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Abstract

The analysis of gene expression time series obtained
from microarray experiments can be effectively exploited to
understand a wide range of biological phenomena from the
homeostatic dynamics of cell cycle systems to the response
of key genes to the onset of cancer or infectious disease.
However, microarray data frequently contain a significant
number of missing values making the application of com-
mon multivariate analysis methods, all of which require
complete expression matrices, difficult. In order to pre-
serve the experimentally expensive non-missing data points
in time series gene expression data, methods are needed to
estimate the missing values in such a way that preserves
the latent interdependencies among time points within indi-
vidual expression profiles. Thus we propose modeling gene
expression profiles as simple linear and Gaussian dynami-
cal systems and apply the Kalman filter to estimate missing
values. While other current advanced estimation methods
are either sensitive to parameters with no theoretical means
of selection or attempt to learn statically from inherently
dynamical data, our approach is advantageous exactly be-
cause it makes minimal assumptions that are consistent with
the biology. We demonstrate the efficiency of our approach
by evaluating its performance in estimating artificially in-
troduced missing values in two different time series data
sets, and compare it to a Bayesian approach dependent on
the eigenvectors of the gene expression matrix as well as a
gene wise average imputation for missing values.

1. Introduction

Genomes, or global gene expression, can be considered
as a temporal process that self regulates on a feedback loop
to maintain homeostasis. The complexity of this process is
underscored by the fact that different normal cellular con-

ditions require both the synthesis and repression of very
specific sets of proteins. Normal development as well as
disease are tied to the functionality or failure of genome
systems. Thus elucidating the nature of the regulatory net-
works that control gene expression is motivated from many
biological perspectives and has enormous potential for ap-
plications. It is in fact the central aim of current microarray
experiments. The analysis of gene expression data obtained
from microarray experiments has already proven successful
in identifying genes that contribute to common functions
and are therefore, at most, possibly coregulated. Efforts to
infer explicit networks from microarray experiments, how-
ever, have been extensive but inconclusive.

At the most fundamental level it is known that genome
systems contain sets of proteins called transcription factors
that are required to initiate or repress transcription of par-
ticular genes by binding to their regulatory sequences. Fur-
thermore post-translational modifications of proteins can in
turn affect the activity of transcription factors. However,
there also exists locally interacting processes between sub-
sets of genes that may influence subsequent expression lev-
els. Thus a complete description of gene expression systems
includes not only the microarray measured gene expression
profiles, but also physical yet unmeasurable factors such as
protein degradation rates and mRNA levels, as well as in-
tangible interaction and synergistic effects.

Extracting network information from gene expression
profiles however requires the consideration of various pre-
processing issues. Amongst the most pressing of these is-
sues are the problems which arise from missing data values.
Missing values in a gene expression matrix are common
to both static and time series experiments alike. They are
usually introduced when suspect values are removed from
their respective genes’ expression profile or by some tech-
nical error leading to a failed measurement. The occurrence
and handling of missing time points is non-trivial. Of the
800 genes determined by Spellman et al. [9] to be cell cy-
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cle regulated in Saccharomyces cervisiae more than 20%
of the genes had incomplete profiles. Common statistical
multivariate analyses such as principal component analysis
(PCA) and singular value decomposition (SVD) can only be
applied to complete expression matrices. On the other hand,
hierarchical clustering methods that use the Euclidean dis-
tance between gene expression profiles as a metric, must
also set work-arounds for dealing with missing time points
or dimensions.

Clearly all exisiting analysis methods are extremely sen-
sitive to missing values. Combined with the high costs of
data collection, naive approaches such as removing an ex-
pression profile with missing data points from further analy-
sis, setting missing values to 0, or setting a particular gene’s
or sample’s missing values to its average expression levels
are unsatisfactory if not misleading.

Furthermore, missing data points in time series gene ex-
pression data warrant special consideration and methods.
As has already been discussed a gene expression system is
in itself a complex, interactive temporal process. Thus not
only does a strong autocorrelation exists within successive
data points of a particular gene profile, but there also exists
dependencies between the data points across profiles.

More advanced missing value estimation methods have
taken on either global, local, or a combination of global and
local approaches. Troyanskaya et al. [10] have proposed
methods based on K-nearest neighbor (KNNimpute) and
SVD (SVDimpute) approaches. They found that although
both approaches outperformed imputing missing values to
the gene-wise average, the SVD approach consistently out-
performed the KNN approach in time series expression
data. Both approaches were, however, sensitive to either
the K-value of the number of eigenvectors used while there
remains no theoretical way to choose these values.

Oba et al. [7] have proposed estimating missing val-
ues using Bayesian principal component analysis (BPCA).
Briefly, missing values are imputed with respect to an es-
timated posterior distribution for a parameter set based on
the principal components of the expression matrix and the
eigenvectors of the expression covariance matrix. This
method was shown to outperform KNNimpute and SVDim-
pute, but also relies heavily on eigenvectors.

