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Missing Point Estimation in Models Described
by Proper Orthogonal Decomposition

Patricia Astrid, Member, IEEE, Siep Weiland, Karen Willcox, and Ton Backx

Abstract—This paper presents a new method of missing point es-
timation (MPE) to derive efficient reduced-order models for large-
scale parameter-varying systems. Such systems often result from
the discretization of nonlinear partial differential equations. A pro-
jection-based model reduction framework is used where projec-
tion spaces are inferred from proper orthogonal decompositions of
data-dependent correlation operators. The key contribution of the
MPE method is to perform online computations efficiently by com-
puting Galerkin projections over a restricted subset of the spatial
domain. Quantitative criteria for optimally selecting such a spa-
tial subset are proposed and the resulting optimization problem is
solved using an efficient heuristic method. The effectiveness of the
MPE method is demonstrated by applying it to a nonlinear com-
putational fluid dynamic model of an industrial glass furnace. For
this example, the Galerkin projection can be computed using only
25% of the spatial grid points without compromising the accuracy
of the reduced model.

Index Terms—Model reduction, parameter-varying systems,
proper orthogonal decomposition, time-varying systems.

I. INTRODUCTION

T
HIS paper presents a novel reduced-order modeling

strategy for large-scale parameter-varying systems. The

proposed method uses selective spatial sampling to yield

models of low order that can be solved efficiently in online

computations. Such systems often result from the discretization

of nonlinear partial differential equations (PDEs), ordinary

differential equations (ODEs) and differential algebraic equa-

tions (DAEs), and have many applications of practical interest,

including computational fluid dynamic (CFD) models and

Electronic Design Automation models.

In recent years, simulation capabilities for systems governed

by PDEs have reached a considerable level of maturity, partic-

ularly with regard to the development and use of commercial

packages. For example, in the glass furnace industry, such pack-

ages have served as tools for modeling physical systems, for an-
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alyzing the performance and stability of systems, and for com-

puter aided engineering designs [1], [6], [14].

In the case of spatial-temporal systems, numerical simula-

tion is typically achieved by spatial discretization of the gov-

erning PDEs using, for example, finite volume or finite element

methods. The spatial discretization procedure leads to large-

scale systems of ordinary differential equations (ODEs), typi-

cally of order , depending on the complexity of the

governing equations and the desired level of accuracy. The un-

derlying governing equations are generally nonlinear and the

model parameters are often functions of state variables (hence

time-varying), which adds considerably to the degree of com-

plexity [2], [4], [5], [43]. Thus, for problems of practical in-

terest, the computational effort required to simulate these sys-

tems is substantial.

Both the large dimension of the system and the large com-

putational requirements render such simulation models inad-

equate for control design and online optimization. To facili-

tate model-based control design, it is essential to have accurate

low-order models that are significantly faster to solve than the

original model. A reduced-order model can be derived using a

projection-based framework, in which the system variables and

governing equations are projected onto low dimensional sub-

spaces. In the context of parameter- and time-varying systems,

the resulting system is of reduced order, but is not necessarily

computationally efficient to solve. This is because online simu-

lations of the reduced models still require computations on the

large scale.

The contribution of this paper is a new method—the Missing

Point Estimation (MPE) approach—that achieves the goals of

low model order, efficient simulation and accurate predictions

using a projection-based model reduction framework combined

with selective spatial sampling to efficiently perform the neces-

sary online computations. Given a simulated or measured signal

that evolves both in time and space, we first characterize a basis

of spatial functions that achieves optimal approximation prop-

erties with respect to the measured signal by considering par-

tial (finite) sums of spectral expansions. This so-called “proper

orthogonal” (or “principal component”) basis has as its distin-

guishing features that it is data dependent, physically relevant,

computable and optimal in a well-defined sense. To enhance the

computational speed of the resulting reduced model, we pro-

pose to sample the spatial domain in such a way that orthonor-

mality of basis functions is preserved in the sampled domain by

the introduction of a suitable bilinear form. It is shown that this

bilinear form plays a crucial role in questions on exact signal

reconstruction from sampled observations (missing point esti-

mations) and on deriving expressions for alias errors in approx-
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imate signal reconstructions. An algorithm is then derived for

the selection of optimal samples using a heuristic optimization

method to minimize the alias error in any interpolated signal in

the sampled domain. We apply the theoretical results to a model

of an industrial glass feeder. The merits of the procedure for

model reduction and the enhancement of computational speed

by missing point estimations are demonstrated in a rather com-

plicated heat transition mechanism in a glass feeder.

A. Previous Work

The proper orthogonal decomposition (POD) technique [24],

[26], [38] derives an empirical basis from a collection of sim-

ulation or experimental data. In recent years, the POD method

has seen widespread, successful application to model reduction

for CFD applications. For this reason, it is chosen, in combi-

nation with a glass furnace control example, as a case study for

the methodology presented in this paper. However, the MPE ap-

proach is applicable to other projection-based model reduction

techniques, such as balanced truncation [15], [22], [31], [37] and

Krylov subspace methods [18], [20].

Improvements in the numerical efficiency of reduced-order

models have been focused mostly on the development of alterna-

tive, more efficient methods to compute the approximating basis

functions [15], [30], [41]. Efforts to address the problem of high

computational cost for simulation of nonlinear and time-varying

systems include the work of Rewienski and White, who use a

trajectory piecewise-linear approximation scheme [35], [36]. In

this approach, a nonlinear system is represented as a weighted

combination of linear models, which are obtained by linearizing

the nonlinear system at selected points along a state trajectory.

