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Abstract

This paper proposes a decision support process for incomplete hesitant fuzzy preference relations (HF-
PRs). First, we present a revised definition of HFPRs, in which the values are not ordered for the hesitant
fuzzy element. Second, we propose a method to normalize the HFPRs and estimate the missing elements
in incomplete HFPRs based on multiplicative consistency. Based on this, a consensus model with in-
complete HFPR is developed. A feedback mechanism is proposed to obtain a best choice with desired
consensus level. Multiplicative consistency induced ordered weighted averaging (MC-IOWA) operator
is used to aggregate the individual HFPRs into a collective one. A score HFPR is proposed for collec-
tive HFPR, and then the hesitant quantifier-guided non-dominance degrees (HQGNDD) of alternatives
by using an OWA operator are obtained to rank the alternatives. Finally, a case study for evaluate the
qualification of supply chain enterprises is provided to illustrate its application.

Keywords: Hesitant fuzzy preference relation; Incomplete hesitant fuzzy preference relation; Multiplica-
tive consistency; Group decision making; Consensus.

1. Introduction

As a new extension of fuzzy sets, Torra 1 proposed

the concept of the hesitant fuzzy set (HFS), which

permits the membership degree of a given element

to be described as several possible values between

0 and 1 and that is called hesitant fuzzy element

(HFE). Due to the advantages of handing impreci-

sion by two or more sources of vagueness appear si-

multaneously 2, HFSs have attracted great attention

by researchers and have been widely applied in de-

cision making 3,4,5,6. Rodrı́guez et al.7 extended the

HFSs to linguistic environment, and introduced hes-

itant fuzzy linguistic term set (HFLTS). Rodrı́guez

et al.8 provided an overview of the fuzzy linguistic

approached for modelling complex linguistic prefer-

ences and gave some proposals for future research.

Dong et al.9 proposed a novel computing with words

(CW) methodology where the HFLTS can be con-

structed based on unbalanced linguistic term sets

(ULTSs) using a numerical scale. Motivated by the

concept of HFS, and using Saaty10’s 1/9-9 scale to
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denote the preference degrees, Xia and Xu11 intro-

duced hesitant multiplicative set (HMS).

As a basic tool to collect and present preferences,

the preference relations have been widely used. For

example, multiplicative preference relation 10,12, in-

terval fuzzy preference relation13, linguistic prefer-

ence relation 14, intuitionistic fuzzy preference rela-

tion 15, etc. Xia and Xu11 first proposed the con-

cept of hesitant fuzzy preference relation (HFPR),

which provided a precise description of the decision

makers’ (DMs’) hesitation in providing their prefer-

ences. Till now, numerous types of preference re-

lations have been proposed: complete/ incomplete

HFPRs 16,17,18,19,20, hesitant fuzzy linguistic pref-

erence relation21, and hesitant multiplicative prefer-

ence relation.

Thereafter, multi-attribute decision making prob-

lems were studied. Zhu et al.2 explored the ranking

methods with HFPRs in the group decision making

(GDM) environments. Liao et al.22 investigated the

multiplicative consistency of HFPRs and its appli-

cation in GDM. There are so many researches have

been developed for the complete hesitant preference

relations. However, in many real decision making

problems, due to time pressure, lack of knowledge,

and DM’s limited expertise related with the prob-

lem domain, the DMs may offer a preference rela-

tion with incomplete information 23,24,25, i.e., some

of the pairwise comparison information is missing.

Xu et al.17 called the HFPR with some entries are

unknown incomplete HFPR, and developed two goal

programming models to derive the priority weights

from an incomplete HFPR based on multiplicative

and additive consistency respectively. Zhang16 es-

tablished two goal programming for deriving the

priority weights from incomplete HFPR based on

α-normalization and β -normalization respectively.

Zhang et al.18 proposed an algorithm to estimate

the missing values and solve the multi-criteria GDM

problem with incomplete HFPRs. As far as we

know, there are only above three papers which con-

centrate on the incomplete HFPR. Therefore, it is

important to pay attention to this issue. The first ob-

jective of the paper is to estimate the missing values

for incomplete HFPRs.

Furthermore, there are some limitations for the

existing definition of the HFPRs. First, the values

in the HFEs are generally arranged in ascending or

descending order, which may distort DMs’ original

information. Second, since the numbers of values

in different pairwise comparisons are generally not

identical, in order to operate correctly, a normaliza-

tion process, such as β -normalization, is carried out,

in which some additional values are added into the

original set. However, the added values are ran-

domly, and the normalization processes are artifi-

cially, which are commented by Rodrı́guez et al.26.

Therefore, the second objective of the paper is to re-

define the concept of HFPRs and propose another

normalization method. In the final GDM, it gener-

ally requires that all the DMs reach a predefine con-

sensus threshold to ensure the final decision is satis-

fied. Many consensus models have been constructed

to explore the consensus level with different prefer-

ence relations 27,28,29,30,31. Dong et al.32 developed

an optimization-based consensus model in the hes-

itant linguistic GDM, which minimizes the number

of adjusted simple terms in the consensus building.

However, there is no consensus research for the in-

complete HFPRs. This motived us to propose a con-

sensus model to deal with incomplete HFPRs. This

is the third objective of the paper.

In this paper, we propose a new principle based

on multiplicative consistency to normalize the HF-

PRs. When the DMs provide the preference rela-

tions with missing values, one way is to estimate

the unknown values. Thus, we provide a way to

estimate the missing values in incomplete HFPRs

which is based on multiplicative consistency. There-

after, we develop a GDM process for incomplete

HFPRs, which is related with consistency degree

and consensus level. Feedback mechanisms is pro-

posed to give personalized advice to DMs, whose

consensus level is below the threshold value. More-

over, a multiplicative consistency induced ordered

weighted averaging (MC-IOWA) operator is intro-

duced to aggregate all the DMs’ HFPRs into a col-

lective HFPR. A score HFPR is proposed for collec-

tive HFPR, and then the hesitant quantifier-guided

non-dominance degrees (HQGNDD) of alternatives

by using an OWA operator are obtained to rank the

alternatives.
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This paper is organized as follows. In Section 2,

we briefly review some basic concepts and propose

a new definition about HFPRs and normalized HF-

PRs (NHFPRs). In Section 3, we estimate the miss-

ing values in the incomplete HFPRs based on mul-

tiplicative consistency, and give an algorism to add

elements in the process of normalization. Sections

4 and 5, the concept of consistency index and prox-

imity index are defined. Both of them play a cru-

cial role in the measurement of degree of consensus

level. A feedback mechanism is proposed to support

experts in changing their opinions to achieve a con-

sensus solution with a high degree of consistency.

Section 6, a case study is developed to show how the

developed consensus model with incomplete HFPR

works for practical problems. Finally, we summa-

rize this paper in Section 7.

2. Preliminaries

In this section, some concepts and results of HFPRs

are introduced, which will be used throughout the

paper.

2.1. Fuzzy preference relations (FPRs)

For simplicity, we denote N = {1,2, ...,n}. Let X =
{x1,x2, ...,xn} (n > 2) be a set of alternatives, where

xi represents the ith alternative. A FPR R = (ri j)n×n
is described as follows33. The preference informa-

tion on X is described by a FPR R ⊂ X ×X , R =
(ri j)n×n with membership function μR : X × X →
[0,1], where μR(xi,x j) = ri j, ∀i, j ∈ N. ri j represents

the preference degree of alternative xi over x j pro-

vided by a DM:

• ri j = 0.5 indicates the DM’s indifference between

xi and x j (xi ∼ x j);

• 0 � ri j < 0.5 means that x j is preferred to xi
(x j � xi), and the smaller ri j the stronger the pref-

erence of alternative x j over xi;

• 0.5 < ri j � 1 implies that xi is preferred to x j
(xi � x j ), and the greater ri j the stronger the pref-

erence of alternative xi over x j.

Definition 134. Let X = {x1,x2, ...xn} be a set of

alternatives, then R = (ri j)n×n is called a FPR on

X ×X with the following conditions:

ri j � 0,ri j + r ji = 1, i, j = 1,2, ...,n. (1)

Definition 233. Let R = (ri j)n×n be a FPR, then it is

called a multiplicative consistent FPR if and only if

ri jr jkrki = rikrk jr ji, i, j,k = 1,2, ...,n (2)

Remark 1. In some case, additive transitivity prop-

erty is in conflict with the [0,1] scale used for pro-

viding the preference values. Moreover, Chiclana

et al.35 have verified that multiplicative transitivity

property is the most appropriate property to model

and measure consistency of reciprocal preference re-

lations. In this paper, multiplicative consistency is

used.

