
Abstract

Current high performance computer systems use complex,
large superscalar CPUs that interface to the main memory through
a hierarchy of caches and interconnect systems. These CPU-cen-
tric designs invest a lot of power and chip area to bridge the wid-
ening gap between CPU and main memory speeds. Yet, many large
applications do not operate well on these systems and are limited
by the memory subsystem performance.

This paper argues for an integrated system approach that uses
less-powerful CPUs that are tightly integrated with advanced
memory technologies to build competitive systems with greatly
reduced cost and complexity. Based on a design study using the
next generation 0.25µm, 256Mbit dynamic random-access memory
(DRAM) process and on the analysis of existing machines, we
show that processor memory integration can be used to build com-
petitive, scalable and cost-effective MP systems.

We present results from execution driven uni- and multi-proces-
sor simulations showing that the benefits of lower latency and
higher bandwidth can compensate for the restrictions on the size
and complexity of the integrated processor. In this system, small
direct mapped instruction caches with long lines are very effective,
as are column buffer data caches augmented with a victim cache.

1  Introduction

Traditionally, the development of processor and memory
devices has proceeded independently. Advances in process tech-
nology, circuit design, and processor architecture have led to a
near-exponential increase in processor speed and memory capac-
ity. However, memory latencies have not improved as dramatically,
and access times are increasingly limiting system performance, a
phenomenon known asthe Memory Wall[1] [2]. This problem is
commonly addressed by adding several levels of cache to the
memory system so that small, high speed, static random-access-
memory (SRAM) devices feed a superscalar microprocessor at low
latencies. Combined with latency hiding techniques such as
prefetching and proper code scheduling it is possible to run a high
performance processor at reasonable efficiencies, for applications
with enough locality for the caches.

The approach outlined above is used in high-end systems of all
the mainstream microprocessor architectures. While achieving
impressive performance on applications that fit nicely into their
caches, such as the Spec’92 [3] benchmarks, these platforms have
become increasingly application sensitive. Large applications such
as CAD programs, databases or scientific applications often fail to
meet CPU-speed based expectations by a wide margin.

The CPU-centric design philosophy has led to very complex
superscalar processors with deep pipelines. Much of this complex-
ity, for example out-of-order execution and register scoreboarding,
is devoted to hiding memory system latency. Moreover, high-end
microprocessors demand a large amount of support logic in terms
of caches, controllers and data paths. Not including I/O, a state-of-
the-art 10M transistor CPU chip may need a dozen large, hot and
expensive support chips for cache memory, cache controller, data
path, and memory controller to talk to main memory. This adds
considerable cost, power dissipation, and design complexity. To
fully utilize this heavy-weight processor, a large memory system is
required.

FIGURE 1 : Compute System Components

The effect of this design is to create a bottleneck, increasing the
distance between the CPU and memory — depicted in Figure 1. It
adds interfaces and chip boundaries, which reduce the available
memory bandwidth due to packaging and connection constraints;
only a small fraction of the internal bandwidth of a DRAM device
is accessible externally.

We shall show that integrating the processor with the memory
device avoids most of the problems of the CPU-centric design
approach and can offer a number of advantages that effectively
compensate for the technological limitations of a single chip
design.

2  Background

The relatively good performance of Sun’s Sparc-Station 5
workstation (SS-5), with respect to contemporary high-end mod-
els, provides evidence for the benefits of tighter memory-processor
integration.

Targeted at the “low-end” of the architecture spectrum, the SS-
5 contains a single-scalar MicroSparc CPU with single-level,
small, on-chip caches (16KByte instruction, 8KByte data). For
machine simplicity the memory controller was integrated into the
CPU, so the DRAM devices are driven directly by logic on the pro-
cessor chip. A separate I/O-bus connects the CPU with peripheral
devices, which can access memory only through the CPU chip.

A comparable “high-end” machine of the same era is the Sparc-
Station 10/61 (SS-10/61), containing a super-scalar SuperSparc
CPU with two cache levels; separate 20KB instruction and 16KB
data caches at level 1, and a shared 1MByte of cache at level 2.
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Compared to the SS-10/61, the SS-5 has an inferior Spec’92-
rating, yet, as shown in Table 1, it out-performs the SS-10/61 on a
logic synthesis workload (Synopsys1 [4]) that has a working set of
over 50 Mbytes.

The reason for this discrepancy is the lower main memory
latency of the SS-5, which can compensate for the “slower” CPU.
Figure 2 exposes the memory access times for the levels of the
cache hierarchy by walking various-sized memory arrays with dif-
ferent stride lengths. Codes that frequently miss the SS-10’s large
level-2 cache will see lower access time on the SS-5.

FIGURE 2 : SS-5 vs. SS-10 Latencies2

The “Memory Wall” is perhaps the first of a number of impend-
ing hurdles that, in the not-too-distant future, will impinge upon
the rapid growth in uniprocessor performance. The pressure to
seek further performance through multiprocessor and other forms
of parallelism will increase, but these solutions must also address
memory sub-system performance.

Forthcoming integration technologies can address these prob-
lems by allowing the fabrication of a large memory, processor,
shared memory controller and interconnection controller together
on the same device. This paper presents and evaluates a proposal
for such a device.

3  Technology Characteristics and Trends

The main objection to processor-memory integration is the fact
that memory costs tend to dominate, and hence economy of scale
mandates the use of commodity parts that are optimized to yield
the most Mbytes/wafer. Attempts to add more capabilities to
DRAMs, such as video-buffers (VDRAM), integrated caches
(CDRAM), graphics support (3D-RAM) and smart, higher perfor-
mance interfaces (RamBus, SDRAM) were hurt by the extra cost

1.  The most ubiqitous commercial application for chip logic synthesis.

2.  The SS-10 has a prefetch unit that hides the memory access time in the
case of small, linear strides.

for the non-memory areas. However with the advent of 256 Mbit
and 1 Gbit devices [5] [6], memory chips have become so large
that many computers will have onlyone memory chip. This puts
the memory device on an equal footing with CPUs, and allows
them to be viewed as one unit.