This approach has been successfully applied to nonlinear ana-

logue circuits and micromachined devices [35], [36], and to

a nonlinear CFD model of a supersonic diffuser [21]. Other

methods that do not rely on linearization of the system have

been proposed more recently in [4], [10], and [5]. In [10], the

approach for accelerating the reduced model simulation is sim-

ilar to that proposed here, i.e., by constructing the nonlinear be-

havior using a subset of the original equations. In that work,

the choice of the selected original equations is made based on a

priori knowledge rather than using a systematic approach. The

MPE approach was discussed in [4] and [5] in the context of

computational fluid dynamics models, while preliminary work

on MPE was presented in [2]. The mathematical foundation of

MPE can be traced back to classical sampling theory [32], [33],

[45] or, more specifically, to the problem of approximate signal

recovery from inhomogeneously sampled multidimensional sig-

nals. Some signal recovery results from [13], [23], [32], [33]

are generalized here to non-band-limited spectral expansions of

multidimensional signals by arbitrary orthonormal POD bases.

Quantitative criteria are introduced in [4] and [5] as a means to

select suitable sample points so as to minimize alias effects in

interpolations.

B. Paper Organization

The paper is organized as follows. Preliminaries and nota-

tional issues are collected in Section II. The method of reduced-

order modeling via POD is introduced in Section III. Section IV

describes the construction of reduced-order models using selec-

tive spatial sampling. A heuristic optimization procedure to se-

lect the sample points is given in Section V. The concepts are

implemented on a simulation model of a glass feeder, which is a

section in a glass furnace. The results of the implementations are

presented in Section VI. Conclusions are given in Section VII.

II. PRELIMINARIES AND NOTATION

Let , , and denote the field of real numbers,

the sets of positive reals, real -vectors and real ma-

trices, respectively. For , is the transpose of

, and are the

left and right inverses of , respectively, assuming the inverses

exist. The inner product and norm of an inner product space

are denoted as and , respectively, or as and

if the context requires indicating the underlying space.

If is a Lebesgue measurable set then the space of all equiv-

alence classes (i.e., pointwise equality almost everywhere on

) of measurable functions , which are square in-

tegrable over is denoted by . This is a Hilbert space

when equipped with its usual inner product. The restriction of

to a subset is the mapping defined by

with and is also denoted by .

The boundary of a set is the set theoretic difference be-

tween its closure and interior and denoted by . The function

stacks the elements in its argument as a column vector.

III. PROPER ORTHOGONAL DECOMPOSITION

A. The POD Basis Problem

In the study of dynamical systems that evolve in space and

time we consider signals that depend on a spatial variable

and on time . That is, we consider signals

where is a bounded spatial domain in a -dimensional Eu-

clidean space �, denotes the set of time instants of in-

terest and is a normal vector space of dimension

in which assumes its values. For any such function

and time instant , the map is as-

sumed to be an element of some Hilbert space of functions

defined on . We let be the space of all func-

tions that map into and that are square integrable

in the sense that

is finite. becomes a Hilbert space with inner product

where . We will consider dynamical spatial-temporal

systems that are subsets of and view elements of as

time depending functions where, for fixed time , the

expression stands for the function in that acts on

the spatial domain .

Spectral decompositions of signals by (infinite) sequences

of orthogonal functions underlie many numerical techniques of

approximation. A central theme in this paper is therefore the

construction of an (empirical) orthonormal basis of the Hilbert

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on December 11, 2008 at 03:35 from IEEE Xplore.  Restrictions apply.
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space that proves useful for the representation and approxi-

mation of signals. Suppose that is a separable Hilbert space so

that it admits a countable orthonormal basis where

the index set has cardinality equal to the (pos-

sibly infinite) dimension of [27]. Given such an orthonormal

basis, we introduce for any the spectral expansion

(1)

where the expansion coefficients are given by

(2)

The approximation of using a finite sum retaining the

first terms in (1) is denoted .

Definition 1: Given an observation , a POD basis is

an orthonormal basis of with the property that

the error

(3)

is minimal for all values of .

A POD basis therefore has the property that any truncation in

the expansion (1) of is an optimal approximation to in the

normed space . POD bases can be characterized and com-

puted by means of an eigenvalue decomposition of a suitably

defined correlation operator. Precisely, define, for , the

data-correlation operator by

(4)

It is immediate that is a well defined linear, bounded, self-

adjoint and non-negative operator on . If happens to be fi-

nite dimensional, then is simply a non-negative definite ma-

trix. It can be shown [8], [24], [29] that an orthonormal basis

of is a POD basis if and only if , , are

normalized eigenfunctions corresponding to the ordered eigen-

values of .

The truncation level depends on the problem at hand and

can be determined in many ways. We introduce the criterion

(5)

The correlation tolerance then defines the trunca-

tion level as the minimal value for which . In typ-

ical applications [24]. Once has been set, the re-

duced-order model can be constructed by conducting a Galerkin

projection. For models describing diffusion phenomena in com-

putational fluid dynamics, a number of case studies show that

the order can be reduced to as low as 1% of the order of the

original model [3], [24], [26].

B. Approximate Solutions and Galerkin Projections

In most applications, spatial-temporal systems are described

by partial differential equations and a typical evolution equation

can be written in the form

(6)

subject to boundary and initial conditions on (subsets of) the

(sufficiently smooth) boundary set . Here, is some

function, is the partial derivative operator and

is a compact notation for an arbitrary partial derivative in

the spatial coordinate . Precisely, is defined by

where denotes a multi-index that consists of

non-negative integers , and where , the length of the multi-

index, is defined as . By convention,

. For the important class of linear spatial-temporal systems,

(6) simplifies to

(7)

where is a polynomial differential operator

with real coefficients and degree in the partial derivative

operator .

