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Summary

When collecting patient-level resource use data for statistical analysis, for some patients and in some categories of
resource use, the required count will not be observed. Although this problem must arise in most reported economic
evaluations containing patient-level data, it is rare for authors to detail how the problem was overcome. Statistical
packages may default to handling missing data through a so-called ‘complete case analysis’, while some recent cost-
analyses have appeared to favour an ‘available case’ approach. Both of these methods are problematic: complete
case analysis is inefficient and is likely to be biased; available case analysis, by employing different numbers of
observations for each resource use item, generates severe problems for standard statistical inference. Instead we
explore imputation methods for generating ‘replacement’ values for missing data that will permit complete case
analysis using the whole data set and we illustrate these methods using two data sets that had incomplete resource
use information. Copyright

Introduction that acknowledged
... relatively few patients had a complete set of such
Clinical trials are increasingly including re- data. Hence, mean costs for each item of resource use
source use information in addition to health were calculated and then aggregated to estimate the
outcome data in order to allow economic evalua- total cost per patient. Statistical testing was therefore
tion of health care interventions. A recent review not possible at the level of total resource use per
patient. (p1804) [2]

of cost assessment of healthcare technologies
in clinical trials has highlighted the handling
of missing data as an issue for such cost analyses
[1]. Even in a most carefully designed study,
data on resource use for all patients in a trial
are unlikely to be complete. However, it is rare
to find any discussion of how missing data
were handled in economic evaluations con-
ducted alongside clinical trials. One exception
to this is a recent evaluation of hospital at home

While we applaud the clarity with which the
authors acknowledged the problem of missing
data, we will argue that the chosen solution
(known as available case analysis) is not optimal,
precisely because it is not clear that it allows
statistical testing of the differences in total cost per
patient between alternatives under evaluation. The
use of this method may also explain why another
recent economic evaluation conducted alongside a
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clinical trial failed to report any statistical analysis
relating to differences in total cost per patient
between the two trial arms despite the availability
of patient-level information, instead relying on
sensitivity analysis to explore the implications of
uncertainty [3]. Indeed, we suspect that in most
cases, health economists when confronted with
missing data will use very simple methods (com-
plete case, available case or unconditional mean
imputation) to overcome the problem.

The problem of missing data is not new and has
received much attention in the statistical literature
as to the appropriate methods for handling
missing data. While in principle missing economic
data alongside clinical trials is no different to other
forms of missing data, the distributional form of
cost data (it is commonly highly skewed) may
provide challenges for the analyst. Furthermore,
since economic evaluation is commonly ‘piggy-
backed’ onto clinical trials, there is a danger that
economic variables will be considered less impor-
tant by researchers responsible for data collection
which could result in higher rates of missingness.

The purpose of this paper is to explore the
available methods for handling missing data, with
a view to highlighting the problems associated
with the simplistic methods and to introduce more
appropriate approaches that maintain the statis-
tical integrity of the analysis. The next section
begins with an overview of the problem of missing
data and of the methods available for handling the
problem. The following section then employs two
examples of missing data problems. The first
involves a data set on hospitalisation where just
one of the variables, length of stay in hospital,
suffers from the missing data problem. The second
example relates to a cost analysis of patients
randomised to either transurethral resection of the
prostate or contact-laser revapourisation of the
prostate where data were missing for a number of
different resource use variables. A final section
offers a discussion and an appendix is given listing
some popular software packages and algorithms
for conducting the analyses reported in the paper.

Methods for handling missing data

Where data on resource use information has been
collected as part of a clinical trial, the cost data set
will be counts of resource use for each patient in
the costing part of the study. The problem of

missingness arises when data are not collected or
may not be available for some variables and/or for
some patients. This poses a problem for economic
analysis as standard statistical techniques have
been designed to deal with rectangular data sets.

In this section, a general overview of the missing
data problem is given. First the patterns of
missingness that can occur are identified. Next
the commonly employed notation for the missing-
ness mechanism is outlined. Finally, we review the
methods available for handling missing data
problem in a health economic context.

Patterns of missingness

Missing data can arise in a number of ways.
Univariate missingness occurs when a single
variable in a data set is causing a problem through
missing values, while the rest of the variables
contain complete information. Unit non-response
describes the situation where for some people
(observations) no data are recorded for any of the
variables. More common, however, is a situation
of general or multivariate missingness where some,
but not all of the variables will be missing for some
of the subjects. Another common type of missing-
ness is known as monotone missing data, which
arises in panel or longitudinal studies, and is
characterised by information being available up to
a certain time point/wave but not beyond that
point.

Missing data mechanisms

Little and Rubin [4] outline three missing data
mechanisms:

1. Missing completely at random (MCAR). If data
are missing under this mechanism then it is as if
random cells from the rectangular data set are
not available such that the missing values bear
no relation to the value of any of the variables.

2. Missing at random (MAR). Under this mechan-
ism, missing values in the data set may depend
on the value of other observed variables in the
data set, but that conditional on those values
the data are missing at random. The key is that
the missing values do not depend on the values
of unobserved variables.
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3. Not missing at random (NMAR) describes the
case where missing values do depend on
unobserved values.

The difference between these mechanisms is quite
subtle, particularly for the first two cases of
MCAR and MAR. For example, consider a
questionnaire distributed to patients, in order to
ascertain their use of health care resources follow-
ing a particular treatment intervention, where not
all the questionnaires are returned. The non-
response is MCAR if the reason for failure to
complete the questionnaire was unrelated to any
variables under consideration. Of course, such a
situation is unlikely. For example, retired patients
may find more time to complete and return a
questionnaire than patients who have returned to
work. Also, being older on average, the retired
patients may make more use of health care
resources. If having conditioned on the age and
retirement status of the patients in the study non-
response is at random then the missing data
problem is MAR. However, consider that one of
the reasons for non-response is that patients are
not at home, but have been taken into hospital
with complications related to their original proce-
dure. Now the missing data are NMAR since the
value of the data that we do not observe is driving
the reason for non-response. The methods for
dealing with missingness outlined in the rest of the
paper are applicable to missing information that is
either MCAR or MAR.

