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Abstract

Background: In modern biomedical research of complex diseases, a large number of demographic and clinical

variables, herein called phenomic data, are often collected and missing values (MVs) are inevitable in the data

collection process. Since many downstream statistical and bioinformatics methods require complete data matrix,

imputation is a common and practical solution. In high-throughput experiments such as microarray experiments,

continuous intensities are measured and many mature missing value imputation methods have been developed

and widely applied. Numerous methods for missing data imputation of microarray data have been developed.

Large phenomic data, however, contain continuous, nominal, binary and ordinal data types, which void application

of most methods. Though several methods have been developed in the past few years, not a single complete

guideline is proposed with respect to phenomic missing data imputation.

Results: In this paper, we investigated existing imputation methods for phenomic data, proposed a self-training

selection (STS) scheme to select the best imputation method and provide a practical guideline for general

applications. We introduced a novel concept of “imputability measure” (IM) to identify missing values that are

fundamentally inadequate to impute. In addition, we also developed four variations of K-nearest-neighbor (KNN)

methods and compared with two existing methods, multivariate imputation by chained equations (MICE) and

missForest. The four variations are imputation by variables (KNN-V), by subjects (KNN-S), their weighted hybrid

(KNN-H) and an adaptively weighted hybrid (KNN-A). We performed simulations and applied different imputation

methods and the STS scheme to three lung disease phenomic datasets to evaluate the methods. An R package

“phenomeImpute” is made publicly available.

Conclusions: Simulations and applications to real datasets showed that MICE often did not perform well; KNN-A,

KNN-H and random forest were among the top performers although no method universally performed the best.

Imputation of missing values with low imputability measures increased imputation errors greatly and could

potentially deteriorate downstream analyses. The STS scheme was accurate in selecting the optimal method by

evaluating methods in a second layer of missingness simulation. All source files for the simulation and the real data

analyses are available on the author’s publication website.

Keywords: Missing data, K-nearest-neighbor, Phenomic data, Self-training selection

* Correspondence: ctseng@pitt.edu
†Equal contributors
1Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
2Department of Computational and Systems Biology, University of Pittsburgh,

Pittsburgh, PA, USA

Full list of author information is available at the end of the article

© 2014 Liao et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,
unless otherwise stated.

Liao et al. BMC Bioinformatics 2014, 15:346

http://www.biomedcentral.com/1471-2105/15/346

mailto:ctseng@pitt.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Background
In many studies of complex diseases, a large number of

demographic, environmental and clinical variables are

collected and missing values (MVs) are inevitable in the

data collection process. Major categories of variables in-

clude but not limited to: (1) demographic measures, such

as gender, race, education and marital status; (2) environ-

mental exposures, such as pollen, feather pillows and

pollutions; (3) living habits, such as exercise, sleep, diet,

vitamin supplement and smoking; (4) measures of general

health status or organ function, such as body mass index

(BMI), blood pressure, walking speed and forced vital cap-

acity (FVC); (5) summary measures from medical images,

such as fMRI and PET scan; (6) drug history; and (7) fam-

ily disease history. The dimension of the data can easily go

beyond several hundreds to nearly a thousand and we

refer to such data as “phenomic data”, hereafter. It has

been shown recently that systematic analysis of the phe-

nomic data and integration with other genomic infor-

mation provide further understanding of diseases [1-5],

and enhance disease subtype discovery towards preci-

sion medicine [6,7]. The presence of missing values in

clinical research not only reduces statistical power of

the study but also impedes the implementation of many

statistical and bioinformatic methods that require a

complete dataset (e.g. principal component analysis, clus-

tering analysis, machine learning and graphical models).

Many have pointed out that “missing value has the poten-

tial to undermine the validity of epidemiologic and clinical

research and lead the conclusion to bias” [8].

Standard statistical methods for analysis of data with

missing values include list-wise deletion or complete-case

analysis (i.e. discard any subject with a missing value),

likelihood-based methods, data augmentation and imput-

ation [9,10]. The list-wise deletion in general leads to loss

of statistical power and biased results when data are not

missing completely at random. Likelihood-based methods

and data augmentation are popular for low dimensional

data with parametric models for the missing-data process

[10,11]. However, their application in high dimensional

data is problematic especially when the missing data pat-

tern is complicated and the required intensive computing

is most likely insurmountable. On the contrary, imput-

ation provides an intuitive and powerful tool for analysis

of data with complex missing-data patterns [12-16]. Expli-

cit imputation methods such as mean imputation or sto-

chastic imputation either undermines the variability of the

data or requires parametric assumption on the data and

subsequently faces similar challenges as the likelihood-

based method and data augmentation [12-14,16]. Implicit

imputation methods such as nearest-neighbour imput-

ation, hot-deck and fractional imputation provide flexible

and powerful approaches for analysis of data with complex

missing-data patterns even though the implicit imputation

model is not coherent with the assumed model for the

underlying complete data [13,17,18]. Multiple imputations

usually are considered to account for the variability due to

imputation [13,14,16,19].