2.2. Hesitant fuzzy set

Torra 1 initially proposed the concept of HFSs to

deal with the situations in which several values are

possible for the definition of the membership of an

element.

Definition 3 1. Let X = {x1,x2, ...xn} be a fixed set,

a HFS on X is in terms of a function that when ap-

plied to x returns a subset of [0,1], which can be rep-

resented by the following:

E = {< x,hE(x)> |x ∈ X}. (3)

where hE(x) is a set of some values in [0,1], de-

noting the possible membership degree of the ele-

ment x ∈ X . For convenience, Xia and Xu 3 called

h = hE(x) a hesitant fuzzy element (HFE) and H the

set of all the HFEs.

Given three HFEs h, h1, h2, Torra 1 defined some

operations:

(1) hc = ∪
γ∈h

{1− γ};

(2) h1 ∪h2 = ∪
γ1∈h1,γ2∈h2

{γ1 ∨ γ2};

(3) h1 ∩h2 = ∪
γ1∈h1,γ2∈h2

{γ1 ∧ γ2};

(4) h+ = max{r|r ∈ h};

(5) h− = min{r|r ∈ h}.
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Let #h denote the number of elements in the HFE

h. In most cases, the numbers of possible values in

different HFEs are generally different. In order to

operate correctly when comparing them, one of the

method is to make sure that they have the same num-

ber of elements 36. To solve this issue, Zhu and Xu
37 gave two opposite normalization principles: 1) α-

normalization, remove some elements from h, which

has more number of elements. 2) β -normalization,

add some elements to h, which has fewer elements.

For the β -normalization, Zhu et al.2 introduced

the following method to add some elements to a

HFE.

Definition 42. Assume a HFE, h = {hσ(s)|s =
1,2, ...,#h}, let h+ and h− be the maximum and

minimum elements in h respectively. And ξ (0 �
ξ � 1) be an optimized parameter, then we call

h = ξ h++(1−ξ )h− an added element.

ξ is used to reflect the DMs’ risk preference. Es-

pecially, Xu and Xia36 introduced that ξ = 0 indi-

cates the pessimists expect unfavorable outcomes;

ξ = 1 indicates the optimized desirable outcomes.

Definition 53. For a HFE h, s(h) = 1/#h∑r∈h r
be the score function of h, where #h is the num-

ber of elements in h. For two HFEs, h1 and h2, if

s(h1) > s(h2), then h1 > h2. If s(h1) = s(h2), then

h1 = h2.

2.3. Hesitant fuzzy preference relations (HFPRs)

Based on the concepts of HFS and FPRs, Zhu and

Xu 38 proposed the concept of HFPR as follows:

Definition 6 38. Let X = {x1,x2, ...xn} be a fixed

set, a HFPR H on X is denoted by a matrix

H = (hi j)n×n ⊂ X × X , where hi j = {hσ(s)
i j |s =

1,2, ...,#hi j} is a HFE, indicating hesitant degrees

to which xi is preferred to x j. For all i, j ∈ N, hi j
(i < j) should satisfy the following conditions:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

hσ(s)
i j +hσ(s)

ji = 1,

hii = {0.5},
#hi j = #h ji,

hσ(s)
i j < hσ(s+1)

i j ,hσ(s+1)
ji < hσ(s)

ji .

(4)

Where hσ(s)
i j and hσ(s)

ji are the sth element in hi j and

h ji, respectively, #hi j is the number of the elements

in hi j.

Definition 7 2. Let H = (hi j)n×n be a HFPR and an

optimized parameter ξ (0 � ξ � 1), where ξ is used

to add some elements to hi j (i < j), and 1−ξ is used

to add some elements to h ji (i < j), then we obtain

a HFPR H = (hi j)n×n . And for all i, j = 1,2, ...,n ,

this preference relation should satisfy the following

conditions:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

#hi j = max{#hi j|i, j = 1,2, ...,n, i 
= j},
h

σ(s)
i j +h

σ(s)
ji = 1,

hii = {0.5},
h

σ(s)
i j � h

σ(s+1)
i j ,h

σ(s+1)
ji � h

σ(s)
ji .

(5)

Where h
σ(s)
i j and h

σ(s)
ji are the sth element in hi j and

h ji , respectively. Then we call H = (hi j)n×n a nor-

malized hesitant fuzzy preference relation (NHFPR)

with the optimized parameter ξ , hi j is a normalized

hesitant fuzzy element (NHFE).

Definition 8 2. Assume a HFPR H = (hi j)n×n and its

NHFPR H = (hi j)n×n with ξ , then H is multiplica-

tive consistent if and only if:

h
σ(s)
i j h

σ(s)
jk h

σ(s)
ki = h

σ(s)
ik h

σ(s)
k j h

σ(s)
ji ,

i, j,k = 1,2,3, ...,n, i 
= j 
= k.
(6)

Theorem 1. 16 Given a HFPR H = (hi j)n×n, and
its NHFPR H = (hi j)n×n with ξ , the following
statements are equivalent (for all i, j,k = 1,2, ...,n
,s = 1,2, ...,#hi j):

(i) H is multiplicative consistent;

(ii)

h
σ(s)
i j =

h
σ(s)
ik h

σ(s)
k j

h
σ(s)
ik h

σ(s)
k j +(1−h

σ(s)
ik )(1−h

σ(s)
k j )

;

(7)
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(iii)

h
σ(s)
i j =

n

√
n
∏

k=1
h

σ(s)
ik h

σ(s)
k j

n

√
n
∏

k=1
h

σ(s)
ik h

σ(s)
k j + n

√
n
∏

k=1
(1−h

σ(s)
ik )(1−h

σ(s)
k j )

(8)

Theorem 2. 2 Assume a HFPR H = (hi j)n×n and
its NHFPR H = (hi j)n×n with ξ , for i, j = 1,2, ...,n,
i 
= j 
= k,s = 1,2, ...,#hi j, let

mhσ(s)
i j =

n

√
n
∏

k=1
h

σ(s)
ik h

σ(s)
k j

n

√
n
∏

k=1
h

σ(s)
ik h

σ(s)
k j + n

√
n
∏

k=1

(
1−h

σ(s)
ik

)(
1−h

σ(s)
k j

)
(9)

Then, mH = (mhi j)n×n is called multiplicative con-
sistent HFPR with ξ .

Remark 2. Generally, for the HFPR H = (hi j)n×n,

each preference degree in hi j is a possible value,

H can be directly separated into all possible FPRs.

Thus, the judgement of a HFPR’s consistency is

based on the consistency of the corresponding FPRs.

In currently researches, it consists of three stages:

(1) Normalizing a HFPR H; (2) Dividing a HFPR

into several corresponding FPRs in accordance with

the number of elements in HFE; (3) Checking the

consistency of these corresponding FPRs by Eq. (2).

If all of them are consistent, the HFPR is consistent;

otherwise, it is inconsistent.

However, there are some problems for the cur-

rent definitions of HFPRs, as the values in each HFE

should be rearranged in ascending or descending or-

der according to Definition 6. This operation may

lead to inconsistent. In the following, we will give

two examples to show the problems of the Definition

6.

Example 116. Let H be a HFPR, which is shown as

follows:

H =

⎡
⎢⎢⎣

{0.5} {0.4,0.6,0.7}
{0.6,0.4,0.3} {0.5}
{0.8,0.7} {0.9}
{0.5,0.3} {0.2,0.1}

{0.2,0.3} {0.5,0.7}
{0.1} {0.8,0.9}
{0.5} {0.3,0.4}

{0.7,0.6} {0.5}

⎤
⎥⎥⎦.

In order to get a multiplicative consistent HFPR

mH of H, Zhang 16 first normalized it by Definition

7 (where ξ=1), and we have:

H =

⎡
⎢⎢⎣

{0.5} {0.4,0.6,0.7}
{0.6,0.4,0.3} {0.5}
{0.8,0.70.7} {0.9,0.9,0.9}
{0.5,0.3,0.3} {0.2,0.1,0.1}

{0.2,0.3,0.3} {0.5,0.7,0.7}
{0.1,0.1,0.1} {0.8,0.9,0.9}

{0.5} {0.3,0.4,0.4}
{0.7,0.6,0.6} {0.5}

⎤
⎥⎥⎦.

