

UNIVERSIDADE DA BEIRA INTERIOR
Engenharia

Mission Planning Application Software for Solar
Powered UAVs

(Versão corrigida após defesa de dissertação)

Pedro Rodrigues Nunes

Dissertação para obtenção do Grau de Mestre em
Engenharia Aeronáutica

(Ciclo de Estudos Integrado)

Orientador: Prof. Doutor Pedro Vieira Gamboa

Covilhã, fevereiro de 2020

 ii

 iii

Aos meus pais, Fernando e Assunção.

À minha irmã, Inês, e a todos os que permaneceram.

 iv

 v

Acknowledgments

This thesis is the culmination of five wonderful years at University of Beira Interior, and the

product of eight months of research and work. Good and bad times, I experienced them always

with the support and company of my family, friends and teachers, and I am forever grateful for

them, not only for this period of my life, but for the last five years.

I would like to thank my PhD advisor professor Pedro Vieira Gamboa, from the Department of

Aerospace Sciences at UBI, for his readiness in supporting me whenever I had problems, and

steering me in the right direction, all the while always letting me do my own work.

I would also like to thank my friends, old and new, for giving me comfort, fun and happiness

throughout this time, while also motivating me to keep up the hard work.

Lastly, I would not have the chance to be at this stage without my parents, sister and rest of

my family. They get the credit and respect, for my education, for my growth, and for letting

me be the person I am now. A big thank you.

 vi

 vii

Resumo

A crescente procura por veículos aéreos não tripulados (UAV) para uso civil na última década

tem atraído a atenção de investigadores e engenheiros um pouco por todo o mundo. É

importante realçar que a sua desnecessidade de pilotagem manual é idealmente adequada à

realização de missões “sujas”, perigosas, monótonas (longa autonomia) ou de grande escala

(uso de “enxames” de UAVs) [1], contudo exige uma maior atenção ao desenvolvimento de

tecnologias que permitam e facilitem o planeamento, operação e gestão destes veículos.

Bastantes avanços têm sido feitos em UAVs movidos a energia solar, que prometem uma

operação de baixo custo energético, silenciosa e limpa. Contudo, por mais que a energia solar

seja livre e abundante, o presente custo, complexidade, eficiência dos sistemas de captação

solar, do armazenamento e da tração usando energia elétrica, bem como a consequente

necessidade de veículos de grande tamanho, restringe muito a aplicação extensiva destes

veículos [2], para além das dificuldades acrescidas pela ausência de um piloto humano.

Não obstante, esta dissertação abrange o desenvolvimento de um interface gráfico de utilizador

(GUI) associado ao aperfeiçoamento de um software de planeamento de missões criado a partir

de projetos passados, aliando a flexibilidade e rapidez à eficiência de planeamento da operação

de UAVs solares. Para além de facilitar a introdução de dados necessários à otimização de uma

rota predefinida, este interface permite exportar a rota otimizada para o programa open-source

de estação de controlo de solo (GCS) “MissionPlanner” (MP) [3]. Para além disso, o software

conjunto final foi também executado como parte de um teste exaustivo, provando as suas

capacidades e limitações numa situação real de operação.

Palavras-chave

Veículos Aéreos Não-Tripulados, Planeamento de missões, Operação de UAVs solares,

ArduPlane, ArduPilot, Autopiloto

 viii

 ix

Abstract

The growing demand for unmanned aerial vehicles (UAV) for dedicated civilian use over the last

decade has attracted the attention of investigators and engineers all over the world. It is

important to note that the non-necessity of manual piloting is ideally suited to the operation

of dirty, dangerous, dull (long autonomy) or large scale missions (use of swarms of UAVs) [1],

however it demands a greater level of attention to the development of technologies that allow

and ease the planning, operation and management of such vehicles. A lot of improvement has

been made in the development of solar-powered UAVs, which promise a low-energy cost, silent

and clean operation. However, despite solar energy being free and abundant, among many the

present cost, complexity, solar energy capture systems’ efficiency, electric storage and

traction efficiency, as well as the consequent requirement for large-size vehicles, greatly

restricts the extensive use of these UAVs [2], besides the added difficulties from the absence

of a human pilot. Nevertheless, the present work covers the development of a graphical user

interface (GUI) associated to the improvement of a mission planning software created by past

work, allying flexibility and quickness to the planning efficiency of solar UAV operations.

Beyond facilitating the input of necessary data to the optimization of a pre-set route, this

interface allows to export the optimized route to the open-source ground control station (GCS)

program “MissionPlanner” (MP) [3]. In addition, as part of an exhaustive testing process, the

final ensembled software was run several times, proving its capabilities and limitations in a real

operational situation.

Keywords

Unmanned Aerial Vehicles, Mission Planning, Operation of solar UAVs, ArduPlane, ArduPilot,

Autopilot

 x

 xi

Contents

Acknowledgments v

Resumo vii

Abstract ix

Contents xi

List of Figures xv

List of Tables xix

List of Acronyms xxi

Nomenclature xxiii

1 Introduction 1

1.1 Contextualization .. 1

1.2 Motivation .. 3

1.3 Objectives .. 3

1.4 Thesis Outline .. 4

2 State of the Art 5

2.1 History of solar-powered aircraft ... 5

2.1.1 Early developments .. 5

2.1.2 Manned solar-powered aircraft ... 6

2.1.3 Long Endurance UAVs .. 8

2.2 Mission Planning .. 10

3 Mission Planner Program 19

3.1 Description and Functioning Structure .. 19

3.1.1 Mission Analysis .. 20

3.1.2 Ground Elevation and Atmospheric Data ... 21

3.1.3 Solar Model ... 22

3.1.4 Propulsion Data .. 22

3.1.5 Mission Optimization .. 24

3.2 Added features .. 27

3.3 Directory Structure Breakdown ... 28

4 GUI Development 31

 xii

4.1 Basic Features .. 32

4.2 Aerodynamics ... 35

4.2.1 Geometry Data .. 35

4.2.2 Drag Polar Data.. 36

4.3 Earth ... 37

4.3.1 Elevation Data ... 38

4.3.2 Weather Data .. 39

4.4 Masses ... 41

4.5 Systems .. 42

4.6 Propulsion ... 44

4.6.1 Battery ... 44

4.6.2 Engine/motor .. 46

4.6.3 Propeller ... 48

4.7 Mission ... 51

4.7.1 Route and Waypoints ... 52

4.7.2 Optimization ... 56

4.7.3 FFSQP ... 59

4.8 Functioning Structure ... 62

4.8.1 Exporting Files ... 62

4.8.2 Running the MPP .. 63

4.8.3 Finalization .. 64

4.9 Interface with MissionPlanner (freeware) .. 66

4.9.1 Import route ... 66

4.9.2 Export route ... 67

5 GUI Application and Mission Optimization Tests 69

5.1 Introduction ... 69

5.1.1 Choice of route .. 69

5.1.2 Elevation and Weather conditions .. 72

5.1.3 LEEUAV data ... 74

5.1.4 Mission constraints .. 76

5.2 Test Results ... 77

5.2.1 ME Tests .. 77

5.2.2 MT Tests .. 79

5.2.3 Running time comparisons ... 81

6 Conclusions 83

6.1 Achievements ... 83

6.2 Future Work ... 83

 xiii

References 85

Annex A – List of parameters obtained from Mission Planner Program’s mission analysis 91