Hu et al. [4] have proposed an “integrative” approach
that incorporates information from multiple reference mi-
croarray data sets to improve missing value estimates. This
approach however is dependent on the existence of valid
reference data sets. Despite the authors’ contention that
the rapid accumulation of microarray data sets improves
the performance of their method, it still is dependent on
the tenuous assumption that microarray data sets can be
easily compared. In fact there are a potential number of
biological and experimental inconsistences, such as differ-
ences in sampling rate and variations in timing of biological

processes, that hinder comparisons of microarray data sets
(Bar-Joseph [1]).

Thus a method that estimates missing time series values
by making effective use of all the information available–
both explicit and latent, both global and local–is desir-
able. We thus propose a simple linear dynamical systems
model for gene expression systems and apply Kalman fil-
tering techniques to estimate values for missing time points.
We evaluate our approach and compare it against the row-
average method and BPCA. We also discuss the extension
of linear dynamical systems modeling to overriding prob-
lem of network inference.

It has been recognized that effective models of gene ex-
pression are key to ultimately uncovering network informa-
tion. We thus propose a method for the derivation of a linear
dynamical model of genomes from microarray data. Many
existing methods for analysis of gene expression data, how-
ever, do not take into consideration the dynamic nature of
genomes. Clustering methods, for example, treat expression
profiles independently. Thus not only are implied depen-
dencies among consecutive points within the same gene’s
profile ignored but no attempt is made to account for neces-
sary inherent dependencies among genes either.

A linear dynamical systems model has the advantage of
fully utilizing the available microarray data, since it ex-
plicity considers the various contributing components of
genomes and their complex relationships as well as the
noise in the microarray data used to extract it. This
model thus provides an effective conceptual framework
from which to analyze gene expression data from microar-
ray experiments.

2. Systems and methods

2.1. A linear dynamical system model for
gene expression systems

A dynamical system can be described by a sequence of
time-dependent variables xt=(x1(t), x2(t),. . . ,xn(t)) ∈ <n,
where xt describes the complete state of the system and
represents all the information that it has available to itself
to propagate forward in time. In general, measurements
on the system, which are of varying sensitivity, do not
give the complete state. Rather a measurement yt=(y1(t),
y2(t),. . . ,ym(t)) ∈ <m of the system only partially reveals
its dynamics and the obscured components, or hidden vari-
ables, are lost.

We consider time series expression data obtained from
microarray experiments in such a dynamical systems con-
text. The system is taken to be complete gene expression
following the conditions of interest in an organism, and the
measurements are the gene expression levels as measured
by the microarray time series experiment.
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In this context, a state space model of complete organis-
mal gene expression can be described by equations (1) and
(2).

xt+1 = Axt + wt (1)

yt = Cxt + vt (2)

In a time course experiment the expression levels of n
genes are each measured at m time points to track the ef-
fects of a set of conditions or events resulting in a m x n
expression matrix G. Thus yt is a n-dimensional vector rep-
resenting the measured expression levels of all n genes at
time t for t = 1, ..., m. The vectors xt are p-dimensional
complete state values from which the observed vectors yt

are generated. The p x p matrix A relates the transition of
the state from the current time point to the next time point.
(Note that the transitions follow a first-order Markov pro-
cess.) The p x n matrix C relates the complete state at time
t to the microarray measurement yt.

wt and vt denote noise associated with the biological and
measurement processes respectively. We make the assump-
tion that wt and vt are independent (of each other and the
initial values of x and y), white, and have Gaussian distribu-
tions

p(w) ∼ N(0, Q) (3)

p(v) ∼ N(0, R) (4)

Q denotes the process noise covariance matrix and R the
measurement noise covariance matrix. Noise is therefore
also hidden.

2.2. A linear dynamical system for gene ex-
pression profiles

We now formulate the missing time point problem in the
context of linear dynamical systems. Consider gene i, or
row i from the expression matrix G, with one or more lost
measurements. We wish to estimate expression values for
the missing time points ik. A simplified linear dynamical
system can then be derived, where the states yi,t to be es-
timated are exactly the expression levels for gene i at time
t, and where the correlations have been simplified such that
the expression state at one time point determines the expres-
sion state at the next time point.

yi,t+1 = Cyi,t + wt (5)

zi,t = Hyi,t (6)

In this case then the observations, zi,t, give the complete
state of the system (the observation transition matrix H is

the identity matrix I). A missing time point in the expres-
sion profile of gene i is then the lack of corresponding ob-
servation zi,t. wt is again white with Gaussian distribution
given by equation (3).