By Eq.(9), Zhang 16 obtained the multiplicative

consistent HFPR mH = (mhi j)n×n of H is:

mH =

⎡
⎢⎣

{0.5} {0.4142,0.5505,0.6044}
{0.5858,0.4495,0.3956} {0.5}
{0.7562,0.6361,0.6101} {0.6868,0.6816,0.7051}
{0.5777,0.3184,0.2949} {0.4917,0.3639,0.3899}

{0.2438,0.3639,0.3899} {0.4223,0.6816,0.7051}
{0.3132,0.3184,0.2949} {0.5083,0.6361,0.6101}

{0.5} {0.6940,0.7891,0.7891}
{0.3060,0.2109,0.2109} {0.5}

⎤
⎥⎦.

In mH,mh23 = {0.3132,0.3184,0.2949}, its el-

ements do not arrange in ascending order, because

0.2949 is smaller than 0.3132 or 0.3184, which do

not meet the requirement hσ(s)
i j < hσ(s+1)

i j in Defini-

tion 6. If we rearrange the elements in mh23 accord-

ing to Definition 6, the mH will be:

mH ′=

⎡
⎢⎣

{0.5} {0.4142,0.5505,0.6044}
{0.5858,0.4495,0.3956} {0.5}
{0.7562,0.6361,0.6101} {0.7051,0.6868,0.6816}
{0.5777,0.3184,0.2949} {0.4917,0.3899,0.3639}

{0.2438,0.3639,0.3899} {0.4223,0.6816,0.7051}
{0.2949,0.3132,0.3184} {0.5083,0.6101,0.6361}

{0.5} {0.6940,0.7891,0.7891}
{0.3060,0.2109,0.2109} {0.5}

⎤
⎥⎦.

According to Eq.(8), we have

h
σ(1)
23 =

4

√
4

∏
k=1

h
σ(1)
2k h

σ(1)
k3(

4

√
4

∏
k=1

h
σ(1)
2k h

σ(1)
k3 + 4

√
4

∏
k=1

(1−h
σ(1)
2k )(1−h

σ(1)
k3 )

) ,

the left side of the equation is equal to 0.2949. The
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right side of the equation is equal to 0.3132. There-

fore, according to Theorem 1, mH ′ is not multiplica-

tive consistent. Although Zhu et al.2 provided the

proof for Theorem 2, however, they did not notice

that the values mhσ(s)
i j obtained by Eq.(9) may do

not satisfy the condition hσ(s)
i j < hσ(s+1)

i j in Defini-

tion 6, and thus making Definition 6 and Theorem 2

contradictory.

Example 2. Consider a decision making process

of three alternatives X = {x1,x2,x3}, two DMs

E = {e1,e2} are invited to give their preference de-

grees over paired comparisons of alternatives. The

result furnishes in Table 1.

Table 1. Experts’ pair-wise judgments.

Pair of the three alternatives
Pair-wise judgments

Expert 1 Expert 2

x1 versus
x2 0.6 0.8

x3 0.5 0.5

x2 versus
x1 0.4 0.2

x3 0.4 0.2

x3 versus
x1 0.5 0.5

x2 0.6 0.8

From Table 1, we know that the first expert e1

gives his preference degrees 0.6 of x1 over x2, 0.5 of

x1 over x3, and so on. The second expert e2 gives his

preference degrees 0.8 of x1 over x2, 0.5 of x1 over

x3, and so on. According to the definition of HFE,

the preference degrees of x1 over x2 given these two

experts is {0.6,0.8}, and all these values consists of

a HFPR Hc as follows:

Hc =

⎡
⎣ {0.5} {0.6,0.8} {0.5,0.5}

{0.4,0.2} {0.5} {0.2,0.4}
{0.5,0.5} {0.8,0.6} {0.5}

⎤
⎦.

In order to determine the multiplicative consis-

tency of Hc, according to Definition 8, we only need

to verify whether the following two FPRs are multi-

plicative consistent or not:

Hσ(1)
c =

⎡
⎣ 0.5 0.6 0.5

0.4 0.5 0.2
0.5 0.8 0.5

⎤
⎦.

Hσ(2)
c =

⎡
⎣ 0.5 0.8 0.5

0.2 0.5 0.4
0.5 0.6 0.5

⎤
⎦.

Obviously, Hσ(1)
c is inconsistent. Accord-

ing to Eq.(6), h
σ(1)
12 h

σ(1)
23 h

σ(1)
31 = 0.6 × 0.2 × 0.5 =

0.06, and h
σ(1)
13 h

σ(1)
32 h

σ(1)
21 =0.5 × 0.8 × 0.4 = 0.16,

h
σ(1)
12 h

σ(1)
23 h

σ(1)
31 
= h

σ(1)
13 h

σ(1)
32 h

σ(1)
21 . Similarly, we can

verify h
σ(2)
12 h

σ(2)
23 h

σ(2)
31 
= h

σ(2)
13 h

σ(2)
32 h

σ(2)
21 . According

to Definition 8, Hc is not multiplicative consistent.

However, from the given information of experts

e1 and e2 in Table 1, we have their FPRs R1 and R2,

respectively:

R1 =

⎡
⎣ 0.5 0.6 0.5

0.4 0.5 0.4
0.5 0.6 0.5

⎤
⎦, R2 =

⎡
⎣ 0.5 0.8 0.5

0.2 0.5 0.2
0.5 0.8 0.5

⎤
⎦.

According to Eq.(2), we can test that both R1 and

R2 are multiplicative consistent. For R1, ri jr jkrki =
rikrk jr ji holds for any i, j,k = 1,2,3, i 
= j 
= k.

For instance, r12r23r31 = 0.6× 0.4× 0.5 = 0.12 =
r13r32r21 = 0.5×0.6×0.4= 0.12. Thus, R1 is multi-

plicative consistent. Similarly, R2 is also multiplica-

tive consistent. But if we combine R1 and R2 into

a HFPR Hc, Hc would be inconsistent according to

Definition 8.

Remark 3. From Examples 1 and 2, we can know

that the reorder of HFEs have an impact on the con-

sistency judgment of a HFPR. For Example 1, if

we use Theorem 1 to get a new consistency HFPR,

and reorder the elements according to Definition 6,

then the new HFPR may be not multiplicative con-

sistent again according to Theorem 1. If we do not

reorder the elements, the new HFPR will not sat-

isfy Definition 6. Therefore, they are contradictory

in some cases. For Example 2, we know that the

original judgments for e1 and e2 are multiplicative

consistent respectively. But if we use Definition 6

to combine the two DMs’ judgments into one HFPR

directly, the HFPR is not multiplicative consistent.

The main reason is that the reordering of the ele-

ments in HFEs, which will distort the DMs’ original

information. Therefore, the existing definition for

HFPR is problematic. In order to overcome these

drawbacks, we will propose revised definitions of

the HFPR and NHFPR as follows:

Definition 9. Let X = {x1,x2, ...xn} be a fixed set, a

HFPR H on X is denoted by a matrix H = (hi j)n×n ⊂
X ×X , where hi j = {hs

i j|s = 1,2, ...,#hi j} is a HFE,

indicating hesitant degrees to which xi is preferred to

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 101–119
___________________________________________________________________________________________________________

106



x j. For all i, j ∈ N, hi j should satisfy the following

conditions: ⎧⎨
⎩

hs
i j +hs

ji = 1,

hii = {0.5},
#hi j = #h ji.

(10)

Where hs
i j and hs

ji are the sth element values in hi j
and h ji, respectively, #hi j is denoted the number of

the elements in hi j.

Definition 10. Let H = (hi j)n×n be a HFPR and an

optimized parameter ξ (0 � ξ � 1), where ξ is used

to add some elements to hi j (i< j), and 1−ξ is used

to add some elements to h ji (i < j), then we obtain

a HFPR H = (hi j)n×n. And for all i, j = 1,2, ...,n,

this preference relation should satisfy the following

conditions:⎧⎨
⎩

#hi j = max{#hi j|i, j = 1,2, ...,n, i 
= j},
h

s
i j +h

s
ji = 1,

hii = {0.5}.
(11)

Where h
s
i j and h

s
ji are the sth element in hi j and h ji,

respectively. Then, we call H = (hi j)n×n a NHFPR

with the optimized parameter ξ .

Definition 11. Let H = (hi j)n×n be a HFPR and its

NHFPR H = (hi j)n×n with ξ , then H is multiplica-

tive consistent if and only if:

h
s
i jh

s
jkh

s
ki = h

s
ikh

s
k jh

s
ji,∀i, j,k = 1,2,3, ...,n, i 
= j 
= k.