Annex B – Detailed summary of the MPP’s Mission Analysis mode 93

Annex C – Default representation of propeller power coefficients and efficiency values 99

Annex D – List of Design Parameters and Constraint Functions 100

 xiv

 xv

List of Figures

Figure 1 – First LEEUAV prototype [4] ... 1

Figure 2 – Sousa’s Solar module attached to the LEEUAV wing prototype [5] 2

Figure 3 – Improved LEEUAV fuselage, tail boom and tail control surfaces made by Duarte [6] 2

Figure 4 – Parada’s new V-tail LEEUAV design [7] ... 2

Figure 5 – Sunrise I (1974) and Sunrise II (1975) .. 6

Figure 6 – Solar One (1978) and Solar Riser (1979) .. 6

Figure 7 – Gossamer Penguin (1980) and Solar Challenger (1981) 7

Figure 8 – Solar Impulse 1 (2011) and Solar Impulse 2 (2014) .. 7

Figure 9 – NASA Pathfinder (1997), Centurion (1998) and Helios (2001) 8

Figure 10 – Solong and Zephyr (2005) .. 9

Figure 11 – Sky-Sailor prototype in flight (2008) ... 9

Figure 12 – Solara 50 (concept design) and Aquila (prototype, 2016) 10

Figure 13 – Zephyr S prototype before launch (2018) .. 10

Figure 14 – Dai et al. simulation result example - time history of 3D flight state and control

variables from BNB (solid line) and NLP (dash line) [39]... 11

Figure 15 – Example of a 2D path energy-optimization for a mission of ground target tracking

[40] .. 12

Figure 16 – Test result of fixed target tracking path of UAV in 3D space [41] 12

Figure 17 – Cloud coverage map containing mission areas (MA) and locations of interest (LOI)

where the UAV will perform surveillance within a time frame, in the MMS application test [42]

 ... 13

Figure 18 – The AtlantikSolar prototype (2015) ... 13

Figure 19 – GUI window of the Atlantiksolar path planning and analysis software MetPASS [45]
 ... 14

Figure 20 – 3D path planning example of a solar UAV in an urban environment. The “proposed

framework” consists of a faster-converging optimization process [47]............................ 15

 xvi

Figure 21 – An example of a QBase 3D route planning ... 16

Figure 22 – QGroundControl mission planning example .. 16

Figure 23 – Example of MissionPlanner route planning .. 16

Figure 24 – The basic structure of the Mission Planner Program [11] 19

Figure 25 – Example of a point P (centre) obtained by the interpolation of four coordinates

(“Q” dots) [11] .. 21

Figure 26 – Flowchart of the iterative process [11] .. 24

Figure 27 – Flowchart of the iterative process of the FFSQP algorithm [11] 26

Figure 28 – Breakdown of the directory structure of the Mission Planner Program 29

Figure 29 – Areas of the GUI main window: menu bar (top, red), tab widget (centre, green)

and bottom section (bottom, blue) ... 32

Figure 30 – Interface File menu ... 32

Figure 31 – Interface Edit menu ... 33

Figure 32 – Introduction page of the “Help” window .. 34

Figure 33 – Bottom section of the interface ... 34

Figure 34 – GUI’s Aerodynamics section tab ... 35

Figure 35 - Aerodynamics/Geometry export operation flowchart 36

Figure 36 – Aerodynamics/Drag Polar export operation flowchart 37

Figure 37 – Design of the Earth tab in the interface ... 37

Figure 38 – Earth/Elevation export operation flowchart .. 38

Figure 39 – Closeup of the lower part of the GUI’s Weather Data section 39

Figure 40 - Earth/Weather export operation flowchart ... 41

Figure 41 – Design of the Masses tab in the interface.. 41

Figure 42 - Masses export operation flowchart ... 42

Figure 43 - Design of the Systems tab in the interface .. 43

Figure 44 – Systems export operation flowchart .. 43

Figure 45 - Design of the Propulsion tab in the interface ... 44

Figure 46 – Closeup of the battery data section .. 44

 xvii

Figure 47 – Propulsion/Battery export operation flowchart ... 46

Figure 48 – Closeup of the Engine/Motor upper part ... 46

Figure 49 – Closeup of the Engine/motor lower part. The left section shows combustion piston

engine data, while the right section shows electric motor data 47

Figure 50 - Propulsion/Engine export operation flowchart .. 48

Figure 51 - Closeup of the Propulsion/Propeller section .. 48

Figure 52 – Linear interpolation of data points, in the Propulsion/Propeller section 49

Figure 53 – Least squares polynomial approximation of data points, in the

Propulsion/Propeller section .. 49

Figure 54 – Polynomial representation from user coefficients, in the Propulsion/Propeller

section .. 50

Figure 55 – User polynomial curves representation, in the Propulsion/Propeller section 50

Figure 56 - Propulsion/Propeller export operation flowchart 51

Figure 57 - Design of the Mission tab in the interface ... 51

Figure 58 - Closeup of the Mission/Route and Waypoints upper section 52

Figure 59 – Example of a route in the GEO coordinates waypoints table 53

Figure 60 – Same route as in figure 59, ENU coordinates waypoints table 53

Figure 61 – Closeup of the loiters table .. 54

Figure 62 – Mission/Route and Waypoints export operation flowchart #1 55

Figure 63 - Mission/Route and Waypoints export operation flowchart #2 56

Figure 64 – Expanded view of the Mission/Optimization section. Outlined are the optimization

options (pink), design parameters stack widget (green), objective function (red), equality

constraints (blue) and inequality constraints (yellow) ... 57

Figure 65 – Expanded view of Latitude design parameter table (similar to longitude, altitude

and airspeed tables) (upper) and mission initial hour design parameter table (lower) 58

Figure 66 – Mission/Optimization export operation flowchart 59

Figure 67 – Closeup of the Mission/FFSQP section .. 60

Figure 68 - Mission/FFSQP export operation flowchart .. 62

 xviii

Figure 69 – Example of an error box showing the affected section 62

Figure 70 – “Export Files” slot operation flowchart .. 63

Figure 71 - GUI’s Program Options tab ... 64

Figure 72 – GUI’s Finalization tab ... 65

Figure 73 – Example of a 5-waypoint route in MissionPlanner ready to be exported to the GUI
 .. 67

Figure 74 – Example of a converted route in MissionPlanner. Highlighted are the

DO_SET_HOME command (red), the TAKEOFF and LAND commands (green), and the example

of a waypoint (blue) with loiter commands (yellow) .. 68

Figure 75 – List of commands of the input route in the MissionPlanner 70

Figure 77 – Top-down map view of the route in MissionPlanner 71

Figure 76 – View of input route data in the GUI’s Mission tab 71

Figure 78 – 3D view of the terrain map and input route ... 72

Figure 79 – Side view of the terrain map and input route. Departing point is on the right side
 .. 72