Except for some implicit imputation methods, other

above-mentioned methods rely on correct modelling of

the missing data process and work well in traditional sit-

uations with large number of subjects and small number

of variables (large n, small p). With the trend of increas-

ing number of variables (large p) in phenomic data, the

model fitting, diagnostic check and sensitivity analysis

become difficult to ensure success of multiple imputation

or maximum likelihood imputation. The complexity of

phenomic data with mixed data types (binary, multi-class

categorical, ordinal and continuous) further aggravates the

difficulties of modeling the joint distribution of all vari-

ables. Although a few of the algorithms are designed to

handle datasets with both continuous and categorical vari-

ables [14,20-22], the implementation of most of these

complicated methods in the high dimensional phenomic

data is not straightforward. Imputation methods by exact

statistical modeling often suffer from “curse of dimension-

ality”. Jerez and colleagues compared machine learning

methods, such as multi-layer perceptron (MLP), self-

organizing maps (SOM) and k-nearest neighbor (KNN), to

traditional statistical imputation methods in a large breast

cancer dataset and concluded that machine learning im-

putation methods seemed to perform better in this large

clinical data [23].

In the past decade, missing value imputation for high-

throughput experimental data,(e.g. microarray data) has

drawn great attention and many methods have been de-

veloped and widely used (see [24], [25] for review and

comparative studies). Imputation of phenomic data dif-

fers from microarray data and brings new challenges for

two major reasons. Firstly microarray data contain entirely

continuous intensity measurements, while phenomic data

have mixed data types. This voids majority of established

microarray imputation methods for phenomic data. Sec-

ondly, microarray data monitor gene expression of thou-

sands of genes and the majority of the genes are believed

to be co-regulated with others in a systemic sense, which

leads to a highly correlated structure of the data and

makes imputation intrinsically easier. The phenomic data,

on the other hand, are more likely to contain isolated vari-

ables (or samples) that are “not imputable” from other ob-

served variables (samples).

There are at least three aspects of novelty in this paper.

Firstly, to our knowledge, this is the first systematic com-

parative study of missing value imputation methods for

large-scale phenomic data. We will compare two existing

methods (missForest [26] and multivariate imputation by

chained equations, MICE [16]) and extend four variants of

KNN imputation method that was popularly used in
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microarray analysis [27]. Secondly, to characterize and

identify missing values that are “not imputable” from

other observed values in phenomic data, we propose an

“imputability measure” (IM) to quantify imputability of a

missing value. When a variable or subject has an overall

small IM in its missing values, it is recommended to re-

move the variable or subject from further analysis (or im-

pute with caution). Thirdly, we propose a self-training

scheme (STS) [24] to select the best missing value imput-

ation method for each data type in a given dataset. The re-

sult provides a practical guideline in applications. The IM

and STS selection tool will remain useful when more

powerful methods for phenomic data imputation are de-

veloped in the future.

Methods
Real data

The current work is motivated by three high-dimensional

phenomic datasets, all of which have a mixture of continu-

ous, ordinal, binary and nominal covariates. The Chronic

Obstructive Pulmonary Disease (COPD) dataset was gen-

erated from a COPD study conducted in the Division of

Pulmonary, Department of Medicine at the University of

Pittsburgh. The second dataset is the phenotypic data set

of the Lung Tissue Research Consortium (LTRC, http://

www.nhlbi.nih.gov/resources/ltrc.htm). The third dataset

is obtained from the Severe Asthma Research Program

(SARP) study (http://www.severeasthma.org/). These data-

sets represent different variable/subject ratios and different

proportions of data types in the variables. In Table 1, Raw

Data (RD) refers to the original raw data with missing

values we initially obtained. Complete Data (CD) repre-

sents a complete dataset without any missing value after

we iteratively remove variables and subjects with large

missing value percentage. CDs contain no missing values

and are ideal to perform simulation for evaluating differ-

ent methods (see section Simulated datasets).

Imputation methods

We will compare four newly developed KNN methods

with the MICE and the missForest methods in this

paper. The methods and detailed implementations are

described below.

Two existing methods MICE and missForest

Multivariate Imputation by Chained Equations (MICE)

is a popular method to impute multivariate missing data.

It factorizes the joint conditional density as a sequence

of conditional probabilities and imputes missing values by

multiple regression sequentially based on different types

of missing covariates. Gibbs sampling is used to estimate

the parameters. It then draws imputation for each variable

condition on all the other variables. We used the R pack-

age “MICE” to implement this method.

MissForest is a random forest based method to impute

phenomic data [26]. The method treats the variable of

the missing value as the response variable and borrows

information from other variables by the resampling-based

classification and regression trees to grow a random forest

for the final prediction. The method is repeated until the

imputed values reach convergence. The method is imple-

ment in the “missForest” R package.

KNN imputation methods

KNN method is popular due to its simplicity and proven

effectiveness in many missing value imputation prob-

lems. For a missing value, the method seeks its K near-

est variables or subjects and imputes by a weighted

average of observed values of the identified neighbours.