(12)

Theorem 3. Given a HFPR H = (hi j)n×n, and
its NHFPR H = (hi j)n×n with ξ , the following
statements are equivalent ( ∀i, j,k = 1,2, ...,n, s =
1,2, ...,#hi j):

(i) H is multiplicative consistent;

(ii)

h
s
i j =

h
s
ikh

s
k j

h
s
ikh

s
k j +(1−h

s
ik)(1−h

s
k j)

; (13)

(iii)

h
s
i j =

n

√
n
∏

k=1
h

s
ikh

s
k j

n

√
n
∏

k=1
h

s
ikh

s
k j +

n

√
n
∏

k=1
(1−h

s
ik)(1−h

s
k j)

.

(14)

Theorem 4. Assume a HFPR H = (hi j)n×n and
its NHFPRH = (hi j)n×n with ξ , for i, j = 1,2, ...,n,
i 
= j 
= k, s = 1,2, ...,#hi j, let

mhs
i j =

1

#Ω ∑k∈Ω

h
s
ikh

s
k j

h
s
ikh

s
k j +(1−h

s
ik)(1−h

s
k j)

(15)

where Ω = {k|k 
= i, j}, #Ω is the cardinality of Ω.
Then, mH = (mhi j)n×n is multiplicative consistent
HFPR with ξ .

Remark 4. The difference between the new def-

initions of HFPR, multiplicative consistent HFPR,

NHFPR and the current definitions are that the new

definitions do not arrange the elements in ascending

(or descending) order. If we use Theorem 3 to get a

multiplicative consistent HFPR, we would not need

to reorder the elements, and it still conforms to Def-

inition 9. Moreover, the new definitions can retain

the DMs’ original information as much as possible.

3. Incomplete hesitant fuzzy preference
relations and missing elements estimation

In real decision making problems, the experts of-

ten have their unique characteristics with regard to

knowledge, skills and experience. Sometimes the

experts might not possess a precise or sufficient

level of knowledge of the problem. In this case, a

DM would not be able to provide her/his judgments

over some pairs of alternatives, so the DM usually

provides an incomplete HFPR, i.e., some HFEs of

HFPR are missing or unknown. Consequently, we

introduce the concept of incomplete HFPR.

3.1. Incomplete hesitant fuzzy preference
relations

Definition 12 17. Let H = (hi j)n×n be a HFPR,

where hi j =
{

hs
i j|s = 1,2, ...,#hi j

}
(i, j = 1,2, ...,n),

then H is called an incomplete HFPR, if some of its

elements cannot be given by the DM, we denote it by
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unknown variable x, and the others can be provided

by the DM, which satisfy:⎧⎨
⎩

hs
i j +hs

ji = 1,

hii = {0.5},
#hi j = #h ji.

(16)

Where hs
i j is the sth element of hi j, for all hi j ∈ EV ,

where EV is the set of all the known HFEs in H.

Definition 13. Let H = (hi j)n×n be an incomplete

HFPR and an optimized parameter ξ (0 � ξ � 1),
where ξ is used to add some elements to hi j ∈ EV
(i < j), and 1 − ξ is used to add some elements

to h ji ∈ EV (i < j), then we obtain an incomplete

HFPR H = (hi j)n×n. And for all i, j = 1,2, ...,n,hi j ∈
EV , this preference relation should satisfy the fol-

lowing conditions:

⎧⎨
⎩

#hi j = max{#hi j|i, j = 1,2, ...,n, i 
= j},
h

s
i j +h

s
ji = 1,

hii = {0.5}.
(17)

Then, we call H = (hi j)n×n an incomplete NHFPR

with the optimized parameter ξ .

Definition 14. Let H = (hi j)n×n be an incomplete

HFPR, if the missing HFEs of H can be estimated

by the known HFEs, then H is called an acceptable

incomplete HFPR, otherwise, H is not an acceptable

incomplete HFPR.

Theorem 5. Let H = (hi j)n×n be an incomplete
HFPR, the necessary condition of acceptable in-
complete HFPR H is that there is at least one known
HFE in each row or column of H except for the di-
agonal HFE.

3.2. A procedure to estimate the missing
elements for incomplete HFPRs

Assume H is an incomplete HFPR, then the missing

HFE hi j = {hs
i j|i, j = 1,2, ...,n;s = 1,2, ...,#hi j} can

be estimated using an intermediate alternative xk,

U(hs
ik,h

s
k j) =

hs
ikhs

k j

hs
ikhs

k j +(1−hs
ik)(1−hs

k j)
, (18)

(hs
i j)

k =U(hs
ik,h

s
k j), (19)

hs
i j =

∑k∈Q (hs
i j)

k

#Q
, (20)

where Q = {k|k 
= i, j&(i, j) ∈ MV &(i,k),(k, j) ∈
EV}, #Q is the cardinality of Q.

The following notation is introduced:

A = {(i, j)|{i, j = 1,2, ...,n}∩{i 
= j}},

EV = {(i, j)|hi j is known, (i, j) ∈ A},

MV = A−EV .

MV is the set of pairs of different alternatives for

which the DM cannot provide the judgment with

some values, i.e. HFEs are missing.

Remark 5. For Eq.(20) and Eq.(14), they are both

the forms of multiplicative consistency. The dif-

ference of them is the range of parameter k. For

Eq.(14), it ranges from 1 to n , it is suit to all

the HFEs include the unknown elements. However,

when some of the elements are missing as in this

paper, Eq.(14) does not work. Therefore, we use

Eq.(20) to estimate the missing values. In order to

obtain a complete HFPR, we develop an algorithm

as follows:

Algorithm 1.

Input: The incomplete HFPR H = (hi j)n×n, and an

optimized parameter ξ ∈ [0,1].
Output: The complete HFPR.

Step 1: Assume that there is an incomplete HFPR,

H = (hi j)n×n, by Definition 14, we determine

whether it is acceptable, if it is acceptable, go to the

next step; otherwise, return it to DM to construct a

new acceptable HFPR.

Step 2: Using Eq.(11) to obtain an incomplete

NHFPR with parameter ξ .

Step 3: Utilizing Eqs.(18), (19) and (20) to estimate

the missing values, and finally we obtain a complete

HFPR.

Step 4: End.

Example 3. Let H = (hi j)4×4 be an incomplete

HFPR shown as follows:

H =

⎡
⎢⎢⎣

{0.5} {0.5,0.6} {0.2} {0.3}
{0.5,0.4} {0.5} {0.7,0.9} x
{0.8} {0.3,0.1} {0.5} x
{0.7} x x {0.5}

⎤
⎥⎥⎦.
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We apply Algorithm 1 to estimate the missing el-

ements:

Step 1: Obviously, H is an acceptable incom-

plete HFPR.

Step 2: Using β -normalization with ξ = 1, then

the incomplete NHFPR is obtained as follows:

H =

⎡
⎢⎢⎣

{0.5} {0.5,0.6} {0.2,0.2} {0.3,0.3}
{0.5,0.4} {0.5} {0.7,0.9} x
{0.8,0.8} {0.3,0.1} {0.5} x
{0.7,0.7} x x {0.5}

⎤
⎥⎥⎦.

Step 3: Estimating the missing elements x using

Eqs.(18), (19) and (20), the calculation process of

h24 is as follows:

h1
24 =

h1
21h1

14

h1
21h1

14 +(1−h1
21)(1−h1

14)

=
0.5×0.3

0.5×0.3+(1−0.5)× (1−0.3)
= 0.3.

h2
24 =

h2
21h2

14

h2
21h2

14 +(1−h2
21)(1−h2

14)

=
0.4×0.3

0.4×0.3+(1−0.4)× (1−0.3)
= 0.2222.

Therefore,

h24 = {0.3,0.2222}.

Similarly, the other missing elements can be ob-

tained:

h34 = {0.6316,0.6316}.

Step 4: The complete HFPR of H is:

H=

⎡
⎢⎢⎣

{0.5} {0.5,0.6}
{0.5,0.4} {0.5}
{0.8,0.8} {0.3,0.1}
{0.7,0.7} {0.7,0.7778}

{0.2,0.2} {0.3,0.3}
{0.7,0.9} {0.3,0.2222}
{0.5} {0.6316,0.6316}

{0.3684,0.3684} {0.5}

⎤
⎥⎥⎦.