Figure 80 - Tests’ daily cloud and wind analysis at 9 o’clock. North is to the right side 73

Figure 81 - Tests’ daily cloud and wind analysis at 12 o’clock. North is to the right side 73

Figure 82 – Running time comparison between different CPUs for the ME optimization tests . 81

Figure 83 – Running time comparison between ME and MT optimization tests for engine-

propeller data 1 ... 82

Figure 84 - Theoretical example of a route with 5 waypoints. δj represent the segment flight

performance calculated between consecutive waypoints [11] 94

Figure 85 – Flight path direction scheme [11] .. 95

 xix

List of Tables

Table 1 – Variables for GEO and ENU waypoint tables ... 54

Table 2 – Modes of Optimization values table ... 60

Table 3 – Waypoints table of the input route ... 70

Table 4 – Loiters table of the input route .. 70

Table 5 – LEEUAV Motor Data .. 74

Table 6 – LEEUAV Propeller Data .. 75

Table 7 – LEEUAV Aerodynamics-Geometry Data ... 75

Table 8 - LEEUAV Aerodynamics-Drag Polar Data ... 75

Table 9 – LEEUAV Aerodynamics-Aircraft Representation data 75

Table 10 – LEEUAV Masses Data.. 75

Table 11 – LEEUAV Systems Data .. 76

Table 12 – LEEUAV Battery Data ... 76

Table 13 – Inequality constraint functions used during the optimization tests 76

Table 14 – Lower and Upper bounds used during the optimization tests for the design parameters
 ... 77

Table 15 – Codes to organize the tests ... 77

Table 16 – Engine-propeller type 1, Minimize Energy (E1-ME) test results 78

Table 17 – Engine-propeller type 2, Minimize Energy (E2-ME) test results 78

Table 18 - Engine-propeller type 1, Minimize Time (E1-MT) test results 80

Table 19 - Engine-propeller type 2, Minimize Time (E2-MT) test results 80

 xx

 xxi

List of Acronyms

AEROG Aeronautics and Astronautics Research Centre (UBI)

API Application Programming Interface

CCTAE Centro de Ciências e Tecnologias Aeronáuticas e Espaciais (IST)

CPU Central Processing Unit

DLR German Aerospace Centre

EADS European Aeronautic Defence and Space Company (Astrium)

ENU East-North-Up coordinates system

ERAST Environmental Research Aircraft and Sensor Technology (NASA)

ESC Electronic Speed Controller

ETHZ Swiss Federal Institute of Technology Zurich

FAI Fédération Aéronautique Internationale

FFSQP Fortran Feasible Sequential Quadratic Programming

GCS Ground Control Station

GEO Geodetic coordinates system

GPL General Public License

GUI Graphical User Interface

HALE High Altitude Long Endurance

HALSOL High Altitude Solar

IDMEC Instituto de Engenharia Mecânica (IST)

INEGI Instituto de Ciência e Inovação em Engenharia Mecânica e Industrial

ISA International Standard Atmosphere

IST Instituto Superior Técnico

LAETA Laboratório Associado de Energia, Transportes e Aeronáutica

LEEUAV Long Endurance Electric Unmanned Aerial Vehicle

MDP Markov Decision Process

MetPASS Meteorology-aware Path Planning and Analysis software for Solar-

 powered UAVs (Atlantiksolar)

MMS Mission Management System

MP MissionPlanner (open-source software by Michael Oborne)

MPP Mission Planner Program

MSL Mean Sea Level

NASA National Aeronautics and Space Administration (USA)

PV Photovoltaic

RC Radio-controlled

R&D Research and Development

RPAS Remotely Piloted Aircraft Systems

 xxii

SQP Sequential Quadratic Programming

UAS Unmanned Aerial System

UAV Unmanned Aerial Vehicle

UBI Universidade da Beira Interior

URL Uniform Resource Locator (web address)

UTC Coordinated Universal Time

 xxiii

Nomenclature

ROMAN SYMBOLS

𝐴,̅�̅� ,𝐶 ,̅�̅� ,𝐸̅ Coefficient vectors 𝐶𝑏𝑎𝑡𝑡 Battery capacity [𝐴ℎ] 𝐶𝑐𝑒𝑙𝑙 Cell capacity [𝐴ℎ] 𝐶𝐷 Drag coefficient 𝐶𝐹 Fuselage skin friction coefficient 𝐶𝐿 Lift coefficient 𝐶𝐿𝑚𝑎𝑥 Maximum lift coefficient 𝐶𝐿𝑡𝑎𝑘𝑒𝑜𝑓𝑓 Take-off lift coefficient 𝐶𝑝 Power coefficient 𝐶𝑝,0 Power coefficient at null advance ratio 𝑑 Propeller diameter [𝑚] 𝑑𝑛 Day of the year 𝐸 Mission consumed energy [𝐽] 𝐸𝑙𝑒𝑓𝑡 Battery energy left [𝐽] 𝐸𝑟𝑒𝑓 Battery energy left constraint reference value 𝐸𝑠𝑜𝑙𝑎𝑟|𝑡𝑜𝑡𝑎𝑙 Total solar energy harvested by photovoltaic panels [𝐽] 𝑓𝑜𝑟𝑒𝑓𝑖𝑛𝑎𝑙 Mission final weather forecast hour [ℎ] 𝑓𝑜𝑟𝑒𝑖𝑛𝑖𝑡 Mission initial weather forecast hour [ℎ] 𝑓𝑜𝑟𝑒𝑛𝑜𝑤 Current weather forecast hour [ℎ] 𝐻 Hour of the day [ℎ] ℎ Altitude [𝑚] ℎ𝑟𝑒𝑓 Reference altitude [𝑚] 𝐼 Input current [𝐴] 𝐼0 No load current [𝐴] 𝐼𝑏𝑎𝑡𝑡𝑚𝑎𝑥 Maximum battery current [𝐴] 𝐼𝑐𝑒𝑙𝑙𝑚𝑎𝑥 Maximum cell current [𝐴] 𝐼𝑒𝑓𝑓 Effective input current [𝐴] 𝐼𝑚𝑎𝑥 Maximum input current [𝐴] 𝐼𝑟𝑒𝑓 Reference input current [𝐴] 𝐽 Solar irradiation [𝑊 /𝑚2] 𝐽𝑝𝑟𝑜𝑝 Propeller advance ratio