Naive methods for handling missing data

This section outlines the simple and ad hoc
approaches to handling missing data that are
often used. The potential problems with these
approaches are highlighted and the next section
moves on to a description of the more sophisti-
cated imputation procedures.

Complete-case analysis. Complete-case analysis
(CCA) or listwise deletion of cases is the default
method in most statistical software packages. It
involves discarding cases where any variables are
missing. The advantages of using this method are
that it is easy to do and that the same set of data
(albeit a reduced set) is used for all analyses.
However, it is inefficient in that it excludes data
that are potentially informative for the analysis.
Furthermore, CCA will be biased if the complete

cases systematically differ from the original sample
(e.g. when the missing information is in fact
MAR). In practice, CCA may be an acceptable
method with small amounts of missing informa-
tion, but it is difficult to give definitive rules of
thumb as to how much missing data may be
problematic. In the case of general missingness
patterns in multivariate data sets, relatively small
numbers of missing data points can result in the
listwise deletion of a large number of cases for a
CCA, and reduce the power of an analysis.

Available-case analysis. Available-case analysis
(ACA) addresses the problem of inefficiency in
CCA Dby estimating the mean for the complete
cases for each variable. The major disadvantage is
that different samples are used across the analysis,
i.e. the sample base varies from one variable to
another since a different set of patients contribute
to the estimation of different variables. This leads
to problems of comparability across variables, in
particular regarding the covariance structure in the
data set, and may explain why in some stochastic
economic evaluations analysts have not reported a
statistical analysis [2,3]. Since the primary purpose
of cost analysis is to calculate total cost per patient
across the resource use variables, then it is clear
that available case analysis will lead to the sort of
problems in undertaking statistical analysis of per
patient cost differences highlighted in the intro-
duction. It should also be clear that available case
analysis poses problems for standard regression-
type methods that might be used when the focus of
cost-analysis is the marginal effect of important
covariates on cost.

Imputation methods for missing data

Imputation is where the missing data can be
replaced with statistical estimates of the missing
values. The goal of any imputation technique is to
produce a complete data set that can then be
analysed using statistical methods for complete
data. The aim, therefore, is to simultaneously
overcome the problems associated with both CCA
and ACA. Several methods exist for imputing
missing values. These are described in more detail
below.

Mean imputation (unconditional means). Mean
imputation is a popular, though naive, method
for replacing missing data. The mean of the



observed data for each variable is calculated and
substituted into every case with a missing observa-
tion for that variable. It is clear that the appeal of
unconditional mean imputation lies in its simpli-
city. However, it is easy to see why this method is
seriously flawed. Firstly, by imputing the mean
value in a number of cases the estimated variance
or standard deviation for that variable will be
underestimated (since the imputed values do not
differ from the mean or each other). Secondly,
estimates of covariances and correlations are also
adversely affected due to the fact that the imputed
values for each of the variables are by definition
unconditional. Therefore the effect of this method
will be to water down the observed correlation
structure of the data. Thus any further analysis
such as regression analysis is questionable.

Regression  (conditional) imputation. A much
more promising method is to use standard regres-
sion analysis to provide estimates of the missing
data conditional on complete variables in the
analysis. For example, for the simple case of
univariate missingness in a single continuous
variable Y, we fit a regression model to explain
Y by the remaining p variables represented by the
vector X using the complete cases (subscripted by i):
p
Yi=a+ ) BXu+e (1)
k=1
Predicted values for the expected values of the

missing cases of Y (subscripted by j) can be
obtained from

P
Vi=d+> BiXu (®)
k=1
It should be emphasised that the equations above
could be generalised to include models for non-
continuous data such as binomial or count data.
Note that mean imputation from the previous
section is equivalent to the simplest form of
regression model with only an intercept term.
Missing data are usually multivariate and it is
possible to extend the procedure of regression-
based imputation from the univariate case to deal
with multivariate missingness. For each missing
value in the data set a model can be fitted for that
variable employing the complete cases of all the
other variables [5]. Where the number of variables
with missing values is large, the number of models
to be fitted will also be large, however, efficient
computational methods (such as Little & Rubin’s

Edited by Foxit PDF Editor

Copyright (c) by Foxit Software Company, 2004 - 2007

For Evaluation Only.

sweep operator) can be employed [4]. Alterna-
tively, an iterative regression approach can be
adopted [6] whereby missing values in a given
variable are predicted from a regression of that
variable on the complete cases of all other
variables in the dataset. This process is repeated
for all variables with missing values using complete
cases of the other variables including previously
imputed values until a completed rectangular data
set has been generated. The imputation of missing
values for each variable is then re-estimated in turn
using the complete set of data and the process
continues until the imputed values stop changing.

Other straightforward approaches. In some other
approaches, imputations are drawn from the
actual values in the data set. For example, in
panel data, where data are subject to attrition, the
last observation for an individual may be carried
forward in time in order to complete the data set,
and this approach is widely used. Little and Su [7]
have suggested better methods for panel data
imputation based on simple row and column fits.
Another imputation method is called the hot-deck,
as used by the US Census Bureau [8]. This method
completes a missing observation by selecting at
random, with replacement, a value from those
individuals who have matching observed values
for other variables (for matching purposes, con-
tinuous variables may need to be categorised). A
more general approach to the hot-deck is to define
a distance function on the basis of observed
variables. A missing value is imputed based on
an observed value that is close in terms of distance.
One such method is predictive mean matching [9].
A similar approach, involves predicting propensity
scores for values to be missing for individuals in
the data set and then imputing missing values from
complete cases with comparable propensity scores,
and this method has been suggested for cost data
sets with missing values due to attrition [10].

