using PRESSDiff as the performance metric, the estimates of the 

missing observations can be used to calculate the degree of bias induced by the Bayesian 

and non-Bayesian algorithms. This degree of bias can simply be calculated by taking the 

difference between the estimate of the missing observation and the actual value assumed 
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to be missing and diving by the actual value. In the case of more than one missing 

observation, the average of the biases is considered. 

 

4.8.2 Effect of the Position of Missing Observation on Performance 

For the sake of illustration, suppose that the process engineers think that factors A and D 

(linear or branched molecule and the type of alcohol, respectively) might have a 

significant effect on the response (friction coefficient). To gain insight on the behavior of 

the positions of missing observations, the Bayesian and non-Bayesian algorithms were 

employed on three data. The data were generated from a model having two main effects 

(A and D) and an interaction effect between them (AD) significant. The error terms of the 

data are assumed to follow N(0, σε
2
). These data are labeled as data 1, data 2, and data 3, 

and are given in Table 4.3. We consider the alternate fraction of the nano-scale 

lubrication experiment (I = - ABCD). 

 

Table 4.3: Three data sets for an eight-run experiment 

Run A B C D data 1 data 2 data 3

y1 -1 -1 -1 1 33 25 41

y2 1 -1 -1 -1 29 125 22

y3 -1 1 -1 -1 66 149 37

y4 1 1 -1 1 37 158 110

y5 -1 -1 1 -1 71 141 43

y6 1 -1 1 1 31 160 123

y7 -1 1 1 1 28 17 34

y8 1 1 1 -1 29 134 27

σ  = 17.6 58.4 39.0  
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4.8.2.1 One missing observation 

In a 2
4-1

 design with eight runs, there are eight different positions where a single 

observation could be missing. The positions are represented as Run 1 through Run 8. In 

this section, the non-Bayesian and Bayesian algorithms are applied to data 1, data 2, and 

data 3 over all the possible positions. Table 4.4 shows a comparison of the Bayesian and 

non-Bayesian algorithms for data 1. Similarly, Table 4.5 and Table 4.6 represent the 

comparison of algorithms using data 2 and data 3, respectively. From Theorems 1 and 2 

in Section 4.7, it can be said that for a single missing observation, the three Bayesian 

algorithms yield the same estimate. These estimates are listed under “Bayesian 

Algorithms” in Table 4.4, Table 4.5, and Table 4.6. Furthermore, as the Complete RSS 

Minimization algorithm yields the same estimate as the Expected Value algorithm, only 

estimates from the former algorithm are presented. It is important to note that the active 

factors specified by the Bayesian screening algorithm are the same as the true significant 

effects (A, D, and AD).  
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Table 4.4: Comparison of Bayesian and non-Bayesian Algorithms for One Missing 

Observation in Data 1 

Position of 

missing 

observation

Algorithm

True Significant effects 

= effects specified by 

Bayesian screening 

algorithm

% bias PRESSDiff

Run 1 ANCOVA A, D, AD -- --

Complete RSS min A, D, AD 76.76

Bayesian Algorithms A, D, AD 15.15

Run 2 ANCOVA A, D, AD -- --

Complete RSS min A, D, AD 110.34

Bayesian Algorithms A, D, AD 0.00

Run 3 ANCOVA A, D, AD -- --

Complete RSS min A, D, AD 32.32

Bayesian Algorithms A, D, AD 7.58

Run 4 ANCOVA A, D, AD -- --

Complete RSS min A, D, AD 97.30

Bayesian Algorithms A, D, AD 16.22

Run 5 ANCOVA A, D, AD -- --

Complete RSS min A, D, AD 50.70

Bayesian Algorithms A, D, AD 7.04

Run 6 ANCOVA A, D, AD -- --

Complete RSS min A, D, AD 68.81

Bayesian Algorithms A, D, AD 19.35

Run 7 ANCOVA A, D, AD -- --

Complete RSS min A, D, AD 114.29

Bayesian Algorithms A, D, AD 17.86

Run 8 ANCOVA A, D, AD -- --

Complete RSS min A, D, AD 87.34

Bayesian Algorithms A, D, AD 0.00

1839.82

2048

1386.54

1800

1922

1458

1493.86

1283.22
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Table 4.5: Comparison of Bayesian and non-Bayesian Algorithms for One Missing 

Observation in Data 2 

Position of 

missing 

observation

Algorithm

True Significant 

effects = effects 

specified by 

Bayesian screening 

algorithm

% bias PRESSDiff

Run 1 ANCOVA A, D, AD -- --

Complete RSS min A, D, AD 364.00

Bayesian Algorithms A, D, AD 32.00

Run 2 ANCOVA A, D, AD -- --

Complete RSS min A, D, AD 90.94

Bayesian Algorithms A, D, AD 7.20

Run 3 ANCOVA A, D, AD -- --

Complete RSS min A, D, AD 73.15

Bayesian Algorithms A, D, AD 5.37

Run 4 ANCOVA A, D, AD -- --

Complete RSS min A, D, AD 60.55

Bayesian Algorithms A, D, AD 13.48

Run 5 ANCOVA A, D, AD -- --

Complete RSS min A, D, AD 67.85

Bayesian Algorithms A, D, AD 5.67

Run 6 ANCOVA A, D, AD -- --

Complete RSS min A, D, AD 68.13

Bayesian Algorithms A, D, AD 1.25

Run 7 ANCOVA A, D, AD -- --

Complete RSS min A, D, AD 668.65

Bayesian Algorithms A, D, AD 47.06

Run 8 ANCOVA A, D, AD -- --

Complete RSS min A, D, AD 67.91

Bayesian Algorithms A, D, AD 6.72

19602

21911.6

20402

19078.9

21494.9

22898

22332.3

20000
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Table 4.6: Comparison of Bayesian and non-Bayesian Algorithms for One Missing 

Observation in Data 3 

Position of 

missing 

observation

Algorithm

True Significant 

effects = effects 

specified by 

Bayesian screening 

algorithm

% bias PRESSDiff

Run 1 ANCOVA A, D, AD -- --

Complete RSS min A, D, AD 134.15

Bayesian Algorithms A, D, AD 17.07

Run 2 ANCOVA A, D, AD -- --

Complete RSS min A, D, AD 322.73

Bayesian Algorithms A, D, AD 22.73

Run 3 ANCOVA A, D, AD -- --

Complete RSS min A, D, AD 182.89

Bayesian Algorithms A, D, AD 16.22

Run 4 ANCOVA A, D, AD -- --

Complete RSS min A, D, AD 53.03

Bayesian Algorithms A, D, AD 11.82

Run 5 ANCOVA A, D, AD -- --

Complete RSS min A, D, AD 135.65

Bayesian Algorithms A, D, AD 13.95

Run 6 ANCOVA A, D, AD -- --

Complete RSS min A, D, AD 55.02

Bayesian Algorithms A, D, AD 10.57

Run 7 ANCOVA A, D, AD -- --

Complete RSS min A, D, AD 208.82

Bayesian Algorithms A, D, AD 20.59

Run 8 ANCOVA A, D, AD -- --

Complete RSS min A, D, AD 203.70

Bayesian Algorithms A, D, AD 18.52

7688

8712

10854.5

10175.9

5476.86

5977.62

8192

7200
 

 

 For one missing observation, a potential problem in the non-Bayesian ANCOVA 

algorithm is observed. Due to the small size of the data set, this algorithm can yield a 

zero residual due to over-fitting. Hence, no estimate of the missing observation is 

obtained. For each position of the missing observation, PRESSDiff is calculated as the 

difference between the PRESS values for the non-Bayesian algorithm (PRESSNB) and 

Bayesian algorithm (PRESSB). It is observed that in each of the eight positions for the 

missing observation in the three data sets, PRESSDiff has a positive value. This seems to 
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suggest that the performance of the Bayesian algorithms is superior to the non-Bayesian 

counterparts.  

 In addition to the PRESSDiff criterion, the behavior of degree of bias for all 

positions in the data sets are graphically illustrated in Figure 4.2 (data 1), Figure 4.3 (data 

2), and Figure 4.4 (data 3). For each data set, the degree of bias in the estimated values 

through the non-Bayesian and Bayesian algorithms are compared over all positions.  
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Figure 4.2: Bias for one missing observation over all positions in data 1. 
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Figure 4.3: Bias for one missing observation over all positions in data 2. 
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Figure 4.4: Bias for one missing observation over all positions in data 3. 



 

 

70 

 In each case, it is observed that the bias due to the estimate of the missing 

observation is considerably less in the Bayesian algorithm than its corresponding non-

Bayesian algorithm. This observation validates the claim from using the PRESSDiff 

criterion. Additionally, the variation in the estimates from the Bayesian algorithms is 

much less. This is observed from the standard deviations of the estimates from the 

Bayesian algorithms  (10.4 for data 1, 14.84 for data 2, and 16.43 for data 3) and those 

from the non-Bayesian algorithms (79.73 for data 1, 182.65 for data 2, and 162 for data 

3). 

 

4.8.2.2 Two missing observations 

In this section, we consider two missing observations in a 2
4-1

 design with eight runs. 

Two observations in an eight run design can be missing in 
8
C2 = 28 ways. Rather than 

compare the algorithms over all 28 pairs, let us look at the geometric representation of an 

eight-run design, given in Figure 4.5. The design can be represented as a cube with each 

run corresponding to a corner. The corners are numbered from 1 - 8 and correspond to 

treatment combinations (I), ad, bd, ab, cd, ac, bc, and abcd, respectively. According to 

the geometry of a cube, there would be 12 edges of faces, 12 diagonals of faces, and 4 

lines joining opposite corners of opposite faces. These 28 edges, diagonals, and lines 

constitute all possible pairs of missing observations in an eight-run design. Runs (1 , 2); 

(1 , 5); (1 , 3); (2 , 6); (2 , 4); (3 , 4); (4 , 8); (6 , 8); (7 , 8); (5 , 6); (5 , 7); and (3 , 7) can 

be categorized as pairs corresponding to the edges. The pair (1, 2) is chosen as a sample 

representing this category. Runs (1, 6); (2, 5); (4, 6); (2, 8); (6, 7); (5, 8); (3, 5); (1, 7); (1, 

4); (2, 3); (3, 8); and (4, 7) can be categorized as pairs corresponding to the diagonals of 
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the faces. From this category, pair (1, 6) is chosen as a sample for calculation. Finally, 

runs (1, 8); (2, 7); (3, 6); and (4, 5) can be categorized as lines connecting opposite 

corners of opposite faces and pair (4, 5) is selected as a sample.  
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Figure 4.5: Geometric representation of the 2
4-1

 design. 

 

 First, the Bayesian screening algorithm is applied to identify the potential active 

effects (details of the calculations are given in Appendix 4A). The Bayesian and the non-

Bayesian algorithms are applied to the three data sets mentioned in Table 4.3, having 

effects A, D, and AD significant. Two Bayesian algorithms (Bayesian ANCOVA and 

Bayesian Complete RSS minimization) are compared to their corresponding non-

Bayesian versions when runs (1, 2); (1, 6); and (4, 5) are assumed to be missing. The 

results when the algorithms are applied to data 1 are shown in Table 4.7. Similarly, 

results from data 2 and data 3 are given in Table 4.8 and Table 4.9, respectively. Since 

Theorem 1 proves Bayesian Expected Value algorithm to yield same estimates of missing 

observations as Bayesian Complete RSS Minimization algorithm, the former can be 

omitted from the study. It should be noted that effects specified by the Bayesian 
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screening algorithm as active are the same as the true significant effects (when the 

observations are not assumed to be missing). The calculations for Bayesian Complete 

RSS Minimizaion and Bayesian ANCOVA algorithms are given in Appendix 4B and 

Appendix 4C, respectively. 

 

Table 4.7: Comparison of Bayesian and non-Bayesian Algorithms for Two Missing 

Observations in Data 1 

Position of 

missing 

observations

Algorithm

True Significant effects  

= Effects specified by 

Bayesian screening 

algorithm

Average % 

bias
PRESSDiff

ANCOVA A, D, AD 100.00

Bayesian ANCOVA A, D, AD 8.14

Complete RSS min A, D, AD 139.81

Bayesian Complete 

RSS min
A, D, AD 7.58

ANCOVA A, D, AD 100.00

Bayesian ANCOVA A, D, AD 17.25

Complete RSS min A, D, AD 54.45

Bayesian Complete 

RSS min
A, D, AD 17.25

ANCOVA A, D, AD 100.00

Bayesian ANCOVA A, D, AD 19.85

Complete RSS min A, D, AD 27.71

Bayesian Complete 

RSS min
A, D, AD 11.63

Runs 1 and 2

Runs 1 and 6

Runs 4 and 5

10361.62

1935.76

3249.78

8281

4306

2141
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Table 4.8: Comparison of Bayesian and non-Bayesian Algorithms for Two Missing 

Observations in Data 2 

Position of 

missing 

observations

Algorithm

True Significant effects  

= Effects specified by 

Bayesian screening 

algorithm

Average % 

bias
PRESSDiff

ANCOVA A, D, AD 100.00

Bayesian ANCOVA A, D, AD 28.00

Complete RSS min A, D, AD 354.80

Bayesian Complete 

RSS min
A, D, AD 19.60

ANCOVA A, D, AD 100.00

Bayesian ANCOVA A, D, AD 16.63

Complete RSS min A, D, AD 150.66

Bayesian Complete 

RSS min
A, D, AD 16.63

ANCOVA A, D, AD 100.00

Bayesian ANCOVA A, D, AD 4.77

Complete RSS min A, D, AD 32.10

Bayesian Complete 

RSS min
A, D, AD 3.47

Runs 1 and 2

Runs 1 and 6

Runs 4 and 5

95575.06

11200

33448

93636

50506

24625
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Table 4.9: Comparison of Bayesian and non-Bayesian Algorithms for Two Missing 

Observations in Data 3 

Position of 

missing 

observations

Algorithm

True Significant effects  

= Effects specified by 

Bayesian screening 

algorithm

Average % 

bias
PRESSDiff

ANCOVA A, D, AD 100.00

Bayesian ANCOVA A, D, AD 25.20

Complete RSS min A, D, AD 336.34

Bayesian Complete 

RSS min
A, D, AD 19.90

ANCOVA A, D, AD 100.00

Bayesian ANCOVA A, D, AD 13.82

Complete RSS min A, D, AD 67.07

Bayesian Complete 

RSS min
A, D, AD 13.82

ANCOVA A, D, AD 100.00

Bayesian ANCOVA A, D, AD 32.27

Complete RSS min A, D, AD 47.18

Bayesian Complete 

RSS min
A, D, AD 12.89

Runs 1 and 2

Runs 1 and 6

Runs 4 and 5

3759.14

36481

26512

7397

31352.06

4630.3

 

 

 PRESSDiff values are calculated by subtracting the PRESS values corresponding to 

Bayesian algorithms from those of non-Bayesian algorithms. From the above tables, it is 

observed that the PRESSDiff values are very large positive numbers, indicating much 

better performance of the Bayesian algorithms over the non-Bayesian ones. In order to 

gain insight on the two Bayesian algorithms, degree of bias for the data sets are graphed 

and represented in Figure 4.2 (data 1), Figure 4.3 (data 2), and Figure 4.4 (data 3). 
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Figure 4.6: Bias for two missing observations over three pairs of positions in data 1. 

 

 

0

60

120

180

240

300

360

Runs 1 and 2 Runs 1 and 6 Runs 4 and 5

%
 b

ia
s

 i
n

 d
a

ta
 2

non-Bayesian Complete RSS min non-Bayesian ANCOVA

Bayesian Complete RSS min Bayesian ANCOVA
 

Figure 4.7: Bias for two missing observations over three pairs of positions in data 2. 

 



 

 

76 

 

0

60

120

180

240

300

360

Runs 1 and 2 Runs 1 and 6 Runs 4 and 5

%
 b

ia
s

 i
n

 d
a

ta
 3

non-Bayesian Complete RSS min non-Bayesian ANCOVA

Bayesian Complete RSS min Bayesian ANCOVA
 

Figure 4.8: Bias for two missing observations over three pairs of positions in data 3. 

 

 In all the data sets and for the given pairs of missing observations, it is observed 

that either of the Bayesian algorithms has less bias than any of the non-Bayesian 

algorithms. This is the same trend observed in the case of a single missing observation. 

When the non-Bayesian ANCOVA algorithm is employed, the residuals obtained by 

fitting a model using main effects and interaction terms are zero. As the estimates 

obtained are a direct function of the residuals, when the residuals are zero due to over-

fitting, no estimates are obtained. This is reflected in the bias for the non-Bayesian 

ANCOVA algorithm, which is 100%.  

 Figures 4.6 – 4.8 suggest that a better comparison of the Bayesian algorithms 

could be made. It seems that the estimates obtained by Bayesian Complete RSS 

Minimization algorithm have equal or less bias than those obtained by Bayesian 

ANCOVA algorithm. The only case that yields equal bias is when runs 1 and 6 are 
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missing in data 1, 2, or 3. In all the other cases (position of missing observation and data 

set), Bayesian Complete RSS Minimization has yields lesser bias than Bayesian 

ANCOVA does. Finally, a different pair of missing observation has the lowest bias in 

each of the three data sets considered, thus providing no pattern. For instance, in data 1, 

Bayesian Complete RSS Minimization provides the least bias when runs 1 and 2 are 

missing, but in data 2, the least bias corresponds to missing runs 4 and 5.  

 

4.8.3 Effect of Incorrect Specification of Active Factors on 

Performance 

The Bayesian Complete RSS minimization and Bayesian ANCOVA algorithms 

incorporate information provided on potential active factors from the Bayesian screening 

algorithm. In the above three data sets considered, the screening algorithm identified 

effects A, D, and AD as active, both for one and two missing observations. These effects 

are the “true” effects as the data were generated assuming the same effects to be 

significant. Hence, it is natural to examine the results of the Bayesian algorithms when 

there is a mismatch between the “true” effects and those specified by the screening 

algorithm. As the true effects consist of two main effects and an interaction term, the 

following effects are assumed to be active and correspond to three cases of mismatch: 

 

• First main effect and the interaction term (A and AD) 

• Second main effect and the interaction term (D and AD) 

• Only the main effects (A and D) 
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 These mismatches are considered by each of the Bayesian algorithms to be the 

active effects identified from the screening algorithm. Estimates are then obtained for 

missing observations using data 1 from Table 4.3. The results in the presence of the 

above mismatches for one and two missing observations are presented and examined in 

the subsequent sections. 

 

4.8.3.1 One missing observation 

Three cases of mismatch were examined assuming one missing observation over all 

possible positions (eight) in data 1. It has already been established that all Bayesian 

algorithms yield the same estimate in the presence of a single missing observation, and 

hence, results from a single Bayesian algorithm are reported. Details for the same along 

with the percent bias and PRESSDiff are shown in Table 4.10. Non-Bayesian algorithms 

do not consider any information on the active factors, and hence no mismatch occurs. In 

Table 4.10, PRESSDiff is calculated as difference between PRESS using a complete data 

set (no missing observations) and PRESS using the estimate of the assumed missing 

observation. The value for the PRESS statistic when no observations are missing is 172. 

Hence, the more negative the PRESSDiff , the worse the algorithm performs. 
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Table 4.10: Incorrect Specification for One Missing Observation 

Position of 

missing 

observation

Algorithm

True 

Significant 

effects 

Significant effects 

specified by Bayesian 

screening algorithm

% bias PRESSDiff

Run 1 Bayesian Algorithms A, D, AD A, AD 27.878788 -353.28

Bayesian Algorithms A, D, AD D, AD 55.757576 -309.12

Bayesian Algorithms A, D, AD A, D 40 -238

Run 2 Bayesian Algorithms A, D, AD A, AD 45.517241 -348.48

Bayesian Algorithms A, D, AD D, AD 49.655172 -414.72

Bayesian Algorithms A, D, AD A, D 59.310345 -591.68

Run 3 Bayesian Algorithms A, D, AD A, AD 13.939394 -363.28

Bayesian Algorithms A, D, AD D, AD 15.757576 -424.32

Bayesian Algorithms A, D, AD A, D 20 -612.48

Run 4 Bayesian Algorithms A, D, AD A, AD 22.702703 -342.72

Bayesian Algorithms A, D, AD D, AD 25.945946 -414.72

Bayesian Algorithms A, D, AD A, D 59.459459 -440

Run 5 Bayesian Algorithms A, D, AD A, AD 24.225352 -247.68

Bayesian Algorithms A, D, AD D, AD 25.915493 -309.12

Bayesian Algorithms A, D, AD A, D 29.859155 -474.88

Run 6 Bayesian Algorithms A, D, AD A, AD 58.064516 -216

Bayesian Algorithms A, D, AD D, AD 61.935484 -276.48

Bayesian Algorithms A, D, AD A, D 40 -599.12

Run 7 Bayesian Algorithms A, D, AD A, AD 61.428571 -247.68

Bayesian Algorithms A, D, AD D, AD 37.142857 -424.32

Bayesian Algorithms A, D, AD A, D 75.714286 -474.88

Run 8 Bayesian Algorithms A, D, AD A, AD 45.517241 -348.48

Bayesian Algorithms A, D, AD D, AD 49.655172 -414.72

Bayesian Algorithms A, D, AD A, D 59.310345 -591.68

 

  

 From Table 4.10, it is seen that none of the Bayesian algorithms perform even 

close to the case with no missing observations. To study the trend of the calculated 
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performance measures, the values are graphed over all runs and are represented in Figure 

4.9 (percent bias) and Figure 4.10 (PRESSDiff). 
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Figure 4.9: Bias in incorrect specification of active factors for one missing 

observation over all positions in data 1. 