In the past, the 7% die-size increase for CDRAMs has resulted
in an approximately 10% increase in chip cost. Ignoring the many
non-technical factors that influence cost, a 256 Mbit DRAM chip
could cost $800 given today’s DRAM prices of ~$25/Mbyte.
Extrapolating from the CDRAM case; if an extra 10% of die area
were added for a processor, a processor/memory building block
could cost $1000 — i.e. $200 for the extra processor. In order to be
competitive, such a device needs to exceed the performance of a
CPU and its support chips costing a total of $200. We show that
such a device can perform competitively with a much more expen-
sive system, in addition to being much smaller, demanding much
less power and being much simpler to design complete systems
with.

Older DRAM technologies were not suitable for implementing
efficient processors. For example, it was not until the 16Mbit gen-
eration that DRAMs used more than one layer of metal. However,
the upcoming 0.25µm DRAM processes, with two or three metal
layers, are capable of supporting a simple 200MHz CPU core. Com-
pared to a state-of-the-art logic process, DRAMs may use a larger
metal pitch and can have higher gate delays. However, Toshiba [7]
demonstrated an embedded 4 bank DRAM cell in an ASIC process
that is competitive with conventional 0.5µm ASIC technology. An
older version of such a process (0.8µm) was used for the implemen-
tation of the MicroSparc-I [8] processor which ran at 85MHz.
Shrinking this to 0.25µm should reach the target speed.

A significant cost of producing either DRAM or processor
chips is the need to test each device, which requires expensive
testers. Either device requires complementary support from the
tester; a cpu test requires the tester to provide a memory sub-sys-
tem, and a memory is tested with cpu-like accesses. Since an inte-
grated processing element is a complete system, it greatly reduces
these tester requirements. All that is required is to download a self-
test program [9]. For the system described below, this requires just
two signal connections in addition to the power supply.

4  The Integrated Design

Given the cost-sensitivity of DRAM devices, the design
described below tries to optimize the balance between silicon
devoted to memory, processor and I/O. The goal is to add about
10% to the size of the DRAM die, leading to a processing element
with competitive performance and a superior cost-effectiveness.

Currently 10% of a 256 Mbit DRAM is about 30 mm2. This is
slightly more than the size of the MIPS R4300i processor [10]
shrunk to a 0.25µm CMOS process. Thus, the CPU will fit our
design constraints. In addition, by using a high-speed serial-link
based communication fabric [11] for off-chip I/O, the number of
pads and interface circuitry is reduced. The die area saved can
accommodate about 60K gates for two coherence and communica-
tions engines [12], creating a device with a simple and scalable
interconnect.

It is possible to devote more area to the processing element in
order to improve performance, for example, by using a superscalar
pipeline, larger caches or additional processors. However, such
additional complexity will further impact the device yield and its
cost-effectiveness — this reduces practicality; designing competi-
tive DRAMs is as capital-intensive as building high-end CPUs.
Simpler solutions should enjoy economies of scale from targeting
mainstream applications, and should leverage this momentum to
provide commodity parts for high-end, massively parallel systems.

Machine Spec’92 Int Spec’92 Fp Synopsys Run Time
SS-5 64 54.6 32 minutes

SS-10/61 89 103 44 minutes
TABLE 1 :  SS-5 vs. SS-10 Synopsis Performance
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4.1 The Combined CPU and DRAM
Figure 3 shows a block diagram of the proposed integrated pro-

cessor and memory device.

FIGURE 3 : The Design

The chip is dominated by the DRAM section, which is orga-
nized into multiple banks to improve speed (shorter wires have less
parasitic capacitance to attenuate and delay the signals from the
actual DRAM cell).

Sixteen independent bank controllers are assumed in a 256Mbit
device. Fujitsu [13] and Rambus [14] currently sell 64Mbit devices
with 4 banks, Yoo [15] describes a 32 bank device, and Mosys [16]
are selling devices with up to 40 banks. Memory access time is
assumed to be 30ns or 6 cycles of the 200 MHz clock. This figure
is based on data presented in [17]. Each bank is capable of trans-
ferring 4K bits from the sense amplifier array to and from 3 col-
umn buffers. These three 512-Byte buffers form the processor
instruction and data caches. Two columns per bank are used for a
2-way set-associative data cache making a total of 32 512-Byte
lines spread across the 16 banks. The fact that an entire cache line
can be transferred in a single DRAM access, combined with much
shorter DRAM access latency, can dramatically improve the cache
performance, and enable speculative writebacks, removing conten-
tion between cache misses and dirty lines. The remaining 16 col-
umn buffers make up a direct-mapped instruction cache with 512-
Byte lines.

The performance of the 16KByte data cache is enhanced with a
fully-associative victim cache [18] of sixteen 32-Byte lines with an
LRU replacement policy. The victim cache receives a copy of the
most recently accessed 32-Byte block of a column buffer whenever
a column buffer is reloaded. This data transfer takes place within
the time it takes to access the DRAM array on a miss, and thus is
completely hidden in the stall time due to the memory access.
Given this transfer time window, it is the bandwidth constraint
from the main cache which dictates the shorter 32-Byte line size of
the victim cache. The victim cache also doubles as a staging area
for data that is imported from other nodes.

The nature of large DRAMs requires ECC protection to guard
against transient bit failures, this incurs a 12% memory-size
increase if ECC is computed on 64 bit words — the current indus-
try standard. As all reasonable systems require this level of protec-
tion, this 12% overhead should not be counted against our design.
Given the cost of the ECC circuitry, this function is performed at
the instruction fetch unit and the load/store unit in our design, and
not in each bank. Integration has the advantage that ECC checking
can proceed in parallel with the processor pipeline (faulting an
instruction before the writeback stage) while conventional CPU
architectures require that the check be completed before the data is
presented to the processor.