We adopted the weight choice from the LSimpute

method used for microarray missing value imputation

[28]. LSimpute is an extension of the KNN, which uti-

lizes correlations between both genes and arrays, and

the missing values are imputed by a weighted average of

the gene and array based estimates. Specifically, the

weight for the kth neighbor of a missing variable or sub-

ject was given by wk ¼ r2k= 1−r2k þ ε
� �� �2

, where rk is the

correlation between the kth neighbor and the missing

variable or subject and ε = 10− 6. As a result, this algo-

rithm gives more weight to closer neighbors. Here, we

extended the two KNN methods of LSimpute, imput-

ation by the nearest variables (KNN-V) and imputation

by the nearest subjects (KNN-S), so that they could be

used to impute the phenomic data with mixed types of

variables. Furthermore, we developed a hybrid of these

two methods using global variable/subject weights (KNN-

H) and adaptive variable/subject weights (KNN-A).

Impute by nearest variables (KNN-V)

To extend the KNN imputation method to data with

mixed types of variables, we used established statistical cor-

relation measures between different data types to measure

the distance among different types of variables. As de-

scribed in Table 1, the phenomic data usually contain four

Table 1 Descriptions of three real data sets

Number of variables and subjects COPD LTRC SARP

Subjects (RD/CD) 699/491 1428/709 1671/640

Variables (RD/CD) 528/257 1568/129 1761/135

Continuous variables (Con) 113 11 27

Multi-class categorical variables (Cat) 12 27 6

Binary variables (Bin) 78 0 86

Ordinal variables (Ord) 54 91 16

Total variables in CD 257 129 135
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types of variables – continuous (Con), binary (Bin), multi-

class categorical (Cat) and ordinal (Ord). Table 2 lists cor-

relation measures across different data types to construct

the correlation matrix for KNN-V (Additional file 1 con-

tains more detailed description):

Spearman’s rank correlation (Con vs. Con): we use

Spearman’s rank correlation to measure the correl-

ation between two continuous variables. It is equiva-

lent to compute Pearson correlation based on ranks:

r ¼ 1−6�
XN

i¼1
d2i

N� N2
−1ð Þ , where di is the rank difference of

each corresponding observation and N is the number

of subjects.

Point biserial correlation (Con vs. Bin) and its extension

(Con vs. Cat): Point biserial correlation between a continu-

ous variable X and a dichotomous variable Y (Y = 0 or 1)

is defined as r ¼ �X1−
�X0

SX=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pY� 1−pYð Þ
p , where �X1 and �X0 represent

the means of X given Y = 1 and 0 respectively, SX, the

standard deviation of X and pY, the proportion of subjects

with Y = 1. Note that the point biserial correlation is

mathematically equivalent to the Pearson correlation

and there is no underlying assumption for Y. When Y is

a multi-level categorical variable with more than two

possible values, the point biserial correlation can be

generalized, assuming Y follows a multinomial distribu-

tion and the conditional distribution of X given Y is

normal [29]. It is implemented by the “biserial.cor”

function in the “ltm” R package.

Rank biserial correlation (Ord vs Bin) and its exten-

sion (Ord vs Cat): The rank biserial correlation replaces

the continuous variable X in point biserial correlation

with ranks. To calculate the correlation between an or-

dinal and a nominal variable (binary or multi-class), we

transform the ordinal variable into ranks and then apply

rank biserial correlation or its extension for the calcula-

tion [30].

Polyserial correlation (Con vs Ord): Polyserial correl-

ation measures the correlation between a continuous X

and an ordinal variable Y. Y is assumed to be defined

from a latent continuous variable η, generated with

equal space and is strictly monotonic. The joint distribu-

tion of the observed continuous variable X and η is

assumed to be bivariate normal. The Polyserial correlation

is the estimated correlation between X and η and is esti-

mated by maximum likelihood [31]. It is implemented by

the “polyserial” function in the “polycor” R package.

Polychoric correlation (Ord vs Ord): Polychoric cor-

relation measures correlation between two ordinal vari-

ables. Similar to the polyserial correlation described

above, polychoric correlation estimates the correlation

of two underlying latent continuous variables, which are

assumed to follow a bivariate normal distribution [32].

It is implemented by the “polychor” function in the

“polycor” R package.

Phi (Bin vs Bin): Phi coefficient measures the correl-

ation between two dichotomous variables. The phi coef-

ficient is the linear correlation of an underlying bivariate

discrete distribution [33-35]. The Phi correlation is cal-

culated as r ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

X2=N
p

, where N is the number of sub-

jects and X2 is the chi-square statistic for the 2 × 2

contingency table of the two binary variables.

Cramer’s V (Bin vs Cat and Cat vs Cat): Cramer’s V

measures correlation between two nominal variables with

two or more levels. It is based on the Pearson’s chi-square

statistic [36]. The formula is given by: r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2

N� H−1ð Þ

q

,

where N is the number of subjects, X2 is the chi-square

statistic for the contingency table and H is the number of

rows or columns, whichever is less.