Remark 6. Since the numbers of elements in HFE

are often different, two methods α-normalization

and β -normalization are introduced in Ref. 37 to

make all the HFE have the same number of val-

ues. However, there are some problems in nor-

malization process. On the one hand, the prin-

ciple aims to have same number elements in two

HFEs, for β -normalization, the added values are

based on the maximum and minimum values of a

HFE, and the added values are not the DM’s origi-

nal preferences. β -normalization is an artificial pro-

cess. On the other hand, for optimized parame-

ter , it ranges from 0 to 1. There is no rule how

to choose the value for it. For example, assume a

HFE h12 = {0.5,0.6} and #hi j = 3. Let ξ = 0.6, the

added element is h3
12 = 0.6×0.6+0.5×0.4 = 0.56,

then h12 = {0.5,0.6,0.56}. The main problem of β -

normalization is too artificial. In the following, we

propose a multiplicative consistency based method

to add the elements. The advantage of this method

is that the added elements are determined by the

known elements, which makes it more reasonable

and can use the DM’s information as much as possi-

ble. In the multiplicative consistency based method,

we look the elements to be added as unknown val-

ues. In the following, we will give two examples to

illustrate this method.

Example 4 27. Let H = (hi j)4×4 be a HFPR shown

as follows:

H =

⎡
⎢⎢⎣

{0.5} {0.3} {0.5,0.7} {0.4}
{0.7} {0.5} {0.7,0.9} {0.8}

{0.5,0.3} {0.3,0.1} {0.5} {0.6,0.7}
{0.6} {0.2} {0.4,0.3} {0.5}

⎤
⎥⎥⎦.

In order to obtain a NHFPR of H, we also use x
denote the added elements. First, H is transformed

into the following two FPRs:

H(1) =

⎡
⎢⎢⎣

0.5 0.3 0.5 0.4
0.7 0.5 0.7 0.8
0.5 0.3 0.5 0.6
0.6 0.2 0.4 0.5

⎤
⎥⎥⎦.

H(2) =

⎡
⎢⎢⎣

0.5 x 0.7 x
x 0.5 0.9 x

0.3 0.1 0.5 0.7
x x 0.3 0.5

⎤
⎥⎥⎦.

Obviously, H(2) is an incomplete and acceptable

FPR. These added elements x can be estimated by

using intermediate alternative x3, the computation is

given below:

h2
12 =

h2
13h2

32

h2
13h2

32 +(1−h2
13)(1−h2

32)

=
0.7×0.1

0.7×0.1+(1−0.7)× (1−0.1)
= 0.2059.
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h2
14 =

h2
13h2

34

h2
13h2

34 +(1−h2
13)(1−h2

34)

=
0.7×0.7

0.7×0.7+(1−0.7)× (1−0.7)
= 0.8448.

h2
24 =

h2
23h2

34

h2
23h2

34 +(1−h2
23)(1−h2

34)

=
0.9×0.7

0.9×0.7+(1−0.9)× (1−0.7)
= 0.9545.

After the estimation process is applied, corre-

sponding NHFPR of H is obtained as follows:

H =

⎡
⎢⎢⎣

{0.5} {0.3,0.2059}
{0.7,0.7941} {0.5}
{0.5,0.3} {0.3,0.1}

{0.6,0.1552} {0.2,0.0455}

⎤
⎥⎥⎦

{0.5,0.7} {0.4,0.8448}
{0.7,0.9} {0.8,0.9545}
{0.5} {0.6,0.7}

{0.4,0.3} {0.5}

⎤
⎥⎥⎦.

Example 5. Let H = (hi j)4×4 be a HFPR, which is

shown as follows:

H =

⎡
⎢⎢⎣

{0.5} {0.6,0.7} {0.3} {0.5,0.7}
{0.4,0.3} {0.5} {0.1} {0.8,0.9}
{0.7} {0.9} {0.5} {0.4}

{0.5,0.3} {0.2,0.1} {0.6} {0.5}

⎤
⎥⎥⎦

First, H is transformed into the following two

FPRs:

H(1) =

⎡
⎢⎢⎣

0.5 0.6 0.3 0.5
0.4 0.5 0.1 0.8
0.7 0.9 0.5 0.4
0.5 0.2 0.6 0.5

⎤
⎥⎥⎦.

H(2) =

⎡
⎢⎢⎣

0.5 0.7 x 0.7
0.3 0.5 x 0.9
x x 0.5 x

0.3 0.1 x 0.5

⎤
⎥⎥⎦.

For this HFPR, it is different from Example 4.

It is a complete and acceptable HFPR, but the cor-

responding FPR H(2) is unacceptable. The added

elements x cannot be calculated immediately. In or-

der to estimate it, we first use β -normalization with

ξ = 1 to get an acceptable FPR H(2). Let h2
13 = 0.3,

H becomes:

H =

⎡
⎢⎢⎣

{0.5} {0.6,0.7} {0.3,0.3} {0.5,0.7}
{0.4,0.3} {0.5} {0.1} {0.8,0.9}
{0.7,0.7} {0.9} {0.5} {0.4}
{0.5,0.3} {0.2,0.1} {0.6} {0.5}

⎤
⎥⎥⎦

Then the other added elements x can be estimated

through the known elements.

We can know that MV = {(2,3,2),(3,2,2),(3,4,2),
(4,3,2)}, using Eqs.(18), (19) and (20), we elabo-

rate the computation process of the estimated value

for h2
23 as follows:

h2
23 =

h2
21h2

13

h2
21h2

13 +(1−h2
21)(1−h2

13)

=
0.3×0.3

0.3×0.3+(1−0.3)× (1−0.3)
= 0.1552.

Then

h2
32 = 1−0.1552 = 0.8448.

In a similar way, we can calculate the rest of

x through the intermediate alternative x1, after the

computation is applied, the NHFPR is following:

H =

⎡
⎢⎢⎣

{0.5} {0.6,0.7}
{0.4,0.3} {0.5}
{0.7,0.7} {0.9,0.8448}
{0.5,0.3} {0.2,0.1}

{0.3,0.3} {0.5,0.7}
{0.1,0.1552} {0.8,0.9}

{0.5} {0.4,0.8448}
{0.6,0.1552} {0.5}

⎤
⎥⎥⎦.

Remark 7. In this example, H(2)is an unacceptable

incomplete fuzzy preference relation. Xu et al.39

have proposed some methods to deal with unaccept-

able situations. In this paper, we choose h2
13 as an

added element randomly.

For Examples 4 and 5, in the process of normal-

ization, we also use x to denote the added element,

x is estimated based on multiplicative consistency

with the known elements. The calculation process is

the same as incomplete HFPR. In the following, we

summarize the above process in the following Algo-

rithm 2.
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Algorithm 2.
Input: The original complete HFPR, H = (hi j)n×n,

an optimized parameter ξ ∈ [0,1] and x denotes the

added elements.

Output: The NHFPR.

Step 1: Assume that there is a complete HFPR

H = (hi j)n×n, hi j = {hs
i j|s = 1,2, ...,#hi j}, by Def-

inition 14, we determine whether it is acceptable, if

it is acceptable, go to the next step; otherwise, return

it to DM to construct a new acceptable HFPR.

Step 2: Let #hi j = max{#hi j|i, j = 1,2, ...,n, i 
= j},

H transforms into corresponding FPRs, if all the

FPRs are acceptable, then go to Step 4; otherwise,

go to the next Step.

Step 3: Normalizing HFPR through Definition 4,

then obtain the acceptable corresponding FPRs. Us-

ing x denotes the added elements.

Step 4: Estimate the unknown elements x by

Eqs.(18), (19) and (20), then a NHFPR is obtained.

Step 5: End.

4. Consistency of hesitant fuzzy preference
relations

In this section, we first define the distance between

two HFPRs, and then, we propose a consistency in-

dex of HFPRs, which is used to measure the consis-

tency degree of the HFPRs.

4.1. Distance measure for HFPRs

Definition 15. Let h1 = {hs
1|s = 1,2, ...,#h1} and

h2 = {hs
2|s = 1,2, ...,#h2} (#h1 = #h2 = #h) be two

HFEs; then the distance between them is defined as:

d(h1,h2) =
∑hs

1∈h1,hs
2∈h2

|hs
1 −hs

2|
#h

(21)

Where hs
1 and hs

2 are the sth elements in h1 and h2,

respectively.