Two independent 64 (+8 for ECC) bit datapaths connect the
column buffers with the processor core, one each for data and
instruction access. These busses operate synchronously with the
200 Mhz processor clock, and each provides 1.6 GBytes/sec of
memory access bandwidth.

The processor core uses a standard 5-stage pipeline similar to
the R4300i [10] or the MicroSparc-II [8]. The evaluation presented
in this paper was based on the Sparc instruction set architecture.
Although the ISA is orthogonal to the concept of processor inte-
gration, it is, however, important to point out that an ordinary, gen-
eral-purpose, commodity ISA is assumed. While customization
could increase performance, economic considerations strongly
argue against developing a new ISA. The R4300i currently con-
sumes 1.5W, which will scale down with the smaller feature size
and reduced supply voltage. Therefore it is reasonable to assume
that the higher clock frequency will not cause a hotter chip.

4.2 System Interconnection and I/O
All I/O transfer and communication with other processing ele-

ments are controlled by two specialized protocol engines. These
engines execute a downloadable microcode and can provide a mes-
sage-passing or cache-coherent shared memory functionality. Both
access memory via the data path. The protocol engines have been
implemented and are described in [19]. The details of their opera-
tion is beyond the scope of this paper, but their actual operation is
modeled and forms the basis of the multiprocessor evaluation sec-
tion below. Both CC-NUMA [20] and Simple-COMA [21] shared-
memory operations are currently supported.

FIGURE 4 : System Overview

All off-chip communication is handled via a scalable serial link
inter-connect system [11], which can operate at 2.5 Gbit/sec in a
0.25µm process. Four links provide a peak I/O bandwidth of 1.6
Gbytes/sec, which matches the internal memory bandwidth. Nota-
bly, all other I/O traffic is handled via the same interconnect
medium. This links the memory of all processing elements into a
common pool of cache-coherent shared memory, as depicted in
Figure 4. This means I/O devices can behave like memory and
access all memory just like the processor. Due to the tight integra-
tion between the processor, protocol engines and interconnect sys-
tem, and because of the smaller, faster process, remote memory
latencies can be reduced below 200ns (we have used more conser-
vative numbers in our performance evaluation).

FIGURE 5 : Directory Structure
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As described in [12] and shown in Figure 5, cache coherence is
maintained by means of a directory structure that is kept in main
memory, co-located with the data — avoiding the need for a sepa-
rate directory cache. To eliminate the apparent storage overhead
for the directory, the directory is encoded in extra ECC bits at the
expense of reducing the error correction capability from 1 in 64 to
1 in 128 bits. Since cache coherency is maintained on 32 Byte
blocks, 14 bits become available for the directory state and pointer.

FIGURE 6 : Inter-Node Cache Organization

For the CC-NUMA modeled in this paper, a variable fraction of
memory is reserved for an Inter Node Cache (INC) that holds
imported data. This cache is 7-way set-associative (Figure 6) by
storing seven 32-Byte lines in one 512-Byte column and storing all
the tags in the eighth 32-Byte block. Each INC access requires 1 to
2 extra cycles over a normal (local) memory access due to the need
to check the tags first.

5 Uniprocessor Performance

Good multiprocessor scalability on its own is not enough to
make a system generally commercially viable. Many of the appli-
cations a user may wish to execute are not parallelized or even par-
allelizable. It is important therefore that the integrated processor in
the proposed system be capable of executing uniprocessor applica-
tions comparably with conventional architectures. Therefore, in
this section we concentrate on the performance of the integrated
system with uniprocessor applications.

5.1 Methodology
The current industry-accepted-standard metric for uniprocessor

performance is the SPEC’95 benchmark suite [3]. This suite of
programs (described in Table 2) is supposed to represent a bal-
anced range of uniprocessor applications, the total execution time
of which is used to measure the integer and floating point perfor-
mance of a processor (and its memory subsystem). As well as
using this suite of applications to benchmark the proposed design,
the Synopsys [4] application was added as an example benchmark
application with the large work-load of a real chip design.

Discussions of issues such as processor instruction set architec-
ture, branch prediction or out-of-order execution are essentially
orthogonal, and are beyond the scope of this paper. Futhermore,
these issues involve degrees of complexity not envisioned for the
processor under discussion. Instead, we concentrate on the novel
aspect of the proposal, namely the memory system performance.
The simplest first-order effect of the proposed design is the cache
hit rate afforded. Each of the benchmark programs was compiled
for the SPARC V8 architecture using the SunPro V4.0 compiler
suite, according to the SPEC base-line rules, and then executed
using a simulator derived from SHADE [22]. Cache hit and miss
rates were measured for instruction and data caches, both for the
proposed architecture and for comparable conventional cache
architectures.

5.2 Instruction Cache Performance
Figure 7 compares the instruction cache (I-cache) miss rates for

the proposed architecture to the miss rates enjoyed by convention-
ally dimensioned caches.

The left-most column for each application depicts the miss
probability for an 8KByte column buffer cache with 512-Byte
lines as proposed, while the remaining bars to the right depict the
miss probability for various sizes of conventional direct-mapped
caches with 32-Byte lines.

It is clear from these results that a number of the SPEC’95
benchmarks (110.applu, 129.compress, 102.swim, 107.mgrid, and
132.ijpeg) run very tight code loops that almost entirely fit an
8KByte cache. Of the remaining 14 applications with non-negligi-
ble miss rates, three of these (104.hydro2d, 141.apsi, 146.wave5)
typically have miss rates between a 0.1% and 0.5% even for an
8KByte instruction cache.