 xxiv

𝐾𝐶 Clear sky index [%] 𝐾𝑡 Motor torque constant 𝐾𝑣 Motor speed constant 𝐿𝑎𝑡 Latitude coordinate [𝑑𝑒𝑔] 𝐿𝑜𝑛 Longitude coordinate [𝑑𝑒𝑔] 𝑚𝑏𝑎𝑡𝑡 Battery mass [𝑘𝑔] 𝑚𝑐𝑒𝑙𝑙 Single cell mass [𝑘𝑔] 𝑚𝑒𝑛𝑔 Mass of engine/motor [𝑘𝑔] 𝑚𝑝𝑟𝑜𝑝 Mass of propeller [𝑘𝑔] 𝑁 Propeller/Engine speed [𝑟𝑝𝑚] 𝑁0 Minimum engine speed at idle throttle [𝑟𝑝𝑚] 𝑁𝑚𝑎𝑥 Maximum engine speed [𝑟𝑝𝑚] 𝑛 Propeller/Engine speed [𝑟𝑝𝑠] 𝑛𝑏𝑙𝑎𝑑𝑒𝑠 Number of propeller blades 𝑛𝑐𝑒𝑙𝑙𝑠,𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 Number of battery cells in parallel 𝑛𝑐𝑒𝑙𝑙𝑠,𝑠𝑒𝑟𝑖𝑒𝑠 Number of battery cells in series 𝑛𝑒𝑛𝑔 Number of engines/motors 𝑛𝑤𝑒𝑎𝑡ℎ𝑒𝑟 Number of weather files 𝑝 Propeller pitch [𝑚] 𝑃𝑒𝑓𝑓 Effective power [𝑊] 𝑃𝑒𝑙𝑒 Electric power [𝑊] 𝑃𝑚𝑎𝑥 Maximum engine power [𝑊] 𝑃𝑟𝑒𝑓 Required power reference value [𝑊] 𝑃𝑟𝑒𝑞 Required power [𝑊] 𝑃𝑠ℎ𝑎𝑓𝑡 Motor power at the shaft [𝑊] 𝑃𝑠𝑦𝑠 Systems power [𝑊] 𝑃𝑠𝑦𝑠,𝑒𝑛𝑔 Engine systems power [𝑊] 𝑃𝑇 Total electric power [𝑊] 𝑄𝐶𝑙𝑜𝑢𝑑𝑠𝑖 Cloud index [%] 𝑄𝑒𝑙𝑒𝑖 Elevation value [𝑚] 𝑄𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 Elevation data 𝑄𝑙𝑎𝑡𝑖 Latitude coordinates of the elevation/weather map [𝑑𝑒𝑔] 𝑄𝑙𝑜𝑛𝑖 Longitude coordinates of the elevation/weather map [𝑑𝑒𝑔] 𝑄𝑚𝑜𝑡𝑜𝑟 Motor torque at the shaft [𝑁𝑚] 𝑄𝑇𝑒𝑚𝑝𝑖 Temperature [𝐾] 𝑄𝑊𝑒𝑎𝑡ℎ𝑒𝑟 Weather data

 xxv

𝑄𝑤𝑖𝑛𝑑𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑖 Wind direction [𝑑𝑒𝑔] 𝑄𝑤𝑖𝑛𝑑𝑠𝑝𝑒𝑒𝑑𝑖 Wind speed [𝑚/𝑠] 𝑅 Electric resistance [Ω] 𝑅𝑐𝑒𝑙𝑙 Cell internal resistance [Ω] 𝑅𝐸𝑆𝐶 Electronic speed controller resistance [Ω] 𝑅𝑚𝑜𝑡𝑜𝑟 Motor internal resistance [Ω] 𝑟𝑔𝑒𝑎𝑟 Gearbox ratio 𝑅𝑈 Battery resistance [Ω] 𝑆 Wing reference area [𝑚2] 𝑆𝐹 Fuselage cross-section area [𝑚2] 𝑠𝑓𝑐 Specific fuel consumption [𝑘𝑔/𝑊𝑠] 𝑆𝑃𝑉 Photovoltaic panels area [𝑚2] 𝑆𝑊𝑒𝑡 Fuselage wetted area [𝑚2] 𝑡 Time [𝑠] 𝑡𝑓𝑖𝑛𝑎𝑙ℎ Mission final hour [ℎ] 𝑡𝑖𝑛𝑖𝑡 Internal mission initial hour [ℎ] 𝑡𝑖𝑛𝑖𝑡𝑑𝑎𝑦 Mission date day 𝑡𝑖𝑛𝑖𝑡ℎ Mission date initial hour [ℎ] 𝑡𝑖𝑛𝑖𝑡𝑦𝑒𝑎𝑟 Mission date year 𝑈 Input voltage [𝑉] 𝑈0 No load voltage [𝑉] 𝑢𝑏𝑎𝑡𝑡 Battery specific energy [𝑊ℎ/𝑘𝑔] 𝑈𝑏𝑎𝑡𝑡 Nominal battery voltage [𝑉] 𝑈𝑏𝑎𝑡𝑡𝑚𝑎𝑥 Maximum battery voltage [𝑉] 𝑈𝑏𝑎𝑡𝑡𝑚𝑖𝑛 Minimum battery voltage [𝑉] 𝑈𝑐𝑒𝑙𝑙 Nominal cell voltage [𝑉] 𝑈𝑐𝑒𝑙𝑙𝑚𝑎𝑥 Maximum cell voltage [𝑉] 𝑈𝑐𝑒𝑙𝑙𝑚𝑖𝑛 Minimum cell voltage [𝑉] 𝑈𝑒𝑓𝑓 Effective input voltage [𝑉] 𝑈𝑚𝑎𝑥 Maximum input voltage [𝑉] 𝑉 Aircraft linear velocity [𝑚/𝑠]
GREEK SYMBOLS 𝛿𝑙𝑖𝑚𝑖𝑡 Engine/Motor throttle limit 𝛿𝑠𝑒𝑡 Engine/Motor throttle setting 𝜂𝑔𝑒𝑎𝑟 Gearbox efficiency

 xxvi

𝜂𝑝𝑟𝑜𝑝 Propeller efficiency 𝜂𝑃𝑉 Photovoltaic panels efficiency 𝜃𝑖 Angle of incidence of the sun [𝑑𝑒𝑔] 𝜆 Longitude [𝑑𝑒𝑔] 𝜌 Air relative density [𝑘𝑔. 𝑚−3] 𝜑 Latitude [𝑑𝑒𝑔]

 xxvii

 1

Chapter 1

Introduction

1.1 Contextualization

The present work comes in line with the University of Beira Interior (UBI) and Instituto Superior

Técnico (IST) recent years’ research and development of a solar-powered Long Endurance

Electric UAV (LEEUAV). As many as 8 authors’ thesis were considered as a base of research

accomplished so far, and on which this thesis builds on.

The LEEUAV is a particular type of unmanned aerial vehicle (UAV) that was especially designed

to fly uninterruptedly for at least 8 hours during the Spring or Autumn equinoxes, while also

being able to carry up to 1kg of payload, to take-off and land in a short distance, to climb 1000

meters in 10 minutes, and to descend without power [2]. As an object of research and

development (R&D), the LEEUAV project started out as a consortium involving UBI and IST, and

whose members include the “Energy, Transportation and Aeronautics Associated Laboratory”

(LAETA), namely the “Centre of Aeronautics and Space Sciences and Technologies” (CCTAE),

the “Aeronautics and Astronautics Research Centre” (AEROG), the Institute of Mechanical

Engineering (IDMEC) and the Institute of Science and Innovation in Mechanical and Industrial

Engineering (INEGI). In brief, the line of work started in 2014 with the successful conceptual

and preliminary design, and development testing of a newly built prototype, made by Cândido

[4].