Definition 16. Let H1 = (hi j,1)n×n and H2 =
(hi j,2)n×n be two HFPRs, their NHFPRs are H1 =

(hi j,1)n×n and H2 = (hi j,2)n×n, then the distance be-

tween H1 and H1 is defined as:

d(H1,H2) =
2

n(n−1)

n

∑
i=1,i< j

d(hi j,1,hi j,2) (22)

4.2. Consistency indexes

In the following, we will propose a process to mea-

sure the degree of consistency between an individ-

ual HFPR, H = (hi j)n×n and its corresponding mul-

tiplicative consistent HFPR, mH = (mhi j)n×n at the

three different levels: pair of alternatives, alterna-

tives and relation.

Level 1: Consistency index of pair of alterna-

tives:

CIi j = 1−d(hi j,mhi j).
Level 2: Consistency index of alternatives:

CIi =
∑n

j=1, j 
=i CIi j

n−1
.

Level 3: Consistency index of a HFPR: CI =
∑n

i=1 CIi
n .

5. A consensus model for GDM with
incomplete HFPRs

In the process of a GDM problem, there is a set of

experts (DMs), each expert provides his/her prefer-

ence relation, and it is expected to reach a high con-

sensus degree among experts before the final resolu-

tion. To solve the GDM with incomplete HFPRs, we

can first use multiplicative consistency based proce-

dure to estimate the missing values and normalize

these HFPRs. When we get the complete normal-

ized HFPRs, we measure their consistency degrees

at three levels. Furthermore, a multiplicative con-

sistency induced ordered weighted averaging (MC-

IOWA) operator is developed to aggregate the indi-

vidual HFPRs to a collective one. The weighting

vector of MC-IOWA operator is derived by a lin-

guistic quantifier, in which the DM’s consistency de-

gree is considered, the higher consistency degree,

the more the weight, and therefore the more con-

tribution to the collective HFPR. Once the group

HFPR is obtained, a proximate degree (PD) is com-

puted to measure the agreement degree of each in-

dividual to the collective HFPR. The consensus de-

gree which integrates the CI and PD is designed to

decide whether the feedback mechanism should be

activated to give recommendations to the experts.

If the consensus degree is achieved to a predefined

level, the selection process is implemented to get the

final result.
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The consensus model with incomplete HFPRs

is illustrated in the following stages: (1) Estimat-

ing missing elements and normalization of HFPRs;

(2) Calculating consistency indexes; (3) Calculating

proximity degrees; (4) Computing consensus lev-

els; (5) Feedback mechanism; (6) Selection process.

The first two steps have already been presented in

Sections 3 and 4, respectively. The rest stages will

be addressed in the following section.

5.1. Computing proximity indexes

In order to measure how close the individual prefer-

ences are from the collective preferences, the prox-

imity measure is devised. The collective preferences

are obtained by fusing all the DMs’ preferences us-

ing the MC-IOWA operator 16,40,41, which is an ex-

tension of the induced ordered weighted averaging

(IOWA) operator 42.

Definition 17 42. An IOWA operator is defined as:

φw = (< μ1, p1 >,< μ2, p2 >,...,< μm, pm >)

= ∑m
t=1

wt pσ(t)

(23)

Where w = (w1,w2, ...,wm)
T is a weighting vector,

such that wt ∈ [0,1], ∑m
t=1 wt = 1, σ is a permuta-

tion of {1,2, ...,m} such that μσ(t) � μσ(t+1),∀t =
1,2, ...,m−1, i.e.,< μσ(t), pσ(t) > is the 2-tuple with

μσ(t) the tth highest value in the set {μ1,μ2, ...,μm}.

Definition 18. Let E = {e1,e2, ...,em} be a set

of DMs, and {H1,H2, ...,Hm} be the HFPRs pro-

vided by the DMs on a set of alternatives X =
{x1,x2, ...,xn}. A MC-IOWA operator of dimension

m, φ c
w is an IOWA operator whose set of order in-

ducing values is the set of consistency index values,

{CI1,CI2, ...,CIm}, associated with the set of DMs.

Then, the collective HFPR Hc = (hi j,c)n×n is

computed as follows:

hs
i j,c = φ c

w(<CI1,hs
i j,1 >,<CI2,hs

i j,2 >,...,<CIm,hs
i j,m >)

= ∑m
t=1

γσ(t)h
s
i j,σ(t)

(24)

The weights of the MC-IOWA operator are obtained

by the following expression:

γσ(i) = f
(

s(σ(i))
s(σ(m))

)
− f

(
s(σ(i−1))

s(σ(m))

)
(25)

Where s(σ(i)) = ∑i
k=1CIk , and CIk is the kth largest

value in {CI1,CI2, ...,CIm}.

The linguistic quantifier is a Basic Unit-interval

Monotone (BUM) function f : [0,1] → [0,1], such

that f (0) = 0, f (1) = 1 and if x > y, then f (x) �
f (y).

Then, the proximity measure can be obtained in

the following three levels:

Level 1: Proximity index on pairs of alternatives

(xi,x j), which is the similarity degree between one

value of individual’s preference and the collective

one:

PPi j,t = 1−d(hi j,t ,hi j,c).
Level 2: Proximity index on alternatives xi,

which is average degree of PPi j,t on alternative xi:

PAi,t =
∑n

j=1, j 
=i PPi j,t

n−1
.

Level 3: Proximity index on the relation Ht ,

which is average degree of PAi,t of expert et :

PIt =
∑n

i=1 PAi,t
n .

5.2. Computing consensus level

In the consensus reaching process of GDM prob-

lems, the consistency/consensus level should be

considered to determine when the feedback mech-

anism should be designed to provide personal rec-

ommendations to each expert. Generally, the con-

sistency index and proximity degree should be con-

sidered at the same time. In order to do that, a con-

sensus level is defined as follows:

CL = δCI +(1−δ )PI, δ ∈ [0,1].
where δ is a parameter. If δ > 0.5, the more im-

portance is paid to the consistency index, otherwise,

more importance is paid to proximity degree. Addi-

tionally, the DM will specify a threshold η for CL,

and η ∈ (0.5,1].

5.3. Feedback mechanism

Consensus reaching process is a dynamic and nego-

tiation process. If there exists any DM’s consensus
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level smaller the predefined level, the moderator will

generate the personalized advices for the DM how to

update his/her preferences, which is called feedback

mechanism. It has two steps: (1) Identification of

the HFEs; (2) Recommendation generation.

1) The preference values identification

In order to improve the consensus level, one way

is to modify the DM’s preference values which con-

tribute less to CL. Based on the above three dif-

ferent levels of proximity measures, we determine

these levels respectively.

Step 1: Identify the experts EXPCH whose con-

sensus level is lower than the threshold:

EXPCH = {t|δCIt +(1−δ )PIt < η}.

Step 2: Identify the alternatives’ ALT whose

consensus levels are lower than the threshold for the

identified expert EXPCH:

ALT = {(t, i)|CLt ∈ EXPCH ∧ δCIi,t + (1 −
δ )PAi,t < η}.

Step 3: Finally, identify the hesitant preference

values APS for the identified alternatives:

APS = {(t, i, j)|(t, i) ∈ ALT ∧ δCIi j,t + (1 −
δ )PPi j,t < η}.

2) Recommendation generation

When the preference values have been identified,

the feedback stage should generate properly recom-

mendations to help the experts to revise their prefer-

ences. In the following, an interactive mechanism is

offered to the experts how they can update their pref-

erences. For all the identified hesitant fuzzy pref-

erence value (t, i, j) ∈ APS of expert t, expert et is

suggested to change his/her values to be close to the

corresponding group preference value hi j:

• If hs
i j,t −hs

i j,c < 0, expert et is recommended to in-

crease hs
i j,t ;

• If hs
i j,t −hs

i j,c > 0, expert et is recommended to de-

crease hs
i j,t ;

• If hs
i j,t −hs

i j,c = 0, expert et is recommended not to

update hs
i j,t .

5.4. Selection process

When the consensus threshold is achieved, a selec-

tion process is applied to obtain the final solution.

Chiclana et al.43 presented a quantifier guided non-

dominance degree (QGNDD) method to derive a fi-

nal ranking of the alternatives from a given FPR.