The results in Figure 7 show that the proposed I-cache with its
512-Byte lines has a significant performance advantage over con-
ventional first-level caches with 32-Byte lines. For almost all of the
applications, the proposed cache has a lower miss rate than con-
ventional I-caches of over twice the size. In some cases the perfor-
mance benefits of the longer I-cache line size can be very
dramatic; for example, in 145.fpppp the miss rate is a factor of
11.2 lower than the conventional cache of the same size, and a fac-
tor of 8.2 lower than the conventional cache of twice the size
(16KBytes). Note that the benchmark entirely fits a 64KByte I-
cache.

Benchmark Description
099.go Artificial Intelligence: Plays the game Go against

itself.
101.tomcatv Fluid Dynamics/Mesh Generation: Generation of a

2D boundary-fitted coordinate system around general
geometric domains.

102.swim Weather Prediction: Solves system of Shallow Water
equations using finite difference approximations.

103.su2cor Quantum Physics: Computes masses of elementary
particles in Quark-Gluon theory.

104.hydro2d Astrophysics: Solves hydrodynamical Navier Stokes
equations to compute galactic jets.

107.mgrid Electromagnetism: Computes a 3D potential field.
110.applu Math/Fluid-Dynamics: Solves matrix system with

pivoting.
124.m88ksim Simulator: Simulates the Motorola 88100 processor

running Dhrystone and a memory test program.
125.turb3d Simulation/turbulence: Simulates turbulence in a

cubic area.
126.gcc Compiler: cc1 from gcc-2.5.3. Compiles pre-pro-

cessed source into optimized SPARC assembly code.
129.compress Compression: Compress large text files (about 16MB)

using adaptive Lempel-Ziv coding.
130.li Interpreter: Based on xlisp 1.6 running a number of

lisp programs.
132.ijpeg Imaging: Performs JPEG image compression using

fixed point integer arithmetic.
134.perl Shell interpreter: Larry Wall’s perl 4.0. Performs text

and numeric manipulations (anagrams and prime-
number factoring).

141.apsi Weather: Calculates statistics on temperature and pol-
lutants in a grid.

145.fpppp Chemistry: Performs multi-electron derivatives.
146.wave5 Electromagnetics: Solve’s Maxwell’s equations on a

cartesian mesh.
147.vortex A single user O-O database transaction bench-

mark.Builds and manipulates three interrelated data-
bases. Size is restricted to 40MB for SPEC95

Synopsys Chip verification operation: compares two logic cir-
cuits and tests them for logical identity.

TABLE 2 :  Benchmark Components

Line0
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The reduced miss rate of the proposed I-cache results directly
from the prefetching effect of the long cache line size, combined
with the usually high degree of locality found in instruction
streams.

Conventional processor designs are unable to reap the benefits
of an increased cache line size because the time it takes to fill such
a line introduces second-order contention effects at the memory
interface. The proposed integrated architecture fills the 512Byte
line in a single cycle (after pre-charge and row access) directly
from the DRAM array, so these contention effects do not appear.
We return to this issue of contention is again in Section 5.5.

Only two of the SPEC benchmarks stand out for their some-
what disappointing I-cache performance; 134.perl has a surpris-
ingly high miss rate, though still lower than the equivalent
conventional cache of the same size, because the code is large and
has poor locality. 126.gcc has similar characteristics, but the I-
cache miss rates for this application are within 27% of those of a
64KByte conventional I-cache. Perhaps code profiling to reduce
cache conflicts may improve the miss rates for perl. The only
application to produce a higher miss rate on the proposed architec-
ture was 125.turb3d. This appears to be the result of a direct code
conflict between a loop and a function it calls, rather than a general
capacity or locality problem. The problem is an artifact of the
reduced number of cache lines, but can be removed by a code pro-
filer noting the subroutine being called by the loop — the respec-
tive loop and function code can then be re-laid by the compiler or
linker to avoid the conflict.

5.3 Data Cache Performance
Instruction caches are important to keep the processor busy,

and the generally good locality of instruction streams means that
the prefetching effect of the proposed cache works well. However,
as the SPEC benchmarks show, even a modest size cache is suffi-
cient to cover much of the executing code. Data caches, on the

other hand, need to cope with more complex access patterns in
order to be effective — often there is no substitute for cache capac-
ity.

As described in Section 4.1, the proposed architecture has
thirty-two column buffers (each 512-Bytes long attached to each of
the sixteen DRAM banks) dedicated to serving data accesses from
the cpu, effectively making a 16KByte 2-way associative data
cache (D-cache) with 512-Byte lines. This configuration was simu-
lated in much the same way as the I-cache in order to compare its
effectiveness with direct mapped and 2-way associative first-level
caches having a more conventional 32-Byte line size. Figure 8 pre-
sents the miss rates resulting from these simulations. Each vertical
bar shows both the load and the store cache miss probabilities —
the combined height is the total cache-miss fraction. The bar to the
left for each application is the miss rate for the proposed D-cache
structure. The right-most bar for each application illustrates the
miss rates after the addition of a small victim cache — we return to
this in Section 5.4. The remaining bars represent the conventional
cache miss rates.

Figure 8 shows that the application suite has a significantly
more varied D-cache than I-cache behavior. Given the generally
reduced temporal and spatial locality of data references compared
to instructions, this is to be expected. In turn, there is a more pro-
nounced difference between the performance of the proposed D-
cache structure and conventional cache designs for most of the
benchmarks.

Those applications that have a high degree of locality benefit
from the prefetching effect of the long lines, but the long lines can
also increase the number of conflict misses. For example,
107.mgrid and 104.hydro2d exhibit markedly reduced D-cache
miss rates — over a factor of ten lower for mgrid on the proposed
architecture compared to a conventional direct-mapped D-cache of
the same capacity, and still a factor of 5 lower than a 2-way asso-
ciative 256KByte conventional cache configuration.
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Key:

Store Misses

Load Misses

P - 16KB, 2way with 512Blnes
A - 16KB, d-mapped, 32B lines
B - 64KB, d-mapped, 32B lines
C - 256KB, d-mapped, 32B lines
D - 16KB, 2 way, 32B lines
E - 64KB, 2 way, 32B lines
F - 256KB, 2 way, 32B lines
Q - 16KB, 2 way, 512B lines +

16 entry x 32B victim cache

Unfortunately, the reverse is true of other applications; for
103.su2cor, 102.swim and 101.tomcatv the 512-Byte line size of
the proposed cache increases the number of conflict misses by
almost a factor of five over a conventional cache of the same size.