Throughout it is assumed that solutions of (6) are contin-

uous functions on the closure of and are sufficiently often

continuously differentiable as elements of the Hilbert space .

The notion of an approximate solution of (6) will be defined

in terms of projections of either the solution space of (6) or

the residual associated with (6) onto a finite dimensional sub-

space. Specifically, let be a finite dimensional subspace of ,

, and suppose that . That is, we consider

scalar valued functions in (6) only.

Definition 2: Let be an dimensional subspace of and

let . An element is an

• approximate weak solution of order of (6) if

(8)

for all and almost all .

• Galerkin approximate solution of order of (6) if

(9)

for all and almost all .

The set of all approximate weak solutions of order is de-

noted and the set of all Galerkin approximate solutions

of order is denoted . It is important to point out

that for linear systems the expressions (8) and (9) coincide be-

cause of the linearity of . This means that a projection of

the solution space and a projection of the residual associated

with a linear PDE (6) coincide and result in the property that

. For nonlinear systems this is evidently no

longer the case. We refer to [25], [39] for a rigorous treatment

of solution concepts and Galerkin projections in nonlinear evo-

lutionary PDEs [40].

In computational fluid dynamics, typically consists of finite

element approximations of functions in . We will be particu-

larly interested in Galerkin approximations where

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on December 11, 2008 at 03:35 from IEEE Xplore.  Restrictions apply.
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where is a POD basis of

. In that case, elements assume the form

where the coefficient functions are square inte-

grable. Condition (8) implies that the expansion coefficients

of approximate weak solutions satisfy the ordinary differential

equation

(10)

Similarly, (9) implies that the coefficients satisfy

(11)

In spite of a substantial reduction of model order that can be

accomplished in this manner, the computational gain in com-

puting solutions of the reduced-order model may still be modest

because the evaluation of the inner products in the right-hand

side of (10) or (11) is computationally intensive. Indeed, (10)

and (11) amount to evaluating the inner products over the

entire spatial domain, which may become a formidable task in

large-scale or high-dimensional systems, and computationally

prohibitive in parameter- and time-varying models where the

evaluation of these inner products needs to be performed online.

This paper proposes a new methodology to accelerate these on-

line computations. In Section IV, it is shown that under suitable

conditions, the same reduced-order model can be obtained with

a much simpler right-hand-side expression than the one in (10).

IV. MISSING POINT ESTIMATION AND PARTIAL OBSERVATIONS

The key contribution of this paper is a method to make the

approximate models and suitable for fast com-

putations. In order to achieve this goal, we consider a sampling

of the signal . The sampled points can be re-

garded as measurements or observations of . We first consider

the exact reconstruction of signals from sampled data or sam-

pled measurements by means of an appropriate interpolation of

the sampled signal. We then address the approximate recovery

of signals from sampled or partial observations.

The methodology presented in this section extends the idea of

the missing point estimation (MPE) described in [3]–[5], which

is based upon the theory of Gappy POD, developed by Everson

and Sirovich [17]. The gappy POD method has been applied to

data reconstruction problems, such as reconstruction of facial

images [17], flow structure [12], [42], and flow sensing [44].

The key idea of gappy POD is to estimate the expansion coeffi-

cients from incomplete (gappy) data. As such, this

estimation problem belongs to the realm of signal reconstruc-

tion problems that are abundant in signal processing [23], [32],

[33], [45]. Results on exact signal reconstruction that are pre-

sented here are inspired by signal reconstruction problems from

inhomogeneously sampled data. Especially, the results in [13]

are generalized here to non-band-limited spectral expansions of

multidimensional signals in terms of an arbitrary orthonormal

POD basis.

Suppose that is a finite subset of distinct points

in the domain and suppose that a measure-

ment or partial observation is available at the collection of

the points in . That is, a measurement is a function

defined on spatial samples and time

that satisfies the restriction for some unobserved

signal . Throughout, tildes and hats will be used

to indicate sampled and interpolated signals, respectively. We

consider here the problem to reconstruct the unobserved signal

from its samples .

Suppose that is a basis for and assume that

is either finite dimensional or a set of continuous functions. Let

denote the restriction of the basis function to

the samples . Define, for and a set

of coefficient functions the expansion

(12)

together with its interpolation

(13)

The name “interpolation” is justified since coincides with

on the sample points in .

Introduce the real matrix that consists of the samples

of the first basis functions , defined by

...
... (14)

Then (12) can be written in matrix form as

(15)

where is the vector of expansion

coefficients and is the

vector of samples at time .

We define for any the bilinear form:

(16)

where is the th entry of the real symmetric

matrix

and where we assume that is such that is injective.

Since , we have that defines

a semi-norm on . Moreover, since only depends on

the samples and we also write, with some

abuse of notation, for the right-hand side of (16) and

view as a bilinear form on the sampled functions and

.
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The introduction of the bilinear form (16) enables us to for-

mulate both exact and approximate reconstruction of the signal

, as described in the following subsections.

A. Exact Reconstruction

The following lemma motivates the importance of (16), re-

lating the bilinear form on the sampled functions to the inner

product in .

Lemma 3: If defined in (14) is injective, then

(17)

where .