 

 Figure 4.9 seems to suggest that in the presence of a mismatch, the percent bias is 

greater than the case where there is no mismatch (active effects from screening algorithm 

are the same as “true” effects). However, no case of mismatch results in greater bias than 

the bias due to non-Bayesian algorithms. In addition, no particular case of mismatch 

results in less bias over all the positions of missing observations. Hence, no general 
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conclusions can be drawn on the performance of a particular type of mismatch. It seems 

intuitive that the level of significance of an effect (included as a mismatch) would dictate 

the bias to a certain extent. 
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Figure 4.10: PRESSDiff in incorrect specification of active factors for one missing 

observation over all positions in data 1 
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4.8.3.2 Two missing observations 

In the case of two missing observations, the same pairs of observations from Section 

4.8.2 are assumed to be missing. The mismatches considered and the calculations for the 

percent bias and PRESSDiff are the same as the previous section. The results using 

Bayesian ANCOVA and Bayesian Complete RSS minimization algorithms are presented 

in Table 4.11. As before, the more negative the value of PRESSDiff, of a particular case, 

the worse is the performance of the corresponding algorithm. It is seen that the values of 

PRESSDiff are much lower than in the corresponding case of a single missing observation. 

Thus, the performance of the Bayesian algorithms seems to decline as the number of 

missing observations increase.  

 The values of the percent bias for the mismatches over the assumed positions of 

missing observations for Bayesian ANCOVA and Bayesian Complete RSS Minimization 

algorithms are graphically represented in Figure 4.11 and Figure 4.12, respectively.  
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Table 4.11: Incorrect Specification for Two Missing Observations 

Position of 

missing 

observation

Algorithm
True Significant 

effects 

Significant 

effects specified 

by Bayesian 

screening 

algorithm

Average 

% bias
PRESSDiff

Runs 1 and 2 Bayesian ANCOVA A, D, AD A, AD 30.74504 -509.8

Bayesian ANCOVA A, D, AD D, AD 33.38662 -303.71

Bayesian ANCOVA A, D, AD A, D 41.15726 -856.72

Bayesian Complete 

RSS min
A, D, AD A, AD 27.29676 -423.16

Bayesian Complete 

RSS min
A, D, AD D, AD 43.75862 -449.08

Bayesian Complete 

RSS min
A, D, AD A, D 41.56426 -870.5

Runs 1 and 6 Bayesian ANCOVA A, D, AD A, AD 35.97849 -347.16

Bayesian ANCOVA A, D, AD D, AD 49.06549 -291.72

Bayesian ANCOVA A, D, AD A, D 33.32747 -923.88

Bayesian Complete 

RSS min
A, D, AD A, AD 35.97849 -347.16

Bayesian Complete 

RSS min
A, D, AD D, AD 49.06549 -291.72

Bayesian Complete 

RSS min
A, D, AD A, D 33.32747 -923.88

Runs 4 and 5 Bayesian ANCOVA A, D, AD A, AD 18.37381 -377.08

Bayesian ANCOVA A, D, AD D, AD 21.86905 -623

Bayesian ANCOVA A, D, AD A, D 41.54739 -1088.48

Bayesian Complete 

RSS min
A, D, AD A, AD 20.07994 -454

Bayesian Complete 

RSS min
A, D, AD D, AD 18.7027 -391.48

Bayesian Complete 

RSS min
A, D, AD A, D 39.03007 -588.76
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Figure 4.11: Bias in incorrect specification of active factors for two missing 

observations using Bayesian ANCOVA algorithm. 
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Figure 4.12: Bias in incorrect specification of active factors for two missing 

observations using Bayesian Complete RSS Minimization algorithm. 
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 From Figure 4.11, it is easy to see that in the case of mismatches, Bayesian 

ANCOVA algorithm yields estimates that have much less bias as compared to non-

Bayesian algorithm (the non-Bayesian algorithm yields 100% bias due to over fitting). In 

addition, bias in all cases seems to be closer to the case with no mismatch. Additionally, 

when runs 4 and 5 are assumed missing, the biases resulting from two of the three 

mismatches are almost the same as the bias due to the case with no mismatch.  

 Similarly, when Bayesian Complete RSS Minimization algorithm is used, any 

mismatch seems to increase the bias over that of the case with no mismatch. In two out of 

the three pairs of positions assumed to be missing, bias due to any mismatch seems lesser 

than bias due to the non-Bayesian algorithm. In the case of the third mismatch (A and D 

specified by screening algorithm), the bias seems to be greater than the bias due to the 

non-Bayesian algorithm. However, this difference is not large enough to cause concerns 

and can be ignored. Thus, it seems that the Bayesian algorithms outperform the Bayesian 

ones, even in the case of mismatches and hence seem robust to the screening algorithm. 

 When a fractional factorial design is constructed for the lubrication example with 

D = - ABC, no molecules would exist corresponding to runs 1 and 6. From performance 

evaluations, Bayesian Complete RSS minimization algorithm seems to yield estimates 

that are closer to the assumed value. Once the estimates are obtained, the characteristics 

of the molecules could be studied using regular analysis techniques such as ANOVA and 

conditions for desired film adhesion obtained. 
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Appendix 4A  Calculations for Bayesian Screening 

Algorithm 

Calculations shown are for two missing observations (Runs 1 and 2 assumed to be 

missing for data 1) 

 

% 2 missing observation in a 2^(4-1) experiment 

% Runs 1 and 2 missing 

% using equations from Meyer and Box (1993) "Finding the active factors in fractionated screening experiments" 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

gamma = 2; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

pi = 0.5; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

n = 6; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

t_0 = 0; 

t_1 = 1; 

t_2 = 1; 

t_3 = 1; 

t_4 = 1; 

t_5 = 3; 

t_6 = 3; 

t_7 = 3; 

t_8 = 3; 

t_9 = 3; 

t_10 = 3; 

t_11 = 7; 

t_12 = 7; 

t_13 = 7; 

t_14 = 7; 

t_15 = 15; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

f_1 = 1; 

f_2 = 1; 

f_3 = 1; 

f_4 = 1; 

f_5 = 2; 

f_6 = 2; 

f_7 = 2; 

f_8 = 2; 

f_9 = 2; 
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f_10 = 2; 

f_11 = 3; 

f_12 = 3; 

f_13 = 3; 

f_14 = 3; 

f_15 = 4; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

E_0 = (1/(gamma^2))*(0); 

 

E_1 = (1/(gamma^2))*[0 0; 

        0 1]; 

         

E_2 = (1/(gamma^2))*[0 0; 

        0 1]; 

  

E_3 = (1/(gamma^2))*[0 0; 

        0 1]; 

         

E_4 = (1/(gamma^2))*[0 0; 

        0 1]; 

 

E_5 = (1/(gamma^2))*[0 0 0 0; 

        0 1 0 0; 

        0 0 1 0; 

        0 0 0 1]; 

 

E_6 = (1/(gamma^2))*[0 0 0 0; 

        0 1 0 0; 

        0 0 1 0; 

        0 0 0 1]; 

 

E_7 = (1/(gamma^2))*[0 0 0 0; 

       0 1 0 0; 

       0 0 1 0; 

       0 0 0 1]; 

 

E_8 = (1/(gamma^2))*[0 0 0 0; 

       0 1 0 0; 

       0 0 1 0; 

       0 0 0 1]; 

 

E_9 = (1/(gamma^2))*[0 0 0 0; 

        0 1 0 0; 

        0 0 1 0; 

        0 0 0 1]; 

 

E_10 = (1/(gamma^2))*[0 0 0 0; 

         0 1 0 0; 

         0 0 1 0; 

         0 0 0 1]; 

 

E_11 = (1/(gamma^2))*[0 0 0 0 0 0 0 0; 

                0 1 0 0 0 0 0 0; 

                0 0 1 0 0 0 0 0; 

                0 0 0 1 0 0 0 0;  

                0 0 0 0 1 0 0 0; 

                0 0 0 0 0 1 0 0; 

                0 0 0 0 0 0 1 0; 

                0 0 0 0 0 0 0 1]; 
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E_12 = (1/(gamma^2))*[0 0 0 0 0 0 0 0; 

                0 1 0 0 0 0 0 0; 

                0 0 1 0 0 0 0 0; 

                0 0 0 1 0 0 0 0;  

                0 0 0 0 1 0 0 0; 

                0 0 0 0 0 1 0 0; 

                0 0 0 0 0 0 1 0; 

                0 0 0 0 0 0 0 1]; 

 

E_13 = (1/(gamma^2))*[0 0 0 0 0 0 0 0; 

                0 1 0 0 0 0 0 0; 

                0 0 1 0 0 0 0 0; 

                0 0 0 1 0 0 0 0;  

                0 0 0 0 1 0 0 0; 

                0 0 0 0 0 1 0 0; 

                0 0 0 0 0 0 1 0; 

                0 0 0 0 0 0 0 1]; 

 

E_14 = (1/(gamma^2))*[0 0 0 0 0 0 0 0; 

                0 1 0 0 0 0 0 0; 

                0 0 1 0 0 0 0 0; 

                0 0 0 1 0 0 0 0;  

                0 0 0 0 1 0 0 0; 

                0 0 0 0 0 1 0 0; 

                0 0 0 0 0 0 1 0; 

                0 0 0 0 0 0 0 1]; 

 

E_15 = (1/(gamma^2))*[0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 

                0 1 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 

                0 0 1 0 0 0 0 0 0 0

 0 0 0 0 0 0 

                0 0 0 1 0 0 0 0 0 0

 0 0 0 0 0 0 

                0 0 0 0 1 0 0 0 0 0

 0 0 0 0 0 0 

                0 0 0 0 0 1 0 0 0 0

 0 0 0 0 0 0 

                0 0 0 0 0 0 1 0 0 0

 0 0 0 0 0 0 

                0 0 0 0 0 0 0 1 0 0

 0 0 0 0 0 0 

                0 0 0 0 0 0 0 0 1 0

 0 0 0 0 0 0 

                0 0 0 0 0 0 0 0 0 1

 0 0 0 0 0 0 

                0 0 0 0 0 0 0 0 0 0

 1 0 0 0 0 0 

                0 0 0 0 0 0 0 0 0 0

 0 1 0 0 0 0 

                0 0 0 0 0 0 0 0 0 0

 0 0 1 0 0 0 

                0 0 0 0 0 0 0 0 0 0

 0 0 0 1 0 0 

                0 0 0 0 0 0 0 0 0 0

 0 0 0 0 1 0 

                0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 1]; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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  Y = [66; 

      37; 

      71; 

      31; 

      28; 

      29]; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  X_0 =    [1; 

            1; 

            1; 

            1; 

            1; 

            1]; 

   

  X_1 =  [1 -1; 

                1 1; 

     1 -1; 

     1 1; 

     1 -1; 

     1 1]; 

           

  X_2 =  [1 1; 

                1 1; 

        1 -1; 

        1 -1; 

        1 1; 

        1 1]; 

   

  X_3 =  [1 -1; 

                1 -1; 

     1 1; 

     1 1; 

     1 1;  

     1 1]; 

   

  X_4 =  [1 1; 

                1 -1; 

     1 1; 

 1 -1; 

     1 -1; 

 1 1]; 

    

  X_5 =   [1 -1 1 -1; 

                 1 1 1 1; 

                 1 -1 -1 1; 

                 1 1 -1 -1; 

                 1 -1 1 -1; 

                 1 1 1 1]; 

   

  X_6 =   [1 -1 -1 1; 

                 1 1 -1 -1; 

                 1 -1 1 -1; 

                 1 1 1 1; 

                 1 -1 1 -1; 

                 1 1 1 1]; 

 

  X_7 =   [1 -1 1 -1; 

                 1 1 -1 -1; 

                 1 -1 1 -1; 

                1 1 -1 -1; 

                1 -1 -1 1; 
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                1 1 1 1]; 

 

  X_8 =   [1 1 -1 -1; 

                 1 1 -1 -1; 

                 1 -1 1 -1; 

                 1 -1 1 -1; 

                 1 1 1 1; 

                 1 1 1 1]; 

 

  X_9 =   [1 1 1 1; 

                 1 1 -1 -1; 

                 1 -1 1 -1; 

                 1 -1 -1 1; 

                 1 1 -1 -1; 

                 1 1 1 1]; 

 

  X_10 =   [1 -1 1 -1; 

                   1 -1 -1 1; 

                   1 1 1 1; 

                   1 1 -1 -1; 

                   1 1 -1 -1; 

                   1 1 1 1]; 

 

  X_11 =  [1 -1 1 -1 -1 1 -1 1; 

                  1 1 1 -1 1 -1 -1 -1; 

                  1 -1 -1 1 1 -1 -1 1; 

                  1 1 -1 1 -1 1 -1 -1; 

                  1 -1 1 1 -1 -1 1 -1; 

                  1 1 1 1 1 1 1 1]; 

  

  X_12 =   [1 -1 1 1 -1 -1 1 -1; 

                   1 1 1 -1 1 -1 -1 -1; 

                   1 -1 -1 1 1 -1 -1 1; 

                   1 1 -1 -1 -1 -1 1 1; 

                   1 -1 1 -1 -1 1 -1 1; 

                   1 1 1 1 1 1 1 1]; 

 

  X_13 =   [1 -1 -1 1 1 -1 -1 -1; 

                   1 1 -1 -1 -1 -1 1 -1; 

                   1 -1 1 1 -1 -1 1 1; 

           1 1 1 -1 1 -1 -1 1; 

            1 -1 1 -1 -1 1 -1 1; 

          1 1 1 1 1 1 1 1]; 

 

  X_14 =  [1 1 -1 1 -1 1 -1 -1; 

             1 1 -1 -1 -1 -1 1 1; 

           1 -1 1 1 -1 -1 1 -1; 

           1 -1 1 -1 -1 1 -1 1; 

           1 1 1 -1 1 -1 -1 -1; 

          1 1 1 1 1 1 1 1]; 

 

  X_15 = [1 -1 1 -1 1 -1 1 -1 -1 1 -1

 1 -1 -1 1 1; 

          1 1 1 -1 -1 1 -1 -1 -1 -1 1 -1

 -1 1 1 1; 

          1 -1 -1 1 1 1 -1 -1 -1 -1 1 1

 1 -1 -1 1; 

          1 1 -1 1 -1 -1 1 -1 -1 1 -1 -1

 1 1 -1 1; 

          1 -1 1 1 -1 -1 -1 1 1 -1 -1 -1

 1 -1 1 1; 
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          1 1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1]; 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

  beta_0 = ((inv(E_0+(X_0'*X_0)))*(X_0'*Y)); 

   

  beta_1 = ((inv(E_1+(X_1'*X_1)))*(X_1'*Y)); 

   

  beta_2 = ((inv(E_2+(X_2'*X_2)))*(X_2'*Y)); 

   

  beta_3 = ((inv(E_3+(X_3'*X_3)))*(X_3'*Y)); 

   

  beta_4 = ((inv(E_4+(X_4'*X_4)))*(X_4'*Y)); 

   

  beta_5 = ((inv(E_5+(X_5'*X_5)))*(X_5'*Y)); 

 

  beta_6 = ((inv(E_6+(X_6'*X_6)))*(X_6'*Y)); 

 

  beta_7 = ((inv(E_7+(X_7'*X_7)))*(X_7'*Y)); 

 

  beta_8 = ((inv(E_8+(X_8'*X_8)))*(X_8'*Y)); 

 

  beta_9 = ((inv(E_9+(X_9'*X_9)))*(X_9'*Y)); 

 

  beta_10 = ((inv(E_10+(X_10'*X_10)))*(X_10'*Y)); 

 

  beta_11 = ((inv(E_11+(X_11'*X_11)))*(X_11'*Y)); 

 

  beta_12 = ((inv(E_12+(X_12'*X_12)))*(X_12'*Y)); 

 

  beta_13 = ((inv(E_13+(X_13'*X_13)))*(X_13'*Y)); 

 

  beta_14 = ((inv(E_14+(X_14'*X_14)))*(X_14'*Y)); 

 

  beta_15 = ((inv(E_15+(X_15'*X_15)))*(X_15'*Y));   

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

   

  S_beta_0 = ((Y-(X_0*beta_0))'*(Y-(X_0*beta_0))); 

   

  S_beta_1 = ((Y-(X_1*beta_1))'*(Y-(X_1*beta_1))); 

    

  S_beta_2 = ((Y-(X_2*beta_2))'*(Y-(X_2*beta_2))); 

     

  S_beta_3 = ((Y-(X_3*beta_3))'*(Y-(X_3*beta_3))); 

      

  S_beta_4 = ((Y-(X_4*beta_4))'*(Y-(X_4*beta_4))); 

 

  S_beta_5 = ((Y-(X_5*beta_5))'*(Y-(X_5*beta_5))); 

 

  S_beta_6 = ((Y-(X_6*beta_6))'*(Y-(X_6*beta_6)));  

 

  S_beta_7 = ((Y-(X_7*beta_7))'*(Y-(X_7*beta_7))); 

 

  S_beta_8 = ((Y-(X_8*beta_8))'*(Y-(X_8*beta_8))); 

 

  S_beta_9 = ((Y-(X_9*beta_9))'*(Y-(X_9*beta_9))); 

 

  S_beta_10 = ((Y-(X_10*beta_10))'*(Y-(X_10*beta_10))); 
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  S_beta_11 = ((Y-(X_11*beta_11))'*(Y-(X_11*beta_11))); 

 

  S_beta_12 = ((Y-(X_12*beta_12))'*(Y-(X_12*beta_12))); 

 

  S_beta_13 = ((Y-(X_13*beta_13))'*(Y-(X_13*beta_13))); 

 

  S_beta_14 = ((Y-(X_14*beta_14))'*(Y-(X_14*beta_14))); 

 

  S_beta_15 = ((Y-(X_15*beta_15))'*(Y-(X_15*beta_15))); 

 

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

  first_part_1 = ((pi/(1-pi))^f_1)*(gamma^(-t_1)); 

   

  second_part_1 = ((det(X_0'*X_0))^0.5)/((det(E_1+(X_1'*X_1)))^0.5); 

   

  third_part_1 = ((S_beta_1+(beta_1'*E_1*beta_1))/(S_beta_0))^(-(n-1)/2); 

   

  posterior_prop_1 = first_part_1 * second_part_1 * third_part_1 

   

     

  first_part_2 = ((pi/(1-pi))^f_2)*(gamma^(-t_2)); 

   

  second_part_2 = ((det(X_0'*X_0))^0.5)/((det(E_2+(X_2'*X_2)))^0.5); 

   

  third_part_2 = ((S_beta_2+(beta_2'*E_2*beta_2))/(S_beta_0))^(-(n-1)/2); 

   

  posterior_prop_2 = first_part_2 * second_part_2 * third_part_2 

   

     

  first_part_3 = ((pi/(1-pi))^f_3)*(gamma^(-t_3)); 

   

  second_part_3 = ((det(X_0'*X_0))^0.5)/((det(E_3+(X_3'*X_3)))^0.5); 

   

  third_part_3 = ((S_beta_3+(beta_3'*E_3*beta_3))/(S_beta_0))^(-(n-1)/2); 

   

  posterior_prop_3 = first_part_3 * second_part_3 * third_part_3 

   

     

  first_part_4 = ((pi/(1-pi))^f_4)*(gamma^(-t_4)); 

   

  second_part_4 = ((det(X_0'*X_0))^0.5)/((det(E_4+(X_4'*X_4)))^0.5); 

   

  third_part_4 = ((S_beta_4+(beta_4'*E_4*beta_4))/(S_beta_0))^(-(n-1)/2); 

   

  posterior_prop_4 = first_part_4 * second_part_4 * third_part_4 

   

     

  first_part_5 = ((pi/(1-pi))^f_5)*(gamma^(-t_5)); 

   

  second_part_5 = ((det(X_0'*X_0))^0.5)/((det(E_5+(X_5'*X_5)))^0.5); 

   

  third_part_5 = ((S_beta_5+(beta_5'*E_5*beta_5))/(S_beta_0))^(-(n-1)/2); 

   

  posterior_prop_5 = first_part_5 * second_part_5 * third_part_5 

   

   

  first_part_6 = ((pi/(1-pi))^f_6)*(gamma^(-t_6)); 

   

  second_part_6 = ((det(X_0'*X_0))^0.5)/((det(E_6+(X_6'*X_6)))^0.5); 

   

  third_part_6 = ((S_beta_6+(beta_6'*E_6*beta_6))/(S_beta_0))^(-(n-1)/2); 
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  posterior_prop_6 = first_part_6 * second_part_6 * third_part_6 

 

 

 

  first_part_7 = ((pi/(1-pi))^f_7)*(gamma^(-t_7)); 

   

  second_part_7 = ((det(X_0'*X_0))^0.5)/((det(E_7+(X_7'*X_7)))^0.5); 

   

  third_part_7 = ((S_beta_7+(beta_7'*E_7*beta_7))/(S_beta_0))^(-(n-1)/2); 

   

  posterior_prop_7 = first_part_7 * second_part_7 * third_part_7 

 

 

 

  first_part_8 = ((pi/(1-pi))^f_8)*(gamma^(-t_8)); 

   

  second_part_8 = ((det(X_0'*X_0))^0.5)/((det(E_8+(X_8'*X_8)))^0.5); 

   

  third_part_8 = ((S_beta_8+(beta_8'*E_8*beta_8))/(S_beta_0))^(-(n-1)/2); 

   

  posterior_prop_8 = first_part_8 * second_part_8 * third_part_8 

 

 

 

  first_part_9 = ((pi/(1-pi))^f_9)*(gamma^(-t_9)); 

   

  second_part_9 = ((det(X_0'*X_0))^0.5)/((det(E_9+(X_9'*X_9)))^0.5); 

   

  third_part_9 = ((S_beta_9+(beta_9'*E_9*beta_9))/(S_beta_0))^(-(n-1)/2); 

   

  posterior_prop_9 = first_part_9 * second_part_9 * third_part_9 

 