Early design simulations gave unacceptable miss rates for only
an 8KB direct-mapped cache with 512-Byte lines — partly due to
the reduced capacity, but mostly due to the conflicts arising from
having only 16 cache lines.

Introducing an additional data column buffer to each DRAM
cell doubled the capacity of the architecture’s D-cache to
16KBytes, and provided two-way associativity, which dramatically
improved the performance. While the prefetching benefits of the
large D-cache lines are desirable, as can been seen from the miss
rates in Figure 8, the conflict misses caused by the long line size
can be equally detrimental for other applications. It is desirable,
therefore, to reduce the incidences of conflict without reducing the
512B line size or increasing the cache capacity.

5.4 Adding a Victim Cache
Jouppi [18] showed that a small, fully-associative buffer (“victim

cache”) could be used to hold cache lines most recently evicted from
the data cache. This buffer works to increase the effective associa-
tivity of the cache in cases where the cache miss rate is dominated
by conflicts, reducing the number of main memory accesses.

To reduce the dominating effect of cache conflicts seen in
Section 5.3 for certain of the benchmark programs, a small asso-
ciative victim cache was added, as proposed.

The entire buffer is the same size as a single cache line, though
it is organized as a 16-way fully associative bank of 32-Byte lines.
When a cache line is evicted from a DRAM column buffer, due to
a miss, the last accessed 32-Byte sub-block of that line is copied
into a selected entry in the victim cache before the new cache line
is read. This has no performance penalty, since the CPU is frozen
on the miss, and the new cache line cannot be loaded until the
access of the DRAM array completes. This leaves four free cycles
during which to copy the 32-Byte sub-block from the old cache
line into the victim cache (64-bits at a time).
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FIGURE 8 : Data Cache Miss Rates



On each memory access cycle, as the main D-cache is
searched, each of the 16 entries in the victim cache are also
checked to see if it holds the data to be accessed. Unlike a conven-
tional victim cache, the contents cannot be reloaded into a line of
the main D-cache because of the size disparity.

The addition of the victim cache was simulated, and the result-
ant miss rates collected and presented in the right-most result bars
for each application in Figure 8. Aleast-recently-used replacement
algorithm used for the entries in the victim cache.

The victim cache had a dramatic effect on the cache miss rates.
In all but one application the combined D-cache and victim cache
has a lower miss rate than the 16KByte direct-mapped data cache.
For the applications where the plain D-cache performed poorly
(particularly 103.su2cor and 101.tomcatv), the victim cache
absorbed the conflict misses reducing the miss rate to approxi-
mately that of a conventional 2-way 16KByte cache. Moreover, for
three other applications (102.swim, 146.wave5, 130.li) the miss
rate was reduced between two and five-fold to a level equivalent to
a 64KByte conventional cache. For 102.swim and 146.wave5 the
2-way associative 16KByte D-cache has a slightly higher miss rate
than the direct-mapped one. It appears that for these applications a
high degree of associativity is needed when the D-cache is small.
The victim cache provides this associativity — absorbing the
accesses with poor spatial locality, and leaving the remaining
accesses to benefit from the prefetching effect of the longer cache
lines. Hence, the miss rates are almost as low as for the 64KByte
conventional caches.

There are always exceptions: while the victim cache helps
reduce the miss rate by 25%, it does not have the capacity to
absorb the conflicts from the main D-cache whose long lines are
not suited to the poor locality and small data structures used by the
099.Go search algorithm.

In summary, the long lines of the column buffer based D-cache
provide a beneficial prefetching effect for some applications, but
also cause significant cache conflicts for others due to the reduced
number of lines in the cache. A modest victim cache the size of a
single column buffer can absorb nearly all of the poor locality
misses and in some cases allow the prefetching effect to be seen.

5.5 Modeling Memory Contention
Although the column buffers comprising the data and instruc-

tion caches of the proposed design are filled in parallel and in a
single cycle (after the DRAM array access and pre-charge times),
simply measuring the hit and miss ratios of the caches does not
provide any information about bottlenecks and contention that
affect the processor throughput. Moreover, it does not provide an
entirely fair comparison with conventional processor designs that
suffer more from similar second-order contention effects arising
from memory system bottlenecks. To examine this arena the inte-
grated processor/memory system was modeled using generalized,
stochastic Petri Nets (GSPNs) [23] that take into account conten-
tion for shared resources (such as memory banks) and event depen-
dencies.

FIGURE 9 : Memory Bank GSPN

In addition, we adapted the Petri nets to model a conventional
CPU design with separate (Harvard Architecture) first-level
instruction and data caches accessing a larger unified second-level
cache, which in turn accesses a dual-banked main memory.

Instruction hit and miss ratios derived directly from the simula-
tions described in the preceeding sections were dialed directly into
the models in order to derive processor Cycles-Per-Instruction
(CPI) performance numbers.

The GSPNs were evaluated using a Monte-Carlo simulator.
Figure 9 depicts the model for one memory bank that can either

serve an instruction cache miss or a data cache miss, but not both
simultaneously. The deterministically timed transitions T1 and T3
reflect the access time, while the transition T2 models pre-charge
operations that prevent the memory from accepting a new transac-
tion for a certain time after the last access. The places P1 and P2
are entered via immediate transitions from the instruction fetch
unit or the load/store unit. It is assumed that these transitions have
equal rates, so that memory banks are accessed with a uniform,
random distribution. For the integrated processor/memory system,
16 memory banks are used. The conventional reference system
which is used to validate the model has 2 independent memory
banks.