We note that all correlation measures in Table 2 are

based on the classical Pearson correlation (some with

additional Gaussian assumptions on the data) and as a

result, the correlations from different data types are

comparable in selecting K nearest neighbors. A corre-

sponding distance measure could be computed as d =

|1 − r|, where r is the correlation measures between

pairwise variables. Given a missing value in the data

matrix for variable x (missing on subject i), only the K

nearest neighbors of x (denoted as y1 … yK) are included

in the prediction model. In addition, none of y1, …, yK is

allowed to have missing values for the same subject as

the missing value to be predicted. For each neighbour, a

generalized linear regression model with single predictor

is constructed: g(μ) = α + βyk using available cases, where

μ = E(x) and g(·) is the link function. The regression

methods used for the imputation of different types of

variables are listed in Table 3. Missing values could be im-

puted by x̂ i kð Þ ¼ g−1 αþ βyik
� �

. Finally, the weighted aver-

age of estimated impute values from the K nearest

neighbors is used to impute the missing value of con-

tinuous data type. For nominal variables (binary or

multi-class categorical), weighted majority vote from

the K nearest neighbors is used. For ordinal variables,

we treat the levels as positive integers (i.e. 1, 2, 3,…, q)

and the imputed value is given by the rounded value of

the weighted average.

Table 2 Correlation measures between different types of

variables

Variables Con Ord Bin Cat

Con Spearman -- -- --

Ord Polyserial Polycoric -- --

Bin Point Biserial Rank Biserial Phi --

Cat Point Biserial
extension

Rank Biserial
extension

Cramer’s V Cramer’s V
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Impute by nearest subjects (KNN-S)

The procedure of the KNN-S is generally the same as

that of the KNN-V. Here, we borrow information from

the nearest subjects, instead of variables. Thus, we will

have mixed type of values within each vector (subject).

We defined similarity of a pair of subjects by the Gower’s

distance [37]. For each pair of subjects, it is the average of

distance between each variable for the pair of subjects

considered: dij ¼
XV

v¼1
δijvdijv

XV

v¼1
δijv

, where dijv is the dissimilarity

score between subject i and j for the vth variable and δijv
indicates whether the vth variable is available for both

subject i and j; it takes the value of 0 or 1. Depending

on different types of variable, dijv is defined differently:

(1) for dichotomous and multi-level categorical vari-

ables, dijv = 0 if the two subjects agree on the vth vari-

able, otherwise dijv = 1; (2) the contribution of other

variables (continuous and ordinal) is the absolute differ-

ence of both values divided by the total range of that

variable [37]. The calculation of the Gower’s distance is

implemented by the “daisy” function in the “cluster” R

package.

Hybrid imputation by nearest subjects and variables (KNN-H)

Since the nearest variables and the nearest subjects often

both contain information to improve imputation, we

propose to combine imputed values from KNN-S and

KNN-V by:

KNN−H ¼ p� KNN−Sþ 1−pð Þ � KNN−V:

Following Bø et. al. [28], we estimated p by simulating

5% secondary missing values in the dataset. Define a

dataset (Dij)NP with missing value indicator Iij = 1 if

missing and 0 other wise. We simulate second layer of

missing values randomly (Iij’ = 1 if subject i variable j is

missing at second layer), perform imputation and assess

the normalized squared error of each imputed values

using KNN-S and KNN-V( e2S and e2V ). p is chosen to

minimize

X

e2H ¼
X

p2e2S þ 2p 1−pð ÞeS⋅eV þ 1−pð Þ2e2V:

Thus, p̂ ¼ min max

X

e2s−
X

eves
X

e2s−2
X

eves þ
X

e2v
; 0

 !

; 1

 !

.

We simulated second layer of missing values 20 times and

estimated p̂i and took the average

X20

1
p̂ i

20
as the estimate

of p. Similar to KNN-V imputation, KNN-H imputed

values are rounded to the closest integer for the ordinal

variables and the weighted majority vote for nominal

variables.

Hybrid imputation using adaptive weight (KNN-A)

Bø et. al. [28] observed that the log-ratios of the squared

errors log e2v=e
2
s

� �

was a decreasing function of rmax in

microarray missing value imputation, where rmax is the

correlation between the variable with missing value and

its closest neighbour. Such a trend suggested that when

rmax is larger, more weight should be given to KNN-V.

Thus, p should vary for different rmax. We adopted the

same procedure to estimate the adaptive weight of p: we

estimated p based on eS and eV within each sliding win-

dow of rmax, (rmax − 0.1, rmax + 0.1), and require that at

least 10 observations need to be extracted for the com-

putation of p.

Evaluation method

We compared different missing value imputation methods

in both simulated data and real datasets. We evaluated the

imputation performance by calculating root mean squared

error (RMSE) for continuous and ordinal variables and

proportion of false classification (PFC) for nominal vari-

ables. The pure simulated data are discussed in Simulated

datasets below. For real datasets, we first generated the

complete dataset (CD) from the original raw dataset (RD)

with missing values. We then simulated missing values

(e.g. randomly at 5% missing rate) to obtain the dataset

with missing values (MD), performed imputation on the

MD and assessed the performance by calculating the

RMSE between the imputed and the real values. The

squared errors are defined as e2 ¼ ŷ ij−yijð Þ2
var yjð Þ for continu-

ous variables (ŷij and yij are the imputed and the true

values for subject i and variable j and var(yj) is the vari-

ance for variable j), e2 ¼ ŷ ij−yij
p−1

� �2

for ordinal variables

(p is the number of possible levels of yj), and e2 = χ(ŷij ≠ yij)

for nominal variables (χ(⋅) is an indicator function). The

RMSE for continuous and ordinal variables is defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ave e2ð Þ
p

and the PFC for nominal variables is ave(e). We

Table 3 Methods for aggregating imputation information

of different data types from K nearest neighbors

Variables Regression
methods

Final imputed value

Con Linear regression
X

wk ŷk=
X

wk

Ord Ordinal logistic
regression

min max 1;
X

wk ŷk=
X

wk

h i� �

;q
� �

Bin Logistic regression Weighted majority vote

Cat Multinomial logistic
regression

Weighted majority vote

(q: number of level for ordinal variable).
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estimated the RMSE and the PFC by 20 randomly gener-

ated MDs.