Proof: Let . Then, with ,

, and , there

holds , and

where in the fourth equality we used that (15) and the injectivity

of implies that the coefficients and are uniquely deter-

mined by and , respectively.

Lemma 3 implies that (16) defines an inner product on the

space whenever is injective. In particular, for ,

this means that can equivalently be evaluated on the

sampled values and by employing (16).

Furthermore, setting and in (17), implies that

is also an orthonormal basis of with

respect to the inner product (16).

Now define

(18)

and let be the corresponding interpolant (13). Using the

definition in (18) and the result from Lemma 3, the following

theorem provides the condition for exact reconstruction of the

signal from its partial observations.

Theorem 4: Let be a set of distinct

samples, and let be an orthonormal basis of .

Suppose defined in (14) has rank . If

for , then can be reconstructed

exactly from its partial observations in that

by taking the expansion coefficients (18) in the interpolant (13).

In particular, any signal in the approximate models and

can be reconstructed exactly in this way.

Proof: If then

so that its samples . Hence,

using vector notation, we can write . By

the injectivity of , is uniquely defined by the left

inverse . Using the definition of , it fol-

lows that so that, by (16), its entry

reads . Consequently, with de-

fined by (18), we have for all and

for all . But then the interpolant (13) reads

for all and all , which gives the result.

Thus, provided that the unobserved signal belongs to

for all , this signal can be reconstructed perfectly from

its samples by taking the spectral coefficients (18) in the

interpolant (13). It is important to observe that, by (16), the co-

efficients only depend on the sampled signals and . In

particular, no information of other than its partial observations

is necessary to recover from its samples. With harmonic basis

functions and equidistant samples, Theorem 4 specializes to the

classical Shannon sampling theorem that has been profoundly

studied in information and sampling theory [32], [33], [45]. Fol-

lowing standard engineering terminology, the minimum value of

for which is the bandwidth of . If no such exists,

the signal is said to be non-band-limited. Theorem 4 therefore

provides a signal recovery strategy for inhomogeneously sam-

pled multidimensional signals that are represented by spectral

expansions in terms of arbitrary orthonormal bases .

B. Approximate Reconstruction

Of course, there are many cases where for all

time instances . For these cases, exact signal reconstruc-

tion from samples will not be possible.

Using the bilinearity of (16), we have that the coefficients

defined in (18) satisfy

(19)

where

is the alias coefficient. Hence, the coefficient not

only depends on but also on the higher order expansion

coefficients of with . The alias expression (19) is

well documented for specific orthonormal bases such as bases

of trigonometric functions or bases consisting of Laguerre

or Chebeshev polynomials [13], [33], [45] but is hardly ever

used for multidimensional signals expanded through arbitrary

orthonormal bases such as the ones used here.

Due to the alias expression (19), the interpolant defined in

(13) with spectral coefficients (18) will in general not be equal

to and incur an interpolation error . Using (19), we

can express this error as

(20)
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Here, the first summation is due to the projection error

and the second summation is due to the alias error:

(21)

It follows that the interpolation error is never less than the pro-

jection error and never less than the alias error.

If exact signal reconstruction is not possible, one may adopt

an anti-alias approach by either increasing , or by using an

anti-alias filter that forces coefficients for . In

the transform domain, the coefficients depend linearly

on the coefficients , . Consequently, the alias operator

defined by

(22)

which maps the expansion coefficients of a given observation

to its corresponding alias error coefficients, is a linear surjective

map. Its induced norm

is a suitable measure for the alias sensitivity and depends on the

truncation level and, by (16), on the choice of the distinct

sample points in . The following theorem characterizes the

alias sensitivity. In the next section, this characterization is used

to derive a quantitative metric for selecting samples.

Theorem 5: Let be an orthonormal basis of

and let be a sample set consisting of

disjoint points in . Then

1) The alias sensitivity is given by ,

where is the real symmetric matrix whose

entry is given by

2) If is finite dimensional and equipped with the stan-

dard Euclidean inner product, then the alias sensitivity is

, where is the matrix

Proof:

1) The alias sensitivity , where

. Hence, it suffices to show that .

The adjoint of is the mapping

defined by

if

if

Indeed, with and there holds

where the first inner product is the standard inner product in

and the last inner product is the standard inner product

in . Consequently, if and denote the and

unit vectors in , we have that the entry of

the matrix is given by

Hence, as claimed.

2) To prove the second item, suppose that is finite dimen-

sional, say of dimension , equipped with the standard Eu-

clidean inner product. Let be the matrix whose

column defines the orthonormal basis function

of , . Furthermore, let be as in (14) and

define as the matrix whose column is

the vector of restrictions , . Then,

using the orthonormality of the basis ,

we have that and

(23)

Using the expression for derived in the first part of this

proof, (23) and (16), we infer that

Here, we used in the second equality that (23) implies

. This gives the result.

C. Construction of MPE Reduced-Order Models

In this subsection, the results on signal reconstruction and ap-

proximation are extended to the construction of reduced-order

models using missing point estimations. This is a key enabler

to derive reduced-order models that are computationally effi-

cient to solve for nonlinear and time-varying systems. The main

result of this subsection provides conditions under which the

reduced-order models can equivalently be represented through

function evaluations that involve the bilinear form (16).