This methodology is based on the use of the or-

dered weighted average (OWA) operators 44, which

is guided by a linguistic quantifier representing the

concept of majority to implement in the decision

making resolution. The linguistic quantifier is rep-

resented mathematically by a basic unit-monotonic

(BUM) function f : [0,1]→ [0,1], such that f (0) =
0, f (1) = 1 and if x > y, then f (x)� f (y), which is

used to compute the OWA operator weights as fol-

lows:

wi = f
(

i
n

)
− f

(
i−1

n

)
, i = 1,2, ...,n. (26)

The hesitant quantifier guided non-dominance de-

gree (HQGNDD) associated to the alternative xi,

HQGNDDi is defined as follows:

HQGNDDi = ψQ(1−hi j,p), i 
= j. (27)

Where hi j,p = max{h′ji,c − h′i j,c,0} representing the

degree up to which xi is strictly dominated by x j,

h′i j,c = ∑#hi j,c
s=1 hs

i j,c/#hi j,c and ψQ is an OWA operator

guided by the linguistic quantifier represented by the

BUM function f .

The alternatives can be ranked from best to worst

according to the ranking of HQGNDDi.

A decision support process for the GDM with in-

complete HFPRs is illustrated in Fig.1. It comprises

three stages: (1) Missing values estimation and nor-

malization of HFPRs; (2) Consensus reaching pro-

cess; (3) Selection process.

6. A case of study

In this section, the decision support process is ap-

plied for qualification of supply chain so as to un-

derstand the credit risk of enterprises.

Example 6. Due to the development of socialized

production, the competition between individual en-

terprises gradually transforms into the competition

between supply chains. Upstream and downstream

enterprises are extremely important to the core en-

terprises. Thus, the credit and financing businesses

of non-core enterprises have become the first con-

sidering factor to the core enterprise. In the existing

research results 45, we can see that the traditional

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 101–119
___________________________________________________________________________________________________________

113



HQGNDDi

Figure 1: A decision support process for the GDM with incomplete HFPRs
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credit risk evaluation of single enterprise mainly fo-

cuses on the qualification of the enterprise. It is in-

fluenced by many factors, such as quality of enter-

prise, credit status, operating capacity, profitability

and solvency.

We assume four enterprises xi (i = 1,2,3,4) as

alternatives. Three experts E = {e1,e2,e3} are in-

vited to evaluate them. The consensus threshold

value η = 0.85. They provide their hesitant pref-

erences over paired comparisons of these four enter-

prises, and give four HFPRs as follows.

H1 =

⎡
⎢⎢⎣

{0.5} {0.3,0.5}
{0.7,0.5} {0.5}

x {0.5,0.4,0.3}
x x

x x
{0.5,0.6,0.7} x

{0.5} {0.7,0.8}
{0.3,0.2} {0.5}

⎤
⎥⎥⎦.

H2 =

⎡
⎢⎢⎣

{0.5} {0.4,0.5,0.7}
{0.6,0.5,0.3} {0.5}

x {0.3,0.2,0.1}
{0.9,0.7,0.3} x

x {0.1,0.3,0.7}
{0.7,0.8,0.9} x

{0.5} {0.2,0.3}
{0.8,0.7} {0.5}

⎤
⎥⎥⎦.

H3 =

⎡
⎢⎢⎣

{0.5} {0.3,0.4}
{0.7,0.6} {0.5}

{0.6,0.5,0.4} x
{0.5,0.3} {0.2,0.1}

{0.4,0.5,0.6} {0.5,0.7}
x {0.8,0.9}

{0.5} {0.6,0.7,0.8}
{0.4,0.3,0.2} {0.5}

⎤
⎥⎥⎦.

In order to help the core enterprise to choose the

most suitable enterprise as its upstream enterprise,

the following steps are involved:

Step1: Missing values estimation and normaliza-
tion. By Eqs.(18), (19) and (20), we have:

H1=

⎡
⎢⎢⎣

{0.5} {0.3,0.5,0.5}
{0.7,0.5,0.5} {0.5}
{0.7,0.4,0.3} {0.5,0.4,0.3}

{0.5,0.1429,0.0968} {0.3,0.1429,0.0968}

{0.3,0.6,0.7} {0.5,0.8571,0.9032}
{0.5,0.6,0.7} {0.7,0.8571,0.9032}

{0.5} {0.7,0.8,0.8}
{0.3,0.2,0.2} {0.5}

⎤
⎥⎥⎦

H2 =

⎡
⎢⎢⎣

{0.5} {0.4,0.5,0.7}
{0.6,0.5,0.3} {0.5}

{0.5418,0.35,0.0455} {0.3,0.2,0.1}
{0.9,0.7,0.3} {0.7444,0.5342,0.5}

{0.4582,0.65,0.9545} {0.1,0.3,0.7}
{0.7,0.8,0.9} {0.2556,0.4658,0.5}

{0.5} {0.2,0.3,0.1}
{0.8,0.7,0.9} {0.5}

⎤
⎥⎥⎦

H3 =

⎡
⎢⎢⎣

{0.5} {0.3,0.4,0.4}
{0.7,0.6,0.6} {0.5}
{0.6,0.5,0.4} {0.3320,0.3029,0.3077}

{0.5,0.3,0.1429} {0.2,0.1,0.1}
{0.4,0.5,0.6} {0.5,0.7,0.8571}

{0.6680,0.6971,0.6923} {0.8,0.9,0.9}
{0.5} {0.6,0.7,0.8}

{0.4,0.3,0.2} {0.5}

⎤
⎥⎥⎦

Step 2: Computing the consistency indexes.
By Eq.(15), we can get the multiplicative consistent

HFPR mH for its corresponding HFPR, and then

compute the consistency levels: pair of alternatives

CIi j,t , alternatives CIi,t , and relation CIt .
Level 1: The consistency degrees for each pair

of alternatives are:

CIi j,1 =

⎡
⎢⎢⎣

1.0000 1.0000 1.0000 1.0000

1.0000 1.0000 1.0000 1.0000

1.0000 1.0000 1.0000 1.0000

1.0000 1.0000 1.0000 1.0000

⎤
⎥⎥⎦.

CIi j,2 =

⎡
⎢⎢⎣

1.0000 0.8928 1.0000 0.9217

0.8928 1.0000 0.9097 1.0000

1.0000 0.9097 1.0000 0.9351

0.9217 1.0000 0.9351 1.0000

⎤
⎥⎥⎦.

CIi j,3 =

⎡
⎢⎢⎣

1.0000 0.9263 0.9719 0.9519

0.9263 1.0000 1.0000 0.9453

0.9719 1.0000 1.0000 0.9730

0.9519 0.9453 0.9730 1.0000

⎤
⎥⎥⎦.

Level 2: The alternatives consistency levels are:

CIi,1 = (1.0000,1.0000,1.0000,1.0000).
CIi,2 = (0.9328,0.9342,0.9483,0.9523).
CIi,3 = (0.9500,0.9572,0.9817,0.9567).
Level 3: The consistency indexes of individual’s

HFPR are:
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CI1 = 1.0000, CI2 = 0.9432, CI3 = 0.9614.

In order to get the collective HFPR, we use the

BUM function f =
√

r. By Eq.(25), the weights are:

γσ(1) = 0.59, γσ(2) = 0.23, γσ(3) = 0.18. By Eq.(24),

the collective HFPR Hc = (hi j,c)n×n is:

Hc =

⎡
⎢⎢⎣

{0.5} {0.318,0.477,0.513}
{0.682,0.523,0.487} {0.5}
{0.649,0.414,0.277} {0.425,0.342,0.266}
{0.572,0.2793,0.144} {0.357,0.204,0.170}

{0.3515,0.5860,0.7228} {0.4280,0.7207,0.8560}
{0.5746,0.6583,0.7342} {0.6430,0.7965,0.8299}

{0.5} {0.5870,0.6870,0.6740}
{0.4130,0.3130,0.3260} {0.5}

⎤
⎥⎥⎦.

Step 3: Computing proximate indexes.
Level 1: Proximity indexes PPi j,t on pairs of al-

ternatives for expert et (t = 1,2,3) are:

PPi j,1 =

⎡
⎢⎢⎣

1.0000 0.9820 0.9706 0.9148

0.9820 1.0000 0.9443 0.9364

0.9706 0.9443 1.0000 0.8827

0.9148 0.9364 0.8827 1.0000

⎤
⎥⎥⎦.

PPi j,2 =

⎡
⎢⎢⎣

1.0000 0.9027 0.8659 0.6984

0.9027 1.0000 0.8557 0.6507

0.8659 0.8557 1.0000 0.5507

0.6984 0.6507 0.5507 1.0000

⎤
⎥⎥⎦.