Since we have defined gene expression profiles in terms
of a linear model subject to Gaussian and white noise pro-
cesses, we can import the proven utility of Kalman filtering
techniques from control and signal processing applications
in physical systems.

2.3. The Kalman filter

The Kalman filter is an optimal, recursive algorithm used
to estimate the state of a system while minimizing mean
square error. It assumes that the system can be modeled lin-
early, and that all noise is white and follows a Gaussian dis-
tribution. The Kalman filter estimates the state of a system
at any time t by propagating its probability density function
conditioned on a set of measurements zT , p(yt|zT ). Once
the conditional probability density function is propagated,
the mean or center of the probability mass is taken as the
estimate of the state yt given zT . Although the mean of the
conditional probability density is the preffered estimate of
the state it should be noted that under the assumptions of
linearity, Gaussian densities, and whiteness the mean, me-
dian and mode of the density functions coincide. Thus the
Kalman filter will always result in a unique best estimate of
the state.

The estimation process is referred to as filtering if T = t,
prediction if T > t, and smoothing if T > t.

A broad description of the Kalman filter is that of an esti-
mator with feedback control. The filter begins by projecting
forward the current state and error covariances estimates to
obtain an a priori estimate for the state of the system at the
next time step ŷ−t . Then the filter receives feedback in the
form of a measurement, incorporating the measurement into
the a priori estimate to give an improved a posteriori esti-
mate of the next state ŷt. The Kalman filter equations for
the simple linear system described in equations (5) and (6)
are given by the following equations.

ŷ−t = Cŷt−1 (7)

P−t = CPt−1C
T + Q (8)

Kt = P−t HT (HP−t HT + R)−1 (9)

ŷt = x̂−t + Kt(zt −Hx̂−t ) (10)

Pt = (I −KtH)P−t (11)

where P−t is the a priori estimate error covariance, and Pt is
the a posteriori estimate covariance. Smoothing considers
later measurements zT , T > t to improve estimates of state
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yt by reducing noise. Smoothing involves an initial forward
recursion followed by a backward recursion. In the forward
step, the Kalman filter equations are applied through T and
the values ŷt

t, ŷt−1
t , Pt

t, and Pt−1
t for t = 1, . . . , T are stored.

In the backward step, these values are then used to initialize
the Kalman smoother equations given by equations (12) -
(14).

Jt−1 = P t−1
t−1 CT [P t−1

t ]−1 (12)

ŷT
t−1 = ŷt−1

t−1 + Jt−1(ŷT
t − ŷt−1

t ) (13)

PT
t−1 = P t−1

t−1 + Jt−1(PT
t − P t−1

t )JT
t−1 (14)

2.4. Estimating missing values using
Kalman smoothing

Using the state space model given by Equations (5) and
(6) with the state transition matrix C set to the identity ma-
trix, Kalman smoothing is then applied to each individual
profile to estimate the missing time points.

In actuality the state transition matrices may change
from step to step, however, Kalman filtering is robust to
the simplification that they are constant. Thus we do not
attempt to use computationally intensive methods, such as
the expectation maximization algorithm, to learn the transi-
tion matrix C and argue that setting C = I is adequate. This
simplification will be investigated in further work. It should
also be noted that in learning a transition matrix an inher-
ently dynamical process is treated as static and that such a
transition matrix would not have readily translatable biolog-
ical meaning.

In contrast, the assumptions of our approach are biolog-
ically sound. A linear system model for gene expression
profiles is appropriate given that temporal changes in the
transcriptome are relatively smooth and continuous (Rifkin
and Kim [8]). In general, when non-linearities do exist it is
often possible to linearize about some nominal point. Fur-
thermore, the Kalman filter can be extended to a nonlinear
setting. The assumption that both the system and measure-
ment process noises are Gaussian can also be justified by
considering that noise is typically caused by a number of
small sources. By the central limit theorem it is known that
when a number of independent random variables are added
together the summed effect can be described very closely by
a Gaussian distribution regardless of the shape of individual
densities.

3. Results and Discussion

We tested our Kalman smoother approach to estimat-
ing missing data points on two time series microarray data
sets. Spellman et al. [9] used various methods of cell syn-
chronization to determine cell cycle regulated genes in the

yeast Saccharomyces cerevisiae. Expression was tracked
for 6177 open reading frames over the course of two and a
half cell cycles or 290 minutes. We used in particular the
cdc15 synchronized expression data. It should be noted that
the sampling rate was not constant rather varying from 10 to
20 minutes. We consider only the measurements made at 20
minute intervals starting from the first measurement. Laub
et al. [5] conducted an analysis of gene transcription over
a single cell cycle in the bacterium Caulobacter crescen-
tus, collecting expression levels for 2966 predicted reading
frames at 15 minute intervals for a total of 11 time points.
The data sets “cdc15” and “caulobacter” were formed by
removing all expression profiles with at least one missing
time point from the published data sets. The data sets were
not normalized. The characteristics of the test data sets are
summarized in Table 1.