Simulated datasets

Simulation of complete datasets (CD): To demonstrate

the performance of various methods under different cor-

relation structure, we considered three scenarios to simu-

late N = 600 subjects and P = 300 variables.

Simulation I (six variable clusters + six subject clusters):

We first generated the number of subjects in each cluster

from Pois(80), and number of variables in each cluster

from Pois(40). To create the correlation structure among

variables, we first generated a common basis δi (i =1…6)

with length N for variables in cluster i from N(μ, 4), where

μ is randomly sampled from UNIF(−2, 2). Then we gener-

ated a set of slope and intercept (αip, βip), p = 1… vi, so that

each variable is a linear transformation of the common

basis and therefore the correlation structure is preserved.

The rest of the variables which were independent of those

grouped variables were random samples from N(0, 4). The

subject correlation structure was generated following

the similar strategy: we first generated common basis γj
(j =1…6) from N(1,2) with length P. For all subjects in

cluster j, γj was added to each of them to create correl-

ation within subjects. And the rest of subjects were gen-

erated from N(0, 4 × IP × P). To create data of mixed

types, we randomly converted 100 variables into nom-

inal variables and 60 variables into ordinal variables by

randomly generating 3 to 6 ordinal/nominal levels. The

proportions of different variable types were similar to

that of the COPD data set. The heatmaps of subject and

variable distance matrixes of the simulated data are

shown in Figure 1.

Simulation II (twenty variable groups + twenty subject

groups): The number of clusters is increased to 20. The

numbers of subjects in each cluster were generated from

Pois(25) and the numbers of variables in each cluster

were from Pois(15) (Additional file 1: Figure S1).

Simulation III (No variable groups + forty subject groups):

In this simulation, we generated data with sparse between-

variable correlation but strong between-subject correla-

tions, a setting similar to the nominal variables in the SARP

data set (Additional file 1: Figure S6(c)). The number of

subjects in each cluster followed Pois (14). In each subject

cluster, a common base γc (c =1…40) with length P were

shared, and was added by a random error from N(0, 0.01).

We created sparse categorical variable by cutting continu-

ous variable at the extreme quantiles (≤ 5% or ≥ 95%) and

generated the other cutting point randomly from UNIF

(0.01, 0.99) which created up to 30 levels. (Additional file 1:

Figure S2).

Generate datasets with missing values (MD) from

complete data (CD): MD were generated by randomly re-

moving m% values from simulated CD described above or

CD from real data described in Section Real data. We con-

sidered m%= 5%, 20%, 40% in our simulation studies. All

three settings were repeated for 20 times.

Imputability measure

Current practice in the field is to impute all missing data

after filtering out variables or subjects with more than a

fixed percent (e.g. 20%) of missing values. This practice

implicitly assumes that all missing values are imputable

by borrowing information from other variables or sub-

jects. This assumption is usually true in microarray or

other high-throughput marker data since genes usually

interact with each other and are co-regulated at the sys-

temic level. For high-dimensional phenomic data, however,

we have observed that many variables do not associate or

interact with other variables and are difficult to impute.

Therefore, to identify these missing values, we introduce a

novel concept of “imputability” and develop a quantitative

“imputability measure” (IM). Specifically, given a dataset

Figure 1 Heatmap of distance matrix in simulation I. (a) Variable and (b) Subject distance matrixes of Simulation I. (black: small distance/high

correlation; white: large distance/low correlation).
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with missing values, we generate “second layer” of missing

values as described above. We then perform the KNN-V

and the KNN-S method on a “secondary simulated layer”

of missing values. The procedure is repeated for t times

(t =10 is usually sufficient) and Ei and Ej could be calcu-

lated as the average of the RMSEs for the second layer

missing values of subject i (i = 1,…,N) and variable j (j =

1,…,P) of the t times of imputations. Let IMsi = exp(−Ei)

and IMvj = exp(−Ej). The IM for a missing value Dij is

defined as max(IMsi, IMvj). IM provides quantitative

evidence of how well each missing value can be imputed

by borrowing information from other variables or sub-

jects. IM ranges between 0 and 1 and small IM values

represent large imputation errors that should raise con-

cerns of using imputation. Detailed Procedure of gener-

ating IM is described in Additional file 2 algorithm 1. In

the application guideline to be proposed in the Result

section, we will recommend users to avoid imputation

or impute with caution for missing values with IM less

than a pre-specified threshold.