   

  first_part_10 = ((pi/(1-pi))^f_10)*(gamma^(-t_10)); 

   

  second_part_10 = ((det(X_0'*X_0))^0.5)/((det(E_10+(X_10'*X_10)))^0.5); 

   

  third_part_10 = ((S_beta_10+(beta_10'*E_10*beta_10))/(S_beta_0))^(-(n-1)/2); 

   

  posterior_prop_10 = first_part_10 * second_part_10 * third_part_10 

 

 

 

  first_part_11 = ((pi/(1-pi))^f_11)*(gamma^(-t_11)); 

   

  second_part_11 = ((det(X_0'*X_0))^0.5)/((det(E_11+(X_11'*X_11)))^0.5); 

   

  third_part_11 = ((S_beta_11+(beta_11'*E_11*beta_11))/(S_beta_0))^(-(n-1)/2); 

   

  posterior_prop_11 = first_part_11 * second_part_11 * third_part_11 

 

 

 

  first_part_12 = ((pi/(1-pi))^f_12)*(gamma^(-t_12)); 

   

  second_part_12 = ((det(X_0'*X_0))^0.5)/((det(E_12+(X_12'*X_12)))^0.5); 

   

  third_part_12 = ((S_beta_12+(beta_12'*E_12*beta_12))/(S_beta_0))^(-(n-1)/2); 

   

  posterior_prop_12 = first_part_12 * second_part_12 * third_part_12 
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  first_part_13 = ((pi/(1-pi))^f_13)*(gamma^(-t_13)); 

   

  second_part_13 = ((det(X_0'*X_0))^0.5)/((det(E_13+(X_13'*X_13)))^0.5); 

   

  third_part_13 = ((S_beta_13+(beta_13'*E_13*beta_13))/(S_beta_0))^(-(n-1)/2); 

   

  posterior_prop_13 = first_part_13 * second_part_13 * third_part_13 

 

 

 

  first_part_14 = ((pi/(1-pi))^f_14)*(gamma^(-t_14)); 

   

  second_part_14 = ((det(X_0'*X_0))^0.5)/((det(E_14+(X_14'*X_14)))^0.5); 

   

  third_part_14 = ((S_beta_14+(beta_14'*E_14*beta_14))/(S_beta_0))^(-(n-1)/2); 

   

  posterior_prop_14 = first_part_14 * second_part_14 * third_part_14 

 

 

  first_part_15 = ((pi/(1-pi))^f_15)*(gamma^(-t_15)); 

   

  second_part_15 = ((det(X_0'*X_0))^0.5)/((det(E_15+(X_15'*X_15)))^0.5); 

   

  third_part_15 = ((S_beta_15+(beta_15'*E_15*beta_15))/(S_beta_0))^(-(n-1)/2); 

   

  posterior_prop_15 = first_part_15 * second_part_15 * third_part_15 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

  posterior_1 = posterior_prop_1*(1/(posterior_prop_1 + posterior_prop_2 + posterior_prop_3 + posterior_prop_4 + 

posterior_prop_5 + posterior_prop_6 + posterior_prop_7 + posterior_prop_8 + posterior_prop_9 + posterior_prop_10 + 

posterior_prop_11 + posterior_prop_12 + posterior_prop_13 + posterior_prop_14 + posterior_prop_15)) 

   

  posterior_2 = posterior_prop_2*(1/(posterior_prop_1 + posterior_prop_2 + posterior_prop_3 + posterior_prop_4 + 

posterior_prop_5 + posterior_prop_6 + posterior_prop_7 + posterior_prop_8 + posterior_prop_9 + posterior_prop_10 + 

posterior_prop_11 + posterior_prop_12 + posterior_prop_13 + posterior_prop_14 + posterior_prop_15)) 

    

  posterior_3 = posterior_prop_3*(1/(posterior_prop_1 + posterior_prop_2 + posterior_prop_3 + posterior_prop_4 + 

posterior_prop_5 + posterior_prop_6 + posterior_prop_7 + posterior_prop_8 + posterior_prop_9 + posterior_prop_10 + 

posterior_prop_11 + posterior_prop_12 + posterior_prop_13 + posterior_prop_14 + posterior_prop_15)) 

     

  posterior_4 = posterior_prop_4*(1/(posterior_prop_1 + posterior_prop_2 + posterior_prop_3 + posterior_prop_4 + 

posterior_prop_5 + posterior_prop_6 + posterior_prop_7 + posterior_prop_8 + posterior_prop_9 + posterior_prop_10 + 

posterior_prop_11 + posterior_prop_12 + posterior_prop_13 + posterior_prop_14 + posterior_prop_15)) 

      

  posterior_5 = posterior_prop_5*(1/(posterior_prop_1 + posterior_prop_2 + posterior_prop_3 + posterior_prop_4 + 

posterior_prop_5 + posterior_prop_6 + posterior_prop_7 + posterior_prop_8 + posterior_prop_9 + posterior_prop_10 + 

posterior_prop_11 + posterior_prop_12 + posterior_prop_13 + posterior_prop_14 + posterior_prop_15)) 

 

  posterior_6 = posterior_prop_6*(1/(posterior_prop_1 + posterior_prop_2 + posterior_prop_3 + posterior_prop_4 + 

posterior_prop_5 + posterior_prop_6 + posterior_prop_7 + posterior_prop_8 + posterior_prop_9 + posterior_prop_10 + 

posterior_prop_11 + posterior_prop_12 + posterior_prop_13 + posterior_prop_14 + posterior_prop_15)) 

 

  posterior_7 = posterior_prop_7*(1/(posterior_prop_1 + posterior_prop_2 + posterior_prop_3 + posterior_prop_4 + 

posterior_prop_5 + posterior_prop_6 + posterior_prop_7 + posterior_prop_8 + posterior_prop_9 + posterior_prop_10 + 

posterior_prop_11 + posterior_prop_12 + posterior_prop_13 + posterior_prop_14 + posterior_prop_15)) 

 

  posterior_8 = posterior_prop_8*(1/(posterior_prop_1 + posterior_prop_2 + posterior_prop_3 + posterior_prop_4 + 

posterior_prop_5 + posterior_prop_6 + posterior_prop_7 + posterior_prop_8 + posterior_prop_9 + posterior_prop_10 + 

posterior_prop_11 + posterior_prop_12 + posterior_prop_13 + posterior_prop_14 + posterior_prop_15)) 
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  posterior_9 = posterior_prop_9*(1/(posterior_prop_1 + posterior_prop_2 + posterior_prop_3 + posterior_prop_4 + 

posterior_prop_5 + posterior_prop_6 + posterior_prop_7 + posterior_prop_8 + posterior_prop_9 + posterior_prop_10 + 

posterior_prop_11 + posterior_prop_12 + posterior_prop_13 + posterior_prop_14 + posterior_prop_15)) 

 

  posterior_10 = posterior_prop_10*(1/(posterior_prop_1 + posterior_prop_2 + posterior_prop_3 + posterior_prop_4 + 

posterior_prop_5 + posterior_prop_6 + posterior_prop_7 + posterior_prop_8 + posterior_prop_9 + posterior_prop_10 + 

posterior_prop_11 + posterior_prop_12 + posterior_prop_13 + posterior_prop_14 + posterior_prop_15)) 

 

  posterior_11 = posterior_prop_11*(1/(posterior_prop_1 + posterior_prop_2 + posterior_prop_3 + posterior_prop_4 + 

posterior_prop_5 + posterior_prop_6 + posterior_prop_7 + posterior_prop_8 + posterior_prop_9 + posterior_prop_10 + 

posterior_prop_11 + posterior_prop_12 + posterior_prop_13 + posterior_prop_14 + posterior_prop_15)) 

 

  posterior_12 = posterior_prop_12*(1/(posterior_prop_1 + posterior_prop_2 + posterior_prop_3 + posterior_prop_4 + 

posterior_prop_5 + posterior_prop_6 + posterior_prop_7 + posterior_prop_8 + posterior_prop_9 + posterior_prop_10 + 

posterior_prop_11 + posterior_prop_12 + posterior_prop_13 + posterior_prop_14 + posterior_prop_15)) 

 

  posterior_13 = posterior_prop_13*(1/(posterior_prop_1 + posterior_prop_2 + posterior_prop_3 + posterior_prop_4 + 

posterior_prop_5 + posterior_prop_6 + posterior_prop_7 + posterior_prop_8 + posterior_prop_9 + posterior_prop_10 + 

posterior_prop_11 + posterior_prop_12 + posterior_prop_13 + posterior_prop_14 + posterior_prop_15)) 

 

  posterior_14 = posterior_prop_14*(1/(posterior_prop_1 + posterior_prop_2 + posterior_prop_3 + posterior_prop_4 + 

posterior_prop_5 + posterior_prop_6 + posterior_prop_7 + posterior_prop_8 + posterior_prop_9 + posterior_prop_10 + 

posterior_prop_11 + posterior_prop_12 + posterior_prop_13 + posterior_prop_14 + posterior_prop_15)) 

 

  posterior_15 = posterior_prop_15*(1/(posterior_prop_1 + posterior_prop_2 + posterior_prop_3 + posterior_prop_4 + 

posterior_prop_5 + posterior_prop_6 + posterior_prop_7 + posterior_prop_8 + posterior_prop_9 + posterior_prop_10 + 

posterior_prop_11 + posterior_prop_12 + posterior_prop_13 + posterior_prop_14 + posterior_prop_15)) 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Appendix 4B  Calculations for Bayesian Complete 

RSS Minimization Algorithm 

 

Calculations shown for two missing observations (Runs 1 and 2 assumed to be 

missing in data 1) 

 

 

 

Run A B C D Treatment Response Iteration y_4 y_7 AD

1 -1 -1 -1 1 d 27 0 27 27 -1

2 1 -1 -1 -1 a 27 1 27.5 28 -1

3 -1 1 -1 -1 bc 66 2 27.75 28.5 1

4 1 1 -1 1 abd 37 3 27.875 28.75 1

5 -1 -1 1 -1 c 71 4 27.9375 28.875 1

6 1 -1 1 1 acd 31 5 1

7 -1 1 1 1 bcd 28 6 -1

8 1 1 1 -1 abc 29 7 -1

8

9

10

y_1 = 27

y_6 = 27

b_1 = -8.5

b_2 = 0.5

b_3 = 0.25

b_4 = -8.75

b_12 =

b_13 =

b_14 = 11.75

y_3 = 27.5

y_7 = 28

b_1 = -8.4375

b_2 =

b_3 =

b_4 = -8.8125

b_12 =

b_13 =

b_14 = 11.5625

Iteration 1

Iteration 0

Missing observations 

(initial values)
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Appendix 4C  Calculations for Bayesian ANCOVA 

Algorithm 

Calculations shown for two missing observations (Runs 1 and 2 assumed to be 

missing in data 1) 

Std Order A B C D T'ment y z_1 z_2 AB AC AD

1 -1 -1 -1 1 d 0 1 0 1 1 -1

2 1 -1 -1 -1 a 0 0 1 -1 -1 -1

3 -1 1 -1 -1 b 66 0 0 -1 1 1

4 1 1 -1 1 abd 37 0 0 1 -1 1

5 -1 -1 1 -1 c 71 0 0 1 -1 1

6 1 -1 1 1 acd 31 0 0 -1 1 1

7 -1 1 1 1 bcd 28 0 0 -1 -1 -1

8 1 1 1 -1 abc 29 0 0 1 1 -1

Using y:

Effect_I = 32.75

Effect_A = -17

Effect_B = 14.5

Effect_C = 14

Effect_D = -17.5

Effect_AB = 3

Effect_AC = -2.5

Effect_AD = 37

Residual_1 = -14

Residual_2 = -14.5

Using z_1:

Effect_I = 0.125

Effect_A = -0.25

Effect_B = -0.25

Effect_C = -0.25

Effect_D = 0.25

Effect_AB = 0.25

Effect_AC = 0.25

Effect_AD = -0.25

Residual_1 = 0.5

Residual_2 = 0

Using z_2:

Effect_I = 0.125

Effect_A = 0.25

Effect_B = -0.25

Effect_C = -0.25

Effect_D = 0.25

Effect_AB = -0.25

Effect_AC = -0.25

Effect_AD = -0.25

Residual_1 = -0.25

Residual_2 = 0.75

-0.5 0 -14

0.25 -0.75 -14.5

-2 0

-0.666666667 -1.333333

28

28.66666667

using terms in the model as specified by Bayesian analysis

using terms in the model as specified by Bayesian analysis

using terms in the model as specified by Bayesian analysis

using terms in the model as specified by Bayesian analysis
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5. MULTISTAGE FRACTIONAL FACTORIAL 
SPLIT-PLOT DESIGNS 

 

In some nanomanufacturing situations, due to the physical constraints in the process, it is 

impracticable to execute a full or fractional factorial experiment. In such cases, restriction 

on randomization is imposed and the experimenter is forced to resort to a split-plot design 

or some of its variants. Many processes in nanomanufacturing are conducted over a series 

of stages. Additionally, some of the process variables in some of the stages might be 

difficult or hard to change in terms of time, limited resources, or – in many cases – 

money. Specifically, a polymerization process for the fabrication of nano-films is studied, 

where the fabrication is carried out over three stages. To execute efficient 

experimentation and fully understand the intricacies at the nano-scale, split-plot designs 

that can be applied effectively over multiple stages are proposed and their characteristics 

examined. General expressions for some of the properties of these designs and their 

analysis are developed. As common design ranking criteria such as resolution and 

minimum aberration do not provide the “best” designs in all cases, two new design 

optimality criteria are proposed. Catalogs of split-plot designs for three and four stages 

are created and ranked according to the proposed criteria. 

 

5.1 Motivating Example: Nano-Scale Polymerization Process 

Nanotechnology is the science of building structures atom by atom and molecule by 

molecule, thus providing an excellent opportunity for a bottom-up manufacturing 
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approach. Two of the most common techniques of fabricating nanostructures are 

commonly known as top-down and bottom-up approaches.  

 The motivating example for this research originated from one such bottom-up 

approach involving fabrication of a thin film using a surface initiated polymerization 

process (Dronavajjala et al., 2006). For this process to be used commercially, in the 

manufacture of resists for instance, the kinetics needs to be well understood to achieve 

reproducibility, precision, and control. In order to apply a working chemistry in 

fabricating devices, an excellent control of the kinetics of polymerization process is 

required. The polymerization process is carried out over three stages as illustrated in 

Figure 5.1. 

 

Argon 

Stage I Stage II Stage III

Anchoring catalyst on SAM

Monomer catalyst 

anchored SAM

Synthesis of polymer brush

Rinse+ + Dry

NC-C15-SH solution

Ag

Cr

Silicon wafer

Solvent containing catalyst

Preparation of SAM

Silicon wafer

Cr

Ag

 

Figure 5.1:  Three stage polymerization process. 

 

 

Stage I. Preparation of Self-Assembled Monolayer (SAM) 

SAMs are highly ordered quasi-two-dimensional structures formed by adsorption of 

appropriate precursors from solution into a solid substrate. As gold is relatively inert, has 

affinity to silicon, and is known to form stable monolayers (Bain et al., 1989), a gold 

substrate is chosen for the study. A two-inch silicon wafer is pre-coated with 10nm of 
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chromium to improve adhesion between the gold and silicon substrate. The gold 

substrates are prepared by thermal evaporation of 200nm of gold onto the wafer. The 

SAMs are formed by immersion of the evaporated substrates into a 1mM 16-mercapto-

hexa-decane-nitrile (NC-C15-SH) solution in absolute ethanol at room temperature for 24 

hours. After immersion, the substrates are rinsed with absolute ethanol and dried with 

nitrogen. 

 

Stage II. Anchoring Catalyst on the SAM 

The catalyst used in this study is a palladium complex ([Pd(CH3CH2CN)4](BF4)2). This 

compound has been found to be an effective room temperature catalyst for the 

polymerization of styrene and its derivatives. The SAM formed substrate is immersed in 

a nitromethane solution containing the Pd complex at room temperature for 12 hours. The 

Pd complex reacts with the tail group (-CN) of the SAM and attaches itself to the 

substrate through ligand exchange. Once the catalyst anchors itself to the SAM, the 

substrate is rinsed with an appropriate solvent in order to wash the excess catalyst from 

the surface. It is imperative that the rinsing solvent not affect the synthesis of the 

polymer, and hence, the catalyst-anchored-SAM has to be dried. Therefore, after rinsing, 

the substrate is treated with a blast of high-purity nitrogen gas for a specified time, and all 

traces of the solvent removed.  

 

Stage III. Synthesis of polymer brush 

The catalyst acts as an initiator during the synthesis. The catalyst-anchored substrate is 

exposed to Argon gas, which is saturated with a monomer. Initiation proceeds by the 
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reaction of monomer and initiator, in the presence of Argon, to produce a growing 

species. The growing species propagates with addition of a new monomer molecule to 

form a longer chain. Polymers are this continuously formed as monomer reacts with the 

initiator. The rate of propagation should be greater than the rate of chain transfer for 

growth of the polymer thin film. One end of the polymer chain is tethered to a 

heterogeneous support (on the catalyst-anchored SAM) and the other end is growing 

away from the surface. The film thickness is dependent upon the length of polymer chain. 

Therefore, polymerization reaction should be done at conditions conducive for polymer 

growth where propagation is faster than that of chain transfer. 

 The thickness of the polymer brush at the end of the synthesis (third processing 

stage) is measured using an ellipsometry technique and is treated as the response. 

 

5.2 Multistage Split-Plot (MSSP) Designs 

Before constructing a design for the three-stage process described in the previous section, 

let us consider a simple two-stage experiment. If eight factors were identified for the 

investigation, a full factorial design would require 2
8
 = 256 runs, which would mean 256 

different setting changes for each factor. A fractional factorial design would reduce the 

number of setting changes in general, but would not help if a particular factor were more 

difficult to change than the others were.  In addition, if some factors were believed to be 

more significant than others were, the fractional factorial design would not provide 

increased precision in determining the significance of those particular effects (all effects 

would be tested for significance with equal precision). A better design in this case would 

be a split-lot design. Split-lot designs offer the advantage of running economical 
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experiments by consuming fewer resources while still yielding the same information as a 

fractional factorial experiment. However, due to the nature of the design, fractionation in 

a split-lot design is limited as the generating columns in a particular stage can only be a 

combination of the factors within the same stage. Additionally, in a split-lot design, 

experimental units are re-grouped in every stage to form new groups. Hence, an implicit 

assumption being made is that before experimental units can be processed in a stage, 

processing at all preceding stages need to be completed. However, in experimental setups 

like the polymerization process discussed in Section 5.1, it is important that some 

experimental units be treated over all stages before others as there might be additional 

“unwanted” reactions occurring if the films are not formed on the substrate. 

 To overcome the shortcomings of the fractional factorial and split-lot designs, a 

repeated measures designs could be employed in such circumstances. These designs are 

used when multiple measurements are taken on some of the factors under consideration. 

Under certain conditions, a repeated measures deign (Kutner et al., 2005) can also be 

viewed as a split-plot design. Let us consider a simple example to shed some light on this 

claim.  

 

Example 1 

Consider a simple design having three factors (p, q, and r) in which repeated measures 

are taken only on two (p and q) of the three factors. Following the usual terminology, 

factor r is known as the “within” factor, and factors p and q are referred to as the 

“between” factors. A fourth factor, d denotes the experimental unit. If two levels of each 

factor are to be investigated, the design could be as illustrated in Table 5.1. 
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Table 5.1: Repeated Measures Design 

p q - +

- - d 1

+ d 2

+ - d 3

+ d 4

r

 

 

Experimental units are randomly assigned to four levels of factors p and q. Factor 

r is then assigned randomly to the experimental units. An experimental unit assigned to a 

particular combination of factor levels is typically referred to as an “individual”, 

following the nomenclature. The term “individual” arises from the application of repeated 

measures design to psychological or behavioral studies, where multiple measurements are 

taken on the same person (also referred to as the subject).  

Comparisons between factor p (or q) level means involve differences between 

groups as well as differences associated with the two factor p (or q) levels. Moreover, 

comparisons between factor r level means at the same levels of factors p and q involve 

differences associated with the two factor r levels. 

The following assumptions are necessary for a repeated measures design: 

• Normality: The probability distribution of the errors follows a normal distribution with 

mean zero. 

• Independence: The errors are independently distributed. 

• Constant variance: The probability distribution of each error has a constant variance. 
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• Sphericity: Any two observations, Yij and Yij  for a given subject are correlated in the 

same fashion for all subjects. 

• Compound symmetry: Any two observations from different subjects (between factors) 

are independent. 

The model (assuming no interaction between subjects and treatments) is 

ijkl)ij(klijkjlill)ij(kijjijkl pqdrpqrqrprrpqdpqqY ε++++++++++= )()(pµ i          (5.1) 

.assumptionsymmetry  compound  thengrepresenti ;0}{

and ,assumption sphericity  thengrepresenti ;}{

,),0(

,),0()(

constant, a is

where

2

2

2

'k'k,'jj,'ii,,YYσ

'll,,YYσ

i.i.d,N~

i.i.d,N~pqd

'l'k'j'iijkl

dijkl'ijkl

ijkl

d)ij(k

≠≠≠=

≠= σ

σε

σ

µ

ε

 

 

As differences between subjects are treated separately from differences within 

subjects, small consistent differences among the subjects can be detected. This increases 

the power of significance tests. Furthermore, the reduction in the error component of the 

model represents a direct increase in economy and power.  

Close examination of the table of expected mean squares reveals that “between 

individuals” effects, p, q, and pq are tested against σd
2
 and “within individuals” effects, r, 

pr, qr, and pqr are tested against σ
2
. 