To test the performance of each method, missing val-
ues were introduced into the cdc15 and caulobacter data
sets by randomly selecting and removing expression val-
ues such that a specific percentage of entries over the com-
plete expression matrix are rendered missing. The Kalman
smoother method, BPCA, and gene average imputation are
then used to recover these artificial missing values. Each
test was performed 10 times to reduce randomness. The
relative performance of each method can be assessed in part
by considering the root mean squared error between the es-
timated matrix and the true matrix normalized over the vari-
ance in the true matrix (NRMSE) as defined in equation (15)
and the maximum error between the estimated and true val-
ues.

NRMSE =

√
mean[(yguess − ytrue)2]

variance[ytrue]
(15)

The NRMSE of all three methods were high and relatively
constant over the percentage of artifically introduced miss-
ing entires. The NRMSE of the Kalman smoothing esti-
mates are always bounded above by that of the gene aver-
age and below by that of BPCA as shown in Figure 1. Given
the assumptions of the model we used, specifically a crude
estimation of the state transition matrix and no fine tuning
of any other parameters, the performance can be considered
comparable to that of BPCA. The results also suggests that

cdc15-synchronized yeast caulobacter
ORFs in published data 6178 2966
Percent missing 23.7% 48.1%
ORFs in test set 4712 1538
Time points 15 11

Table 1. Characterisitcs of the data sets com-
prising the test sets used in evaluations of
estimator performance.
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Figure 1. Estimation ability as evaulated by
NRMSE for various percentages of missing
entries over 10 repetitions.

cdc15 caulobacter
gene wise average 3.9627 6.8209
BPCA 3.5617 4.2167
Kalman smoother 3.4150 6.3475

Table 2. A comparison of the maximum er-
rors on the estimation methods over 10 repe-
titions for 5% missing entries.

with refinements our approach may outperform BPCA. In
fact for relatively large data sets, such as the cdc15 test set,
the Kalman smoother already results in smaller maximum
errors than BPCA(Table 2).

To better assess the performance of the Kalman
smoother, a variety of missing time point scenarios were
simulated on complete profiles. Figures 2 and 3 show that
the smoother is robust to the number of missing time points
so long as the assumption that smoothness of transcriptome
holds. For example, the Kalman smoother was unable to
find good estimates around 210 - 270 minutes because of the
relatively sharp dip in the profile. This interval, however,
corresponds to the yeast cells entering the third cell cycle
where the degree of synchronization with cdc15 was noted
to progressively decline. Thus the failure of the Kalman
smoother to match these unsynchronized time points is not
at all indicative of its lack of rigor or applicability. In actu-
ality it suggests that the Kalman filtering techniques can be
exploited to assess the validity of gene expression measure-
ments which is also an open problem in microarray gene
expression analysis.

On incomplete profiles, the Kalman smoother matched

Figure 2. Kalman smoother estimated values
for simulated missing time points on a com-
plete gene expression profile for the pub-
lished yeast cdc15 data. The top panel shows
the complete profile. In the subsequent pan-
els, the time points rendered missing are in-
dicated by black squares. The complete esti-
mated profile is shown as a red dotted line.

spot on the actual non-missing data while giving estimates
for the missing values that generally followed the trends in
the profile. Figure 4 shows the estimates for a representa-
tive group of genes from the published cdc15 data set that
contained missing time points. As expected the profiles be-
come flatter when the points to be estimated are consecu-
tive. It is expected that as the interval between consecutive
time points decreases the Kalman smoother can more finely
resolve the actual expression dynamics.

4. Conclusion

It has been shown that a very simple linear dynam-
ical systems model for gene expression profiles can be
used to effectively estimate missing values in a time series
gene expression matrix. In fact these estimates are con-
sistently better than simple gene wise average imputation,
and comparable to an advanced estimation method based on
Bayesian principal component analysis that has previously
been shown to outperform other commonly used methods.

Our method has the distinct advantage in that a minimal
number of assumptions are made and that these assumptions
have valid biological meaning. In contrast, current estima-
tion methods are based on parameters, such as the eigen-
vectors of expression matrices, that hold no clear biologi-
cal meaning. Furthermore, the simplified linear dynamical
model proposed here is ripe for further study and refine-
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Figure 3. Kalman smoother estimated values
for simulated missing time points on a com-
plete gene expression profile from the pub-
lished caulobacter data. The top panel shows
the complete profile. In the subsequent pan-
els, the time points rendered missing are in-
dicated by black squares. The complete esti-
mated profile is shown as a red dotted line.

ment that may not only lead to better estimates of missing
values but more importantly be exploited to explore under-
lying network information.
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