FIGURE 10 : Processor/Cache GSPN
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FIGURE 11 : Cache Latency Impact

Figure 10 depicts the Petri-net used to simulate the proposed
processor. The components added to this model to simulate a con-
ventional “reference system” with a shared second-level cache are
shown in grey. These (grey) components are removed for simulat-
ing our proposed “integrated” system.

The top part of Figure 10 is the instruction fetch unit. Each time
the transition T1 fires, an instruction is presented to the execution units,
and the transitions emanating from place P7 reflect the probability
for an non-Load/Store operation (T7), a Load (T8) or a Store (T9).
T1 depends on a loaded instruction (P1) that is retrieved from either
the instruction cache (P3/T5), the optional second-level cache (P21/
T24) or the memory (P5...). The rates on the transitions T2, T3, and
T4 reflect the probabilities for an instruction cache hit, a second-level
cache hit, or a fill from main memory, respectively. These rates were
determined from the Shade simulations of the actual benchmarks.

We assumed a store buffer that can postpone stores (hence P9 does
not stall the processor). However, the load/store unit is limited toone
outstanding operation at a time (the token from P10 is require to issue
either a load or a store). The exponentially timed transition T23 mod-
els stalls due to incomplete loads. To model a system without score-
boarding, this rate for T23 is set to infinity. However, we assumed the
presence of scoreboarding logic for the integrated system, therefore
the rate of T23 to was set 1 so that on average one operation can be
performed before an incomplete load will stall the processor.

The transition ratios for T14, T15 and T12 reflect the probabili-
ties that a load is a data cache hit, a second-level cache hit or a ref-
erence to main memory, respectively. Similarly, T13, T16, and T17
model the cache behavior of stores.

The deterministically timed transitions T24 and T25 model the
access times for the optional second-level cache model. The place
P6 ensures mutual exclusion between data and instruction fetches.

The assumption in the model is that operations other than memory
accesses will not stall the CPU pipeline. This is a simplification in
regard to floating-point operations that usually do not complete in a
single cycle. To correct this, a cycle accurate MicroSparc-II simu-
lator (with a zero-latency memory system)1 was used to calculate a
base CPI component due to functional unit dependencies within the
CPU for each of the SPEC applications. These results were then com-
bined with the additional CPI component derived from the Petri-Net
models.

1.  Derived using Sun’s internal MicroSparc-II performance simulator.

FIGURE 12 : Memory Latency Impact

Two applications with representatively high and low CPI fig-
ures are 141.apsi and 126.gcc, respectively. Using the Petri-Net
model we can track the CPI performance of a simple 200MHz 5-
stage uni-scalar CPU (with 16KByte first-level I+D caches and a
256KByte second level combined cache) as a function of the sec-
ond-level cache and main memory access latencies. These results
are depicted in Figure 11. The grey area indicates the typical oper-
ating region of a conventional CPU, and indicates that the memory
access latency alone can cost up to a factor of 2 in the CPU’s CPI
performance above the raw (zero latency memory) performance.

Based on data in [17], the proposed integrated device could
have a 30ns access time. The CPI performance of the proposed
architecture with this memory access time is depicted in Figure 12,
and indicates that at 30ns access time the CPI impact is between
10% and 25% above the raw CPI figure.

To put this performance in more concrete terms, Tables 3 and 4
show estimated Spec’95 numbers for the proposed architecture
running at 200MHz with a 30ns DRAM array access latency.

For comparison, Table 4 also includes the Spec results for
today’s fastest available CPU [3]. To be fair, given current trends in
CPU development, we can expect the DEC Alpha family to increase
in performance over the time-frame in which the proposed architec-
ture might be realized. However, this performance improvement
will be at the cost of further complexity, beyond that of the 21164 —
which is already a factor of 10 larger than our proposed architecture,
not including the necessary support chips required.

5.6 Impact of Memory Organization
The number of independently controllable memory banks in a

DRAM device is strongly dependent on the actual DRAM imple-
mentation. This number impacts the proposed architecture in two
ways: first, it determines the amount of contention and second, it
constrains the cache architecture.

To address the first issue, 4, 8 and 16 banks were simulated for
all the Spec benchmarks using the GSPN memory contention
model of the integrated processor/memory device. For comparison
2 to 8 banks were simulated for the conventional CPU system. In
all cases, the performance differences were below the error limits
of the simulation — which is understandable given the relatively
low activity at each bank. For example, in gcc each of the 16 banks
are busy only 1.2% of the time, and increases to only 9.6% with 2
banks, which is still low for the probability of contention.
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The second and much larger effect is the impact upon practical
cache organization. If the number of banks were to be reduced, either
the line size or the associativity of the cache needs to be increased.
Mitsubishi [9] opted to use 4 banks and add a small amount of
SRAM to each bank to increase the number of available lines. In this
case, the cache organization essentially remains unchanged and the
overall performance only decreases slightly due to some increase in
contention. However, simulation shows that increasing the line size
will degrade performance due to higher resultant cache conflicts.

6  Multiprocessor Performance

Thus far, only the uniprocessor performance of the proposed inte-
grated system has been considered. The unusual design of the pro-
cessor caches was shown, in most cases, to be beneficial, but it is not
clear that this should be the case for shared memory multiprocessing
where the addition of coherence misses affects the caches.

6.1 Simulation Models and Methodology
To understand the performance potential of the integrated

design, an execution driven simulation, with a timing-accurate
architecture model, was used to evaluate a simple system based on
the building blocks of Figure 3. These performance figures are
then compared with results obtained from a reference CC-NUMA
design [20] with 16KByte direct-mapped First-Level Caches
(FLCs) and infinitely sized Second-Level Caches (SLCs). The use
of infinite SLCs removes the SLC capacity misses, providing an
ideal upper-bound of the system performance when only the cold
and the coherence misses are considered [24]. This enables the
direct study of the integrated cache system compared to a conven-
tional FLC in a shared memory system.