The self-training selection (STS) scheme

In our analyses, no imputation method performed uni-

versally better than all other methods. Thus, the best

choice of imputation method depends on the particular

structure of a given data. Previously, we proposed a Self-

Training Selection (STS) scheme for microarray missing

value imputation [24]. Here we applied the STS scheme

and evaluated its performance in the complete real data-

sets. Figure 2. shows a diagram of the STS scheme and

how we evaluated the STS scheme. From a CD, we sim-

ulated 20 MDs (MD1, MD2, …, MD20). Our goal was to

identify the best method for the data set. To achieve

that, we randomly generated a second layer of missing

values within each MDb (1 ≤ b ≤ 20) for 20 times and de-

noted the data sets with two layers of missing values as

MDb,i (1 ≤ i ≤ 20). The method that performs the best in

the second layer missing values imputation, i.e., generate

the smallest average RMSE, was identified as the method

selected by the STS scheme for missing value imputation

of MDb (denoted as Mb, STS). Consider the optimal

method identified by the first layer STS as the “true” opti-

mal imputation method, denoted as Mb*, we counted how

many times of the 20 simulations that Mb, STS =Mb* (i.e.
X20

b¼1
I Mb;STS ¼ Mb�
� �

/20, where I(⋅) is the indicator

function) as the accuracy of STS scheme.

Results
Simulation results

We compared the performance of seven methods –

mean imputation (MeanImp), KNN-V, KNN-S, KNN-H,

KNN-A, missForest and MICE – on the three simulation

scenarios described above. When implementing MICE,

the R packages returned errors when the nominal or or-

dinal variables contained large number of levels and any

level contained a small number of observations. As a re-

sult, MICE was not applied to Simulation III evaluation.

We first performed simulation to determine effects on

the imputation by the choice of K. We tested K = 5, 10

and 15 for missing value = 5%, 10% and 20% on different

types of data. The imputation results with different K

values are similar (see Additional file 1: Figure S3). We

thus chose K = 5 for both simulation and real data applica-

tions as it generated good performance in most situations.

Figure 3 shows the boxplots of the RMSEs of the three

types of variables from 20 simulations for the three simu-

lation scenarios. For simulation I and II, we observed that

missForest performed the best in all three data types.

MICE performed better than the KNN-methods in

nominal missing imputation, but performed worse in

the imputation of continuous and ordinal variables. The

two hybrid KNN methods (KNN-A and KNN-H) con-

sistently performed better than KNN-V and KNN-S,

showing the effectiveness to combine information from

variables and subjects. KNN-A performed slightly better

than KNN-H especially in the first two simulation sce-

narios, indicating the advantages of adaptive weight in

combining KNN-V and KNN-S information. For simula-

tion III, KNN-S performed overall the best while KNN-

V failed. This is expected due to the lack of correlation

between variables. missForest was also not as good as

KNN-S in the continuous and nominal variable imputa-

tions. In this case, the performance of KNN-S, KNN-H

and KNN-A were not affected much by missing per-

centages, due to the strong correlation among subjects.

Figure 2 Diagram of evaluating performance of STS scheme in

a real complete data set (CD). Missing data sets are randomly

generated for 20 times (MD1, ⋅⋅⋅, MD20). The STS scheme is applied

to learn the best method from STS simulation (denoted as Mb,STS for

the b-th missing data set MDb). The true best (in terms of RMSE)

method for MDb is denoted as Mb* and the STS best (in terms of

RMSE across MDb,1, …, MDb,20) method is denoted as Mb,STS. When

Mb,STS =Mb*, the STS scheme successfully selects the

optimal method.
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Real data applications

Next we compared different methods in three real data-

sets. Similar to the above simulation study, we first in-

vestigate the choice of K for the simulation of real data

sets and reached the same conclusion (Additional file 1:

Figure S4). In order to implement MICE in our com-

parative analysis, we had to remove categorical variables

with any sparse level (i.e. having <10% of the total obser-

vations) and those with greater than 10 levels. The

numbers of variables after such filtering are shown in

Additional file 1: Table S1. Since only 26% (38/144), 14%

(16/118) and 45% (49/108) of nominal and ordinal vari-

ables were retained after the filtering, we decided to

remove MICE from the comparison and report the com-

parative results of the remaining methods with the unfil-

tered data in Figure 4. The comparative results for all

methods including MICE on the filtered data are available

in Additional file 1: Figure S5. As expected, the mean im-

putation almost always performed the worst (Figure 4).

KNN-V usually performed better than KNN-S (except for

the nominal variables in SARP), indicating better informa-

tion borrowed from neighboring variables than subjects.

The hybrid methods KNN-H and KNN-A performed bet-

ter than either KNN-S or KNN-V alone. KNN-A seemed

to slightly out performed KNN-H. missForest was usually

the best performer with an exception of nominal variables

in the SARP data set. This is probably because of the

low mutual correlation of nominal variables with other

variables in this data set as demonstrated in Additional

file 1: Figure S6. (note that missForest only borrows in-

formation from variables). Overall, no method univer-

sally outperformed other methods. In Additional file 1:

Figure S5 after filtering, the comparative result is similar

to Figure 4 for KNN methods and missForest. The

MICE method had unstable performance: sometimes

performs among the best and sometimes much worse

than all the others.