In 2015, a solar component for the electric propulsion system was added to the wings of the

prototype and validated by Sousa [5].

Figure 1 – First LEEUAV prototype [4]

 2

In 2016, Duarte [6] specifically designed and built a new structural fuselage, tail boom and tail

control surfaces for the LEEUAV, in order to withstand missions with payloads up to 1kg.

Also, in the same year, Parada [7] developed a different conceptual and preliminary design for

a new LEEUAV, choosing the V-tail airplane concept over the conventional tail configuration.

In 2017, the conventional-tail LEEUAV with the latest fuselage, tail and wings was successfully

assembled, tested and modified by Rodrigues [8], following integration of all electronic

components, including the repositioning of the solar panels based on the work of Freitas [9].

At the same time, Moutinho designed a real-time energy management system to estimate the

remaining flight time, based on the total energy balance, while also developing the data

forwarding and receiving to and from the UAV, plus the visualization on the GCS

“MissionPlanner” software [10].

Figure 2 – Sousa’s Solar module attached to the
LEEUAV wing prototype [5]

Figure 3 – Improved LEEUAV fuselage, tail boom and tail
control surfaces made by Duarte [6]

Figure 4 – Parada’s new V-tail LEEUAV design [7]

 3

Lastly, in 2019, the work on which this thesis is primarily based, Coelho created a Mission

Planner Program (MPP) for a solar powered UAV, using the FFSQP algorithm and taking into

account several models for mission planning: UAV performance constraints, ground elevation,

atmospheric data and solar panels, sun and vehicle orientation [11].

1.2 Motivation

The reasons to the development of this thesis can be summarized into two main factors:

planning for in-flight operational efficiency and flight safety.

Although UAV utilization is soaring all over the world, the bulk of development accomplished

so far was made by several military institutions, much like in the earlier days of aviation.

Though essential to the general development of the UAV as an airplane class, military

development only ensures operations of the kind in the field, and normally prioritises assertion

of power over profitability. An efficient planning before a mission ensures the success of a

civilian operation, as this kind of operation must have economic viability. The creation and

integration of a user-friendly and interactive graphical user interface (GUI) in a mission planner

program makes the input process easy, fast and reliable to the user, where many different

route optimizations can be made before a mission starts, and the user can choose which route

is best to perform a specific mission.

The absence of a human pilot in autonomous UAVs dismisses many assurances normally present

in the safe operation of manned aircraft. Human piloting, though many times limiting and

disadvantageous, presents many advantages to a safe operation, namely the independent and

quick decision making in the event of an emergency, the ability to break rules when needed,

to think analytically and creatively to solve unexpected and never-before-occurred problems

[12], things an autopilot would not yet be able to do in today’s level of automation. Therefore,

safety can be better achieved if the input of data into a mission planning program is correct

and good environmental conditions are assured. Again, the development of a clear,

understandable and reliable GUI is essential to a safe planned mission.

1.3 Objectives

This thesis follows the line of work of past LEEUAV-related works already mentioned before, in

particular that of Coelho [11]. One could consider this thesis to be the second part of the

development of a Mission Planner Program (MPP) (not to be confused with “MissionPlanner”, an

open-source software developed by Michael Oborne [3]). In essence, the main objectives of the

present work can be summarized as follows:

• Improve the MPP developed by Coelho, adding new features or improving present ones;

 4

• Ease the data input, output data retrieval and visual presentation of the MPP, by

developing a graphical user interface (GUI), explaining its functioning structure,

capacities and limitations;

• Perform various test runs of the ensembled Mission Planner Program, which includes

Coelho’s Mission Planner (also referred to as MPP or ‘Optimizer’ throughout this thesis)

and the GUI, analyse and compare optimization results. This is done to validate the

work developed thus far;

• Draw conclusions and suggestions for future work.

1.4 Thesis Outline

Including the present introductory chapter, this thesis is divided into 6 main chapters, which

are briefly described below:

Chapter 1 covers the contextualization, motivation and objectives of the work to be done;

Chapter 2 focuses on a historical and state of the art review of the operation and mission path

planning of solar-powered UAVs;

Chapter 3 covers the explanation of the Mission Planner Program by Coelho and the addition of

new features, such as a new mission initial hour optimization design parameter and

modifications to the minimization of energy flow. This chapter is crucial to understanding how

the GUI will be added afterwards;

Chapter 4 explains the developing process of the GUI and its functioning structure, as well as a

brief explanation of the system of exporting/importing data to/from the MissionPlanner

freeware by Michael Oborne;

Chapter 5 describes how various optimization tests of a route from Terlamonte (Covilhã) to

Castelo Branco and back were performed, according to a certain objective function, design

parameters, and day of operation. Following that, a detailed analysis and comparation of

results is made;

Chapter 6 provides the conclusions to draw from this work, as well as what future work could

be made to improve planning and operation of solar-powered UAVs and the LEEUAV.

 5

Chapter 2

State of the Art

2.1 History of solar-powered aircraft

Though aviation has been around since the 19th century, solar-powered aircraft operations have

a very recent history. Electric solar propulsion has lagged behind conventional fossil fuels’

propulsion because it is still mainly limited by the current level of development and efficiency

of batteries and photovoltaic (PV) cells.

2.1.1 Early developments

The use of electric propulsion for aircraft was first introduced as early as 1884, with the

hydrogen-filled dirigible La France. At the time, electric propulsion was superior to its rival,

steam propulsion. However, the technology went undeveloped and abandoned for almost a

century, in favour of gasoline propulsion [13]. The first officially recorded electric powered

radio-controlled flight was achieved on 30 June 1957, with the RC model “Radio Queen”, by UK

Colonel H. J. Taplin. Also, in October 1957, German pioneer Fred Militky first achieved a

successful flight with a free flight model. Photovoltaic (PV) cells first appeared in 1954 at Bell

Telephone Laboratories [14]. However, the technology to harness solar light as energy to viably

power an aircraft only really took off in the 1970s.

Starting in 1970, R. J. Boucher and his brother Roland Boucher from Astro Flight Inc. began

their experiments with electric flight. On 4 November 1974, Sunrise I, the first ever solar-

powered model aircraft, took off from a dry lake at Camp Irwin, California, USA. The Sunrise I

had a wingspan of 9.75m and weighed 12.47kg. Following the partial destruction of the airplane

in a sandstorm, an improved second model Sunrise II was built and flown on 12 September 1975,

at Nellis AFB. Having the same wingspan as its predecessor, the Sunrise II weighed 10.21kg and

its 14% efficient PV cells could produce 150W more power than the 450W of Sunrise I. These

breakthroughs set the stage for later developments in solar aviation [13].

 6

At the same time in Germany, Helmut Bruss worked on a solar model airplane, though

unsuccessful in achieving level flight. Later on 16 August 1976, his friend Fred Militky first flew

his solar-powered Solaris airplane, completing three 150-second flights and reaching an altitude

of 50 meters [15].

2.1.2 Manned solar-powered aircraft

The feasibility of solar power in model aircraft motivated its development on manned aircraft.