The use of repeated measures design has been confined due to some limitations. A 

major disadvantage of repeated measures design is that measurements taken on an 

individual over adjacent periods of time might be correlated, which is not accounted for 

in the model. For instance, individuals might tend to give higher ratings towards the end 
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of a period than at the beginning, or vice-versa. Another scenario is when there exists a 

carry-over effect from a preceding observation. The only way to discount this effect is to 

randomize the order of treatments on individuals. A sphericity assumption would then be 

more reasonable. 

However, in certain instances, it is impossible to randomize the treatment order. 

For instance, when measurements are to be taken on an individual in intervals of five 

minutes, it is impossible to randomize - hence, the limitation of repeated measures design 

in behavioral and life sciences studies. A more reasonable setting where these designs can 

be applied is in manufacturing situations where experimental units replace individuals 

and measurements are not taken over time.  

 A repeated measures design, under certain conditions, can be also thought of as a 

split-plot design. One such condition is when individuals in the repeated measures design 

can be replaced by experimental units. The sphericity assumption, then, would be much 

more reasonable as experimental units tend to be correlated in a constant fashion. 

Furthermore, the “between individual” factor becomes the whole plot factor and the 

“within individuals” factor resembles the sub-plot factor. As in any split-plot design, 

observations from different whole plots are assumed to be independent, the compound 

symmetry assumption from the repeated measures design is satisfied. Hence, in Example 

1, factors p and q represent whole plot factors, and r represents the sub-plot factor. In 

general, a non-repeated (“between”) factor in a repeated measures design is represented 

by whole plot factors and repeated (“within”) factors represented by sub-plot factors in a 

split-plot design. An additional condition necessary to balance the orthogonal structure in 

multi-factor two-level split-plot designs is that the number of experimental units should 
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be equal to the number of runs in the sub-plot. The split-plot design for the example is 

shown in Table 5.2.  

 

Table 5.2: Equivalent Split-Plot Design 

p q r

- - - d 1

+ d 1'

+ - d 2

+ d 2'

+ - - d 3

+ d 3'

+ - d 4

+ d 4'
 

 

In this design, individuals (di) from the repeated measures design are replaced by 

two (di and di') experimental units. An appropriate model for the split-plot design applied 

to Example 1 is 

 

EijkjkikkEijjiijkl SPpqrqrprrWPpqqpY +++++++++= µ                      (5.2) 

.assumptionsymmetry  compund  thengrepresenti ;0}{

 and ,assumption sphericity  thengrepresenti ;}{

,)0(

,)0(

constant, a is 

where

2

2

2

'k'k,'jj,'ii,,YYσ

'll,,YYσ

i.i.d,,N~SP

i.i.d,,N~WP
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σ

σ
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The expected mean squares of the split-plot design reveals that effects p, q, and pq 

are tested for significance against WPE, and effects r, pr, qr, and pqr are tested against 

SPE. 

In summary, split-plot designs are a special case of repeated measures designs. 

For a repeated measures design to be considered a split-plot, the following must be true: 

i. There must exist at least one “between” factor. 

ii. There must exist at least one “within” factor. 

iii. Individuals can be replaced by single or multiple experimental units. 

iv. The assignment order of the experimental units within “between” factor(s) must be 

completely randomized. 

v. Sphericity assumption must be satisfied. 

vi. Compound symmetry assumption must be satisfied. 

  

 A multistage split-plot (MSSP) design can be thought of as having a single whole 

plot and a subsequent series of sub-plots. The MSSP design is equivalent to a repeated 

measures design with multiple stages of “within” and “between” factors. In the next 

sections, various theoretical properties and characteristics of MSSP and multistage 

fractional factorial split-plot (MSFFSP) designs are investigated, and general expressions 

for m stages would be provided. 

 

5.3 Design Considerations 

In this section, some properties of the MSSP design are investigated through some 

examples. General expressions are derived from these examples, wherever appropriate. 
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5.3.1 Linear Model and Error Structure 

Based on the randomization principle, a linear model for a split-plot design was derived 

by Hinklemann and Kempthorne (1994). As the principle of randomization is the same 

for MSSP designs, the linear model for the same need not be derived, but simply 

extended to fit the case for a m-stage MSSP. 

Let 
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where 

Si is an effect in stage i, 

W is an effect in stage 1 (whole plot), 

y
(m)

 is response measured at the end of m
th

 stage, 

µ  is the overall mean, 

r is the random effect of the replicate, 

WPE is the whole plot (stage 1) error ~N(0, 2

EWP
σ ), and 

Ei
SP  is the error of stage i ~N(0, 2

Ei
SPσ ).  
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 Equations 5.3, 5.4, and 5.5 represent the general expression of the linear model 

for an m-stage MSSP design. The usual normality, independence, and constant variance 

assumptions are assumed for the model. Unlike a split-lot design, it is observed that the 

number of error terms equals the number of stages.  

 

Example 2:  

Consider a four-stage MSSP design involving factors A, B, C, and D in stages 1, 2, 3, and 

4, respectively. Following the general expression, a linear model for a four-stage design 

is represented by 

 

EEE
SPxSPxSPxWPAry E 3

)4(

2

)3(

1

)2()4( +++++++++= µ                     (5.6) 

where 
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Therefore, by substitution, we get 

E

EE

SPABDBDABCDBCDACDCDADD

SPABCBCACCSPABBWPAry E

3

21

)4(

++++++++

++++++++++++= µ
.           (5.7) 

 

5.3.2 Significance Tests for Effects in MSFFSP Designs 

As there are many error strata in a MSSP design, it is important to know which contrasts 

are to be tested against which error term in order to test for significance. A 
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straightforward but tedious way to do this is to derive the variance of the contrasts based 

on the model.  

 

Example 3 

Consider a simple unreplicated 2
2
 × 2

2
 × 2

2
 MSSP design, with factors A and B in stage 1, 

P and Q in stage 2, and M and N in stage 3. As this is a three-stage experiment, there 

would be three error terms, corresponding to the three stages. The model for the design 

can be represented as 

41)( ..k,j,ixfy ijkjkkijkijk =+++= εεε                                 (5.8) 

where 

i, j, and k represent the number of runs in stages 1, 2, and 3, respectively. 

f(xijk) is the deterministic part of the model and contains the effects of stage 1 (St1), stage 

2 (St2), and stage 3 (St3), given by 

f(xijk) = µ  + (St1)k + (St2)j + (St3)i.                                       (5.9) 

)σ(0, ~,  is 2

WPNi.i.d.kε  , and represents the stage 1 error. 

)σ(0, ~,  is 2

S1
Ni.i.d.jkε  , and represents the stage 2 error. 

)σ(0, ~,  is 2

S2
Ni.i.d.ijkε  , and represents the stage 3 error. 

 The model terms for each of the 64 runs of the design, excluding the deterministic 

part is shown in Table 5.3.  
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Table 5.3: Model Terms 

Run A B P Q M N y ijk Error term

1 - - - - - - y 111 ε 1  + ε 11  + ε 111

2 - - - - + - y 211 ε 1  + ε 11  + ε 112

3 - - - - - + y 311 ε 1  + ε 11  + ε 113

4 - - - - + + y 411 ε 1  + ε 11  + ε 114

5 - - + - - - y 121 ε 1  + ε 12  + ε 121

6 - - + - + - y 221 ε 1  + ε 12  + ε 122

7 - - + - - + y 321 ε 1  + ε 12  + ε 123

8 - - + - + + y 421 ε 1  + ε 12  + ε 124

9 - - - + - - y 131 ε 1  + ε 13  + ε 131

10 - - - + + - y 231 ε 1  + ε 13  + ε 132

11 - - - + - + y 331 ε 1  + ε 13  + ε 133

12 - - - + + + y 431 ε 1  + ε 13  + ε 134

13 - - + + - - y 141 ε 1  + ε 14  + ε 141

14 - - + + + - y 241 ε 1  + ε 14  + ε 142

15 - - + + - + y 341 ε 1  + ε 14  + ε 143

16 - - + + + + y 441 ε 1  + ε 14  + ε 144

17 + - - - - - y 112 ε 2  + ε 21  + ε 211

18 + - - - + - y 212 ε 2  + ε 21  + ε 212

19 + - - - - + y 312 ε 2  + ε 21  + ε 213

20 + - - - + + y 412 ε 2  + ε 21  + ε 214

21 + - + - - - y 122 ε 2  + ε 22  + ε 221

22 + - + - + - y 222 ε 2  + ε 22  + ε 222

23 + - + - - + y 322 ε 2  + ε 22  + ε 223

24 + - + - + + y 422 ε 2  + ε 22  + ε 224

25 + - - + - - y 132 ε 2  + ε 23  + ε 231

26 + - - + + - y 232 ε 2  + ε 23  + ε 232

27 + - - + - + y 332 ε 2  + ε 23  + ε 233

28 + - - + + + y 432 ε 2  + ε 23  + ε 234

29 + - + + - - y 142 ε 2  + ε 24  + ε 241

30 + - + + + - y 242 ε 2  + ε 24  + ε 242

31 + - + + - + y 342 ε 2  + ε 24  + ε 243

32 + - + + + + y 442 ε 2  + ε 24  + ε 244

33 - + - - - - y 113 ε 3  + ε 31  + ε 311

34 - + - - + - y 213 ε 3  + ε 31  + ε 312

35 - + - - - + y 313 ε 3  + ε 31  + ε 313

36 - + - - + + y 413 ε 3  + ε 31  + ε 314

37 - + + - - - y 123 ε 3  + ε 32  + ε 321

38 - + + - + - y 223 ε 3  + ε 32  + ε 322

39 - + + - - + y 323 ε 3  + ε 32  + ε 323

40 - + + - + + y 423 ε 3  + ε 32  + ε 324

41 - + - + - - y 133 ε 3  + ε 33  + ε 331

42 - + - + + - y 233 ε 3  + ε 33  + ε 332

43 - + - + - + y 333 ε 3  + ε 33  + ε 333

44 - + - + + + y 433 ε 3  + ε 33  + ε 334

45 - + + + - - y 143 ε 3  + ε 34  + ε 341

46 - + + + + - y 243 ε 3  + ε 34  + ε 342

47 - + + + - + y 343 ε 3  + ε 34  + ε 343

48 - + + + + + y 443 ε 3  + ε 34  + ε 344

49 + + - - - - y 114 ε 4  + ε 41  + ε 441

50 + + - - + - y 214 ε 4  + ε 41  + ε 442

51 + + - - - + y 314 ε 4  + ε 41  + ε 443

52 + + - - + + y 414 ε 4  + ε 41  + ε 444

53 + + + - - - y 124 ε 4  + ε 42  + ε 421

54 + + + - + - y 224 ε 4  + ε 42  + ε 422

55 + + + - - + y 324 ε 4  + ε 42  + ε 423

56 + + + - + + y 424 ε 4  + ε 42  + ε 424

57 + + - + - - y 134 ε 4  + ε 43  + ε 431

58 + + - + + - y 234 ε 4  + ε 43  + ε 432

59 + + - + - + y 334 ε 4  + ε 43  + ε 433

60 + + - + + + y 434 ε 4  + ε 43  + ε 434

61 + + + + - - y 144 ε 4  + ε 44  + ε 441

62 + + + + + - y 244 ε 4  + ε 44  + ε 442

63 + + + + - + y 344 ε 4  + ε 44  + ε 443

64 + + + + + + y 444 ε 4  + ε 44  + ε 444  
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 The estimate of any term in the model can be calculated as usual, i.e. the 

difference between the summation of all runs that have a “+” sign for the effect and the 

summation of all runs that have a “-” sign for that effect in the design matrix. For 

example, estimate of effect A (stage 1) in Example 3 is calculated from Table 5.3 and is 

given by 
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Applying the variance operator, we get 
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 It can be seen that the estimate of an effect in stage 1 involves all the error terms 

of the model. Similarly, the estimate of an effect in stage 2 (say effect P) is given by 
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Applying the variance operator, we get 
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Similarly, 
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 Thus, it is observed that the estimate of an effect from a particular stage includes 

all of the error terms in that particular stage and all of the stages following it. 

Furthermore, Table 5.4 represents all effects that have the same variance estimates. It can 

be seen that all main effects in a stage, interactions between the factors in the stage 

(“pure” interactions), and the interactions of the main effects and “pure” interactions with 

all effects from the previous stages have the same estimate of variance. 
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Table 5.4: Contrasts having Same Variance Estimates 

ε k, ε jk , and ε ijk ε jk  and ε ijk

A P M AQM

B Q N AQN

AB PQ MN AQMN

AP AM APQM

AQ AN APQN

APQ AMN APQMN

BP BM BPM

BQ BN BPN

BPQ BMN BPMN

ABP ABM BQM

ABQ ABN BQN

ABPQ ABMN BQMN

PM BPQM

PN BPQN

PMN BPQMN

QM ABPM

QN ABPN

QMN ABPMN

PQM ABQM

PQN ABQN

PQMN ABQMN

APM ABPQM

APN ABPQN

APMN ABPQMN

ε ijk

 

 

 The expected value of the stage 1 error consists of variances from stage 1, stage 2, 

and stage 3 error terms. Similarly, the expected value of the stage 2 error consists of 

variances from stage 2, and stage 3 error terms and finally, the expected value of the 

stage 3 error consists of variance from stage 3 error term only. Comparing this to the 

estimates of variances for the effects shown in Table 5.4, it is seen that effects consisting 

of εk, εjk, and εijk should be tested against stage 1 error, effects containing εjk, and εijk 

should be tested against stage 2 error, and effects containing εijk should be tested against 

stage 3 error.  
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Example 4 

If an additional factor has to be tested in each of the three stages of Example 3, and the 

number of runs (64) needs to be the same, fractionation of a certain degree needs to be 

considered. A MSFFSP design could be considered in this case. Let the additional factors 

be C (stage 1), R (stage 2), and O (stage 3). The design can be represented 

by 332211 222
pkpkpk −−− ×× , where pi represents the number of generators in stage i, and (ki-

pi) is the number of runs in stage i. Let N be the number of total runs in the design and Sti 

be an effect in stage i. Following Equations 5.11, 5.13, and 5.14, the estimate of variance 

for a three-stage fractional factorial split-plot design can be generalized as follows: 
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 Extending this result to an m-stage MSFFSP (m-MSFFSP) design, a general 

expression for the variance of an effect in stage i can be calculated by 

mi
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where 

Sti is an effect in stage i, and  

2

iStσ is the variance of the error term in stage i. 

 Close examination of the variance of estimates reveals that effects in latter stages 

are estimated with greater precision than effects from preceding stages as the variance of 

those contrasts are smaller. For instance, main effect P is estimated with higher precision 

than main effect A, main effect M is estimated with higher precision that main effects A 

and P, and so on. This result is of particular interest in constructing appropriate designs if 

prior knowledge of “important” effects is available. 

 Assignment of contrasts to appropriate error terms is a bit more challenging in a 

MSFFSP design. If confounding within plots for the design in Example 4 is considered, 

then the defining relation corresponding to maximum resolution is 

 

I = ABC = PQR = MNO = ABCPQR = ABCMNO = PQRMNO = ABCPQRMNO. (5.19) 

 

 The estimate of variance for factor A would suggest that the main effect A be 

tested against stage 1 error and the effect AMNO be tested against stage 3 error. The alias 
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structure for the design up to fourth order interactions is provided in Table 5.5. From the 

table and the defining relation, it is seen that the confounding structure is 

 

A + BC + APQR + AMNO + BCPQR + BCMNO + APQRMNO + BCPQRMNO. 

 

Table 5.5: Alias Structure for Example 4 

A + BC + APQR + AMNO AQM + BCQM + APRM + AQNO

B + AC + BPQR + BMNO AQN + BCQN + APRN + AQMO

C + AB + CPQR + CMNO AQO + BCQO + APRO + AQMN

P + ABCP + QR + PMNO ARM + BCRM + APQM + ARNO

Q + ABCQ + PR + QMNO ARN + BCRN + APQN + ARMO

R + ABCR + PQ + RMNO ARO + BCRO + APQO + ARMN

M + ABCM + PQRM + NO APM + BCPM + AQRM + APNO

N + ABCN + PQRN + MO APN + BCPN + AQRN + APMO

O + ABCO + PQRO + MN APO + BCPO + AQRO + APMN

AP + BCP + AQR + BCQR BPM + ACPM + BQRM + BPNO

AQ + BCQ + APR + BCPR BPN + ACPN + BQRN + BPMO

AR + BCR + APQ + BCPQ BPO + ACPO + BQRO + BPMN

BP + ACP + BQR + ACQR BQM + ACQM + BPRM + BQNO

BQ + ACQ + BPR + ACPR BQN + ACQN + BPRN + BQMO

BR + ACR + BPQ + ACPQ BQO + ACQO + BPRO + BQMN

CP + ABP + CQR + ABQR BRM + ACRM + BPQM + BRNO

CQ + ABQ + CPR + ABPR BRN + ACRN + BPQN + BRMO

CR + ABR + CPQ + ABPQ BRO + ACRO + BPQO + BRMN

PM + QRM + PNO + QRNO CPM + ABPM + CQRM + CPNO

PN + QRN + PMO + QRMO CPN + ABPN + CQRN + CPMO

PO + QRO + PMN + QRMN CPO + ABPO + CQRO + CPMN

QM + PRM + QNO + PRNO CQM + ABQM + CPRM + CQNO

QN + PRN + QMO + PRMO CQN + ABQN + CPRN + CQMO

QO + PRO + QMN + PRMN CQO + ABQO + CPRO + CQMN

RM + PQM + RNO + PQNO CRM + ABRM + CPQM + CRNO

RN + PQN + RMO + PQMO CRN + ABRN + CPQN + CRMO

RO + PQO + RMN + PQMN CRO + ABRO + CPQO + CRMN

AM + BCM + ANO + BCNO

AN + BCN + AMO + BCMO

AO + BCO + AMN + BCMN

BM + ACM + BNO + ACNO

BN + ACN + BMO + ACMO

BO + ACO + BMN + ACMN

CM + ABM + CNO + ABNO

CN + ABN + CMO + ABMO

CO + ABO + CMN + ABMN  
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 Hence, the quandary of whether the above alias chain is to be tested against stage 

1 or stage 3 error term needs to be addressed. This calls for rules that prioritize certain 

effects to be tested against appropriate error terms in the presence of complex aliasing. 

Similar rules were first developed for a basic split-plot design by Bisgaard (2000) and 

summarized by Bingham and Sitter (2001). Bisgaard (2000) considered a 2
k-p

 × 2
q-r

 split 

plot design having (2
k-p

 × 2
q-r

 - 1) linear contrasts. The following rule was developed to 

assign contrasts to appropriate error terms.  

 

Rule: The (2
k-p

 – 1) contrasts generated by multiplying out the (k – p) basic generators 

for the whole plot design in all possible ways and their aliases are tested against the 

whole plot error. The remaining 2
k-p

 (2
q-r

 - 1) contrasts are tested against the sub-plot 

error.  

  

 However, there is still a need to extend these rules for an m-MSFFSP design and 

is addressed here. The basis of these rules is that “pure” interactions get precedence over 

other interaction terms and “pure” interactions of stage i gets precedence over another 

“pure” interaction term in stage k, such that k > i. Specific rules for the three stage 

MSFFSP design of Example 4 are as follows. 

 

i. Stage 1 main effects and interactions involving only stage 1 factors (and their 

aliases) are tested against stage 1 error. 

 e.g., main effects A, B, and C are tested against stage 1 error. 
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ii. Stage 2 main effects or interactions that are aliased with stage 1 main effects or pure 

stage 1 interactions are tested against stage 1 error. 

 e.g., none in Example 4. 

iii. Stage 3 main effects or interactions that are aliased with stage 1 main effects or pure 

stage 1 interactions are tested against stage 1 error. 

 e.g., none in Example 4. 

iv. Stage 3 main effects or interactions that are aliased with stage 2 main effects or pure 

stage 2 interactions are tested against stage 2 error. 

 e.g., none in Example 4. 

v. Stage 2 main effects and interactions involving at least one stage 2 factor and no 

stage 3 factors that are not aliased with either of the following effects are tested 

against stage 2 error. 

• stage 1 main effects 

• pure stage 1 interactions  

 e.g., ABCQR (= P), ABCPR (= R), ABCPQ (= R), AP, AQ, AR, BP, BQ, BR, CP,  

 CQ, and CR are tested against stage 2 error. 

vi. Stage 3 main effects and interactions involving at least one stage 3 factor that are 

not aliased with any of the following effects are tested against stage 3 error. 

• stage 1 main effects  

• pure stage 1 interactions 

• stage 2 main effects 

• pure stage 2 interactions 

• interaction terms involving stages 1 and 2 
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 e.g., M, N, O, PM, PN, PO, QM, QN, QO, RM, RN, RO, AM, AN, AO, BM, BN, 

BO, CM, CN, CO, AQM, AQN, AQO, ARM, ARN, ARO, APM, APN, APO, BPM, 

BPN, BPO, BQM, BQN, BQO, BRM, BRN, BRO, CPM, CPN, CPO, CQM, CQN, 

CQO, CRM, CRN, and CRO are tested against stage 3 error. 

 

These rules can be generalized for the case of an m-MSFFSP design as follows. 

 

Rule 1. Stage 1 main effects and interactions involving only stage 1 factors (and their 

aliases) are tested against stage 1 error (
E

St1 ). 

Rule 2. Stage i main effects or interactions that are aliased with stage j main effects or 

pure stage j interactions (for every i = 2,..., m, j = 1,.., i-1) are tested against the 

error term of stage j (
Ej

St ). 

Rule 3. Stage i main effects and interactions involving at least one stage i factor and no 

stage k factors that are aliased with stage j main effects, pure stage j interactions, 

or interactions involving stage j and stage (j-1) factors are tested against the 

stage i error term (
Ei

St ), where k > i and for every i = 2, ..... , m; j = 1,...., i-1. 