Imputability measure

The motivation of imputability concept rests in that some

variables or subjects have no near neighbour to borrow in-

formation from, hence cannot be imputed accurately. The

distribution of imputability measure (IM; defined in Sec-

tion Imputability measure) of the variables (IMv) and sub-

jects (IMs) of COPD, LTRC and SARP data are shown in

Additional file 1: Figure S7. We observed a heavy tail to

the left, which indicated existence of many un-imputable

subjects and variables. By including these poorly imputed

values, we risk to reduce the accuracy and power of down-

stream analyses. To demonstrate the usefulness of IM, we

compared the RMSE/PFC before and after removing un-

imputable values. Figure 5 shows significant reduction of

RMSE and PFC by removing missing values with the low-

est 25% IMs. In Additional file 1: Figure S8, heatmaps of

Figure 3 Boxplots of RMSE/PFC for (a) Simulation I and (b) Simulation II and (c) Simulation III. KNN-based methods: KNN-V, KNN-S, KNN-H

and KNN-A; RF: MissForest algorithim; MICE: multivariate imputation by chained equations; MeanImp: mean imputation.
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IMs for the three real datasets are presented. Values col-

ored in green are with low IMs and should be imputed

with caution.

The self-training selection scheme (STS) and an application

guideline

Finally, we applied the STS scheme to the real datasets

and the performance is reported in Table 4. Methods

with RMSE difference within 5% range are considered

comparable. Thus, if a method generates RMSE within

5% of the minimum RMSE of all methods, we consid-

ered the method not distinguishable from the optimal

method and the method is also an optimal choice. We

found that the STS scheme can almost always select the

true optimal missing value imputation method with per-

fect accuracy (with only several exceptions down to 75%-

Figure 4 Boxplots of RMSE/PFC for (a) COPD; (b) SARP and (c) LTRC. KNN-based methods: KNN-V, KNN-S, KNN-H and KNN-A; RF: MissForest

algorithm; MeanImp: Mean imputation.

Figure 5 Boxplots of RMSE/PFC evaluated using (1) all imputed values and (2) only imputable values in LTRC dataset. Boxplots of RMSE/

PFC evaluated using (1) all imputed values and (2) only imputable values in LTRC dataset with m =5% missingness. Color: grey (evaluation using

all imputed values); white (evaluation using only imputable values).
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95% accuracy). Figure 6 describes an application guideline

for the phenomic missing value imputation. Firstly, the

STS scheme is applied to the MD of different data types

separately to identify the best imputation method. The

IMs are then calculated based on the selected optimal

method. Finally, imputation is performed based on the op-

timal method selected by the STS scheme and the users

have two options to move on to downstream analyses. For

Option A, all missing values are imputed accompanied by

IMs that can be incorporated in downstream analyses. In

Option B, only missing values with IMs higher than a pre-

specified threshold are imputed and reported.

Discussion
In our comparative study of the imputation methods avail-

able for phenomic data, MICE encountered difficulty in

nominal and ordinal data types when any level in the vari-

able has few observations. This limited its application to

some real data. It also had unstable performance, with

some situations among the top performers while in some

other situations it performed much worse than the KNN

methods and missForest. For the KNN methods, the hy-

brid methods (KNN-H and KNN-A) that combined infor-

mation from neighboring subjects and variables usually

performed better than borrowing information from either

subjects (KNN-S) or variables (KNN-V) alone. missForest

usually was among the top performers while it could fail

when correlations among variables are sparse. In the pro-

posed KNN-based methods, when there are lots of nom-

inal variables with sparse levels, ordinary logistic

regression will also fail to work. When this happen, con-

tingency table is used to impute the missing values. This

partly explained why across different missing percentage,

(5% to 40%) the accuracy remained mostly unchanged. It

is also due to the lack of similar variables with nominal

missing values. Overall, no method universally performed

Table 4 Accuracy of STS in real data applications

Data m% Continuous variables Nominal variables Ordinal variables

Predicted optimal method
(No. of time selected)

Accuracy Predicted optimal method
(No. of time selected)

Accuracy Predicted optimal method
(No. of time selected)

Accuracy

COPD 5% KNN-V(10), RF(10) 100% RF(10), KNN-A(8), KNN-V(2) 100% RF(20) 100%

20% KNN-V(13), RF(6), KNN-H(1) 100% RF(14), KNN-A(4), KNN-V(2) 100% RF(20) 100%

40% KNN-V(10), RF(10) 100% KNN-V(16), RF(1), KNN-A(3) 95% RF(20) 100%

LTRC 5% KNN-V(15), KNN-A(3), RF(2) 95% RF(14), KNN-A(3), KNN-V(3) 75% RF(19), KNN-A(1) 100%

20% KNN-V(12), RF(8) 85% RF(15), KNN-V(1), KNN-A(4) 100% RF(16), KNN-A(4) 100%

40% RF(13), KNN-V(7) 90% KNN-A(13), RF(6), KNN-V(1) 100% RF(20) 100%

SARP 5% KNN-V(13), KNN-A(6), RF(1) 100% KNN-A(20) 100% RF(18), KNN-H(2) 100%

20% KNN-V(16), KNN-A(4) 100% KNN-A(20) 100% RF(16), KNN-H(4) 100%

40% KNN-V(17), KNN-A(3) 100% KNN-A(20) 100% RF(20) 100%

Note: Here “predicted optimal method” means the predicted method with minimal RMSE for second layer of missing values; and “accuracy” means the chances

we correctly predict optimal method. (Accuracy ¼
X20

b¼1
I Mb;STS¼Mb�ð Þ
20

� 100%).