David Williams and Fred To launched the Solar One in Hampshire UK, 19 December 1978. This

aircraft was intended to be human powered and cross the English Channel, however it proved

too heavy and was thus converted to solar power [13], [16]. On 29 April 1979, Larry Mauro flew

the Solar Riser, an electric airplane capable to charge its battery with solar power, but not

able to fly longer than ten minutes [13].

Flying on the use of solar power alone without any batteries was first achieved on 18 May 1980

by the Gossamer Penguin, built by Dr. Paul B. MacCready and his company AeroVironment Inc.

This was also the world’s first piloted, solar-powered flight. Though the Gossamer Penguin was

only able to reach a few meters in altitude, Dr. MacCready also built a new solar airplane, the

Solar Challenger, which crossed the English Channel on 7 July 1981, covering 262.3km of

distance with only solar energy as its power source and no onboard batteries [13].

Figure 5 – Sunrise I (1974) and Sunrise II (1975)

Figure 6 – Solar One (1978) and Solar Riser (1979)

 7

Other important late 20th century manned solar aircraft developments include Günther

Rochelt’s Solair I, a 16m wingspan solar airplane which flew for 5 hours and 41 minutes in

August 1983, Eric Raymond’s Sunseeker, which crossed the continental USA in 21 solar-powered

flights and 121 flight hours in August 1990 [17], and Prof. Rudolf Voit-Nitschmann’s Icaré 2

solar-powered motor glider which flew on 7 July 1996 [18].

In 2003, Bertrand Piccard initiated the Solar Impulse project in partnership with the Swiss

Institute of Technology in Lausanne (EPFL), to develop long-endurance manned solar-powered

aircraft that could circumnavigate the globe. The first prototype, Solar Impulse 1, first flew in

December 2009, and performed a multi-stage flight across the USA in 2013. The second-

generation aircraft, Solar Impulse 2, was built in 2014. It managed to circumnavigate the globe,

starting in Abu Dhabi, 9 March 2015, flying West-to-East and returning on 26 July 2016 [19],

[20].

Another solar-powered manned airplane, the two-seater SolarStratos, was built and flown by

Raphaël Domjan on 5 May 2017, and is projected to be the first to reach the stratosphere in

the very near future [21].

Figure 7 – Gossamer Penguin (1980) and Solar Challenger (1981)

Figure 8 – Solar Impulse 1 (2011) and Solar Impulse 2 (2014)

 8

2.1.3 Long Endurance UAVs

Following the success of the Solar Challenger, AeroVironment Inc. received US government

funding to secretly develop a remotely controlled High-Altitude Solar (HALSOL) LEEUAV, and

built a prototype in 1983. However, contemporary solar PV and energy storage technologies

were not mature enough to allow a HALSOL flight [22]. 10 years later, the prototype was flown

again by NASA and was transferred to NASA’s ERAST program in 1994, being renamed

Pathfinder. In 1995, it surpassed Solar Challenger’s altitude record, reaching 15392m (50500ft),

and two years later it reached 21802m (71530ft). NASA’s Pathfinder was modified into the

Pathfinder Plus, having a larger wingspan and new solar, aerodynamic, propulsion and system

technologies. Two successor aircraft were followed in NASA’s ERAST program: the Centurion

and the Helios. The latter was intended to reach 30480m (100000ft) and fly non-stop for at

least 24 hours. It flew at an altitude of 29261m (96000ft) for 40 minutes, was able to carry a

payload up to 329kg. Unfortunately, it crashed into the Pacific Ocean before it could validate

its 24-hour endurance goal [23].

Meanwhile in Europe, many other projects also started to appear to develop a High-Altitude

Long Endurance (HALE) UAV, namely the Solitair, at DLR Institute of Flight Systems (1994-1998)

[24], the Heliplat, developed by several European partners (2000-2003) and Shampo, developed

by the Politecnico di Torino [25], [26].

On 22 April 2005, Alan Cocconi flew his Solong for 24 hours and 11 minutes using only solar

power and wind thermals, finally validating the goal of eternal flight for the first time. Two

months later, in the Colorado Desert CA, he managed to perform an even more ambitious flight,

which lasted for a total of 48 hours and 16 minutes [17].

Also competing in the solar HALE platforms field, British Defence contractor QinetiQ flew a

Zephyr aircraft on 10 September 2007 for a duration of 54 hours, also using solar power and

wind thermals only. The aircraft was able to reach an altitude of 17786 meters, weighed 30kg

and had a wingspan of 18 meters [27]. Later in 2008, the Zephyr 6 performed an 82-hour flight

at an altitude of 19000m, but did not set any records because of the absence of World Air Sports

Federation (FAI) officials [28]. The Zephyr was also selected to carry the Mercator remote

Figure 9 – NASA Pathfinder (1997), Centurion (1998) and Helios (2001)

 9

sensing system in 2005, which allows to perform forest fire monitoring, urban mapping, coastal

monitoring, oil spill detection, etc.

The Sky-Sailor is another solar-powered LEEUAV project first designed in 2004 by the Swiss

Institute of Technology in Lausanne (EPFL) to demonstrate HALE flight, this time for the

scientific exploration of Mars. It was designed to be autonomous, to have its flight path planned

beforehand and to be able to navigate using range sensors and vision only (as GPS is not

available outside of Earth). The prototype’s flight characteristics were successfully tested in

June 2008, and it was the first ever to fly continuously for 27 hours without using altitude gain

or thermal soaring [29].

An example of recent developments in long endurance UAVs can be found in Titan Aerospace’s

Solara 50. This 50-meter wingspan autonomous UAV was designed to function as an atmospheric

satellite operating at an altitude of 20km above any possible storms in the troposphere, and

able to carry 31.75kg of telecom, reconnaissance, atmospheric sensors or other payloads, while

operating as part of a fleet of other UAVs for as long as five years. Titan Aerospace was bought

by Google in 2014, however the project was abandoned in 2016. The only built prototype got

to fly for 4 minutes and 16 seconds before crashing after an in-flight structural failure on 1 May

2015 [30]–[32].

Another example of an autonomous solar LEEUAV is that of Facebook’s Aquila. It was designed

to provide communications service (mainly Internet connection) to remote areas in the world,

operating between 18.3km and 27.4km of altitude. The only 42m-wingspan built prototype first

Figure 10 – Solong and Zephyr (2005)

Figure 11 – Sky-Sailor prototype in
flight (2008)

 10

flew in 2016 for an hour and 36 minutes, however the whole program was cancelled by Facebook

in 2018, which favoured their partnership with other companies in the field [33]–[35].

The Zephyr program, founded in 2003 by QinetiQ, is still in development today. Recently in the

summer of 2018, the new Zephyr S reached an astonishing flight of 25 days 23 hours 57 minutes,

doubling the record of 14 days set by its predecessor. This aircraft was designed to provide

persistent surveillance in response to a natural or human-caused disaster, or to act as a

telecommunications relay station [36].

2.2 Mission Planning

In order to better understand the motivation behind the making of this work, a comprehensive

review of recent developments in UAV mission planning techniques and current knowledge must

be undertaken.