  

 When these rules are applied to an m-MSFFSP design, regardless of the type on 

confounding (confounding within plots or split-plot  confounding), it is observed that the 

number of contrasts to be tested against the error term in stage i is represented by 
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These contrasts correspond to the sum of the following contrasts 

a) Contrasts generated by multiplying out the (ki – pi) basic generators in all possible 

ways, and 

b) Contrasts in (a) multiplied by similar contrasts from previous (1, 2,..., i-1) stages. 

 

For Example 4, the number of contrasts to be tested against stage 1 error is given by 
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These three contrasts correspond to the three effects mentioned under rule (i) for 

Example 4. Similarly, the number of contrasts to be tested against stage 2 error is given 

by 
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These twelve contrasts correspond to the three effects mentioned under rule (v). Finally, 

the number of contrasts to be tested against stage 3 error is given by 
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These forty-eight contrasts correspond to the three effects mentioned under rule (vi). 

 

5.3.3 Relative Efficiency of MSSP designs 

Box and Jones (1992) compared the efficiency of two arrangements of split-plot design 

with that of a completely randomized design (CRD) and a strip-plot design. The estimates 

of error variance for each design were calculated and compared, assuming an uniformity 

trial. Kuehl (2000) explains the uniformity trial as an experiment in which the 

experimental units are measures, but have not been subjected to any treatments. In order 

to compare the efficiency of the MSSP designs to a CRD, the degrees of freedom for all 

the error terms need to be examined under the uniformity trial.  

 

Example 5 

Consider a replicated 3-MSSP design with factors A, B, and C corresponding to stages 1, 

2, and 3, respectively. A fixed-effects linear model for this design can be represented by 

 

ijkljklkljll

ijkjkkijjiijkl

E

EE

StABCBCACC

StABBStARy

)()()()(

)()()(

3

21

++++

+++++++= µ
                           (5.21) 

where 

µ  is the overall mean, 
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a represents the levels of factor A; j = 1, ...., a, 

b represents the levels of factor B; k = 1, ...., b, 

c represents the levels of factor C; l = 1, ...., c, 

r represents the number of replications; i = 1, ...., r, 

)(0,~ and 1 stage oferror   therepresents )( 2

11 σNSt
E

, 

)(0,~ and 2 stage oferror   therepresents )( 2

22 σNSt
E

, and 

)(0,~ and 3 stage oferror   therepresents )( 2

33 σNSt
E

. 

 The effect (RA)ij represents the stage 1 error and effects (RB)ik and (RAB)ijk are 

pooled to form the error for stage 2. Similarly, effects (RC)il, (RAC)ijl, (RBC)ikl, and 

(RABC)ijkl are pooled to form the error for stage 3. The degrees of freedom and the EMS 

of the error terms are shown in Table 5.6. 

 

Table 5.6: Partial ANOVA Table for Example 5 

Source d.o.f. EMS

R i (r-1)

A j (a-1)

St 1e (r-1)(a-1) ESt1

B k (b-1)

AB jk (a-1)(b-1)

(St 2e ) ijk a(r-1)(b-1) ESt2

C l (c-1)

AC jl (a-1)(c-1)

BC kl (b-1)(c-1)

ABC jkl (a-1)(b-1)(c-1)

(St 3e ) ijkl ab(r-1)(c-1) ESt3

Total abcr-1  

 

Considering the uniformity trial, the degrees of freedom for stage 1 error is given by 
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1)()()()( 1 −=++= arRAdofAdofRdofStdof
E

.                          (5.22) 

 

The degrees of freedom for stage 2 error term is given by 

 

      )1()(R)()()()( 2 −=+++= barABdofRBdofABdofBdofStdof
E

.        (5.23) 

 

Finally, degrees of freedom for stage 3 error term is given by 

 

 

)1(

)(R)(

)(R)()(C)()()()( 3

−=

++

+++++=

cabr

ABCdofRBCdof

ACdofRCdofABCdofBdofACdofCdofStdof
E

.  (5.24) 

  

 In addition, as a CRD has a single error term, the degrees of freedom for the error 

term, ECR, equals the total degrees of freedom under uniformity trial. Hence, 

 

1)( −= abcrEdof CR .                                                             (5.25) 

  

 Therefore, if the uniformity trial were run as a CRD, an estimate of error variance 

for this design would be 

 

321 StStSt )1()1()1r()1( EcabrEbarEaEabcr CR −+−+−=− .                  (5.26) 
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 For an unreplicated 2-level factorial design, r = 1, a = b = c = 2, and hence 

Equation 5.26 can be written as  

 

321 StStSt 427 EEEECR ++= .                                                  (5.27) 

 

 As the left-hand side of Equation 5.27 is a weighted sum of the right-hand side, 

and since 
321 StStSt EEE >> , 

 

31 StSt EEE CR >> .                                                            (5.28) 

  

 This implies that effects in stage 1 are less precisely estimated and effects in stage 

3 are more precisely estimated as compared to effects in a CRD. Due to the nature of 

Equation 5.27, such a straightforward conclusion cannot be drawn on effects in stage 2. 

Depending on the ratios of the error terms of the stages, effects can be more or less 

precisely estimated. Let us consider an extreme case where the ratios of the errors are at 

least 7 (as 7 is the largest number in Equation 5.27). 

 

21

2

1 77 StSt

St

St
EE

E

E
≥⇒≥ .                                                  (5.29) 

32

3

2 77 StSt

St

St
EE

E

E
≥⇒≥ .                                                   (5.30) 

 



 

 

126 

Considering the lower bounds, Equations 5.27, 5.29, and 5.30 can be re-written as 

CRStStSt EEEE 742
321

=++ .                                               (5.31) 

07
21

=− StSt EE .                                                         (5.32) 

07
32

=− StSt EE .                                                        (5.33) 

  

Summing (7 × Equation 5.31) and (4 ×Equation 5.33) yields 

CRStSt EEE 49187
21

=+ .                                                   (5.34) 

 

Summing Equation 5.34 and (7 × Equation 5.32) yields 

CRStCRSt EEEE =⇒=
22 49

67
4967 .                                        (5.35) 

As 67/49 > 1,  

3StEECR > .                                                                 (5.36) 

  

 Equation 5.36 implies that effects in stage 2 are determined more precisely than in 

a CRD. Furthermore, the only definite extension to an m-MSSP would be  

m1 StSt EEE CR >> .                                                          (5.37) 

  



 

 

127 

 Depending on the ratios 

)1( +i

i

St

St

E

E
(i = 1,..., m-1), effects in the remaining stages are 

more or less precisely estimated than in a CRD. When the efficiency of m-MSSP design 

is compared to that of an m-stage split-lot design, it is easy to see that the effects in stage 

1 of both designs would be determined with equal precision. However, the precision in 

estimating effects from other stages would highly depend on the ratios of adjacent stages 

in both the designs. 

 

5.4 Analysis of MSFFSP Designs 

Once the design has been finalized and the experiment executed, the next step is to 

calculate the effects of the factors and test them for significance. An ANOVA table gives 

a clear idea on the calculation of the effects in the model and the partitioning of the total 

variability in the model into its component parts. By observing the expected mean 

squares in the ANOVA table, various hypotheses that can be tested are identified. Let us 

look at the decomposition of the total sum of squares for an example. 

 Consider the model given in Example 5. Following the rules for obtaining the 

expected mean squares (EMS) from Montgomery (2005), Table 5.7 represents the EMS 

and degrees of freedom (dof) for the model in Example 5. It can be seen that the 

hypothesis of the means of the main effects and interactions between factors A, B, and C 

can be tested for significance against the appropriate error terms.  
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Table 5.7: EMS Table for Example 5 

r a b c

R F F F

i j k l

Source

A j r 0 b c (a-1)

(St1 E ) ij 1 1 b c (a-1)(r-1)

B k r a 0 c (b-1)

(AB) jk r 0 0 c (a-1)(b-1)

(St2 E ) i(jk) 1 1 1 c a(r-1)(b-1)

C l r a b 0 (c-1)

(AC) jl r 0 b 0 (a-1)(c-1)

(BC) kl r a 0 0 (b-1)(c-1)

(ABC) jkl r 0 0 0 (a-1)(b-1)(c-1)

(St3 E ) i(jkl) 1 1 1 1 ab(r-1)(c-1)

dof EMS

2

3

2

2

2

1

2

)1(
σσσ +++

−

∑
cbc

a

Arbc j

2

3

2

2

2

1 σσσ ++cbc

2

3

2

2

2

)1(
σσ ++

−

∑
c

b

Brac k

2

3

2

2

2

)11)(-(
σσ ++

−

∑
c

ba

ABrc jk

2

3

2

2 σσ +c

2

3

2

)1(
σ+

−

∑
c

Crab l

2

3

2

)11)(-(
σ+

−

∑
ca

ACrb jl

2

3

2

)11)(-(
σ+

−

∑
cb

BCra kl

2

3

2

)11)(-1)(-(
σ+

−

∑
cba

ABCr jkl

2

3σ

 

 

 Table 5.7 can be extended to the general case of m stages as follows. Let r be the 

number of replicates and K be an effect (main effect or a multi-way interaction effect) in 

stage k (k = 1,...., m). Let d
i
 be the degrees of freedom of the i

th
 effect and σi

2
 be the 

variance of the error term for stage i. The expected mean square of the K
th

 fixed effect is 

given by 
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22

1

1

1

2

)(
1

)( mj

mj
m

kj

j

k

ki

i

ddd
d

Kdr

KEMS σσ ++
−

= −
+

+=

≠ ∑
∏ ∑

... .                         (5.38) 

 

 The contrasts estimates for the effects can be calculated in the conventional way 

of subtracting the responses with “-” sign from the responses corresponding to a “+” sign. 

Once the contrasts for all effects have been obtained, they are tested for significance 

against appropriate error terms using the rules described earlier or from the EMS table. If 

the design in unreplicated, no error terms exist. One way to compensate for the loss of 

degrees of freedom for the error terms would be to pool higher-order interactions to 

create appropriate error terms. An alternate way would be to use normal probability plots 

for each error term to draw inferences on the significance on the effects. The number of 

normal probability plots equal the number of error terms in the model. 

 If there are random factors present in the model, the EMS table is modified 

according to the rules for EMS given by Montgomery (2005). The corresponding 

quadratic means effect would be replaced by the appropriate variance component for the 

random effect. 

 

5.5 Catalog of MSFFSP Designs 

Fractionating in a fractional factorial split-plot (FFSP) design can be classified as 

confounding within plots and split-plot confounding. In fractionating within plots, 

generators are chosen from the same plot. The highlight of this type of confounding is 

that the interactions between the whole plot and sub-plots are free of confounding if three 

or higher-order interactions are assumed negligible. However, the main effects of the 
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whole plot and sub-plots are confounded with two-way interactions. This type of design 

is useful in a robustness study, where the interaction effects between the whole plot and 

sub-plot are of main interest, e.g. a study of environmental effects on design factors. 

However, if the objective of the experiment is to estimate the main effects, this design 

will not be very helpful. 

 In split-plot confounding, the generators of the sub-plot involve the whole plot 

factors. In this case, the main effects of the sub-plot factors are free of confounding, 

whereas some of the two-way interactions terms are confounded with other two-way 

interactions. Due to the alias structure, this type of confounding is more often used in a 

setting where the sub-plot contains the design factors of interest. This design is not very 

useful, however, in robustness study experiments. Another striking difference between 

the two types of confounding is that even thought the overall resolution remains the 

same, the partial resolution of the sub-plot may increase by one. Bisgaard (2000) points 

out that, in general, split-plot confounding possibly increases the partial resolution of the 

sub-plot by at least one.  

 An interesting extension for an m-MSFFSP design is that a combination of the 

two types of confounding can be used to obtain a design having maximum number of 

clear (free of aliasing with higher-order interactions) effects. Depending on the process or 

experiment being investigated, these effects of interest can be either main effects of 

certain stages or interaction effects between stages. For instance in a three stage MSFFSP 

design, if the interaction effects between stages 1 and 2 along with the main effects of 

stage 3 are of primary interest, then split-plot confounding can be used to generate 

columns in stage 2, and confounding within plots can be used to generate columns in 
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stage 3. This advantage is valuable in constructing designs for processes that are 

conducted over multiple stages. 

 Given a set of experimental constraints, e.g., maximum number of runs, 

maximum allowable setting changes, number of hard-to-change factors, many MSFFSP 

can be designed. The final choice of which design to choose is to be made by the 

experimenter, in consultation with the designer. The objective of the experiment dictates 

the design to be chosen.  

 Different criteria have been identified in literature based on which optimal 

designs have been proposed. Traditionally, the idea of resolution, first introduced by Box 

and Hunter (1961) has been used extensively in ranking deigns having the same number 

of factors and number of runs. Resolution can be described as the length of the shortest 

word in the defining relation. Typically, higher the resolution, better the design, as more 

information can be obtained. Fries and Hunter (1980) noted that designs having the same 

resolution could have a considerable difference in the ability to estimate effects and 

hence introduced the concept of minimum aberration. This criterion is an enhancement of 

the resolution criterion and seeks a design with the best possible word length pattern W = 

(A1, A2,....) where Ai is the number of words of length i in the defining relation. A design, 

D, is said to have minimum aberration if there is no other design, D0, for which, for some 

integer r, Ak(D0) = Ak(D) for k < r and Ar(D0) < Ar(D). Recently, Bingham and Sitter 

(1999, 2001), Huang et al. (1998), and Mukerjee and Fang (2000) provided a catalog of 

designs based on the minimum aberration criterion.  

 A typical nanomanufacturing investigation involves many factors and far less 

resources (time and money) to conduct a comprehensive examination of the factors of 
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interest. Moreover, in many situations, theoretical properties provide prior knowledge on 

the behavior of some factors. Chen et al. (1993) point out certain situations in which 

designs with minimum aberration do not provide the best design in terms of the ability to 

estimate effects of interest. For this reason, alternate criteria based on the common 

occurrences in nanomanufacturing experimentation are proposed. As reproducibility is a 

major concern at the nano-scale, most of the studies are directed towards identifying 

factors that cause the same experimental setup to yield different responses. These 

experiments can be categorized as classic robustness studies.  

 Keeping the nature of the experiments in mind, a catalog of m-MSFFSP designs is 

created and ranked according to the following criteria. 

 

a) Robustness 

 This criterion refers to maximum number of clear two-way effects between 

stages. Only two-way interaction effects between stages are of interest here. The 

objective here is to test the effect of one factor on the response, given the levels of 

another factor. In this criterion, three- and higher-order interaction terms are assumed 

negligible. 

 

b) Maximum number of “mixed” three-way interactions 

 In some cases, it is essential to consider few three-way interactions as well. For 

instance, if we are interested in examining the effect of one factor from stage 1 on the 

interaction effect of two other factors from stages 2 and 3, a three-way interaction term 
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needs to be considered. In this criterion, pure three-way interactions, and four- and 

higher-order interaction terms are assumed negligible. 

 

 These criteria, under no means, represent a complete set and should not be used if 

the objective of the study is different from the ones described above. However, similar 

criteria can be developed depending on the nature of the experiment.  

 As the motivation for these constructs of design originated from a robustness 

study, we provide a catalog of designs for similar experiments. Confounding within plots 

was used for all the designs in the catalog, as the effects of interest are second-order and 

certain third-order interactions. If a main effect is also an effect of interest to the 

researcher, then the “mixed” confounding described above needs to be considered. 

 All m-MSFFSP designs constructed using confounding within plots can be 

viewed as a series of fractional factorial designs. The catalog was hence created using the 

first part of the algorithm developed by Russell et al. (2004) for single stage designs. 

Designs are provided for MSFFSP experiments in three stages involving 10 and 11 

factors as well as four stages involving 13 factors as they yield a manageable proportion 

of possible MSFFSP designs. As the designs are cataloged merely to illustrate the use of 

the optimality criteria, only a limited number of designs are considered. Designs having 

two factors in more than one stage are ignored, and the maximum number of factors in a 

stage is limited to seven. Furthermore, in any given stage, designs with maximum 

resolution are considered to allow the possibility of estimating main effects and pure 

interactions. Only designs having partial resolution of above II are considered. Finally, 
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designs having 32 and 64 runs are considered for three-stage designs and 64 and 128 runs 

for four-stage designs, as the more number of runs are generally not feasible. 

 Table 5.8 represents the fractional factorial designs, having different confounding 

patterns, used to create MSFFSP designs (under confounding within plots). The columns 

in each design are labeled 1 through 7. For every design, only defining relations yielding 

maximum resolutions are considered.  

 

Table 5.8: FF Designs used for Catalog Creation 

Number Design
Defining relation                   (excluding 

generalized interactions)
Resolution

1 2
2-1 I = 12 II

2 2
3-1 I = 123 III

3 2
3-2 I = 12 = 13 II

4 2
4-1 I = 1234 III

5 2
4-2 I = 12 = 13 II

6 I = 12 = 34 II

7 I = 12 = 134 II

8 2
5-1 I = 12345 V

9 2
5-2 I = 123 = 145 III

10 2
5-3 I = 12 = 13 = 14 II

11 I = 12 = 13 = 45 II

12 I = 12 = 13 = 145 II

13 I = 12 = 34 = 135 II

14 2
6-2 I = 1234 = 1256 IV

15 2
6-3 I = 123 = 145 = 246 III

16 2
6-4 I = 12 = 13 =14 = 15 II

17 I = 12 = 13 = 14 = 56 II

18 I = 12 = 13 = 14 = 156 II

19 I = 12 = 13 = 45 = 46 II

20 I = 12 = 13 = 45 = 146 II

21 I = 12 = 34 = 135 = 136 II

22 2
7-3 I = 1234 = 1256 = 1357 IV

23 2
7-4 I = 123 = 145 = 246 = 1247 III  

 

 Using the information from Table 5.8, catalogs of three-stage MSFFSP designs 

having 10 and 11 factors are created and are listed in Table 5.9 and Table 5.10, 
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respectively. In these tables, n1, n2, and n3 represent the number of factors in stages 1, 2, 

and 3, respectively, and k1, k2, and k3 represent the number of generators for stages 1, 2, 

and 3, respectively. The tables also list the number of factors that are estimable under 

each of the two aforementioned criteria. For the designs listed in the catalogs, a 

maximum of 33 effects can be estimated under criterion (a) and 36 effects under criterion 

(b). In designs 9-18, a maximum of 39 effects can be estimated under criterion (a) and 45 

effects under criterion (b). Finally, in designs 19-39, a maximum of 40 effects can be 

estimated under criterion (a) and 48 effects under criterion (b) 

 

Table 5.9: Catalog of Three-Stage MSFFSP having 10 Factors 

Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3

n 1 n 2 n 3 k 1 k 2 k 3

1 3 3 4 1 1 2 64 II 15 9

2 3 3 4 1 1 2 64 II 9 0

3 3 3 4 1 1 2 64 II 21 18

4 3 3 4 2 1 1 64 II 12 0

5 3 3 4 2 1 2 32 II 3 0

6 3 3 4 2 1 2 32 II 0 0

7 3 3 4 2 1 2 32 II 6 0

Criterion b 

(max 36)

Number 

of runs

Overall 

resolution

Criterion a 

(max 33)

Design 

Number

Number of factors in Degree of fractionation in
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Table 5.10: Catalog of Three-Stage MSFFSP having 11 Factors 

Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3

n 1 n 2 n 3 k 1 k 2 k 3

8 3 3 5 1 1 3 64 II 14 9

9 3 3 5 1 1 3 64 II 8 0

10 3 3 5 1 1 3 64 II 8 0

11 3 3 5 1 1 3 64 II 14 9

12 3 3 5 2 1 2 64 II 15 0

13 3 3 5 2 2 1 64 II 15 0

14 3 3 5 2 1 3 32 II 3 0

15 3 3 5 2 1 3 32 II 3 0

16 3 3 5 2 1 3 32 II 3 0

17 3 3 5 2 1 3 32 II 3 0

18 3 3 5 2 2 2 32 II 3 0

19 3 4 4 1 2 2 64 II 7 3

20 3 4 4 1 2 2 64 II 7 3

21 3 4 4 1 2 2 64 II 7 3

22 3 4 4 1 2 2 64 II 7 3

23 3 4 4 1 2 2 64 II 7 3

24 3 4 4 1 2 2 64 II 7 3

25 3 4 4 1 2 2 64 II 7 3

26 3 4 4 1 2 2 64 II 7 3

27 3 4 4 1 2 2 64 II 7 3

28 3 4 4 2 1 2 64 II 7 3

29 3 4 4 2 1 2 64 II 7 3

30 3 4 4 2 1 2 64 II 7 3

31 3 4 4 2 2 2 32 II 1 0

32 3 4 4 2 2 2 32 II 1 0

33 3 4 4 2 2 2 32 II 1 0

34 3 4 4 2 2 2 32 II 1 0

35 3 4 4 2 2 2 32 II 1 0

36 3 4 4 2 2 2 32 II 1 0

37 3 4 4 2 2 2 32 II 1 0

38 3 4 4 2 2 2 32 II 1 0

39 3 4 4 2 2 2 32 II 1 0

Number 

of runs

Overall 

resolution
Criterion a Criterion b 

Design 

Number

Number of factors in Degree of fractionation in

 

 

 The defining relations for the designs listed in Table 5.9 and Table 5.10 are listed 

in Table 5.11. A, B, C, D, E, F, and G correspond to the factors in stage 1; M, N, O, P, Q, 

R, and S correspond to factors in stage 2; and T, U, V, W, X, Y, and Z correspond to 

factors in stage 3. The catalogs are aimed at assisting an experimenter is choosing the 

“best” design based on the optimality criteria. 
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Table 5.11: Defining Relations for the Three-Stage Deigns in the Catalog 