In practice, there are many methods that have
been proposed for imputing missing values in
order to complete data sets and it is not our
intention to provide a comprehensive overview.
Instead, we focus on methods that employ a
formal statistical model for predicting missing
values. The advantage of such methods is that they
retain the statistical integrity of the analysis,
allowing appropriate inference that includes un-
certainty in the prediction of the missing values
themselves (see the section on multiple imputation
below).
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Maximum likelihood approaches. The maximum
likelihood (ML) approach involves formulating a
statistical model and basing inference on the
likelihood function of the incomplete data. We
will assume that the parameters of interest
are the vector of means and the covariance matrix
of the variables (or cell probabilities for a multi-
nomial model in the case of strictly categorical
data) [11]. In other contexts, these parameters
may be measures of effect, such as (log) odds
ratios. If there were no missing data, it would be
straightforward to fit parameters of the model by
ML methods. If there were a univariate missing
data problem, then it would be possible to
factorise the likelihood in order to predict the
missing data conditional only on the observed
data. For the problem of multivariate missingness,
the likelihood does not factorise. However,
use can be made of the Expectation-Maximi-
sation (EM) algorithm [11], which is based
on a very simple premise. If we knew the
parameters of the model we could estimate
the missing data and if we knew the missing
values we could estimate the parameters.
Therefore the following iterative procedure is
suggested:

1. Choose starting values for missing data points

2. Estimate the parameters

3. Re-estimate the missing values, assuming that
the new parameter estimates are correct

4. Repeat steps 2 & 3 until the results stop
changing.

Specifically, the EM algorithm involves iterating
between an Estimation-step and a Maximi-
sation-step. The E-step involves averaging the
complete-data likelihood over the predictive
distribution of the missing data given our para-
meters in order to provide estimates of the missing
data. The M-step involves maximising the like-
lihood given the complete data set in order to
provide updated estimates of the parameters. After
convergence [12], the parameters may then be
used to generate predicted values for the missing
data directly. Starting values for the procedure
could easily be obtained from the conditional
(or even unconditional) imputation methods de-
scribed above for complete cases. However, it
would be prudent to run the EM algorithm
with alternative sets of starting values to ensure
that convergence has not occurred at a local
maxima.

The multiple imputation principle

It is important to recognise that when employing
any imputation method we are estimating a
missing value that is not observed. It is straight-
forward to see that in the case of unconditional
mean imputation, the variance of the completed
variable will be too low, since the imputed means
do not contribute to the variance. However, the
same is true with the other forms of imputation — if
the expected value of the missing data point is
imputed, although this is the ‘best’ prediction of
the missing value (in the sense of mean squared
error), there will be no allowance for the un-
certainty associated with the imputation process.
For example, if imputations are based on a
regression equation, as in Equation (2) for the
simple univariate missingness example, then there
will be no variation between predicted values for
observations with the same values for all of the
other non-missing variables. Such ‘deterministic’
imputation approaches [6] will therefore under-
estimate the variance of any estimators in sub-
sequent statistical analysis of the imputed data set.
Therefore, imputed values of missing data should
include a random component to reflect the fact
that imputed values are estimated (using so-called
‘stochastic’ imputation methods [6]) rather than
treating the imputed values as if they are known
with certainty.

For the regression example, two components to
the uncertainty in the imputation process can be
distinguished. The first component is the mean
squared error from the regression which represents
the between observation variability not explained
by the regression model. Two approaches to
including this error term are either: to select a
value at random from a normal distribution with
variance equal to the mean squared error from the
regression; or to compute the residuals from the
regression and to add one of these residuals at
random to each of the imputed values from the
regression. Of these two approaches, the second
non-parametric bootstrap approach is probably
preferred since it is straightforward to do and does
not rely on the parametric assumption of normally
distributed errors. The second component of
uncertainty comes from the fact that the coeffi-
cients of the regression model are themselves
estimated rather than known. The variance of
the prediction error for each covariate pattern
can be obtained from the variance—covariance
matrix and, assuming multivariate normality, this
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component of uncertainty can also be incorpo-
rated into the stochastic imputation procedure.

Clearly, once missing values are imputed with a
random component, then a complete data set will
no longer be unique and the results of any analysis
of will be dependent on the particular imputed
values. The principle of multiple imputation uses
this fact directly in order to allow estimation of
variance in statistics of interest in an analysis that
include representation of uncertainty in the true
values of the missing information.

With multiple imputation, an incomplete data
set will have the missing values imputed several
(M) times, where the values to fill in are drawn
from the predictive distribution of the missing
data, given the observed data. Each imputed data
set is then separately analysed with the desired
methods for complete data. The variability in the
statistic of interest across the alternative data sets
then gives an explicit assessment of the increase in
variance due to missing data. Thus this variance of
each final parameter estimate is composed of two
parts: the estimated variance within each imputed
data set and the variance across the data sets.

Suppose that the statistic of interest in the
analysis is given by 0. The steps in the multiple
imputation procedure are then:

1. Generate M sets of imputed values for the
missing data points, thus creating M completed
data sets.

2. For each completed data set, carry out the
standard complete data analysis, obtaining
estimate 6; of interest and its estimated variance
Vﬁl‘(éi) fori=1...M.