PPi j,3 =

⎡
⎢⎢⎣

1.0000 0.9307 0.9142 0.9687

0.9307 1.0000 0.9420 0.8898

0.9142 0.9420 1.0000 0.9493

0.9687 0.8898 0.9493 1.0000

⎤
⎥⎥⎦.

Level 2: Proximity indexes PPi,t on alternatives

for expert et (t = 1,2,3) are:

PPi,1 = (0.9558,0.9542,0.9325,0.9113).

PPi,2 = (0.8223,0.8030,0.7574,0.6333).

PPi,3 = (0.9379,0.9208,0.9352,0.9360).

Level 3: Proximity indexes PPt on the relation

for expert et (t = 1,2,3) are:

PP1=0.9385, PP2 = 0.7540, PP3 = 0.9325.

Step 4: Computing consensus levels. Assume

δ = 0.5.

Level 1: The consensus levels CLi j,t of pair of

alternatives for expert et (t = 1,2,3) are:

CLi j,1 =

⎡
⎢⎢⎣

1.0000 0.9910 0.9853 0.9574

0.9910 1.0000 0.9722 0.9682

0.9853 0.9722 1.0000 0.9414

0.9574 0.9682 0.9414 1.0000

⎤
⎥⎥⎦.

CLi j,2 =

⎡
⎢⎢⎣

1.0000 0.8978 0.9329 0.8100

0.8978 1.0000 0.8827 0.8254

0.9329 0.8827 1.0000 0.7429

0.8100 0.8254 0.7429 1.0000

⎤
⎥⎥⎦.

CLi j,3 =

⎡
⎢⎢⎣

1.0000 0.9285 0.9430 0.9603

0.9285 1.0000 0.9710 0.9176

0.9430 0.9710 1.0000 0.9611

0.9603 0.9176 0.9611 1.0000

⎤
⎥⎥⎦.

Level 2: The consensus levels CLi,t of alterna-

tives for expert et (t = 1,2,3) are:

CLi,1 = (0.9779,0.9771,0.9663,0.9557).
CLi,2 = (0.8803,0.8686,0.8529,0.7928).
CLi,3 = (0.9440,0.9390,0.9584,0.9463).
Level 3: The individual consensus levels CLt for

expert et (t = 1,2,3) are:

CL1 = 0.9692, CL2 = 0.8486, CL3 = 0.9469.

As the consensus threshold η = 0.85, the feed-

back mechanism will be activated to assist expert e2

to change his/her preference values due to CL2 =
0.8486 < η .

Step 5: Feedback mechanism.
(1) Identify the experts EXPCH:

EXPCH = {2}.

(2) Identify the alternatives:

ALT = {(2,4)}.

(3) The following APS set is obtained:

APS = {(2,4,1),(2,4,2),(2,4,3)}.

Based on the above identified APS, the recom-

mendations for expert e2 are:

You should increase your preference value

{0.1,0.3,0.7} for the pair of alternatives (1,4) to a

value close to {0.2640,0.5103,0.7780}.

You should decrease your preference value

{0.9,0.7,0.3} for the pair of alternatives (1,4) to a

value close to {0.7360,0.4896,0.2220}.

You should increase your preference value

{0.2,0.3,0.1000} for the pair of alternatives (3,4)
to a value close to {0.3935,0.4935,0.3870}.

You should decrease your preference value

{0.8,0.7,0.9000} for the pair of alternatives (4,3)
to a value close to {0.6065,0.5065,0.6130}.

Your missing preference value for the

pair of alternatives (2,4) should be close to

{0.4493,0.6311,0.6649}.

Your missing preference value for the

pair of alternatives (4,2) should be close to
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{0.5507,0.3689,0.3351}.

When the expert e2 carried out the changes in

his/her HFPR, another round of consensus reaching

process will take place.

Assume the expert e2 accepted the recommen-

dations, and his updated values equal to the sug-

gested values, then the new collective HFPR is:

H ′
c=

⎡
⎢⎢⎣

{0.5} {0.317,0.476,0.510}
{0.683,0.524,0.490} {0.5}
{0.649,0.416,0.2807} {0.426,0.343,0.268}
{0.540,0.2395,0.129} {0.3186,0.171,0.138}

{0.3509,0.5845,0.7193} {0.4599,0.7604,0.8709}
{0.5743,0.6573,0.7322} {0.6814,0.8290,0.8619}

{0.5} {0.6239,0.7239,0.7298}
{0.3761,0.2761,0.2702} {0.5}

⎤
⎥⎥⎦.

With the new HFPRs, we compute the consen-

sus levels and have: CL1 = 0.9783, CL2 = 0.8669,

CL3 = 0.9504, which are all larger than the prede-

fined threshold η = 0.85, and thus the selection pro-

cess is applied.

Step 6: Selection process. As H ′
c is obtained,

we apply the proposed HQGNDDi to aggregate the

information. By Eq.(27), we have

1−hi j,p =

⎡
⎢⎢⎣

− 0.8686 1.0000 1.0000

1.0000 − 1.0000 1.0000

0.8968 0.6908 − 1.0000

0.6058 0.4184 0.6150 −

⎤
⎥⎥⎦.

Using the BUM function f =
√

r to implement

the linguistic majority ‘most of’, then the weighting

vector of ψQ is (0.58,0.24,0.18)T , the HQGNDDi
associated to each one of the alternatives is:

HQGNDD1 = 0.9763, HQGNDD2 = 1.0000,

HQGNDD3 = 0.9196, HQGNDD4 = 0.5774.

According to the degrees HQGNDDi, the rank-

ing of alternatives are:

x2 � x1 � x3 � x4.

Therefore, x2 is the best choice, that is, the credit

and financing businesses of x2 is better than other

three enterprises. The core enterprise should choose

enterprise x2 as its final decision.

In this paper, we first point out the drawbacks of

the definition of HFPR for the existing work. Then,

we redefine the concept of HFPR, which is slightly

different from Zhang16’s definition. The main dif-

ference between them is that the HFEs does not

need to arrange the elements in ascending (or de-

scending) order in our definition. Furthermore, the

new definition can reflect the experts’ original in-

formation as much as possible. The existing defi-

nition 2,5,16,17 needs to arrange the elements in as-

cending order, which may distort the original pref-

erences. In Example 1, Zhang16 obtained the mul-

tiplicative consistent HFPR, in which the element

mh23 = {0.3132,0.3184,0.2949}. It is obvious that

the values in mh23 are not arranged in ascending or-

der, which is inconsistent with his definition. But

if the value of mh23 is arranged in ascending order,

mH is not a multiplicative consistent HFPR accord-

ing his definition. Thus, there exist some issues in

current definition, the new definition can avoid this

problem.

Second, in the existing literatures (see Ref. 16,

27, 45), β -normalization with ξ = 1 is usually

used to obtain NHFPRs, the optimized parameter ξ
should be defined in advance, but there is no rule

about how to decide the value for it. It is related

to the DMs’ risk preference, an optimistic DM and

a pessimistic DM may lead to different choice. At

the same time, the added elements only relate to the

maximum and minimum elements of a HFE, it can-

not reflect the DMs’ preference accurately. There-

fore, we propose a new normalization method to

normalize HFPRs. We look the added value as the

missing elements, and use the missing value esti-

mation procedure to estimate these values, and the

added values always put after the existing values.

7. Conclusion

In this paper, a GDM with incomplete HFPR is in-

vestigated. In order to do this, a new definition of

HFPR has been presented. In the normalization pro-

cess, a new principle to add elements into HFE is

put forward. It can accurately reflect the DMs’ orig-

inal preference and take each element into account,

which is important to preserve the DMs’ original as

much as possible.

A decision support process is proposed. In or-

der to choosing the best alternative(s), the consen-

sus level is defined, which is related to consistency

index and proximity index. A feedback mechanism

is activated to support DMs in changing their opin-
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ions on condition that the DMs’ consensus level is

not reached the threshold value. Once the consensus

level is reached, MC-IOWA operator is used to ag-

gregate the individual HFPRs into a collective one.

A score HFPR is proposed for collective HFPR, and

then the HQGNDD of alternatives are obtained to

rank the alternatives. Finally, a case study for eval-

uate the qualification of supply chain enterprises is

provided to illustrate its application.

In this paper, we only use the multiplicative

consistency property to estimate the missing val-

ues. However, we do not measure its consistency

degree. Based on the average-based additive con-

sistency measurement for interval-valued reciprocal

preference relations by Dong et al.46, studying the

average-based multiplicative consistency for hesi-

tant fuzzy preference relation may be a challenge

future work.
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