1
(1) = ABC = MNO = ABCMNO = TU = ABCTU = MNOTU = ABCMNOTU = TV = ABCTV = MNOTV 

= ABCMNOTV = UV = ABCUV = MNOUV = ABCMNOUV

2
(1) = ABC = MNO = ABCMNO = TU = ABCTU = MNOTU = ABCMNOTU = VW = ABCVW = 

MNOVW = ABCMNOVW = TUVW = ABCTUVW = MNOTUVW = ABCMNOTUVW

3
(1) = ABC = MNO = ABCMNO = TU = ABCTU = MNOTU = ABCMNOTU = TVW = ABCTVW = 

MNOTVW = ABCMNOTVW = UVW = ABCUVW = MNOUVW = ABCMNOUVW

4
(1) = AB = AC = BC = MNO = ABMNO = ACMNO = BCMNO = TUVW = ABTUVW = ACTUVW = 

BCTUVW = MNOTUVW = ABMNOTUVW = ACMNOTUVW = BCMNOTUVW

5

(1) = AB = AC = BC = MNO = ABMNO = ACMNO = BCMNO = TU = ABTU = ACTU = BCTU = 

MNOTU = ABMNOTU = ACMNOTU = BCMNOTU = TV = ABTV = ACTV = BCTV = MNOTV = 

ABMNOTV = ACMNOTV = BCMNOTV = UV = ABUV = ACUV = BCUV = MNOUV = ABMNOUV = 

ACMNOUV = BCMNOUV

6

(1) = AB = AC = BC = MNO = ABMNO = ACMNO = BCMNO = TU = ABTU = ACTU = BCTU = 

MNOTU = ABMNOTU = ACMNOTU = BCMNOTU = VW = ABVW = ACVW = BCVW = MNOVW = 

ABMNOVW = ACMNOVW = BCMNOVW = TUVW = ABTUVW = ACTUVW = BCTUVW = 

MNOTUVW = ABMNOTUVW = ACMNOTUVW = BCMNOTUV

7

(1) = AB = AC = BC = MNO = ABMNO = ACMNO = BCMNO = TU = ABTU = ACTU = BCTU = 

MNOTU = ABMNOTU = ACMNOTU = BCMNOTU = TVW = ABTVW = ACTVW = BCTVW = 

MNOTVW = ABMNOTVW = ACMNOTVW = BCMNOTVW = UVW = ABUVW = ACUVW = BCUVW 

= MNOUVW = ABMNOUVW = ACMNOUVW = BCMNOUV

8

I = TU = TV = TW = UV = UW = VW = ABC = MNO = TUVW = ABCTU = ABCTV = ABCTW = 

ABCUV = ABCUW = ABCVW = MNOTU = MNOTV = NOTW = MNOUV = MNOUW = MNOVW  = 

ABCMNO = ABCTUVW = MNOTUVW = ABCMNOTU = ABCMNOTV = ABCMNOTW = 

ABCMNOUV = ABCMNOUW = ABCMNOVW = ABCMNOTUVW

9

I = TU = TV = UV = WX = ABC = MNO = TUWX = TVWX = UVWX = ABCTU = ABCTV = ABCUV = 

ABCWX = MNOTU = MNOTV = MNOUV = MNOWX = ABCMNO = ABCTUWX = ABCTVWX = 

ABCUVWX = MNOTUWX = MNOTVWX = MNOUVWX = ABCMNOTU = ABCMNOTV = 

ABCMNOUV = ABCMNOWX = ABCMNOTUWX = ABCMNOTV

10

I  =  TU  =  TV  =  UV  =  ABC  =  MNO  =  TWX  =  UWX  =  VWX  =  ABCTU  =  ABCTV  =  

ABCUV  =  MNOTU   =  MNOTV  =  MNOUV  =  TUVWX  =  ABCMNO  =  ABCTWX  =  ABCUWX  

=  ABCVWX  =  MNOTWX  =  MNOUWX   =  MNOVWX  =  ABCMNOTU  =  ABCMNOTV  =  

ABCMNOUV  =  

11

I = TU = VW = ABC = MNO = TVX = TWX = UVX = UWX = TUVW = ABCTU = ABCVW = MNOTU 

= MNOVW = ABCMNO = ABCTVX = ABCTWX = ABCUVX = ABCUWX = MNOTVX = MNOTWX = 

MNOUVX = MNOUWX = ABCTUVW = MNOTUVW = ABCMNOTU = ABCMNOVW = 

ABCMNOTVX = ABCMNOTWX = ABCMNOUVX = ABCMNOU

12

 I = AB = AC = BC = MNO = TUV = TWX = UVWX = ABMNO = ABTUV = ABTWX = ACMNO = 

ACTUV = ACTWX = BCMNO = BCTUV = BCTWX = ABUVWX = ACUVWX = BCUVWX = 

MNOTUV = MNOTWX = MNOUVWX = ABMNOTUV = ABMNOTWX = ACMNOTUV = 

ACMNOTWX = BCMNOTUV = BCMNOTWX = ABMNOUVWX = ACMNO

13

I = AB = AC = BC = MN = MO = NO = ABMN = ABMO = ABNO = ACMN = ACMO = ACNO = BCMN 

= BCMO = BCNO = TUVWX = ABTUVWX = ACTUVWX = BCTUVWX = MNTUVWX = MOTUVWX  

= NOTUVWX = ABMNTUVWX = ABMOTUVWX = ABNOTUVWX = ACMNTUVWX = 

ACMOTUVWX = ACNOTUVWX = BCMNTUVWX = BCMOT

Design 

Number
Defining Relation
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14

I = AB = AC = BC = TU = TV = TW = UV = UW = VW = MNO = ABTU = ABTV = ABTW = ABUV = 

ABUW = ABVW = ACTU = ACTV = ACTW = ACUV = ACUW = ACVW = BCTU = BCTV = BCTW = 

BCUV = BCUW = BCVW = TUVW = ABMNO = ACMNO = BCMNO = MNOTU = MNOTV = 

MNOTW = MNOUV = MNOUW = MNO

15

I = AB = AC = BC = TU = TV = UV = WX = MNO = ABTU = ABTV = ABUV = ABWX = ACTU = 

ACTV = ACUV = ACWX = BCTU = BCTV = BCUV = BCWX = TUWX = TVWX = UVWX = ABMNO 

= ACMNO = BCMNO = MNOTU = MNOTV = MNOUV = MNOWX = ABTUWX = ABTVWX = 

ABUVWX = ACTUWX = ACTVWX = ACUV

16

I = AB = AC = BC = TU = TV = UV = MNO = TWX = UWX = VWX = ABTU = ABTV = ABUV = ACTU 

= ACTV = ACUV = BCTU = BCTV = BCUV = ABMNO = ABTWX = ABUWX = ABVWX = ACMNO = 

ACTWX = ACUWX = ACVWX = BCMNO = BCTWX = BCUWX = BCVWX = MNOTU = MNOTV = 

MNOUV = TUVWX = MNOTWX

17

I = AB = AC = BC = TU = VW = MNO = TVX = TWX = UVX = UWX = ABTU = ABVW = ACTU = 

ACVW = BCTU = BCVW = TUVW = ABMNO = ABTVX = ABTWX = ABUVX = ABUWX = ACMNO = 

ACTVX = ACTWX = ACUVX = ACUWX = BCMNO = BCTVX = BCTWX = BCUVX = BCUWX = 

MNOTU = MNOVW = ABTUVW = AC

18

I = AB = AC = BC = MN = MO = NO = TUV = TWX = ABMN = ABMO = ABNO = ACMN = ACMO = 

ACNO = BCMN = BCMO = BCNO = UVWX = ABTUV = ABTWX = ACTUV = ACTWX = BCTUV = 

BCTWX = MNTUV = MNTWX = MOTUV = MOTWX = NOTUV = NOTWX = ABUVWX = ACUVWX 

= BCUVWX = MNUVWX = MOUVWX 

19

I = MN = MO = NO = TU = TV = UV = ABC = MNTU = MNTV = MNUV = MOTU = MOTV = MOUV = 

NOTU = NOTV = NOUV = ABCMN = ABCMO = ABCNO = ABCTU = ABCTV = ABCUV = 

ABCMNTU = ABCMNTV = ABCMNUV = ABCMOTU = ABCMOTV = ABCMOUV = ABCNOTU = 

ABCNOTV = ABCNOUV

20

I = MN = MO = NO = TU = VW = ABC = MNTU = MNVW = MOTU = MOVW = NOTU = NOVW = 

TUVW = ABCMN = ABCMO = ABCNO = ABCTU = ABCVW = MNTUVW = MOTUVW = NOTUVW  

= ABCMNTU = ABCMNVW = ABCMOTU = ABCMOVW = ABCNOTU = ABCNOVW = ABCTUVW = 

ABCMNTUVW = ABCMOTUVW = ABCNOTUVW

21

I = MN = MO = NO = TU = ABC = TVW = UVW = MNTU = MOTU = NOTU = ABCMN = ABCMO = 

ABCNO = ABCTU = MNTVW = MNUVW = MOTVW = MOUVW = NOTVW = NOUVW = ABCTVW 

= ABCUVW = ABCMNTU = ABCMOTU = ABCNOTU = ABCMNTVW = ABCMNUVW = 

ABCMOTVW = ABCMOUVW = ABCNOTVW = ABCNOUVW

22

I = MN = OP = TU = TV = UV = ABC = MNOP = MNTU = MNTV = MNUV = OPTU = OPTV = OPUV 

= ABCMN = ABCOP = ABCTU = ABCTV = ABCUV = MNOPTU = MNOPTV = MNOPUV = 

ABCMNOP = ABCMNTU = ABCMNTV = ABCMNUV = ABCOPTU = ABCOPTV = ABCOPUV = 

ABCMNOPTU  = ABCMNOPTV = ABCMNOPUV

23

I = MN = OP = TU = VW = ABC = MNOP = MNTU = MNVW = OPTU = OPVW = TUVW = ABCMN = 

ABCOP = ABCTU = ABCVW = MNOPTU = MNOPVW = MNTUVW = OPTUVW = ABCMNOP = 

ABCMNTU = ABCMNVW = ABCOPTU = ABCOPVW = ABCTUVW = MNOPTUVW = 

ABCMNOPTU = ABCMNOPVW = ABCMNTUVW = ABCOPTUV

24

I = MN = OP = TU = ABC = TVW = UVW = MNOP = MNTU = OPTU = ABCMN = ABCOP = ABCTU 

= MNTVW = MNUVW = OPTVW = OPUVW = ABCTVW = ABCUVW = MNOPTU = ABCMNOP = 

ABCMNTU = ABCOPTU = MNOPTVW = MNOPUVW = ABCMNTVW = ABCMNUVW = 

ABCOPTVW = ABCOPUVW = ABCMNOPTU = ABCMNOPT

25

I = MN = TU = TV = UV = ABC = MOP = NOP = MNTU = MNTV = MNUV = ABCMN = ABCTU = 

ABCTV = ABCUV = MOPTU = MOPTV = MOPUV = NOPTU = NOPTV = NOPUV = ABCMOP = 

ABCNOP = ABCMNTU = ABCMNTV = ABCMNUV = ABCMOPTU = ABCMOPTV = ABCMOPUV = 

ABCNOPTU = ABCNOPTV = ABCNOPUV

26

I = MN = TU = VW = ABC = MOP = NOP = MNTU = MNVW = TUVW = ABCMN = ABCTU = 

ABCVW = MOPTU = MOPVW = NOPTU = NOPVW = ABCMOP = ABCNOP = MNTUVW = 

ABCMNTU = ABCMNVW = ABCTUVW = MOPTUVW = NOPTUVW = ABCMOPTU = ABCMOPVW 

= ABCNOPTU = ABCNOPVW = ABCMNTUVW = ABCMOPTU
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27

I = MN = TU = ABC = MOP = NOP = TVW = UVW = MNTU = ABCMN = ABCTU = MNTVW = 

MNUVW = MOPTU = NOPTU = ABCMOP = ABCNOP = ABCTVW = ABCUVW = MOPTVW = 

MOPUVW = NOPTVW = NOPUVW = ABCMNTU = ABCMNTVW = ABCMNUVW = ABCMOPTU = 

ABCNOPTU = ABCMOPTVW = ABCMOPUVW = ABCNOP

28

 I = AB = AC = BC = TU = TV = UV = ABTU = ABTV = ABUV = ACTU = ACTV = ACUV = BCTU = 

BCTV = BCUV = MNOP = ABMNOP = ACMNOP = BCMNOP = MNOPTU = MNOPTV = MNOPUV 

= ABMNOPTU = ABMNOPTV = ABMNOPUV = ACMNOPTU = ACMNOPTV = ACMNOPUV = 

BCMNOPTU = BCMNOPTV = BCMNOPUV

29

I = AB = AC = BC = TU = VW = ABTU = ABVW = ACTU = ACVW = BCTU = BCVW = MNOP = 

TUVW = ABMNOP = ABTUVW = ACMNOP = ACTUVW = BCMNOP = BCTUVW = MNOPTU = 

MNOPVW = ABMNOPTU = ABMNOPVW = ACMNOPTU = ACMNOPVW = BCMNOPTU = 

BCMNOPVW = MNOPTUVW = ABMNOPTUVW = ACMNOPTU

30

I = AB = AC = BC = TU = TVW = UVW = ABTU = ACTU = BCTU = MNOP = ABTVW = ABUVW = 

ACTVW = ACUVW = BCTVW = BCUVW = ABMNOP = ACMNOP = BCMNOP = MNOPTU = 

MNOPTVW = MNOPUVW = ABMNOPTU = ACMNOPTU = BCMNOPTU = ABMNOPTVW = 

ABMNOPUVW = ACMNOPTVW = ACMNOPUVW = BCMNOP

31

I = AB = AC = BC = MN = MO = NO = TU = TV = UV = ABMN = ABMO = ABNO = ABTU = ABTV = 

ABUV = ACMN = ACMO = ACNO = ACTU = ACTV = ACUV = BCMN = BCMO = BCNO = BCTU = 

BCTV = BCUV = MNTU = MNTV = MNUV = MOTU = MOTV = MOUV = NOTU = NOTV = NOUV = 

ABMNTU = ABMNTV =

32

I = AB = AC = BC = MN = MO = NO = TU = VW = ABMN = ABMO = ABNO = ABTU = ABVW  = 

ACMN = ACMO = ACNO = ACTU = ACVW = BCMN = BCMO = BCNO = BCTU = BCVW = MNTU = 

MNVW = MOTU = MOVW = NOTU = NOVW = TUVW = ABMNTU = ABMNVW = ABMOTU = 

ABMOVW = ABNOTU = ABNOVW = AB

33

I = AB = AC = BC = MN = MO = NO = TU = TVW = UVW = ABMN = ABMO = ABNO = ABTU = 

ACMN = ACMO = ACNO = ACTU = BCMN = BCMO = BCNO = BCTU = MNTU = MOTU = NOTU = 

ABTVW = ABUVW = ACTVW = ACUVW = BCTVW = BCUVW = MNTVW = MNUVW = MOTVW = 

MOUVW = NOTVW = NOUVW = ABM

34

I = AB = AC = BC = MN = OP = TU = TV = UV = ABMN = ABOP = ABTU = ABTV = ABUV = ACMN 

= ACOP = ACTU = ACTV = ACUV = BCMN = BCOP = BCTU = BCTV = BCUV = MNOP = MNTU = 

MNTV = MNUV = OPTU = OPTV = OPUV = ABMNOP = ABMNTU = ABMNTV = ABMNUV = 

ABOPTU = ABOPTV = ABO

35

I = AB = AC = BC = MN = OP = TU = VW = ABMN = ABOP = ABTU = ABVW = ACMN = ACOP = 

ACTU = ACVW = BCMN = BCOP = BCTU = BCVW = MNOP = MNTU = MNVW = OPTU = OPVW 

= TUVW = ABMNOP = ABMNTU = ABMNVW = ABOPTU = ABOPVW = ABTUVW = ACMNOP = 

ACMNTU = ACMNVW = ACOPTU = 

36

I = AB = AC = BC = MN = OP = TU = TVW = UVW = ABMN = ABOP = ABTU = ACMN = ACOP = 

ACTU = BCMN = BCOP = BCTU = MNOP = MNTU = OPTU = ABTVW = ABUVW = ACTVW = 

ACUVW = BCTVW = BCUVW = MNTVW = MNUVW = OPTVW = OPUVW = ABMNOP = ABMNTU 

= ABOPTU = ACMNOP = ACMNTU = 

37

 I = AB = AC = BC = MN = TU = TV = UV = MOP = NOP = ABMN = ABTU = ABTV = ABUV = ACMN 

= ACTU = ACTV = ACUV = BCMN = BCTU = BCTV = BCUV = MNTU = MNTV = MNUV = ABMOP 

= ABNOP = ACMOP = ACNOP = BCMOP = BCNOP = MOPTU = MOPTV = MOPUV = NOPTU = 

NOPTV = NOPUV = AB

38

I = AB = AC = BC = MN = TU = VW = MOP = NOP = ABMN = ABTU = ABVW = ACMN = ACTU = 

ACVW = BCMN = BCTU = BCVW = MNTU = MNVW = TUVW = ABMOP = ABNOP = ACMOP = 

ACNOP = BCMOP = BCNOP = MOPTU = MOPVW = NOPTU = NOPVW = ABMNTU = ABMNVW = 

ABTUVW = ACMNTU = ACMNVW = 

39

I = AB = AC = BC = MN = TU = MOP = NOP = TVW = UVW = ABMN = ABTU = ACMN = ACTU = 

BCMN = BCTU = MNTU = ABMOP = ABNOP = ABTVW = ABUVW = ACMOP = ACNOP = ACTVW 

= ACUVW = BCMOP = BCNOP = BCTVW = BCUVW = MNTVW = MNUVW = MOPTU = NOPTU = 

ABMNTU = ACMNTU = BCMNTU 
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 Catalogs of 4-stage designs with 13 factors are presented in Table 5.12. Factors in 

stages 1, 2, and 3 are represented in a similar fashion as in the 3-stage designs. In 

addition, α, β, γ, δ, and ε represent the factors in stage 4. In these tables, n1, n2, n3, and n4 

represent the number of factors in stages 1, 2, 3, and 4, respectively, and k1, k2, k3, and k4 

represent the number of generators for stages 1, 2, 3, and 4, respectively. A maximum of 

63 effects are estimable under criterion (a) and 135 effects under criterion (b). The 

corresponding defining relations for the designs in Table 5.12 are given in Table 5.13. 

 

Table 5.12: Catalog of Four-Stage MSFFSP having 13 Factors 

Stage 1 Stage 2 Stage 3 Stage 4 Stage 1 Stage 2 Stage 3 Stage 4

n 1 n 2 n 3 n 4 k 1 k 2 k 3 k 4

1 3 3 3 4 2 1 1 2 128 II 15 9

2 3 3 3 4 2 1 1 2 128 II 9 0

3 3 3 3 4 2 1 1 2 128 II 21 18

4 3 3 3 4 2 2 1 1 128 II 12 0

5 3 3 3 4 2 2 2 0 128 II 0 0

6 3 3 3 4 2 2 2 1 64 II 0 0

7 3 3 3 4 1 2 2 2 64 II 3 0

8 3 3 3 4 1 2 2 2 64 II 0 0

9 3 3 3 4 1 2 2 2 64 II 0 0

Overall 

resolution

Criterion a 

(max 63)

Criterion b 

(max 135)

Design 

Number

Number of factors in Degree of fractionation in

Number 

of runs
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Table 5.13: Defining Relations for the Four-Stage Deigns in the Catalog 

1
I  = A B = A C = M N O = T U V = α β = α γ = BC = ABMNO = ABTUV = ABαβ = ABαγ = ACMNO = 

ACTUV = ACαβ = ACαγ = MNOTUV = MNOαβ = MNOαγ = TUVαβ = TUVαγ = βγ

2
I = AB = AC = MNO = TUV = αβ = γδ = BC = ABMNO = ABTUV = ABαβ = ABγδ = ACMNO = 

ACTUV = ACαβ = ACγδ = MNOTUV = MNOαβ = MNO γδ = TUVαβ = TUV γδ = αβγδ

3
I = AB = AC = MNO = TUV = αβ  = αγδ = BC = ABMNO = ABTUV = ABαβ = ABαγδ = ACMNO = 

ACTUV = ACαβ = ACαγδ = MNOTUV = MNOαβ = MNO αγδ = TUVαβ = TUVαγδ = βγδ

4
I = AB = AC = MN = MO = NO = TUV = αβγδ = BC = ABMN = ABMO - ABTUV = AB αβγδ = ACMN 

= ACMO = ACTUV = ACαβγδ = NO = MNTUV = MNαβγδ = MOTUV = MOαβγδ = TUVαβγδ  

5
I = AB = AC = MN = MO = TU = TV = BC = ABMN = ABMO = ABTU = ABTV = ACMN = ACMO = 

ACTU = ACTV = NO = MNTU = MNTV = MOTU = MOTV = UV

6

I = AB = AC = MN = MO = TU = TV =αβγδ = BC = ABMN = ABMO = ABTU = ABTV = ABαβγδ = 

ACMN = ACMO = ACTU = ACTV = ACαβγδ = NO = MNTU = MNTV = MNαβγδ = MOTU = MOTV = 

MOαβγδ = UV = TUαβγδ = TVαβγδ    

7

I = ABC = MN = MO = TU = TV = αβ = αγ = ABCMN = ABCMO = ABCTU = ABCTV = ABCαβ = 

ABCαγ = NO = MNTU = MNTV = MNαβ = MNαγ = MOTU = MOTV = MOαβ = MOαγ = UV = TUαβ = 

TUαγ  = TVαβ = TVαγ  = βγ

8

I = ABC = MN = MO = TU = TV = αβ = γδ = ABCMN = ABCMO = ABCTU = ABCTV = ABCαβ  = 

ABCγδ = NO = MNTU = MNTV = MNαβ = MNγδ = MOTU = MOTV = MOαβ = MOγδ = UV = TUαβ = 

TUγδ = TVαβ = TVγδ = αβγδ    

9

I = ABC = MN = MO = TU = TV = αβ = αγδ = ABCMN = ABCMO = ABCTU = ABCTV = ABCαβ  = 

ABCαγδ = NO = MNTU = MNTV = MNαβ = MNαγδ = MOTU = MOTV = MOαβ = MOαγδ = UV = 

TUαβ = TUαγδ = TVαβ = TVαγδ = βγδ   

Design 

Number
Defining Relation

 

 

 

5.6 Case Study: Applying the MSFFSP Design to a Nano-Scale 

Polymerization Process 

We now return to the three-stage polymerization process explained in Section 5.1. The 

first stage involves preparation of the self-assembled monolayer (SAM), the second stage 

involves anchoring the catalyst to the SAM, and finally in the third stage, the 

polymerization takes place through synthesis. The three-stage procedure represented in 

Figure 5.1 is carried out to form films on the substrate that have thickness measured at 
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the nano-scale. Once the process is well understood, the properties of the film are to be 

studied as part of the long-term goals of the research. Hence, it is imperative to 

understand the relation of the factors involved in the polymerization process. A statistical 

model would help immensely in predicting the thickness of the films, given the factor 

settings. In addition, to obtain a film of a certain thickness, factors can be set at 

appropriate levels. Keeping the objectives in mind, a design is constructed for the 

polymerization process, and is explained below. 