3. Combine the results from the different data sets.
The multiple imputation estimate of 6 is

.1 L
ezﬂ;(%

(i.e. the mean across the imputed data sets) and
multiple imputation estimate of variance is

. 1 X .
var(f) =~ > var(f)
i=1
L DY (L) Sy
+< +M)(ﬁ);(1_ )

The first term on the right hand side of this
equation relates to the variance within the imputed

data sets, whereas the term on the far right
captures the uncertainty due to the variability in
the imputed values, i.e. between the imputed data
sets. The term 1 + 1/M is a bias correction factor.

The approximate reference distribution for
interval estimates and significance tests is a
t distribution with degrees of freedom v =
(M — 1)(1 + 2, [13] where r is the estimated
ratio of the between-imputation component of
variance (numerator) to the within-imputation
component of variance (denominator).

Rubin [14] shows that the relative efficiency of
an estimate based on M complete data sets to one
based on an infinite number of them is approxi-
mately (1 + y/M)*I, where y is the rate of missing
data. With 50% missing data, an estimate based
on M =5 complete data sets has a standard
deviation that is only about 5% wider than one
based on infinite M. Unless rates of missing data
are very high, there is little advantage to using
more than five complete data sets [15].

Note that while it is appropriate to average
across multiple imputations for additive statis-
tics like the mean and variance care should
be taken when generating multiple imputation
estimates of other quantities. For example,
standard deviations and correlation coefficients
should not be estimated by averaging across
multiple imputations. Rather, multiple imputation
estimates of such quantities should be derived
from the multiple imputation variances and
covariance.

Bayesian simulation methods

Markov chain Monte Carlo (MCMC) is a collec-
tion of methods for simulating random draws
from non-standard distributions via Markov
chains [16]. Data augmentation [17] is an iterative
MCMC method for simulating the posterior
distribution of the missing values in the data set
given the observed values. It can be thought of as a
Bayesian equivalent of the EM algorithm using
simulation, with the imputation step (correspond-
ing to the E-step) being to generate predicted
values for missing data, and the posterior step
(corresponding to the M-step) being to estimate
the posterior distribution of the parameters given
the complete data. Since data augmentation is
based on simulation, it does not converge to a
point estimate of the parameter of interest, rather
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the sequence of simulated values converges to the
posterior distribution of the parameter.

Two methods, Schafer [11] and Van Buuren [18],
use refinements of this methodology as discussed
below and have freely available software (see the
appendix).

Schafer algorithms. Schafer [11] has developed
algorithms that use Bayesian iterative simulation
methods to impute multiple rectangular data sets
with arbitrary patterns of missing values assuming
MAR. By assuming that the multivariate missing
problem is distributed either as a multivariate
normal for continuous variables, multinomial log-
lincar for categorical variables, or follows a
general location model for a mixture of variables,
it can be split into a series of univariate problems.
MCMC methods are used to solve the multivariate
case by iteration. For example, suppose that the
data are multivariate normal, it is then possible to
generate imputations (i.e. completed data sets)
from this distribution by applying an iterative
algorithm that draws samples from a sequence of
univariate regressions. It is important to note that
the predictors used to describe the missingness
should be specified in the univariate regressions for
each variable with missing data.

Van Buuren algorithm. Van Buuren [18] has
applied an alternative approach that is semi-
parametric in nature. As for the parametric
approach above, each variable has a separate
imputation model with a set of predictors that
explain the missingness. In addition, an appro-
priate form (e.g. linear, logistic) is specified
depending on the type of variable. For example,
binary variables will use a logistic model. Unlike
Schafer [11], this methodology does not explicitly
assume a particular form for the multivariate
distribution, but does assume a multivariate
distribution exists and that draws from it can be
generated by using MCMC (Gibbs sampling) to
sample from the conditional distributions (based
on the models). Although, the semi-parametric
nature of this approach is very attractive, MCMC
must converge to a distribution that exists and not
simply alternate between isolated conditional
distributions. One way of checking convergence
is to observe whether the standard deviations and
means of the imputed variables between iterations
are free of trend [18].

Examples of missing data imputation in
cost data sets

In this section, the methods of imputation for
missing data outlined in the previous section are
illustrated. Two data sets are employed. The first
is a data set of hospital episodes in the UK
prospective diabetes study (UKPDS) where data
are missing on length of stay in hospital, i.e. the
pattern of missingness is univariate. The second is
an example of multivariate missingness in a cost
analysis of either transurethral resection or con-
tact-laser revascularisation of the prostate.

Missing length of stay in hospital

The UKPDS was a randomised controlled trial of
therapies for type 2 diabetes [19]. In all, 5102
patients were recruited to the study of whom 3964
were randomised to the main comparison of
conventional (n = 1138) or intensive (n = 2729)
management of blood glucose. As part of the
study, information on all hospitalisations was
collected. A total of 7684 separate hospitalisations
were recorded over the 10 year median follow-up
of the trial, however, length of stay was not
recorded for 1262 (16%) of these. The aim of the
analysis is to be able to compare the hospital
length of stay between the conventional and
intensive management arms of the trial.

Data available in the hospitalisations data set
are summarised in Table 1, and shows that
complete data are available on the age, sex and
body mass index of the patients at entry into the
study, as well as specialty codes for the stay and
year of study in which the hospitalisation
occurred.