As seen in the previous section, solar-powered aircraft have come a long way since the first

solar models, and a lot can still be done to improve in regards to flight performance. In a way,

the very development of the technology to harness the sunlight and convert it to energy is a

big game changer in the operation of UAVs in particular, because it allows the vehicle to remain

in operation for an indefinite amount of time, if energy storage so allows. With this, a particular

range of applications have been improved in Unmanned Aerial Systems (UAS) operations, such

as, among others [37]:

• continuous security surveillance;

Figure 12 – Solara 50 (concept design) and Aquila (prototype, 2016)

Figure 13 – Zephyr S prototype before
launch (2018)

 11

• facilitation of communications and broadcast;

• monitoring of linear network infrastructure (e.g. railway tracks, power lines,

pipelines);

• photography and cartographic survey;

• atmospheric research.

A lot more solar LEEUAV-related projects will, of course, be started in the very near future,

providing ever more knowledge in the art of UAV operation. But most of solar flights in the

previous decades were manually planned and performed using the best conditions possible,

which is understandable for new experimental aircraft.

Therefore, new and effective mission planning and coordination techniques have also been

developed to improve the operation of a solar-powered UAV, even when conditions are not

favourable. The use of these techniques allows the optimization of routes, according to goals

like: energy usage, travel time or distance minimization; obstacle/collision avoidance;

surveillance/coverage time maximization; or endurance/autonomy maximization. Not only by

decreasing the amount of consumed energy of the mission, but also by increasing the amount

of energy obtained from solar power, the LEEUAV can be operated efficiently and use its

capabilities to the fullest possible.

Based on the work of Klesh et al. [38], Dai et al. investigated a unit quaternion-based method

used to design the optimal UAV trajectory with maximum sun exposure for solar UAVs.

Considering a mission delimited by two boundary points with fixed flying time and constant

speed, this work optimizes the route of the UAV by adjusting its attitude – pitch (𝛾), heading

(𝜓) and roll (𝜙) angles, subject to constraints – in a level and three-dimensional flight models,

using a branch and bound (BNB) and nonlinear programming (NLP) approaches [39]. An example

of one of the simulation results is displayed in Figure 14.

Figure 14 – Dai et al. simulation result example - time history of 3D

flight state and control variables from BNB (solid line) and NLP (dash
line) [39]

 12

In 2016, Huang et al. developed an online method to obtain energy-optimal trajectories with

the mission of ground target tracking. Although different from missions with no target tracking,

this method presents a simple energy integrated model in two-dimensional space to calculate

the instantaneous power, collect more energy and track the moving target using the

optimization method of receding horizon control (RHC) with particle swarm optimization (PSO)

[40]. Several numerical simulations demonstrated the feasibility and flexibility of this method,

one of which is shown in Figure 15.

Later in 2019, Huang et al. developed a similar 3D path planning method for solar-powered

UAVs, albeit intended for fixed target and solar tracking. Taking into consideration the UAV’s

motion and attitude, mission constraints, energy production and energy consumption, the

loitering flight paths are planned on a virtual cylinder surface in 3D space, with the fixed target

centre at its origin [41]. One of the test results of this method is shown in Figure 16.

The work of Kiam et al., presented in March 2017, demonstrates a multilateral quality mission-

planning tool to increase the endurance of solar-powered LEEUAVs. The focus of the tool is set

on very-long endurance missions, such as surveillance, using high-altitude pseudo satellites

(HAPS fixed-wing UAV platforms) on certain locations of interest (LOI). It uses a highly

automated mission management system (MMS) which produces an optimal plan subject to the

specific application’s requirements and multilateral constraints, i.e. mission, energy and safety

Figure 15 – Example of a 2D path energy-optimization for a mission of ground target tracking
[40]

Figure 16 – Test result of fixed target tracking path
of UAV in 3D space [41]

 13

constraints. This MMS adopts the hybrid architecture of a symbolic planner based on the

hierarchical task-network (HTN), working with a Markov decision process (MDP) based policy

generator to reduce the search space for a numerical path planner [42].

A new solar LEEUAV dubbed AtlantikSolar by its developer, the Swiss Federal Institute of

Technology at Zurich (ETHZ), has been developed since 2015 to fly autonomously in Low-

Altitude Long Endurance (LALE) missions, for applications such as industrial and agricultural

sensing and mapping, large-scale disaster relief support missions, meteorological surveys in

remote areas and continuous border or maritime patrol. It was especially designed with

efficient autonomous path planning and operation in mind [43], [44].

The software responsible for this autonomous path planning is the MetPASS – Meteorology-aware

Path Planning and Analysis Software for Solar-powered UAVs. It consists of an optimization

software that combines an A* algorithm, a dynamic programming point-to-point planner and a

local scan path planner (a simple camera model), to yield cost-optimal aircraft paths. The cost

function considers both safety and performance variables, such as terrain collision risk, system

state (time since launch, battery state of charge, power consumption and generation) through

a comprehensive energetic model, and meteorological data (thunderstorms, precipitation,

Figure 18 – The AtlantikSolar prototype (2015)

Figure 17 – Cloud coverage map containing mission areas (MA) and
locations of interest (LOI) where the UAV will perform surveillance within

a time frame, in the MMS application test [42]

 14

humidity, 2D winds, gusts, sun radiation and clouds) through global weather models.

Furthermore, the MetPASS was fully implemented with a GUI that allows an easy-to-use,

detailed mission feasibility analysis, pre-flight planning and in-flight re-planning using updated

weather data. Several real flight tests (a loitering 81-hour endurance flight in June 2015 and a

series of Arctic glacier multi-goal survey flights in July 2017) were performed for the validation

of the MetPASS. It was also validated through extensive testing for the planning of a 4000km

crossing of the Atlantic Ocean, from Newfoundland to Portugal, the flight of which is yet to

take place [45].

In 2018, Amorosi et al. developed an energy-efficient mission planning method intended for 5G

network coverage in rural zones (using a swarm of non-solar-powered UAVs), by solving the

“RURALPLAN” optimization problem, a variant of the unsplittable multicommodity flow

problem defined on a multiperiod graph. Not only this method limits the amount of energy

consumed above minimum battery level constraints, it also ensures the coverage of selected

zones and determines sites where an UAV should land to recharge, considering the amount of

energy provided by the PV panels and batteries installed at those ground sites [46]. Although

not intended for the operation of solar-powered UAVs, future work on this method using an

onboard solar component would ensure greater endurance performance, proving to be

particularly useful at Winter days.

Another work, presented by Wu et al. in the same year, shows the development of a solar-

powered UAV path planning framework aimed at urban environments. This framework addresses

Figure 19 – GUI window of the Atlantiksolar path planning and analysis
software MetPASS [45]

 15

three main aspects: modify the Interfered Fluid Dynamic System (IFDS) to allow the UAV to

avoid obstacles and respect dynamic constraints and energy model; resolve the path planning

issue using and improving a novel intelligent optimization algorithm called Whale Optimization

Algorithm (WOA), to overcome the drawback of local minima; and solve the accurate modelling

problem of solar energy in urban environment, taking into account sunlight occlusions and solar

power obtained by slant surfaces of the PV cells [47]. One of several path planning tests

performed is shown in Figure 20.