We consider reduced-order models of a dynamic spatial-tem-

poral system . Let and suppose that and

are the order systems specified in Definition 2

with

Let consist of distinct points in the spatial domain . Then

define as the set of all functions in

that satisfy

(24)
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for all and almost all . Similarly, let be

the solution set of all that satisfy

(25)

for all and almost all . The evaluation of each of the

arguments in the right-hand sides of (24) and (25) involves, by

(16), only function evaluations and is therefore considerably

faster than the evaluation of the inner products in the right-hand

sides of (8) and (9). In particular, solutions to (24) or (25) re-

quire considerably less computational effort when compared to

solving (10) and (11). Moreover, the following result shows that,

under mild conditions, this computational acceleration does not

incur any loss of accuracy.

Theorem 6: If is such that defined in (14) is injec-

tive then

Moreover, if is linear then

Proof: This result is an immediate consequence of Lemma

3. Indeed, implies for all . But

then, by Lemma 3, the differential (8) and (24) are identical, so

that the solution sets and coincide, provided that

is injective. The second statement is an immediate consequence

of the linearity of in (6) and linearity of the inner product in

(25).

In other words, under a mild condition of injectivity of the

reduced-order model coincides with the reduced-order

model which can equivalently be obtained by (24). In ad-

dition, for the linear case the reduced-order models of Definition

2, can equivalently be obtained through (24) or (25).

The MPE method therefore yields computationally efficient

reduced order models for both nonlinear and linear cases. Non-

linear reduced order models that are fast to solve are particularly

attractive for a vast range of engineering applications, where

nonlinear PDEs are frequently employed to describe the phys-

ical systems.

V. CHOICE OF SAMPLES

The question how to select the distinct samples

is of evident interest for the overall accuracy of

the reduced-order model and has not been addressed so far.

The choice of suitable sensor locations by which the system

dynamics can be recovered is a prime practical motivation be-

hind this question. This section describes selection criteria to

define optimal choices of sensor locations. We propose an ef-

ficient heuristic optimization approach and two screening cri-

teria. The criteria are independent of the original model equa-

tions, which is important for numerical tractability and sim-

plicity of design. Indeed, for large-scale systems it is more fea-

sible to develop selection criteria using data rather than using

the model. Throughout this section it is assumed that is finite

dimensional, say of dimension . is identified with and

equipped with the standard Euclidean inner product. In partic-

ular, the hypothesis of item 2 of Theorem 5 applies throughout

this section.

A. Optimization of the Point Selection

In (20) it has been shown that the estimation error

, obtained from the interpolation of a partial observation

on the grid , can be represented as the norm of the projection

error and the alias error . The induced norm

of the alias sensitivity , as characterized in Theorem 5, ob-

viously depends on the choice of distinct points , simply

because the bilinear form (3) depends on the sample points .

Let

(26)

express this dependence.

Using the assumptions on we have, by item 2 of Theorem 5

(27)

so that the minimization of over all subsets

of cardinality amounts to selecting in such a way that

is minimal. The relation expressed in (27) im-

plies that the closer is to the identity matrix, the smaller the

sensitivity of the aliasing error, as the gain from the neglected

POD modes to the alias error is small.

This result is analogous to well-known results in the literature

of experimental design [11], [16], [19] where an optimal selec-

tion of factors out of experiments needs to be made. The

search for factors is done by maximizing a particular informa-

tion matrix. Similar to what we have derived in Section IV, max-

imization of the information matrix also amounts to preserving

the orthogonality of the information matrix when factors are

chosen. In Section IV, we introduced a bilinear form to arrive at

a similar result.

If for some upperbound , then

from which we infer (after pre- and post-multiplying by

and using that ) that also

To avoid computing the inverse in (27), we will instead mini-

mize the criterion

(28)

over all subsets of cardinality . In particular, the above

reasoning shows that . As matrix norm, we

consider the Frobenius norm

(29)

Selection of so as to minimize is a combinatorial

optimization problem, which is generally not a very appealing

optimization strategy for large-scale systems. In this paper we

employ a non-combinatorial suboptimal approach to construct

, using the greedy algorithm. This algorithm is also imple-

mented in [44] to characterize suitable sensor locations. Given a
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current subset of points , the greedy algorithm adds a point to

by looping over all possible candidate points, computing the

restricted basis that would result if the candidate point were

added to , and evaluating the condition number de-

fined by

(30)

The point that yields the lowest value of is then added

to , and the process is repeated. In this way, the subset

is constructed by choosing one point at a time. The algorithm

is terminated when , where is a user

defined condition number, typically chosen to be well below

100 [26], [28]. The resulting sample set will not minimize

, but the search mechanism is efficient.

Algorithm 1: The greedy algorithm

Input a (possibly empty) set of pre-selected

points, a threshold for the condition number, and a

set of candidate points. Set .

1) Repeat the following steps until

or until .

• Set .

• For all , determine

where and .

• Find the index for which for all

.

• Set . Then consists of

points.

2) Output is a set of sample points.

For very large systems, it may be computationally expensive

to consider all points in the high-dimensional space as can-

didate points. In this case, a screening criterion may be applied

to first select a subset of sample points , to which the greedy

algorithm is applied. This criterion could also be used for se-

lecting the initial sample set .

B. Point Screening Criteria

The first point screening criterion orders the points as

according to the quantity such that

(31)

This criterion is motivated by the desire to minimize the alias

sensitivity over all selections of distinct rows in (14).

A second screening criterion, which incorporates the relation-

ship with the collected snapshot data, considers the ensemble of

projected signals where and sets

Let denote the canonical projection from to

, and define, for all time instants , the projections

. Set

Fig. 1. Schematic view of a glass feeder, the glass melt is entering the feeder
from the left side and at the right end is discharged as glass gob to the forming
machine.