Note that it is immediately apparent how
complete case analysis can be biased. Since the
average number of days in hospital is calculated
across each arm of the study, but information on
length of stay is only missing for patients who had
hospitalisations, the resulting estimates of 13.14
days length of stay in the conventional arm and
10.93 days in the intensive arm (see Table 3), based
on complete cases only, are clearly biased down-
wards. Of course, it could be argued that it is
appropriate to base estimates of average length of
stay on complete cases from the hospitalisation
data only rather than the whole UKPDS patient
population. While this is true, note that such an
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Table 1. Summary statistics for 7684 hospitalisations for 3069 patients of the 5102 total UKPDS patient population

Variable Obs (%) Mean SD Median Min Max
Continuous
Length of stay (days) 6422 84 8.3 14.4 5 1 540
Age 7684 100 60.6 9.3 62 26 83
Year 7684 100 7.1 4.0 7 1 19
BMI 7684 100 27.7 5.6 27 16 61
Categorical
Sex

Male 4398 57

Female 3286 43
Specialty

Cardiology 1558 20

Other medical 854 11

Surgery 727 9

Urology 633 8

Orthopaedics 613 8

Gastrointestinal 466 6

Ophthalmology 437 6

Gynaecology 338 4

Neurosurgery 271 4

Oncology 269 4

All other 1518 20
Therapy group

Conventional 1138

Intensive 2729

Excluded on basis of FPG 1235

Total patients 5102

Note: BMI — body mass index; FPG — fasting plasma glucose; Obs — number of observations; SD — standard deviation.

approach implicitly conditions on the fact that a
hospitalisation occurred and is therefore a simple
version of conditional imputation.

Since length of stay was the only variable that
had missing values in the data set, the (stochastic)
regression based imputation method was chosen.
As it is clear from Table 1 the length of stay in
hospital are heavily skewed and so consideration
was given to transforming length of stay before
fitting the regression model. The natural log
transform is often employed when data are
constrained to be positive and skewed, and this
transformation was indicated by the Box—Cox
procedure [20]; therefore a regression model was
fitted to log length of stay (employing clustering to
account for within patient variability) and the
results are presented in Table 2.

While a specification should be chosen to
maximise the predictive power of the model, for

simplicity we have used an additive specification
(on the log scale) with no interaction terms. Nearly
all of the coefficients were found to be significant,
however, the explanatory power of the model was
disappointingly low with a high residual mean
squared error for the model. With concerns over
the model’s predictive ability, it was especially
important to include a random component to the
missing value predictions. This was achieved by
predicting a log length of stay for the missing data
values and adding both a normally distributed
prediction error (estimated from the variance-
covariance matrix) and a bootstrapped residual
from the complete cases while still on the log scale
before exponentiating to give predicted lengths of
stay.

It is widely known that E[A(.)]#A(E[.]) for any
non-linear transformation /(.), therefore it is com-
mon to use a correction when back transforming



Table 2. Results of regression on log length of stay

Variable Coefficient SE  p-value
Constant 1.100 0.149 <0.001
Year —0.021 0.004 <0.001
Age 0.010 0.002 <0.001
Male —0.068 0.036 0.056
BMI 0.008 0.003 0.004
Specialties
(relative to ‘All other’*):
Cardiology —0.153 0.054 0.004
Other medicine —0.237 0.055 <0.001
Surgery -0.014 0.059 0.811
Urology —0.409 0.079 <0.001
Orthopaedics 0.140 0.068 0.041
Gastrointestinal —0.286 0.073  <0.001
Ophthalmology —0.761 0.063 <0.001
Gynaecology —0.207 0.065 0.001
Neurosurgery 0.266 0.089 0.003
Oncology —0.205 0.109 0.061
Adjusted R? 0.06
MSE 0.975

Note: SE — standard error; MSE — mean squared error; BMI —
body mass index. “Only the top ten most frequently recorded
medical specialties are identified in the model, the remaining
specialties are grouped together to form a single ‘all other’
category which represents only a small proportion of the total
episodes of hospitalisation.

predictions made on the transformed scale to the
original scale. In particular, a nonparametric
approach known as smearing is commonly em-
ployed [21]. Note, however, that by adding the
bootstrapped residual before back transformation,
the need for a smearing correction is obviated.
This is because the expectation across imputed
data points is an unbiased estimate of the
expectation on the original scale due to the in-
clusion of a bootstrapped residual on the trans-
formed scale.

The process of imputation described above was
repeated five times to give five complete data sets
for analysis by multiple imputation methods.
Summary information for these data is presented
in the upper part of Table 3 including the results of
the CCA already introduced above. The multiple
imputation analysis for these data is presented in
lower section of Table 3, based on the assumption
that the variable of interest is the difference in
length of stay between treatment arms in the trial.
Despite the clear downward bias of the CCA on
the absolute estimates of length of stay in each
arm, the estimated difference is not greatly

Edited by Foxit PDF Editor

Copyright (c) by Foxit Software Company, 2004 - 2007

For Evaluation Only.

affected. CCA slightly underestimates the differ-
ence in length of stay and its associated standard
error relative to the multiple imputation based
estimate. The ratio of the between/within data set
variance is very low indicating that the uncertainty
in the process of imputing the missing values is not
having a major impact on the analysis.

Multivariate missingness in cost data

These data were taken from an economic evalua-
tion performed alongside a randomised controlled
trial in which 100 patients were randomised to
either transurethral resection of the prostate
(TURP) or contact-laser vaporisation of the
prostate (Laser) [22]. All resources associated with
the surgical interventions, post-operative hospital
stay, community care and re-operations due to
treatment failures were identified over a 24-month
follow-up period, and the volumes of resources
used by each patient were measured. In all, 12
categories of resource use were measured for each
arm of the study; unit costs were then applied to
these resource volumes to obtain costs per patient.
Table 4 shows the resource costs and summary
statistics for the resource volumes.

All resources were considered counts except
irrigation volume (continuous), operating time
(continuous), re-catheterisation (binary) and re-
operation (binary). Because of skew, operating
time and irrigation volume were transformed using
logarithms. Re-operation is the most expensive
cost, but was not prevalent with only 3 procedures
performed.