To simulate the proposed integrated system, the Inter-Node
Cache (INC) size was set at 1MByte per memory/processor node
— larger than the working sets of the applications used, and so
comparable to the infinite SLCs of the reference CC-NUMA archi-
tecture. However, a finite size was chosen because the INCs are
configured as 7-way set-associative caches; making them infinitely
large would remove the beneficial effects of set associativity. The
granularity of coherence (orcoherence unit) is always 32-Bytes.
For the purposes of these simulations, cache coherence was main-
tained by a write-invalidate protocol [24].

The simulation benchmarks are taken from the SPLASH [25]
suite, for which brief descriptions and the sizes of the data sets
used are given in Table 5.

The architectural simulator is built on top of the CacheMire
Test Bench [26], which is an execution-driven simulator of multi-
ple SPARC processors. The processors in the CacheMire simulator
issue memory accesses, and the architectural simulator then delays
the processors according to the latencies shown in Table 6. The
SPLASH application codes are sufficiently small that for both the
integrated and the reference architectures, instruction fetches are
assumed to always hit in the instruction caches. Therefore, only
data references were simulated.

Name
CPI

[cpu + memory] Spec-ratio
099.go 1.01 + 0.48 6.0
124.m88ksim 1.01 + 0.12 4.3
126.gcc 1.01 + 0.14 7.6
129.compress 1.03 + 0.17 6.4
130.li 1.02 + 0.06 6.7
132.ijpeg 1.00 + 0.01 5.8
134.perl 1.04 + 0.21 6.0
147.vortex 1.02 + 0.27 6.4

101.tomcatv 1.15 + 0.50 8.2
102.swim 1.56 + 0.97 12.7
103.su2cor 1.41 + 0.44 3.2
104.hydro2d 1.74 + 0.04 4.2
107.mgrid 1.20 + 0.01 3.2
110.applu 1.53 + 0.01 3.9
125.turb3d 1.16 + 0.05 4.3
141.apsi 1.70 + 0.08 5.0
145.fpppp 1.34 + 0.08 7.5
146.wave5 1.31 + 0.25 7.6

TABLE 3 :  Spec’95 Estimates, no Victim Cache

Name Total CPI Spec-ratio
Alpha 21164

[DEC 8200 5/300]
099.go 1.30 6.9 10.1
124.m88ksim 1.10 4.5 7.1
126.gcc 1.13 7.8 6.7
129.compress 1.16 6.6 6.8
130.li 1.07 6.8 6.8
132.ijpeg 1.01 5.8 6.9
134.perl 1.21 6.2 8.1
147.vortex 1.17 7.1 7.4

101.tomcatv 1.23 11.1 14.0
102.swim 1.65 19.5 18.3
103.su2cor 1.51 3.9 7.2
104.hydro2d 1.75 4.2 7.8
107.mgrid 1.21 3.2 9.1
110.applu 1.54 4.0 6.5
125.turb3d 1.20 4.3 10.8
141.apsi 1.76 5.1 14.5
145.fpppp 1.42 7.5 21.3
146.wave5 1.41 8.4 16.8

TABLE 4 :  Spec’95 Estimates, with Victim Cache

Benchmark Description Data Set
LU LU decomposition 200x200 matrix
MP3D 3-D particle-based wind-

tunnel simulator
10 K particles, 10 steps

Ocean Ocean basin simulator 128x128 grids, tolerance 10-7

Water N-body water molecular
dynamics simulation

288 molecules, 4 time steps

PTHOR Distributed digital time
digital circuit simulator

RISC circuit, 1000 time steps

TABLE 5 :  Splash Benchmarks

System Access Latency
Proposed
Combined

CPU &
DRAM

Hit in column buffer 1
Hit in victim cache 1
Access local memory & INC 6
Invalidation round trip delay 80
Load remote data 80

Comparative
CC-NUMA

Hit in FLC 1
Hit in SLC 6
Invalidation round trip delay 80
Load remote data 80

TABLE 6 :  Memory Latency (processor cycles)



6.2 Performance Results
The total execution times with increasing numbers of proces-

sors for the benchmarks LU, MP3D, OCEAN, WATER and
PTHOR are depicted in Figures 13 to 17.

The column buffers, which load 512-Bytes at a time, exploit the
spatial locality of local memory accesses well due to the long-line
prefetching effect mentioned earlier. As a result, the integrated
design outperforms the traditional CC-NUMA designs for small
numbers of processors in all cases — until the working set per cpu
becomes too small for the effect to be observed.

Since the coherence units transferred between nodes are always
32-Byte blocks, the long-line prefetching effect does not help for
accesses to data held on another node. Therefore the proposed
architecture has the same number of cold and coherence misses as
the traditional CC-NUMA. In fact, it is important not to use the
long cache lines as coherence units, because the false-sharing costs
would outweigh the prefetching benefits for most applications.
However, the long cache lines can improve the performance of the
integrated multiprocessor’s remote data caches. The long column
buffer lines enable access to seven 32-Byte INC blocks each - pro-
viding 7 way associativity for cached remote memory reducing
conflict misses.

When applications exhibit good locality for local memory
accesses or have a large number of conflicts on remote data
accesses, the proposed column buffer design can produce good
results. WATER is the only benchmark for which the reference

CC-NUMA design shows better results than the integrated archi-
tecture unaided by a victim cache. In WATER, the main data struc-
ture is a shared vector that maintains all molecules. Sets of
molecules are allocated to processors statically. In this application,
true sharing misses dominate. As each molecule is described by a
data structure of approximately 600 Bytes, and is only partially
accessed, the limited numbers of column buffers of 512-Bytes suf-
fer from the lack of spatial and temporal locality. As shown in
Figure 16, when the victim caches are used, the total execution
time is significantly reduced.