The second screening criterion measures the difference

between the time correlation matrix constructed

from the ensemble and the cor-

relation matrix built from the restricted ensemble

. The difference is measured by

defined as

(32)

The points in are reordered as such that

(33)

Using either (31) or (33) the first points are

included in the set of candidate points , which are then input

to the greedy algorithm.

VI. APPLICATION

A. Glass Melt Feeder Application

The missing point estimation approach is implemented on a

numerical model of a glass melt feeder. A glass melt feeder,

shown in the schematic Fig. 1, is the section of a glass furnace

that is located between the refiner and the glass melt exit point.

The feeder is fed by incoming glass melt from a reactor. The

rate of glass melt flow is measured in tons/day and is known in

the glass industry as the pull rate.

Glass quality is highly sensitive to variations in glass com-

position and energy transfer in the furnace and the feeder. The

control of glass quality specifications predominantly involves

the precise tracking of a non-uniform temperature distribution

within a specified range. Non-precise tracking of temperature

will produce defective glass products, such as irregular shapes,

cracks, or bubbles [7]. The actuators in a glass feeder are the

temperature distributions of the so-called crown, which is a

combustion chamber above the glass melt. Several temperature

sensors are placed in the glass melt and the measurements are

fed back to controllers to adjust the crown temperature. The

crown is divided into several zones; the temperature distribu-

tion in each zone is adjusted to reach the desired temperature

profiles in the glass feeder.

Until now, the glass industry has mainly used conventional

PID controllers. Fast (100 to 1000 times faster than real time),

accurate (absolute errors in the range of 0.2 degrees) simula-

tion models provide an opportunity to use more sophisticated,

model-based process control.

A CFD model is used for high-fidelity predictive simulations

of the glass melt flow and temperature distribution in the feeder.
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TABLE I
TEMPERATURE DEPENDENT PHYSICAL PARAMETERS

In general, the flow can be considered to be incompressible

and laminar. The flow is governed by the Navier-Stokes equa-

tions, which describe the pressure field and the velocity field

� � � in the , and directions, respectively, and the

energy equations for the temperature field [9]. In this appli-

cation, refers to the temperature of the melt at position

in the feeder and at time .

The governing equation of heat transfer in the glass feeder is

given by

(34)

which is a PDE of the form (6).

Most physical parameters of the glass melt are functions of

temperature. In Table I, the temperature-dependent parameters

of a specific green container glass are listed (the temperature is

in Kelvin).

To solve the equations numerically over the spatial domain

and a finite time domain , the feeder is discretized as shown in

Fig. 2, using a total of 7128 grid points. The model (34) is dis-

cretized in space using the finite volume method [43], in which

the governing PDE (34) is integrated for every grid cell. Specifi-

cally, the temperature at a grid point and a time instant is

denoted by and given by the discrete evolution equation

(35)

where denote the temperature

at the western, eastern, northern, southern, top, and bottom

neighboring grid points, respectively. The input

comprises external sources such as the crown temper-

ature, electrical boostings, heaters, and the terms where

boundary conditions (such as inlet and outlet temperatures)

are imposed. The contribution from the input to the dy-

namics of is denoted as . The terms

are generally

time varying due to the dependencies of the physical parameters

on the temperature.

Writing (35) for 7128 grid points yields the following non-

linear set of equations:

(36)

Fig. 2. Geometry and grid cells of the feeder channel. The cartesian coordinate
orientation is denoted by the � for length, � for height, and � for width. The
entrance of the feeder (which is connected to the working end) starts from the
left part and the outlet of the feeder/the spout is on the rightmost part.

where is the vector containing the unknown temper-

ature values at time .

At grid points on the domain boundary, the temperature is

specified using Dirichlet or Neumann boundary conditions. The

temperature at these boundary points belongs to the input terms

in (36); they do not belong to the variables to be solved.

For this application, the number of non-boundary points is 3800.

In addition, we exploit symmetry in the direction and only

consider half of the mesh points defined in the feeder; therefore,

and .

B. Complexity Analysis

In CFD and many other applications, the nonlinear system

(36) is typically solved in an iterative manner. A number

of inner iterations (in our case 100) is applied to advance from

time to . Each inner iteration step takes the form

(37)

where is the inner iteration index and is the approxima-

tion of at the th iteration. Each iteration is initialized

with and is terminated when either the differ-

ence is smaller than some specified tolerance

or when .

Solution of the nonlinear system at each time step therefore

requires solving a sequence of linear problems in the unknown

as given by (37), which can be cast as a linear parameter

varying (LPV) system. Refer to [34] and [43] for more details

on the implementation for this particular application.

The total computational cost of solving the full model can be

classified according to the following three sources:

1) computing the coefficients of and at every itera-

tion within each timestep

2) solving (37) at every iteration within each timestep, using,

for example, LU decomposition or conjugate gradient

method;

3) other overhead cost, such as the time needed for initializa-

tion, etc.

A projection framework (e.g., standard POD) may be used

to derive the reduced model results in a reduced-order LPV

system, which must be constructed and solved at every itera-

tion within each timestep. As for the full model, the large-scale

matrices , and must still be computed. In addition, the
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TABLE II
RELATIVE COMPUTATIONAL COMPLEXITY OF SOLVING FULL-ORDER,

STANDARD REDUCED-ORDER, AND MPE MODELS FOR EACH ITERATION

STEP. � , � AND � DENOTE COMPUTATIONAL COST ASSOCIATED WITH

COMPUTING THE MATRIX COEFFICIENTS, SOLVING THE LINEAR SYSTEM, AND

THE OVERHEAD COST FOR THE LARGE-SCALE SYSTEM

inner products , and must be computed at

each iteration. The complexity of computing these inner prod-

ucts is, respectively, , and , where

and are the number of non-zero entries in each row of the

sparse matrices and . The computational cost of solving

the resulting -order linear system is very small, since is

typically small; this is where some savings are achieved relative

to the full-order system.