Table 4 also shows the degree of missing data
for each resource. Of the 53 prostate cancer
patients treated by TURP, 10.4% of the data
points were missing, whereas for the 47 patients
treated by laser 9.6% were missing. Irrigation
volume had the most missing data in each group.
Adopting a case-deletion approach to the 120
(10%) missing data points results in 45 (%) of the
cases being discarded. This is due to the multi-
variate nature of the missing values. Table 5
illustrates this and shows the relationship between
missing cells and observations. Of the 45 (%)
discarded above, half are missing one or two
values only. More than half of the missing data
points resulted from incomplete irrigation volume
and community care variables. The missingness
patterns of individual visit variables and within the
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Table 3. Summary of multiple imputation data sets and the multiple imputation analysis for the difference in length
of stay between the UKPDS treatment arms

Length of stay n Mean SD Min Max
Conventional arm

Complete cases 861 13.14 29.52 0 474
Imputed data 1 1138 18.17 33.89 0 474
Imputed data 2 1138 18.05 33.30 0 474
Imputed data 3 1138 18.10 33.66 0 474
Imputed data 4 1138 18.09 34.54 0 474
Imputed data 5 1138 17.82 33.02 0 474
Intensive arm

Complete cases 2083 10.93 19.55 0 259
Imputed data 1 2729 15.65 30.75 0 981
Imputed data 2 2729 15.43 30.40 0 985
Imputed data 3 2729 15.87 31.63 0 971
Imputed data 4 2729 15.50 30.38 0 985
Imputed data 5 2729 15.74 31.83 0 1016
Multiple imputation analysis:

Between arm differences Mean Variance SE p-value
Complete cases 2.21 1.20 1.09 0.05
Imputed data 1 2.52 1.36 1.16 0.03
Imputed data 2 2.61 1.31 1.15 0.03
Imputed data 3 2.23 1.36 1.17 0.05
Imputed data 4 2.59 1.39 1.18 0.03
Imputed data 5 2.08 1.33 1.15 0.07
Multiple imputation estimates

Mean difference 2.41

Mean variance 1.35

Variance of means 0.06

MI variance 1.41

MI standard error 1.19

p-value 0.04

Note: MI — multiple imputation.

individual anaesthetic variables and operation
times are correlated.

A cost analysis was undertaken to estimate the
difference in cost between the Laser and TURP
arms of the study employing four possible
methods that could be undertaken: complete case
analysis; mean imputation; MI based on sampling
from parameters estimated using the EM algo-
rithm; MI based on van Buurens MCMC (Baye-
sian simulation) approach. In both applications of
MI, five imputations were generated.

The EM approach was implemented using
S-plus routines provided by Schafer [11] and
available via the web (see appendix). The assump-
tion of a multivariate normal distribution for the
EM algorithm is questionable for these data since

most of the variables are counts with more than
half of each being zero, and two variables are
dichotomous. Indeed, our attempts to estimate
parameters using the algorithm based on multi-
variate normality resulted in failure of the algo-
rithm to converge, even when allowing the
algorithm to run beyond the default settings
implemented in Schafer’s algorithm, suggesting
that one or more functions of the missing values
are very poorly estimated [11]. The methods for
assessing and detecting convergence of the EM
algorithm are discussed in detail in Section 3.3.4 of
Schafer’s book [11].

The continuous data were therefore dichoto-
mised into zero and positive values and the
categorical version of Schafer’s EM algorithm
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Table 4. Summary statistics of the 100 patients in the prostate cost data set®

Variable description

Summary statistics

Unit cost TURP (n=153) Laser (n=47)
£ Obs % Med Range  Obs % Med  Range
(N) (%) ) (%0)
Irrigation volume 3.51 41 77.4 11.0  1.5-55.0 30 63.8 6.0 0.0-33.0
No. of GP visits 25.47 47 88.7 0 0-5 40 85.1 1 0-12
No. of visits to practice nurse 6.90 47 88.7 0 0-3 40 85.1 0 0-10
No. of visits to district nurse 13.84 47 88.7 0 0-2 40 85.1 0 0-6
Minutes of operating time 7.87 45 84.9 38.0 7.0-90.0 44 93.6 345  7.0-66.0
No. of general anaesthetics 12.43 46 86.8 1 0-1 44 93.6 0 0-1
No. of spinal anaesthetics 22.08 46 86.8 0 0-2 44 93.6 2 0-2
No. of inpatient days 96.55 46 86.8 4 1-7 43 91.5 3 1-10
No. of transfusions 2.13 49 92.5 0 0-6 44 93.6 0 0-6
No. of outpatient consultations 73.55 51 96.2 1 1-2 47  100.0 1 1-4
Re-catheterisation 10.56 52 98.1 (22) 42) 47 100.0 (14) (30)
Re-operation 981.44 53 100.0 (1) 2 47 1000 (2) “)
Obs with no missing cells - 34 58.5 - - 21 51.1 — -
Non-missing cells - 570 89.6 - 510 90.4 - -
Missing cells - 66 10.4 - - 54 9.6 — —
“Excludes fixed costs: TURP £93.76, Laser £398.89; Obs — number of observations; Med — Median.
Table 5. Summary of the frequency of missing data in the prostate cost data set
Number of missing values in an observation Missing cells
Variable 1 2 3 4 6 8 10
Irrigation volume 17 3 2 2 2 1 2 29
GP visits 9 1 1 2 13
Practice nurse 9 1 1 2 13
District nurse 9 1 1 2 13
Operating time 2 4 1 1 1 2 11
General anaesthetic 1 4 1 1 1 2 10
Spinal anaesthetic 1 4 1 1 1 2 10
Inpatient days 3 2 1 2 1 2 11
Transfusions 2 1 2 2 7
Outpatient consulation 2 2
Catheterisation 1 1
Total: 120
Observations missing data® 19 4 15 2 2 1 2 Total: 45

455 observations had no missing data.

was used to provide the parameter estimates and
impute missing values. Starting values for the
algorithm were the defaults provided by the
algorithm, which assume equal probabilities in
each of cells of the cross-classification table (see
Schafer [11, Section 7.3]).