 

5.6.1 Design for the polymerization process 

The process of preparing the self-assembled monolayers (SAMs) in stage I is studied 

extensively in past literature. The factors in Table 5.14 are known to affect the 

preparation of the SAM. Furthermore, current scientific knowledge and past literature 

indicate that the current operating levels of the factors listed in Table 5.14 are indeed the 

optimal settings for the stage. By operating at these levels, the SAMs prepared are robust 

to any further reactions. Hence, for all practical purposes, these factors are ignored in the 

current investigation. 

 

Table 5.14: Factors in Stage I 

Factors of interest Current operation level

10nm

room temp.

24 hrs

Amount of gold evaporated

Thickness of silicon wafer

Amount of Cr

Temperature

Time

200nm

2 inches
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 In the stage II of the process, the SAM is immersed in a nitromethane solution so 

that catalyst can be anchored to the substrate for further reactions. The amount of catalyst 

in the solution dictates the anchoring process. The catalyst anchors itself through ligand 

exchange. The time for which the SAM is immersed in the solution is also known to 

affect the quality of catalyst anchorage. Once the catalyst is anchored, the substrate needs 

to be rinsed with a suitable choice of a solvent. Two solvents that are known to yield 

reasonable results are dichloromethane (CH2Cl2) and nitromethane (CH3NO2). Finally, 

the drying time for the process is also suspected to cause significant changes. It is 

important to note that any number of substrates can be processed (catalyst can be 

anchored) for a given setup of stage II. Table 5.15 summarizes the factors of interest in 

stage II and lists the levels at which they are to be investigated. 

 

Table 5.15: Factors in Stage II 

"low" level "high" level

1 mM 10 mM

CH2Cl2 CH3NO2

30 sec 60 sec

4 hrs 12 hrs

Levels to be tested

Amount of catalyst (M )

Reaction time (time substrate is 

immersed) (A )

Type of rinsing solvent (N )

Drying time (O )

Factors of interest

 

 

 In stage III, the catalyst-anchored SAM is exposed to Argon gas saturated with 

the monomer. The substrate can be exposed to the saturated gas in a couple of ways. One 

approach is to maintain a continuous flow of the gas from a chamber filled with excess of 

monomer to another chamber containing the substrate. On the other hand, to conserve 

monomer (which could be expensive if used in bulk), the second approach involves a 

single chamber filled with Argon and containing both the monomer and the substrate. 
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Polymers are formed on the substrate by the continuous reaction of the monomer with the 

initiator. Scientific knowledge of the process suggests that the type of gas flow used plays 

a vital role in the thickness of the polymer film. In addition, as in any chemical reaction, 

temperature at which the process is carried out and the reaction time determine the extent 

of the reaction. Due to the physical constraints of the setup, a maximum of four substrates 

can be treated (polymerized) in stage III when continuous flow of Argon is chosen. These 

factors, along with the levels, are summarized in Table 5.16. 

 

Table 5.16: Factors in Stage III 

"low" level "high" level

10 °C 25 °C

continuous static

12 hrs 48 hrs

Type of Argon flow (β )

Reaction time (T )

Reaction temperature (α )

Factors of interest
Levels to be tested

 

 

 Due to limited resources, a maximum of one week (168 hours) can be devoted to 

the experiment. For this reason, factors A (stage II) and T (stage III) are said to be hard-

to-change as minimum setting changes of their levels are preferred. A completely 

randomized design involves many setting changes of factors A and T and hence, is not 

considered. For the current investigation, if we ignore the process in stage I, then a 

conventional split-plot design could be employed to accommodate the hard-to-change 

factors. Considering stage II as the whole plot and stage III as the sub-plot, a 2
4-1

 × 2
3-1

 

split-plot design can be used. This design would require 32 runs and would involve 8 

setting changes of factor A and 32 setting changes of factor T. The total time required to 

execute this design would be 1024 hours, which is unacceptable.  
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 The factor T in stage III is harder-to-change than factor A in stage II. Hence, a 

split-plot design having stage II as the sub-plot and stage III as the whole plot would 

utilize fewer resources than the previous split-plot arrangement. Due to the incapability 

of the experimental setup to polymerize, more than four substrates at a time while 

maintaining continuous flow of Argon, this arrangement requires approximately half the 

time (436) as the previous arrangement but still exceeds the maximum.  

 The classic split-plot design is a special case of the m-MSFFSP design where m 

equals two. In order to accommodate the additional hard-to-change factor in each stage, a 

variation of the m-MSFFSP design can be considered. The variation demands that the 

hard-to-change factors be treated as separate stages, making the overall design a 4-

MSFFSP. Following the variation, stages II and III are further separated into stages 1, 2, 

3, and 4. To further minimize the setting changes, factor T corresponds to stage 1, factor 

A  to stage 2, factors M, N, and O to stage 3, and finally, factors α and β to stage 4 of the 

design. Thus, the 2
1
×2

1
×2

3-1
×2

2-1
 MSFFSP design would require only two setting changes 

of factor T and four setting changes of factor A. Moreover, there needs to be eight 

different setups at a given time, corresponding to the setup for the continuous flow of 

Argon. As only four such setups are possible, they need to be repeated, thus further 

increasing the time. Hence, if only two setting changes are required, the time consumed 

due to factor A is 1.5 times the number of setting changes. The experiment would then 

require 152 hours, which is well within the acceptable limit.  

 If factor A corresponded to stage 1 and factor T to stage 2, the entire experiment 

can be executed in only 136 hours. However, the execution of the experiment demands 

that 68 hours be spent continuously with the process to make the transition between 
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stages II and III uniform. Hence, the previous arrangement is chosen as it provides the 

experimenter more flexibility in executing the design, while taking only 24 more hours.  

 Even though the variation utilizes fewer resources, it has the disadvantage that the 

main effects of those factors being treated as separate stages can no longer be tested for 

significance. Thus, the above variation can only be applied to instances where the main 

effects of the hard-to-change factors are not of primary interest.  

 Once the design layout has been selected, an appropriate confounding pattern 

needs to be chosen so that the design is capable of estimating maximum number of 

effects of interest. In the polymerization experiment, the following effects are of interest: 

 

• Main effects of factors M, α, and β 

• Two-way interactions involving factor T: effects TA, TM, TN, TO, Tα, and Tβ.  

• Two-way interactions involving factor A: effects AM, AN, AO, Aα, and Aβ. 

• Two-way interactions in stage 3 involving factors N and O: effects NO, MN, and MO. 

• Two-way interactions involving factors from different stages: effects Mα, Mβ, Nα, Nβ, 

Oα, Oβ. 

• Two-way interactions between factors in stage 4: αβ 

• Three-way interactions involving factors N and O and having at least two factors from 

different stages: effects TNα, TNβ, TOα, TOβ, AMN, AMO, Nαβ, and Oαβ. 

 

 In summary, there are 32 effects of interest for the experiment. An effect is said to 

be estimable if it is not aliased with main effects or two-way interactions not listed above. 

The catalogs created in Section 5.5 are mainly targeted towards robustness studies, where 
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only interaction effects are of interest and all effects are assumed to be of equal interest. 

In this case study, due to the experimenter’s prior knowledge, some effects are suspected 

to be of greater importance than others. In addition, as these suspicious effects constitute 

main and interaction effects, a specific design not listed in the catalogs has to be 

constructed for the case study. As many interaction effects are of interest, confounding 

within plots can be used to generate columns. For the 2
1
×2

1
×2

3-1
×2

2-1
 MSFFSP design 

being considered, the best design (in terms of number of effects estimable and maximum 

resolution) has the defining relation I = MNO = αβ = MNOαβ. The overall resolution of 

the design is II, and only the following seven effects are estimable: TA, TM, TN, TO, AM, 

AN, and AO. 

 Confounding within plots could be employed in stage 3 as more interaction 

effects involving stage 3 factors are of interest than “pure” stage 3 effects. In addition, as 

we are interested in the main effects and “pure” interactions of stage 4 (α and β), we can 

consider split-plot confounding for the generator in stage 4. Thus, the generator in stage 3 

has confounding within plots and the generator in stage 4 has split-plot confounding. 

Therefore, the overall design is said to have mixed confounding. Choosing O = MN and β 

= TAMα, the overall resolution of the design increases to III, and the defining relation is I 

= MNO = TAMαβ = TANOαβ. Note that the partial resolution of stage 4 increased from II 

to V. Using this design, 28 of the 32 effects of interest are estimable. Main effect M is 

confounded with NO and hence not estimable. If split-plot confounding were chosen in 

stage 3, then many more interactions involving stage 3 factors would not be estimable. 

Moreover, effects AMN and AMO are confounded with two-way interactions that are not 

of interest. The complete alias structure for the experiment is provided in Appendix 5A. 
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The corresponding layout of the design is shown in Table 5.17. It is interesting to note 

that a split-lot design would require only 76 hours of experimentation, which is much 

lesser than the time required by the 4-MSFFSP design. However, the only type of 

confounding permitted in a split-lot design would be confounding within plots, and hence 

only eight of the effects of interest would be estimable.  

  

Table 5.17: Design for the Polymerization Experiment 

Run T A M N O =MN α β =TAMα Treatment

1 - + oβ

2 + - oα

3 - - m

4 + + mαβ

5 - + nβ

6 + - nα

7 - - mno

8 + + mnoαβ

9 - - ao

10 + + aoαβ

11 - + amβ

12 + - amα

13 - - an

14 + + anαβ

15 - + amnoβ

16 + - amnoα

17 - - to

18 + + toαβ

19 - + tmβ

20 + - tmα

21 - - tn

22 + + tnαβ

23 - + tmnoβ

24 + - tmnoα

25 - + taoβ

26 + - taoα

27 - - tam

28 + + tamαβ

29 - + tanβ

30 + - tanα

31 - - tamno

32 + + tamnoαβ

- + -

+ + +

- - +

+ - -

- + -

+ + +

-

+

-

+

-

+

- - +

+ - -

- + -

+ + +

- - +

+ - -

- + -

+ + +

- - +

+ - -

one of the 16 

groups

one of the 4   

super-groups

 one of the 2 

super-super 

groups

one of the 32    

sub-groups
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Following the design layout, the experiment is conducted as follows: 

 

• 16 groups of 2 SAMs each are formed 

• 4 groups are randomly selected to form a super-group. Thus, there are 4 super-groups. 

• 2 super-groups are selected at random. 

• Each group within a super-group is immersed in a setup so that catalyst could be 

anchored.  The 4 groups are randomly immersed in the 4 setups corresponding to 4 

combinations of M, N, and O, forming 8 immersed-experimental units within a super-

group. 

• The 2 selected super-groups are randomly assigned to the 2 levels of factor A. The 

immersed-experimental units within each super-group are treated for corresponding 

reaction time and catalysts are thus anchored. Thus, 8 anchored-experimental units are 

formed in each of the 2 super-groups. 

• Each group within a super-group is then divided into 2 sub-groups of one anchored-

experimental unit each. The sub-groups are randomly assigned to the 2 setups 

corresponding to the combinations of α and β, forming 16 anchored-immersed-

experimental units in all. 

• The 16 anchored-immersed-experimental units within the 2 super-groups being 

considered are then combined to form a super-super-group and are treated for reaction 

time corresponding to a level of factor T in order to form films on the substrate. Thus, 

16 synthesized-experimental units are formed. 

• Thickness of the films are then measures on each of the 16 synthesized-experimental 

units. 
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• The other 2 super-groups are then selected and the above process is repeated to record 

thickness measurements of the remaining 16 synthesized-experimental units. 

 

 The experiment was randomized at four levels and specific instructions were 

provided to the researcher to execute the design. These instructions are provided in 

Appendix 5A. 

 

5.6.2 Analysis of the Multistage Design 

The linear model for the polymerization experiment, up to three-way interaction effects, 

can be represented as 
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     (5.39) 

 

where 

µ is the overall mean, and  

i, j, k, l, m, n, o = 1, 2. 
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 The table of EMS for the above model identifies the various hypotheses that can 

be tested for significance. For the sake of brevity, we consider a sample of each type of 

effect. For instance, Ti, Aj, Mk, and αn represents the main effects from stages 1, 2, 3, and 

4, respectively. (TA)ij, (TM)ik, (Tα)in, (AM)jk, (Aα)jn, and (Mα)kn represent two-way 

interaction effects between stages1 and 2, 1 and 3, 1 and 4, 2 and 3, 2 and 4, and 3 and 4, 

respectively. Finally, (TAM)ijk, (TAα)ijn, and (AMα)jkn represent the three-way interaction 

effects between stages 1, 2, and 3, 1, 2, and 4, and 2, 3, and 4, respectively. The EMS for 

each of the above token effect was obtained using the EMS rules (Montgomery, 2005), 

and the EMS table is shown in Table 5.18. 
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Table 5.18: EMS Table for Polymerization Experiment 

2 2 2 2 2 2 2

F F F F F F F

Source i j k l m n o

T i 0 2 2 2 2 2 2

(St1E) i 0 2 2 2 2 2 2

A j 2 0 2 2 2 2 2

(St2E)(ij) 1 1 2 2 2 2 2

M k 2 2 0 2 2 2 2

(TM) ik 0 2 0 2 2 2 2

(AM) jk 2 0 0 2 2 2 2

(TAM) ijk 0 0 0 2 2 2 2

(St3E) (ijklm) 1 1 1 1 1 2 2

α n 2 2 2 2 2 0 2

(Tα) in 0 2 2 2 2 0 2

(Aα) jn 2 0 2 2 2 0 2

(TAα) ijn 0 0 2 2 2 0 2

(Mα) kn 2 2 0 2 2 0 2

(AMα) jkn 2 0 0 2 2 0 2

(St4E) (ijklmno) 1 1 1 1 1 1 1

EMS

∑ ++++ 2

4

2

3

2

2

2

1

2 4326464 σσσσT

2

4

2

3

2

2

2

1 43264 σσσσ +++

∑ +++ 2

4

2

3

2

2

2 43264 σσσA

2

4

2

3

2

2 432 σσσ ++

∑ ++ 2

4

2

3

2 464 σσM

∑ ∑ ++ 2

4

2

3

2 432 σσMT

∑ ∑ ++ 2

4

2

3

2 432 σσMA

∑ ∑ ∑ ++ 2

4

2

3

2 416 σσMAT

2

4

2

34 σσ +

2

4σ

∑ + 2

4

264 σα

∑ ∑ + 2

4

232 σαT

∑ ∑ + 2

4

232 σαA

∑ ∑ ∑ + 2

4

216 σαAT

∑ ∑ + 2

4

232 σαM

∑ ∑ ∑ + 2

4

216 σαAM

 

 The values in Table 5.18 can also be confirmed by expanding the general 

expression for EMS given in Equation 4.32 . For instance, using Equation 4.32, the EMS 

for effect T is given by 
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 The EMS for other effects can be obtained in a similar way. From Table 5.18, it 

can be seen that the hypotheses on the means of the effects can be tested against 

appropriate error terms. Once the experiment is conducted and data obtained, significant 

effects could be identified with the help of normal probability plots, Table 5.18, and the 

rules developed in Section 5.3.2. 

 The rules for assigning contrasts were applied to the complex alias structure for 

the polymerization process. Specifically, 31 effects are divided into 4 categories to be 

tested against 4 error terms - 1 contrast is assigned to stage 1 error, 2 contrasts are 

assigned to stage 2 error, 12 contrasts are assigned to stage 3 error, and 16 contrasts are 

assigned to stage 4 error. The properties for MSFFSP designs were successfully applied 

to the motivating polymerization example. As the experiment is unreplicated, no degrees 

of freedom for the error terms exist and hence alternate methods have to be used. First, a 

normal probability plot can be used to identify potentially significant effects. When the 

usual assumptions hold, ANOVA can be conducted by pooling insignificant terms 

identified from the normal probability plot. If counter-intuitive results are observed, 

design can be extended to study the significant effects and factors from Stage I 

(formation of SAM) through an additional stage. Suitable conditions for film formation 

having desired thickness can be identified from separate analysis of each stage. 
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Appendix 5A     Alias Structure for the 

Polymerization Experiment 

 

Complete alias structure for the polymerization experiment 

 

The complete alias structure for the polymerization experiment is as follows (effects of 

interest are bold faced): 

 

Generalized defining contrast:  

(1) = M×N×O = T×A×M×α×β = T×A×N×O×α×β 

 

Confounded effects:  

    T  = T×M×N×O = A×M×α×β = A×N×O×α×β 

   A  = A×M×N×O = T×M×α×β = T×N×O×α×β 

   T×A  = T×A×M×N×O = M×α×β = N×O×α×β 

   M  =  N×O  = T×A×α×β = T×A×M×N×O×α×β 

   T×M  = T×N×O = A×α×β = A×M×N×O×α×β 

   A×M  = A×N×O = T×α×β = T×M×N×O×α×β 

  T×A×M = T×A×N×O =  α×β  = M×N×O×α×β 

   N  =  M×O  = T×A×M×N×α×β = T×A×O×α×β 

   T×N  = T×M×O = A×M×N×α×β = A×O×α×β 

   A×N  = A×M×O = T×M×N×α×β = T×O×α×β 
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  T×A×N = T×A×M×O = M×N×α×β = O×α×β 

   M×N  =  O  = T×A×N×α×β = T×A×M×O×α×β 

  T×M×N =  T×O  = A×N×α×β = A×M×O×α×β 

  A×M×N =  A×O  = T×N×α×β = T×M×O×α×β 

  T×A×M×N = T×A×O = N×α×β = M×O×α×β 

   α  = M×N×O×α = T×A×M×β = T×A×N×O×β 

   T×α  = T×M×N×O×α = A×M×β = A×N×O×β 

   A×α  = A×M×N×O×α = T×M×β = T×N×O×β 

  T×A×α = T×A×M×N×O×α =  M×β  = N×O×β 

   M×α  = N×O×α = T×A×β = T×A×M×N×O×β 

  T×M×α = T×N×O×α =  A×β  = A×M×N×O×β 

  A×M×α = A×N×O×α =  T×β  = T×M×N×O×β 

  T×A×M×α = T×A×N×O×α =  β  = M×N×O×β 

   N×α  = M×O×α = T×A×M×N×β = T×A×O×β 

  T×N×α = T×M×O×α = A×M×N×β = A×O×β 

  A×N×α = A×M×O×α = T×M×N×β = T×O×β 

  T×A×N×α = T×A×M×O×α = M×N×β =  O×β  

  M×N×α =  O×α  = T×A×N×β = T×A×M×O×β 

  T×M×N×α = T×O×α = A×N×β = A×M×O×β 

  A×M×N×α = A×O×α = T×N×β = T×M×O×β 

  T×A×M×N×α = T×A×O×α =  N×β  = M×O×β 

 

 



 

 

156 

Appendix 5B     Instructions for Polymerization 

Experimentation 

 

Detailed instructions on conducting the polymerization experiment 

 

1. Label the SAMs with random numbers between 1 and 32. 

 

2. Immerse SAMs labeled 31 in a solution containing 1mM catalyst [corresponding to 

(-) level of factor M]. 

3. Immerse SAMs labeled 3 in a solution containing 1mM catalyst [corresponding to (-) 

level of factor M]. 

4. Immerse SAMs labeled 25 in a solution containing 1mM catalyst [corresponding to 

(-) level of factor M]. 

5. Immerse SAMs labeled 16 in a solution containing 1mM catalyst [corresponding to 

(-) level of factor M]. 

6. Immerse SAMs labeled 4 in a solution containing 10mM catalyst [corresponding to 

(+) level of factor M]. 

7. Immerse SAMs labeled 23 in a solution containing 10mM catalyst [corresponding to 

(+) level of factor M]. 
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8. Immerse SAMs labeled 20 in a solution containing 10mM catalyst [corresponding to 

(+) level of factor M]. 

9. Immerse SAMs labeled 2 in a solution containing 10mM catalyst [corresponding to 

(+) level of factor M]. 

 

10. Remove SAMs labeled 31, 3, 25, 16, 4, 23, 20, and 2 from their respective solutions 

after 4 hours [corresponding to (-) level of factor A]. 

 

11. Rinse SAMs labeled 4, 23, 20, and 2 with CH3NO2 [corresponding to (+) level of 

factor N]. 

12. Rinse SAMs labeled 31, 3, 25, and 16 with CH2Cl2 [corresponding to (-) level of 

factor N]. 