Implementing the MPE approach results in savings in the

computation of the large-scale matrices and the necessary inner

products. Specifically, if MPE is applied over spatial

grid points, then only the corresponding rows and columns

of , and must be computed. In addition, the necessary

inner products with the basis vectors can be computed with com-

plexity , and .

A comparison of the relative computational complexity of the

three approaches is given in Table II. It can be seen that the

MPE approach reduces the cost associated with computing the

matrix coefficients and the inner products by a factor of

relative to the standard projection method. This means that the

computational acceleration that can be achieved using the MPE

approach over standard projection is directly proportional to the

reduction in the dimension of . Obviously, the magnitude of

this reduction that can be achieved without significant loss of

accuracy is problem dependent.

However, for applications in which the dimension of the re-

duced basis is small, it is reasonable to expect that a significant

reduction in the dimension of can be achieved. In many ap-

plications for which model reduction is effective, the basis vec-

tors are relatively smooth in space, which means that selective

spatial sampling should be effective. In addition, as the dimen-

sion of the full-order state increases, often the required number

of basis vectors remains small [26]. If this is the case, then the

savings achieved using MPE will scale to very large systems.

C. Reduced-Order Models

We will simulate the process in a transition of glass

color specification from green to flint (transparent) glass.

This color transition is a highly nonlinear process during

Fig. 3. The nominal crown temperature profile (left), the variations from the
nominal temperature in every zone (right).

which the heat conductivity will change by a factor of

eight. The nominal distribution of the crown temperature and

the variations from the nominal temperature for every zone

are depicted in Fig. 3. A POD reduced-order model and

corresponding acceleration by the MPE method are applied

to describe the color change process in the glass feeder.

In this particular example, the reduced models are derived

by employing the Galerkin method.

The POD basis is derived from temperature simulation data

collected each minute over minutes and contained

in the snapshot matrix .

The POD basis vectors, , are

then found as the eigenvectors of the correlation matrix

. The eigenspectrum of the snap-

shot correlation matrix is depicted in Fig. 4. Eighteen POD

basis functions corresponding to the largest eigen-

values are chosen to construct the POD reduced-order model,

, as defined in (10), which is calculated using

as the projection space. Fig. 5 shows

the comparison between the results of the POD reduced-order

model and the original model at two measurement points. From

Fig. 5, it can be seen that the reduced-order model captures the

dynamics of the original model well.
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Fig. 4. The POD eigenvalue spectrum corresponding to 112 snapshots col-
lected during simulation of a color change.

Fig. 5. POD-based reduced-order model and original temperature profiles
during the color change process at two measurement points.

D. Application of MPE to the Glass Melt Feeder

The order of the reduced model is more than 200 times
lower than the original model; however, the computational time
needed to solve the temperature distribution is only enhanced
by a factor of 2.2. The lack of computational efficiency for this

time-varying system is due to the fact that the reduced-order
model requires projecting the full model equations onto the
span of a low number of POD basis functions. The CFD ma-
trices in (37) must be constantly updated
to accommodate the varying physical parameters, such as the
density, viscosity, and heat conductivity.

To accelerate the computation, the MPE method is imple-
mented by selecting sample points in . The MPE
method yields reduced-order models as defined
in (25), where is determined from the selection criteria
described in Section V.

An important implementation point is that, in the MPE re-
duced-order models, the boundary conditions must be satisfied
and the set of excitation signals defined by the crown temper-
ature must be incorporated. To achieve this, all points that are
adjacent to the boundary cells have been included in . In the
case of the feeder model, there are points that are
adjacent to the boundary cells where crown temperature, inlet
temperature, inlet velocity are defined. These points are consid-
ered as “obligatory points”. The locations of these points define
the pre-selected mask in Algorithm 7.

Both screening criteria were implemented to determine a re-
duced set of 1635 candidate points that
remain after the boundary points have been included
in the selection. The quantities and are calcu-
lated for all candidate points . After (screening
criterion 1) and (screening criterion 2) are calculated for
every point, the values are ordered as in (31) and (33). Plots of
the ordered and are shown
in Fig. 6.

Although the absolute differences in magnitudes of
and for the different points are small, the relative
variations are important for differentiating among states.
For example, suppose that we would like to construct a re-
duced-order model with 1000 points. The condition number of

constructed from the 1000 points with lowest

is 19.1, while the condition number of constructed from
the 1000 points with highest is 3189.9. A low con-

dition number of (less than 100) is required to use the
reduced-order model for predicting different scenarios; other-
wise, the prediction results can be very sensitive to any small
perturbations. Inspection of Fig. 6 for the second screening cri-
terion shows a cut-off after 1400 points. The condition number
of constructed by the 1400 points with lowest

is 18.52, while the condition number of constructed by
the 1400 points with highest is 216.3. Hence, it can
be seen that both screening criteria help to separate the less
relevant points from the relevant ones.