For the Bayesian simulation approach we
employed, a separate imputation model was
specified for each variable. The purpose of the

models was to provide a set of plausible values for
the missing resource data, and this involved two
modelling choices: the form of the model (linear,
logistic etc.) and the set of predictors that enter the
model. For binary variables (e.g. re-catheterisa-
tion) we used a logistic model, for continuous
variables (e.g. log operation time) we used linear
regression, for the wvisitation and transfusion
variables we used a predictive mean matching



model due to the multi-modal and skew nature of
the observed data, but for other count variables
(e.g. number of outpatient consultations) we
applied a multinomial (>2 levels) logistic model.
We proposed to confine the imputation model for
each resource to include all other resource vari-
ables. This is an explicit attempt to model the
MAR process, because we assuming the missing-
ness can be explained by observed data. In other
cases, auxiliary variables may be available, and it
has been observed that including as many pre-
dictors in the imputation model as possible tends
to make the MAR (and possibly NMAR) assump-
tions more plausible [18].

The Gibbs sampling algorithm was run for 150
iterations for each of 5 imputations. In general, in
the presence of large amounts of missing data,
convergence can be obtained in as few as 10
iterations [18]. Plots of the standard deviations
and means of the imputations by iteration were
free of trend, indicating that the imputation-
variability had stabilised and there may be
convergence.

The results of these analyses are presented in
Table 6. Fixed costs have been excluded from this
analysis. It is unfortunate in this particular
example, that none of the missing data strategies
gives a result that is significant at the conventional
5% level, however, for comparative purposes it is
the f-ratio and p-value that show the strength of
the evidence in favour of a cost difference between
the two treatment alternatives. The CCA strategy
produces a cost advantage for the Laser proce-
dure, whilst the other strategies do not — although
it would be unwise to infer too much from this
given the general lack of significance. The CCA is
also relatively inefficient compared to the other
methods as evidenced by the large standard error
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for the cost difference. The unconditional mean
imputation method gives the same estimate of cost
difference as the ACA (not presented) but also
gives an estimated standard error. Unfortunately,
this may be an underestimate of the standard error
of the cost difference and as such is potentially
seriously misleading for statistical inference. As-
suming MAR, the MI approach using Bayesian
simulation could be considered to be the most
reasonable approach because of its minimal
assumptions. Its results are similar to the mean
imputation method. The MI approach using EM
produces the least absolute difference and has a
standard error second only to the CCA in
magnitude. Overall, the results in the non-CCA
analyses are similar and, perhaps, we may have
seen greater differences if there was substantially
more than 10% of the data missing.

Discussion

Missing data are very common in health economic
evaluations of patient-level data. The standard
approach to missing information in many statis-
tical packages is to exclude those individuals for
whom data are missing from the analysis, (com-
plete case analysis). In addition to being inefficient,
this practice could lead to invalid results if the
excluded group is a selective sub-sample (non-
random sample) from the entire sample — a
violation of the MCAR assumption. By contrast,
recent cost analyses appear to have employed an
available case approach to handling missing data
with the consequence that standard statistical
methods could not be employed despite the
existence of patient-level data.

Table 6. Effect of various missing data strategies on the statistical analysis of patient-specific cost data* (£)

Complete case analysis

Mean imputation MI using EM parameters

MI Van Buuren MCMC

T L T L T L T L

N 31 24 53 47 53 47 53 47
Mean 888 796 853 877 850 865 868 890
SD 222 331 230 325 253 343 265 338
Diff 91 24 —-15 -22
SE (Diff) 78 57 69 62
f-ratio” 1.16 —0.36 —0.22 —0.35

p-value 0.26 0.68 0.81 0.72

Note: L — Laser, T — Turp, MI — Multiple Imputation, MCMC — Markov chain Monte Carlo, EM — Expectation maximisation

algorithm, “Excludes fixed costs: TURP £93.76, Laser £398.89.
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This paper reviewed strategies for analysing
data in the presence of missing values and
illustrated some of those strategies using two
examples. Our goal was not to be exhaustive in
reviewing this area, but to provide an introduction
to more commonly applied methods and software
routines. In particular, we have focused on impu-
tation methods that involve statistical modelling
such that the uncertainty in the prediction process
can be captured through the principle of multiple
imputation. Thus, traditionally popular single
imputation methods such as the hot deck that
involve identifying a nearest neighbour to serve as
a surrogate missing value have not been employed

Most of the non-CCA methodologies discussed
assume that the data are Missing at Random
(MAR), that is, the missing values do not depend
on the values of unobserved variables. This is a
more realistic assumption than MCAR. We
described three broad imputation approaches:
regression imputation, the use of the EM algo-
rithm to calculate maximum likelihood estimates
for use in imputing the data, and Bayesian
simulation methods. Inferences associated with
single imputations (i.e. single complete data sets)
resulting from these methods tend to overstate
precision because they omit the between-imputa-
tion component of variability. Multiple imputa-
tion, an extension of single imputation, pools more
than one complete data set allowing for the
uncertainty in the imputations to be appropriately
reflected in the analysis.

Our examples demonstrated some fundamental
ways of exploring and handling missing data. The
proportion of missing data is important. It may be
reasonable to perform a CCA if a small percentage
of patients are missing data, but as the percentage
increases there will be greater inefficiency and
more chance of bias. In general, it is advisable to
investigate the missing data and, in most cases,
attempt to impute or fill in the missing data. In the
case of univariate missingness, it may be accep-
table to apply a regression imputation making ad-
justments for the predictions (see the first example
based on missing length of stay in the UKPDS).