Figure 6 An application guideline to apply the STS scheme for a real dataset with missing values.
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the best in all situations. Thus, we implemented a STS

scheme [24] previously developed for microarray missing

value imputation to identify the best method for phe-

nomic data. Our evaluation showed that STS selected the

true best method with almost perfect accuracy.

In missing value imputation of microarray data, it is a

common practice to impute all missing values and re-

turn a complete data matrix for down-stream analyses.

In our analysis, we, however, found that many variables

or subjects are intrinsically difficult to impute in phe-

nomic data. Our proposed IM was found effective in

identification of missing values that intrinsically can-

not be imputed well and improved the imputation

performance. As a result, our application guideline

recommended to always report both the imputed

values and IMs when all missing values were imputed

(option A) or only to impute missing values with high

IMs (option B). In the former output, it is possible to

incorporate the IM values in downstream analyses (e.g. by

down-weighting imputed values in the analysis with

low IMs).

We note that RMSE has been used to evaluate per-

formance of different methods in this paper. Depending

on the final biological objectives, there are many choices

of downstream analyses after imputation; for example,

association analysis, cluster analysis, classification ana-

lysis, pathway enrichment analysis and graphical models,

to name a few. While the impact of imputation methods

to these downstream analyses is the ultimate interest, it

is beyond the scope of this paper. We decided that

RMSE is the most direct assessment that we could use

to evaluate the methods. In our simulation and real

data, we examined data size of hundreds of clinical vari-

ables and hundreds of samples. This is a common scale

of phenomic datasets we usually expect. In the future, if

larger scale of variables or patients are expected (e.g. up

to thousands), more evaluations on the methodological

and computational capabilities of different methods will

be needed.

With the accelerated pace of phenomic data gener-

ation in many complex diseases nowadays, missing

values are almost always inevitable. Ignoring subjects

or variables with any missing value is no longer prac-

tical as it significantly reduces the statistical power

and may distort the conclusion. Missing value imput-

ation is a practical and powerful solution while such a

practice in high-dimensional phenomic data has not

drawn much attention in the literature. To our know-

ledge, our pipeline is the first complete guideline to the

missing value imputation in high-dimensional phenomic

data. We believe that the methods, the imputability con-

cept, the STS scheme and the application guideline we

proposed in this paper will provide practical guidance to

researchers in the field.

Conclusions
In this paper, we conducted comprehensive comparison of

existing imputation methods for phenomic data, including

four variations of KNN imputation methods developed by

us in this paper, missForest and MICE, using three simula-

tion scenarios and three phenomic real datasets. We pro-

posed a novel “imputability” concept with a quantitative

imputability measure (IM) to characterize whether a miss-

ing value is imputable or not. More importantly, since the

choice of the best imputation method depends on differ-

ent data types and data structure, we implemented a

simulation-based “self-training selection” (STS) scheme to

select the best methods in a given application. Finally, we

illustrated an application guideline for practitioners to

apply to real phenomic applications. The R package “phe-

nomeImpute” is available to implement all methods and

the analytical pipeline proposed in this paper.

Availability of supporting data

The R package “PhenomeImpute” is available in the web-

page http://tsenglab.biostat.pitt.edu/software.htm. Three

real datasets and R codes are available in http://tsenglab.

biostat.pitt.edu/publication.htm.

Additional files

Additional file 1: Supplementary materials. This file contains

supplementary figures, tables and detailed description of correlation

measures. Figure S1. Heatmaps of (a) Variable (b) Subject distance in

Simulation II. Figure S2. Heatmaps of (a) Variable (b) Subject distance in

Simulation III. Figure S3. Selection of K for KNN-S (A) and KNN-V (B). First

row: Simulation I; Second row: Simulation II; Third row: Simulation III.

Figure S4. Selection of K for KNN-S (A) and KNN-V (B). First row: COPD;

Second row: LTRC; Third row: SARP. Figure S5. Comparison of different

missing value imputation methods in filtered data such that MICE can

be implemented (First row: COPD; Second row: LTRC; Third row: SARP).

Figure S6. Heatmaps of variable distance matrix (above) and subject

distance matrix (below) of real data (COPD/LTRC/SARP). Figure S7.

Density of IMv and IMs for three real datasets. Figure S8. Heatmaps of

imputability measures for (a)COPD;(b)LTRC;(c)SARP. Red indicates larger

imputability measures; green indicates smaller imputability measures.

Detailed description of correlation measures. Table S1. Number of

variables after filtering out sparse ordinal or nominal variables for MICE

implementation.

Additional file 2: Algorithm 1. Procedure of generating Imputability

Measure (IM).
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