For this example, the second screening criterion tends to
choose points that are spatially clustered. This is due to the fact
that in this screening criterion, the POD basis is weighted by the
coefficients obtained from the projection of the snapshot data.
The criterion therefore tends to group states (and corresponding
grid points) that have similar temperature variations, which, due
to the dominant diffusive nature of the heat transfer processes
in the glass melt feeder, translates directly into a grouping
of points that are closely located in space. Selection of many
points that are close to each other leads to a poor conditioning
of the spatially restricted basis.
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Fig. 6. The ordered � (left) and �� (right) based on MPE point screening
criteria.

Two reduced-order models are constructed by the MPE
method. The greedy algorithm (Algorithm 7) is applied to im-
prove the condition number of the restricted basis inner product
and reduce the number of points selected by each screening
criteria to 200. After adding the obligatory boundary points, a
total of 465 points are used for each MPE model. Fig. 7 shows
the selected spatial samples for each MPE model as grey grid
cells.

Comparisons between the original and the reduced-order
models constructed by the MPE method are shown in Fig. 8 at
two locations on the glass surface. The simulated conditions
are the same as the conditions applied during the snapshot
collection. From Fig. 8, it is evident that the reduced models
built by the MPE method adequately reconstruct the dynamics
of the original model. The deviation from the original model
is quantified by the maximum absolute error average ,
calculated as

(38)

where is the number of time samples. The maximum ab-
solute error for both reduced-order models constructed by the
MPE method is less than , which is about higher
than the maximum absolute error for reduced-order models

Fig. 7. Selected spatial samples in grey cells at one cross section of the feeder.
The grey cells are found after implementing the greedy algorithm on points se-
lected by screening criterion 1 (top) and screening criterion 2 (bottom).

constructed by the conventional POD method. The additional
error is considered insignificant, as this error level is still very
much below the maximum temperature variations, which is
about .

For a more challenging assessment of the POD-MPE model
quality, the models are validated by exciting the system with
crown temperature variations that were not considered as part
of the snapshot set. In this case, all crown temperature zones
are subjected to random variations from the nominal tempera-
ture distribution, distributed between 0 and . The random
variations are shown in Fig. 9.

The responses of two measured locations on the glass melt
surface when subjected to the random excitation signals are
plotted in Fig. 10. Both reduced-order models perform quite
well under different excitation signals. Both reduced-order
models have a maximum absolute error average of ,
a level of deviation that is within the 10% relative accuracy
requirement, and thus is acceptable.

Fig. 10 shows that the MPE model constructed from the im-
plementation of the greedy algorithm on points screened by the
first screening criterion is better for handling large temperature
variations (more than ) while the one constructed from the
points screened by the second screening criterion is more ac-
curate when the temperature variation is small (about ). As
explained previously, in this example the second screening cri-
terion tends to group points that have similar temperature vari-
ations. It can be seen from Fig. 7 that in some regions of the
feeder, the implementation of the greedy algorithm on the points
screened by this criterion result in a more clustered group of
points compared to those using the first screening criterion.

Table III summarizes the simulation results using POD
models and MPE models for the case of random excitations
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Fig. 8. Comparisons between the original model and reduced-order models
constructed by the MPE method. The simulated conditions are the same as the
conditions applied during the snapshot collection.

Fig. 9. The random variations from the nominal distribution of the crown tem-
perature, applied to all four zones of the crown.

and shows the substantial computational gains that can be
made using the MPE approach. The resulting average absolute
errors for each screening criterion are similar, as the condition
numbers of the restricted basis inner products are also similar
between the two criteria.

The computational gain of the reduced-order models built by
MPE corresponds to 8.5 times faster than real time. The com-
putation is performed on a 2.8 GHz processor with 512 MB
RAM. The achievable computational gain depends on several

Fig. 10. The comparisons between the original model and reduced models built
by the MPE method under random excitation as depicted in Fig. 9. The MPE
model constructed from points prescreened by screening criterion 1 handles
large temperature variations better (top), while the other is more accurate for
small temperature variations (bottom).

TABLE III
COMPARISON BETWEEN POD AND MPE MODELS FOR RANDOM EXCITATIONS

factors, such as the solution methods used to simulate the orig-
inal model, the convergence criterion, and the algorithmic struc-
ture of the original model.
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The computational gains achieved using the MPE approach
may not seem sufficiently high to achieve the goal of real-time
model-based control; however, in this paper, we only consider
reduced-order modeling of the temperature, while the variables
governing the fluid flow are still solved by the original model.
If the same approach were applied to other variables, then an
acceleration of 25 to 30 times faster than real time on a single
processor is feasible. This would be a major breakthrough for
the implementation of nonlinear, large-scale models in online
control design, online tuning, and process monitoring.

VII. CONCLUSION

We have proposed a methodology to derive computation-

ally efficient, reduced-order models for parameter-varying

systems, such as those obtained from the discretization of non-

linear PDEs. Conventional projection-based model reduction

techniques do not generally yield models that are efficient to

simulate, since the original high-order model must be computed

and the projection carried out at each timestep. In this paper,

computational acceleration is achieved using a formal modi-

fication of the proper orthogonal decomposition method that

selects a subset of the spatial domain over which to represent

the dynamics of the original system. A heuristic optimization

procedure, combined with two quantitative screening criteria,

is proposed to select a suitable subset of grid points or state

variables. The approach described in this paper is applicable

to other projection-based model reduction techniques, such

as balanced truncation. Demonstration of the approach on a

nonlinear CFD example shows that large gains in efficiency of

the reduced-order models can be obtained while retaining the

nonlinear characteristics of the original system.
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