Most missingness is multivariate and the ab-
sence of a small percentage of data points can
potentially lead to a depleted CCA. In the second
example of Laser versus TURP interventions, 10%
of cells were missing, but 45% of patients were
removed in a CCA. It seems sensible in this case to
impute 10% of the missing data in order to
reinstate the extra 45% of patients. Imputation in

this setting requires allowances for the correlation
between variables, and strictly univariate ap-
proaches may be inappropriate. The EM algo-
rithm was employed to estimate a covariance
matrix for the variables, but only after making the
variables discrete due to the problem of large
numbers of zeros for individual parameters. Our
preferred method was to use Bayesian simulation
to create imputations, particularly the method of
Van Buuren [18]. This approach requires the
specification of imputation for each model and
Gibbs sampling is used to develop a multivariate
distribution for the data.

Bayesian methods are becoming increasingly
popular and Data augmentation (DA) [5], Gibbs
sampling (a particular type of DA) [16,18] and
other Markov chain Monte Carlo methods are
becoming more widely applied in this area. A
Bayesian approach could have been used to handle
missing data in the first of our examples, using for
example, the WinBUGS [23] software package. In
common with many other areas of statistical
analysis in the absence of prior information to
inform the values of missing data Bayesian and
frequentist approaches are not likely to generate
substantially different results. Indeed, this was
precisely what we discovered when implementing a
Bayesian WinBUGS regression model for the
UKPDS length of stay data. This emphasises the
focus of this article on the importance of handling
missing data using appropriate methods rather
than on the philosophical discussion of Bayesian
versus Frequentist methods. Often the EM algo-
rithm is applied to estimate information that may
be used as a starting point for a Bayesian
simulation procedure [5].

The presumption of this paper has been on the
estimation of missing values when data are MAR.
In economic evaluation alongside clinical trials it is
common for repeated measures to be taken such
that a monotone pattern of missingness is ob-
served with data points on individual being
observed up to a certain time point within the
study but not beyond. Where this has occurred due
to differential recruiting times to a study with a
fixed analysis end time then observations are said
to be censored. The analysis of censored cost data
has been popular area of research in recent years
[24-29] and the assumption of uninformative
censoring underlying the method equates to the
MCAR framework described in this paper.

Where data are missing due to attrition rather
than due to censoring then it is unlikely that data
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are MCAR. Although techniques such as mixed
models and generalised estimating equations can
be used to make inference from data that are
subject to attrition [30] without the need for
imputation of missing values, the implicit assump-
tion underlying these methods is MAR. In
practice, attrition will often be linked to specific
reasons for patients leaving the study early that
means censoring is informative and missing values
are NMAR. In such situations, these reasons
underlying the attrition need to be fully explored.
It may be appropriate to correct potential biases
using techniques developed in econometrics sam-
ple selection literature [31] that deal with non-
random drop out in panel data [32]. Alternatively,
methods for informative drop out have been
developed in the statistics literature for long-
itudinal (or panel) data [30]. In general the
additional assumptions necessary for handling
missing information that are NMAR can often
be quite limiting and may prove to be untestable —
leading to a reliance on sensitivity analysis. One
approach to the problem of missing data, there-
fore, is to collect additional information on
missing values. However, this solution only serves
to emphasise that imputation methods are not a
cure for a poor study design and/or a poor data
collection processes. The true solution to the
problem of missing data is to efficiently capture
all relevant information thereby assuring that the
problem does not arise.

Software

A review of software for imputing missing data
may be found at www.multiple-imputation.com
and in Horton [33]. Below are some of the more
widely used programs:

SAS

® PROC MI (version 8.1) offers three methods for
creating the imputed data sets: the regression
method, the propensity score method, and the
Markov chain Monte Carlo (MCMC). PROC
MIANALYZE (version 8.1) is used to combine
the results

® PROC MIXED (version 6 onwards) can take
subjects with incomplete data into its analysis.

® PRQEX3 (Sample program — version 6 on-
wards) estimates multivariate missing data by
sampling from a multivariate normal distribu-
tion.

® [VEWARE is a SAS-based application for
creating multiple imputations.

(www.sas.com, www.multiple-imputation.com)

SOLAS 3.0 for Missing Data Analysis

® This is a commercial Windows standalone
program by Statistical Solutions Limited. It
provides a comprehensive set of tools to
perform both single and multiple imputation.
(www.statsol.ie)

S-PLUS

® The MICE program contains S-PLUS (versions
4.5 onwards) routines for flexible generation of
multivariate imputations using Gibbs Sam-
pling. [add-on available from www.multiple-
imputation.com]

e NORM, CAT, MIX and PAN is S-PLUS
software (version 3.4 onwards) for multiple
imputation. NORM uses a multivariate normal
model. CAT wuses a log-linear model for
categorical data. MIX relies on the general
location model for mixed categorical and
continuous data. PAN is used in a panel data
setting. [add-on available from www.multiple-
imputation.com]

® Missing data library for S-PLUS (version 6.0).
This library supports model-based missing data,
by use of the EM algorithm and data augmen-
tation algorithms. The library incorporates the
Schafer algorithms and provides some explora-
tory missing data tools.

® Oswald is an S-plus library for the analysis of
longitudinal data. It includes informative drop-
out modelling and GEE. [add-on available from
lib.stat.cmu.edu/S]

(www.insightful.com)

SPSS

® SPSS Missing Value Analysis®™ is an additional
module for SPSS (version 10) that provides



graphical tools to investigate missing data,
and imputes missing data using the EM and
regression algorithms.

(Www.spss.com)

STATA

Sgl16(.1) performs hot-deck imputation for
missing data.

Sgl156 performs a weighted logistic regression
for data with missing values using the mean
score method.

‘Impute’ procedure provides imputed values by
best sub-set regression.

(www.stata.com)
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