A further observation is that the column buffer D-cache itself is
not enough to support scalable computation. As shown in
Figures 15 and 16, the reference CC-NUMA performs better than
the integrated design with only column buffers. Again, this is
because the addition of coherence traffic from shared memory
operation further increases the conflict misses caused by the small
number of column buffer long lines. As a result, most memory
accesses miss the D-cache and need 6 cycles to reach the data in
the INC DRAM in the integrated design; while similar accesses
may be served in 1 cycle by the FLC of the reference CC-NUMA
design. This is not quite a fair comparison due to the small nature
of the standard problems’ working sets — with larger, more realis-
tic, problems, the FLC of the reference CC-NUMA architecture
would start experiencing more capacity misses, incurring the 6
cycle penalty to it's SLC.

Based on preliminary observations, each node in the integrated
design was augmented just as in the uniprocessor case by the addi-

FIGURE 14 : MP3D FIGURE 15 : OCEAN

FIGURE 16 : WATER FIGURE 17 : PTHOR
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tion of a small 16-way by 32-Byte associative victim cache. Com-
pared to the 16KByte FLC of the reference CC-NUMA, the 512-
Byte capacity of the victim cache is very small, however even this
can reduce the execution time of the integrated design by up to a
factor of 2 (in the case of WATER). With the aid of a victim cache,
the integrated design shows the best performance results for the
tested applications.

7  Related Work

Transputer
In 1982 Inmos introduced the Transputer family of RISC pro-

cessor chips [27] that were combined with a small amount of local
memory and tightly integrated with a 4 serial link communications
interface. The processor was tailored for a message-passing para-
digm (specifically, the language Occam), and efficiently supported
high speed context switching and message handling. While this
chip has some similarities with the idea presented it did not pro-
vide a shared memory capability or even virtual memory. More-
over, the local memory was simply 1KB of static RAM, so for all
practical applications the chip had to be combined with external
DRAM.

M machine
The M-Machine [28] project plans to integrate 4 super-scalar

CPUs with memory on a single chip. However, the on-chip mem-
ory size is small as 4Mbits. In most cases, external I/O and mem-
ory chips are needed. Moreover, the M-Machine is a message
passing design.

Exacube
The EXECUBE [29] exploited a similar idea of utilizing the

memory bandwidth to the maximum by CPU memory integration.
A CPU element, 64KBytes of memory and four communication
links form a processing unit. Each chip, based on the dense DRAM
technology of the day, holds eight such processing units. Unlike
our design, the EXECUBE chip is intended to serve as building
block for MPP systems. There is no shared memory capability, or
ability to use DRAM column buffers for instruction and data
caches. Furthermore, it is primarily intended as a SIMD architec-
ture.

Sharc
The Analog Devices ADSP-21060 chip [30] has a single DSP

(digital signal processor) CPU integrated with 4Mbits of memory.
Like the EXECUBE, MPPs systems can also be built using this
chip, but not shared-memory systems.

Mitsubishi, Toshiba & NEC
Mitsubishi have already fabricated a combined 32-bit RISC

core and DRAM device [9]. While this device demonstrates that a
commercial DRAM process can be used to fabricate complex logic
on the same chip, it contained a conventional cache design sepa-
rated from the DRAM arrays, thus failing to exploit the full mem-
ory bandwidth potential. Futhermore, the device contains no
scalable interconnect capability.

Other DRAM vendors, for example Toshiba and NEC, are in
the process of making available DRAM devices with dedicated
semi-custom logic areas, so that customers can design their own
intelligent DRAMs.

8  Vision

The integrated processor/memory chip could be regarded as the
equivalent to a LegoTM building block. Dwarfed by its modest
heat-sink to cool some 1.5W, the processing elements could be
added incrementally to a silicon-less mother board (Figure 20) that
provides only sockets with power and signal traces to other such
sockets. When needed, more integrated chips can be added to a
logically seamless shared memory multiprocessor.

FIGURE 18 : Silicon-Less Motherboard

I/O functions are handled by chips that can translate to standard
interfaces, such as PCI, SCSI, ATM, Fiber-Channel, etc. Among
the more interesting capabilities of such a system is to build a
framebuffer that retrieves its data from the main memory as it
refreshes a screen or LCD panel. This is made feasible by the high
memory bandwidth that is available internally.

Due to the scalable interconnect fabric, the system’s bi-sec-
tional bandwidth increases as components are added. This system
is not limited to one mother-board, rather the delay insensitive
point-to-point connections of the S-Connect systems allow multi-
ple boards to communicate via cables (<10m) or fiber-optic con-
nections (up to 200m).

9  Conclusions

The trend towards larger DRAM devices exacerbates the pro-
cessor/memory bottleneck, requiring costly cache hierarchies to
effectively support high performance microprocessors. A viable
alternative is to move the processor closer to the memory, by inte-
grating it onto the DRAM chip. Processor/memory integration is
advantageous, even if it requires the use of a simpler processor.

We have shown that a conventional, single-scalar processor
with a small cache, integrated with a 256-Mbit DRAM array can
form a self-contained, general purpose processing element with
competitive performance that can approach that of high-end super-
scalar processors with large, multilevel caches. Small (8KByte)
direct mapped instruction caches with long lines (512-Bytes) per-
form surprisingly well with a zero-fill cost, which is a feature of
the integration. Victim caches were shown to be very effective
when combined with a multi-banked column buffer data cache.
Combined with the lower latency inherent in an integrated design,
the memory induced degradation of processor performance was
greatly reduced.

Including scalable Distributed Shared Memory (DSM) with
hardware assisted cache coherency results in a versatile building
block that can outperform an ideal (i.e. infinite second-level cache)
conventional DSM system.
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