 

13. Dry SAMs labeled 31, 3, 20, and 2 for 60 seconds [corresponding to (+) level of 

factor O]. 

14. Dry SAMs labeled 25, 16, 4, and 23 for 30 seconds [corresponding to (-) level of 

factor O]. 

 

15. Immerse SAM labeled 3 in a chamber at 10°C with continuous flow of Argon 

[corresponding to (-,-) levels of factors (α, β)]. 



 

 

158 

16. Immerse SAM labeled 31 in a chamber at 25°C with static Argon [corresponding to 

(+,+) levels of factors (α, β)]. 

17. Immerse SAM labeled 4 in a chamber at 10°C with continuous flow of Argon 

[corresponding to (-,-) levels of factors (α, β)]. 

18. Immerse SAM labeled 23 in a chamber at 25°C with static Argon [corresponding to 

(+,+) levels of factors (α, β)]. 

19. Immerse SAM labeled 25 in a chamber at 25°C with continuous flow of Argon 

[corresponding to (+,-) levels of factors (α, β)]. 

20. Immerse SAM labeled 16 in a chamber at 10°C with static Argon [corresponding to 

(-,+) levels of factors (α, β)]. 

21. Immerse SAM labeled 20 in a chamber at 25°C with continuous flow of Argon 

[corresponding to (+,-) levels of factors (α, β)]. 

22. Immerse SAM labeled 2 in a chamber at 10°C with static Argon [corresponding to (-

,+) levels of factors (α, β)]. 

 

23. Remove SAMs labeled 31, 3, 25, 16, 4, 23, 20, and 2 after 48 hours [corresponding 

to (+) level of factor T]. 

 

24. Measure the thickness of the films on SAMs labeled 31, 3, 25, 16, 4, 23, 20, and 2 

[corresponds to the response]. 
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Processing complete for 8 substrates at this point 

 

25. Immerse SAMs labeled 1 in a solution containing 1mM catalyst [corresponding to  (-

) level of factor M]. 

26. Immerse SAMs labeled 32 in a solution containing 1mM catalyst [corresponding to 

(-) level of factor M]. 

27. Immerse SAMs labeled 29 in a solution containing 1mM catalyst [corresponding to 

(-) level of factor M]. 

28. Immerse SAMs labeled 30 in a solution containing 1mM catalyst [corresponding to 

(-) level of factor M]. 

29. Immerse SAMs labeled 27 in a solution containing 10mM catalyst [corresponding to 

(+) level of factor M]. 

30. Immerse SAMs labeled 5 in a solution containing 10mM catalyst [corresponding to 

(+) level of factor M]. 

31. Immerse SAMs labeled 9 in a solution containing 10mM catalyst [corresponding to 

(+) level of factor M]. 

32. Immerse SAMs labeled 14 in a solution containing 10mM catalyst [corresponding to 

(+) level of factor M]. 

 

33. Remove SAMs labeled 1, 32, 27, 5, 29, 30, 9, and 14 from their respective solutions 

after 12 hours [corresponding to (+) level of factor A]. 
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34. Rinse SAMs labeled 29, 30, 9, and 14 with CH3NO2 [corresponding to (+) level of 

factor N]. 

35. Rinse SAMs labeled 1, 32, 27, and 5 with CH2Cl2 [corresponding to (-) level of 

factor N]. 

 

36. Dry SAMs labeled 1, 32, 9, and 14 for 60 seconds [corresponding to (+) level of 

factor O]. 

37. Dry SAMs labeled 27, 5, 29, and 30 for 30 seconds [corresponding to (-) level of 

factor O]. 

 

38. Immerse SAM labeled 27 in a chamber at 10°C with continuous flow of Argon 

[corresponding to (-,-) levels of factors (α, β)]. 

39. Immerse SAM labeled 5 in a chamber at 25°C with static Argon [corresponding to 

(+,+) levels of factors (α, β)]. 

40. Immerse SAM labeled 9 in a chamber at 25°C with static Argon [corresponding to 

(+,+) levels of factors (α, β)]. 

41. Immerse SAM labeled 14 in a chamber at 10°C with continuous flow of Argon 

[corresponding to (-,-) levels of factors (α, β)]. 

42. Immerse SAM labeled 29 in a chamber at 10°C with static Argon [corresponding to 

(-,+) levels of factors (α, β)]. 
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43. Immerse SAM labeled 30 in a chamber at 25°C with continuous flow of Argon 

[corresponding to (+,-) levels of factors (α, β)]. 

44. Immerse SAM labeled 1 in a chamber at 25°C with continuous flow of Argon 

[corresponding to (+,-) levels of factors (α, β)]. 

45. Immerse SAM labeled 32 in a chamber at 10°C with static Argon [corresponding to 

(-,+) levels of factors (α, β)]. 

 

46. Remove SAMs labeled 1, 32, 27, 5, 29, 30, 9, and 14 after 48 hours [corresponding 

to (+) level of factor T]. 

 

47. Measure the thickness of the films on SAMs labeled 1, 32, 27, 5, 29, 30, 9, and 14 

[corresponds to the response]. 

 

Half the experiment (16 substrates) has been completed at this point 

 

48. Immerse SAMs labeled 19 in a solution containing 1mM catalyst [corresponding to 

(-) level of factor M]. 

49. Immerse SAMs labeled 10 in a solution containing 1mM catalyst [corresponding to 

(-) level of factor M]. 

50. Immerse SAMs labeled 12 in a solution containing 1mM catalyst [corresponding to 

(-) level of factor M]. 
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51. Immerse SAMs labeled 26 in a solution containing 1mM catalyst [corresponding to 

(-) level of factor M]. 

52. Immerse SAMs labeled 28 in a solution containing 10mM catalyst [corresponding to 

(+) level of factor M]. 

53. Immerse SAMs labeled 11 in a solution containing 10mM catalyst [corresponding to 

(+) level of factor M]. 

54. Immerse SAMs labeled 7 in a solution containing 10mM catalyst [corresponding to 

(+) level of factor M]. 

55. Immerse SAMs labeled 21 in a solution containing 10mM catalyst [corresponding to 

(+) level of factor M]. 

 

56. Remove SAMs labeled 19, 10, 28, 11, 12, 26, 7, and 21 from their respective 

solutions after 4 hours [corresponding to (-) level of factor A]. 

 

57. Rinse SAMs labeled 12, 26, 7, and 21 with CH3NO2 [corresponding to (+) level of 

factor N]. 

58. Rinse SAMs labeled 19, 10, 28, and 11 with CH2Cl2 [corresponding to (-) level of 

factor N]. 

 

59. Dry SAMs labeled 19, 10, 7, and 21 for 60 seconds [corresponding to (+) level of 

factor O]. 
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60. Dry SAMs labeled 28, 11, 12, and 26 for 30 seconds [corresponding to (-) level of 

factor O]. 

 

61. Immerse SAM labeled 28 in a chamber at 10°C with continuous flow of Argon 

[corresponding to (-,-) levels of factors (α, β)]. 

62. Immerse SAM labeled 11 in a chamber at 25°C with static Argon [corresponding to 

(+,+) levels of factors (α, β)]. 

63. Immerse SAM labeled 21 in a chamber at 10°C with continuous flow of Argon 

[corresponding to (-,-) levels of factors (α, β)]. 

64. Immerse SAM labeled 7 in a chamber at 25°C with static Argon [corresponding to 

(+,+) levels of factors (α, β)]. 

65. Immerse SAM labeled 12 in a chamber at 25°C with continuous flow of Argon 

[corresponding to (+,-) levels of factors (α, β)]. 

66. Immerse SAM labeled 26 in a chamber at 10°C with static Argon [corresponding to 

(-,+) levels of factors (α, β)]. 

67. Immerse SAM labeled 10 in a chamber at 25°C with continuous flow of Argon 

[corresponding to (+,-) levels of factors (α, β)]. 

68. Immerse SAM labeled 19 in a chamber at 10°C with static Argon [corresponding to 

(-,+) levels of factors (α, β)]. 

 

69. Remove SAMs labeled 19, 10, 28, 11, 12, 26, 7, and 21 after 12 hours [corresponding 

to (-) level of factor T]. 
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70. Measure the thickness of the films on SAMs labeled 19, 10, 28, 11, 12, 26, 7, and 21 

[corresponds to the response]. 

 

Processing complete for 24 substrates at this point 

 

71. Immerse SAMs labeled 13 in a solution containing 1mM catalyst [corresponding to 

(-) level of factor M]. 

72. Immerse SAMs labeled 18 in a solution containing 1mM catalyst [corresponding to 

(-) level of factor M]. 

73. Immerse SAMs labeled 8 in a solution containing 1mM catalyst [corresponding to (-) 

level of factor M]. 

74. Immerse SAMs labeled 24 in a solution containing 1mM catalyst [corresponding to 

(-) level of factor M]. 

75. Immerse SAMs labeled 15 in a solution containing 10mM catalyst [corresponding to 

(+) level of factor M]. 

76. Immerse SAMs labeled 6 in a solution containing 10mM catalyst [corresponding to 

(+) level of factor M]. 

77. Immerse SAMs labeled 22 in a solution containing 10mM catalyst [corresponding to 

(+) level of factor M]. 
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78. Immerse SAMs labeled 17 in a solution containing 10mM catalyst [corresponding to 

(+) level of factor M]. 

 

79. Remove SAMs labeled 13, 18, 15, 6, 8, 24, 22, and 17 from their respective solutions 

after 12 hours [corresponding to (+) level of factor A]. 

 

80. Rinse SAMs labeled 8, 24, 22, and 17 with CH3NO2 [corresponding to (+) level of 

factor N]. 

81. Rinse SAMs labeled 13, 18, 15, and 6 with CH2Cl2 [corresponding to (-) level of 

factor N]. 

 

82. Dry SAMs labeled 13, 18, 22, and 17 for 60 seconds [corresponding to (+) level of 

factor O]. 

83. Dry SAMs labeled 15, 6, 8, and 24 for 30 seconds [corresponding to (-) level of 

factor O]. 

 

84. Immerse SAM labeled 18 in a chamber at 10°C with continuous flow of Argon 

[corresponding to (-,-) levels of factors (α, β)]. 

85. Immerse SAM labeled 13 in a chamber at 25°C with static Argon [corresponding to 

(+,+) levels of factors (α, β)]. 



 

 

166 

86. Immerse SAM labeled 8 in a chamber at 25°C with static Argon [corresponding to 

(+,+) levels of factors (α, β)]. 

87. Immerse SAM labeled 24 in a chamber at 10°C with continuous flow of Argon 

[corresponding to (-,-) levels of factors (α, β)]. 

88. Immerse SAM labeled 15 in a chamber at 10°C with static Argon [corresponding to 

(-,+) levels of factors (α, β)]. 

89. Immerse SAM labeled 6 in a chamber at 25°C with continuous flow of Argon 

[corresponding to (+,-) levels of factors (α, β)]. 

90. Immerse SAM labeled 22 in a chamber at 25°C with continuous flow of Argon 

[corresponding to (+,-) levels of factors (α, β)]. 

91. Immerse SAM labeled 17 in a chamber at 10°C with static Argon [corresponding to 

(-,+) levels of factors (α, β)]. 

 

92. Remove SAMs labeled 13, 18, 15, 6, 8, 24, 22, and 17 after 24 hours [corresponding 

to (-) level of factor T]. 

 

93. Measure the thickness of the films on SAMs labeled 13, 18, 15, 6, 8, 24, 22, and 17 

[corresponds to the response]. 

Processing complete for all 32 substrates at this point 
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6. CONCLUSIONS AND DISCUSSION 

6.1 Summary 

The ideas presented in this thesis address the areas of nanomanufacturing challenges, 

experimental designs with missing observations, and multistage split-plot experiments. 

The motivating factor has been the severe lack of experimental knowledge needed to 

effectively discover new products and processes at the nano-scale. 

 The first part of this research focused on the nano-scale lubrication experiments 

and the problem of missing observations stemming from it. Bayesian algorithms were 

developed that performed much better than the traditional non-Bayesian ones, even in the 

case of mismatches. A polymerization process conducted over multiple stages was 

studied in the second part of the research. Various properties and characteristics of split-

plot designs applied to multiple stages were studied, and general expressions were 

obtained for a given number of stages.  

 Through these designs, we illustrated how DOE techniques can be used in 

nanomanufacturing design and engineering by helping researchers understand the product 

and process dynamics. There are undoubtedly countless other nanotechnology–related 

projects that can also benefit from these methods. For instance, missing observations 

could occur in an experiment similar to the one conducted by Sun et al. (2004) to 

investigate the conditions of the surface treatment aimed at improving the rheological 

behavior of the nanosilica composite no-flow underfill.  

 A brief summary of the research contributions is presented in the next section. 

Directions for the advancement of this research are proposed in the subsequent section. 
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Finally, a few potential applications of the proposed designs to fields other than 

nanotechnology are also mentioned. 

  

6.2 Research Contributions 

Although commendable research has taken place in the field of nanotechnology, there 

remains a wide gap in the translation of the technology to the commercial world. Through 

this research, we endeavor to solve a “piece of the puzzle” and motivate other researchers 

to further explore this area. There are many areas in nanomanufacturing that demand 

inter-disciplinary work in order to develop new, better and more robust products and 

processes.  

 Traditional algorithms based on minimizing sum of squares of the residuals have 

shown to yield reasonable results for n-way factorial designs. However, their 

performance plummets when applied to a full (2
k
) factorial design, more so in a fractional 

factorial (2
n-k

) design. To overcome these limitations, Bayesian-based algorithms are 

proposed in this research, which make use of a priori knowledge about the significant 

effects in the underlying process. These algorithms also have the capability to 

accommodate any prior belief held by the researcher investigating the process. These 

proposed algorithms not only yield more accurate estimates of the missing observations, 

but also provide close approximations to the null model (i.e., the model obtained when no 

observations are missing).  

 In addition, to facilitate present-day experimentation in nanomanufacturing, 

multistage fractional factorial split-plot designs are proposed for processes carried out 

over multiple stages. These designs are particularly valuable in circumstances in which 
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some experimental units need to be treated over all stages before processing on other 

units can commence. These multistage designs overcome the severe limitation of the 

commonly used split-lot designs by providing greater flexibility in the choice of 

confounding patterns. In addition, multistage designs require fewer runs than split-lot 

designs, while yielding greater information about the factors of interest. Two design 

optimality criteria based on common occurrences in nanomanufacturing experimentation 

are also proposed. Catalogs of designs for certain operational set-ups (number of factors 

and runs) are provided and ranked according to optimality criteria. These catalogs of 

designs are intended to aid practitioners in choosing a design, given the operational 

constraints for the experiment considered. 

 In summary, using these designs and integrating them into the modeling and 

production for nanomanufacturing research will yield strategic advantages by speeding 

the research and development cycle, stretching the experimental budget, and helping to 

create more reliable, robust, and better performing products. It is also believed that as 

advanced nanotechnology applications are explored with experimental design, there will 

be new questions that call for modifications or perhaps completely new constructs of 

experimental designs that will simultaneously advance the field of DOE.  

 

6.3 Future Work 

In this research, Bayesian algorithms were proposed to estimate missing observations in a 

nano-scale lubrication experiment. Some of the properties and characteristics of these 

algorithms were studied, along with the performance over different conditions for data 
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sets that resemble the lubrication experiment. From this work, we identify some potential 

areas for future research. These include the following: 

 

• Nano-scale lubrication experiments could be conducted in a laboratory setting.  

Responses could then be measured on those conditions for which molecules already 

exist. Once the incomplete data set is formed, one of the Bayesian algorithms can be 

applied to obtain the estimates of the missing observations. Using these estimates, 

the characteristics of the molecules can be studied and recommendations can be 

provided to achieve desired degree of lubrication.  

• As the motivating example for the development of Bayesian algorithms was a 2
4-1

 

fractional factorial design, the performance of the algorithms was tested for data sets 

of the same size (eight runs). A recommendation for future study would be to 

perform a similar investigation as the one in Section 4.8 but for larger data sets. For 

different data sets, the effects of incorrect specification of the active factors and 

positions of missing observations can be examined. Thus, a more informed 

recommendation on the best performing Bayesian algorithm can be offered.  

• Effects of variance in a data set for which the estimates of the missing observations 

are obtained can be examined. This study can be facilitated by using data sets having 

different values of standard deviations in the above performance study of the 

Bayesian algorithms. 

• In the present study of the consequence of incorrect specification of active factors by 

the screening algorithm on the performances of Bayesian algorithms, an assumption 
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is that all “true” active effects are statistically significant at the same level of 

significance. In other words, all true effects have the same p-value in the presence of 

a complete data set. A future direction of research could be the sensitivity of this 

assumption. For instance, an answer to the question “up to what level of significance, 

do the Bayesian algorithms yield satisfactory estimates of missing observations?” 

can have some research potential. 

  

 A multistage polymerization process was considered and a MSFFSP design was 

proposed to investigate the effects of the process, while using few of the limited 

resources. Moreover, based on the common occurrences in the field of 

nanomanufacturing, two optimality criteria were proposed in Section 5.5 to rank various 

MSFFSP designs. The following directions of future work can be considered with respect 

to multistage designs.  

 

• The design proposed in Section 5.6 for the multistage polymerization process can be 

executed by following the systematic directions given in Appendix 5B. Once the 

experiment is conducted, the thickness of the films on the 32 substrates can be 

measured. Using the film thickness of the 32 substrates as the response, the MSFFSP 

design can be analyzed following the appropriate procedure given in Section 5.6.2. 

• The catalogs of design for processes conducted over three and four stages are 

presented in Section 5.5. The designs in these catalogs were ranked based on two 

common criteria, namely, robustness and mixed three-way interactions. Depending 
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on the objective of a study, different criteria can be used to evaluate its efficiency 

and adequacy. A few examples of the criteria are maximum number of clear effects, 

maximum number of clear main effects and two-way interactions within a stage, and 

maximum number of clear effects that are estimated with greater precision. A 

recommendation for future research would be to examine some of these design 

optimality criteria and rank the MSFFSP designs accordingly.  

• The type of fractionation considered in the catalogs is “confounding within plots” as 

robustness studies were of primary interest. In future, “mixed confounding” can be 

used by removing the constraint of choosing columns from the same plot for some 

stages. These designs could potentially maximize the estimation of the effects of 

interest. 

• Finally, a recommendation for future study would be to combine the ideas from 

Chapters 4 and 5. Missing observations in fractional factorial designs were 

considered in this research. The principle behind estimating the missing observations 

was reduction in the sum of squares of the error term. Missing observations can 

potentially occur in designs having more than one error term. An important research 

consideration would be to investigate the extension of the Bayesian algorithms to 

yield estimates for more advanced designs such as the split-plot or MSFSSP designs. 

 

6.4 Application to Other Fields 

We also hope that current and future extensions will be applied to fields other than 

nanomanufacturing.  In particular, experimental designs have recently found extensive 
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application in the field of pharmaceutical research and development of new drugs. In 

2003, the U.S. Department of Health and Human Services Food and Drug Administration 

promoted implementation of a Process Analytical Technology (PAT) (see FDA Draft 

Guidance, 2003) entitled “Framework for Innovative Pharmaceutical Development, 

Manufacturing, and Quality Assurance”. This framework advocates the use experimental 

designs along with other statistical tools (process monitoring and control, multivariate 

data analysis, etc) to facilitate process understanding, continuous improvement and 

develop risk-free mitigation strategies. It is further stated that efficient experimentation 

can serve as building blocks of knowledge that grow to accommodate a higher degree of 

complexity throughout the life of a product.  

 Pharmaceutical industries like Eli Lilly and Company, Merck and Co., Inc., etc. 

are involved in discovery of new drugs by creating or finding the right combination of 

molecules that meet specific needs. Once these medicines are discovered and proven safe 

for human consumption, they need to be manufactured in large quantities with strict 

quality standards, usually set by International Organization for Standardization (ISO). 

Thus, a typical sequence in the introduction of a medicine involves a phase of drug 

discovery in which effective research yields newer compounds targeted at specific 

diseases or patient needs. The second phase involves drug development, where the 

discovered drugs are tested and manufactured for commercial use with the help of an 

optimized process for scaling-up. 

 During drug discovery, the robustness of a process under investigation to small 

changes in external conditions (example purification or crystallization conditions) is 

studied through experimental designs. In addition, DOEs are also used to identify critical 
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process variables that lead to a desired range of output values. Due to the high uncertainty 

involved with compounds and molecules in the discovery stage, there exists a high 

chance of not being able to traverse the entire space of a designed experiment. In other 

words, the all the runs in the experiment cannot be performed, thus yielding missing 

observations.  

 Similar uncertainties may also exist in the field of biotechnology, specifically in 

the study of performance of particular cells. Often, a statistical approach is adopted to 

study cell performance and provide optimal settings for the same (for example, see 

DeLong et al., 2004). Some of the conditions to which these cells are subjected, as part of 

a factorial design approach, might not be conducive, and hence, no results are obtained 

corresponding to those conditions. Missing observations in the above circumstances can 

be handled using one of the Bayesian algorithms proposed.  

 Lastly, researchers in the field of polymer research have widely begun to apply 

statistical approaches for the optimization of polymer formulations. Gulmus and Moneke 

(2005) note that the development of new polymer formulations for commercial and 

industrial applications, such as plastics, requires significant time, materials and labor 

costs. Moreover, the development process is conducted over multiple steps that include 

extrusion of relatively large amounts of polymer, its granulation, moulding of parts and 

manual testing of product performance. To expedite the development of new 

formulations, multistage designs (MSSP or MSFFSP) can be used effectively while 

maintaining the low-cost of the process. By treating the reaction time or labor costs or the 

available resources as hard-to-change factors, plastic formulations can be investigated 

and optimized faster and at lower costs than with traditional factorial designs. 
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