Although not using the solar component, in 2019 Schellenberg et al. developed an on-board

real time trajectory planning program (RTTP) for fixed-wing UAVs operating in extreme

environments. This work, based on previous developments from the University of Bristol on

long-range, high-altitude volcanic monitoring and ash-sampling, focuses on the optimization of

routes using a genetic algorithm running on a Raspberry Pi 3 B+ single-board microcomputer. It

includes obstacle, terrain and “no-go” zones avoidance, energy, altitude and climb/descent

constraints and length minimization, as part of a cost function. Four successful RTTP-validation

flight tests were performed in March-April, near Volcán de Fuego, Guatemala [48].

Although a reality, autonomous planning and piloting technology for fixed-wing UAVs only

recently took off, and is more prevalent in the case of rotorcraft UAVs. Also in part due to on-

going regulations, intuitive planning and operation by a human pilot is still a must in the

operation of fixed-wing UAVs.

Some computer-based ground control station (GCS) software have been developed to provide a

human pilot the ability to remotely plan and operate a UAV fitted with an autopilot, or even

Figure 20 – 3D path planning example of a solar UAV in an
urban environment. The “proposed framework” consists of a

faster-converging optimization process [47]

 16

manually pilot the aircraft (as is the case of RPAS). Examples include the “QBase 3D Mission

Control System”, a payware GCS created by Quantum Systems [49], open-source software

“QGroundControl”, a GCS for MAVLink protocol created by the Dronecode project and funded

by the Linux Foundation [50] and “MissionPlanner”, the free software created by Michael

Oborne for the open-source autopilot project ArduPilot, used for the development of the

Mission Optimization Interface of this thesis [3].

Figure 21 – An example of a QBase 3D route planning

Figure 22 – QGroundControl mission planning example

Figure 23 – Example of MissionPlanner route planning

 17

While many mission planning and GCS software tools are available, it is the link between the

creation of an optimized path, a human pilot and the autopilot system of the fixed-wing solar

UAV that lacks the most development. Therefore, the GUI designed in the present work

addresses this issue by providing a better link between the user and a computer-based Mission

Planner Program that, using the FFSQP algorithm, optimizes a route based on time, energy or

distance minimization. Thereafter, the GCS software “MissionPlanner” was chosen to be used,

interfaced with the designed GUI, to send the route to the autopilot of the UAV and finally

operate it.

 18

 19

Chapter 3

Mission Planner Program

3.1 Description and Functioning Structure

As part of his thesis, Coelho [11] created a mission planner program (MPP) capable of optimizing

a pre-defined route based on the minimization of time, energy or distance (its objective

function). Although the program allows for the optimization of routes for gasoline fuel-powered

UAVs, it is mainly focused in optimization for solar-powered UAVs.

The whole program itself is built from several models that are basically independent Fortran

code subroutines that return the needed input data into the main program. This main program

code routine can then be run in two different modes: Analysis (which only calculates several

parameters of the input route, such as time, energy usage/flow, distance, etc.) or Optimization

(which actually changes the input route to optimize the objective function).

The four Fortran code models are, for the purpose of simplification, subdivided into 6 different

sections (represented by folders in the “missioncode” directory of the program), where data is

edited and stored in text files which are in turn loaded by the program while running:

• Aerodynamics – includes all data needed from geometry, as well as parameters that

represent the drag and lift of the aircraft.

Figure 24 – The basic structure of the Mission Planner Program [11]

 20

• Earth – includes all data needed from terrain elevation and atmospheric weather data.

Only weather data may be manually input, while both can be downloaded from APIs

(Application Programming Interfaces), which may or may not be free-for-use.

• Masses – includes all data related to the mass of the aircraft.

• Systems – includes all the systems present on the UAV, either active or not, as well as

their respective mass.

• Propulsion – includes data related to the propulsion of the UAV. It is further subdivided

into 3 subsections (text files): “Battery”, which defines the data related to the battery

of the UAV; “Engine”, which defines the data related to the combustion engine(s) or

electric motor(s) used; and “Propeller”, where data that represent the propeller(s)

model to be used is present.

• Mission – includes data related to the route to be analysed/optimized, as well as

parameters that define the optimization of the MPP. It is also further subdivided into 3

subsections (text files): “Waypoints”, which defines the route to be

analysed/optimized; “Optimization”, where the parameters active or not for

optimization are set, as well as other data that define the optimization process to be

made, including the objective function; and “FFSQP”, a subsection that defines a

particular algorithm used for the optimization (explained in section 3.1.5).

Several functionality aspects of the Mission Planner Program (MPP) are described in the

following sections 3.1.1 through 3.1.5 below. Afterwards, section 3.2 is dedicated to features

added to the MPP in the scope of this work. All analysis is made based on the work of Coelho

[11].

3.1.1 Mission Analysis

Though the optimization mode can be deactivated by choice, every time the MPP is run a

mission analysis must be made, even before an optimization. During the analysis mode the

objective function, as well as several variable constraints initially specified by the user, are

calculated depending on a list of design variables for each waypoint in the route.

There are 4 design variables for each waypoint – the coordinates chosen by the user, which can

either be of the Geodetic (GEO) type (latitude and longitude) or the East-North-Up (ENU) type

(x and y positions), altitude and airspeed.

The calculation of all relevant or necessary parameters is mainly obtained by the average of

values between two waypoints. In other words, an effective analysis of segments is made. The

results obtained are copied over to a text file (“mission_out.txt”) at the end of the analysis.

The full list of parameters can be viewed in Annex A, and a better detailed summary of the

calculations made in mission analysis can be viewed in Annex B.

 21

3.1.2 Ground Elevation and Atmospheric Data

Essential to the functionality of the Mission Planner Program, data from the surrounding terrain

elevation and atmospheric conditions are used. Though manual input of weather allows the run

of an optimization, elevation data must be downloaded from an external Application

Programming Interface (API), in order to ensure that elevation constraints are not infringed.

Real-time atmospheric data can also be downloaded from an external API the same way as

elevation.

For both APIs, the input data, latitude and longitude, is sent as a URL address and the output

data (elevation or weather) is retrieved via request and saved to a text file. In order to get a

full map of coordinates and output values, several requests are automatically retrieved with a

Python code implementation, the number of which depends on the resolution of the map

(number of points at the border). The resulting data has the following format [11]:

 𝑄𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛(𝑄𝑙𝑎𝑡𝑖 , 𝑄𝑙𝑜𝑛𝑖 , 𝑄𝑒𝑙𝑒𝑖) (3.1)

 𝑄𝑊𝑒𝑎𝑡ℎ𝑒𝑟(𝑄𝑙𝑎𝑡𝑖 , 𝑄𝑙𝑜𝑛𝑖 , 𝑄𝑇𝑒𝑚𝑝𝑖 , 𝑄𝑤𝑖𝑛𝑑𝑠𝑝𝑒𝑒𝑑𝑖 , 𝑄𝑤𝑖𝑛𝑑𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑖 , 𝑄𝐶𝑙𝑜𝑢𝑑𝑠𝑖) (3.2)

where 𝑖 is the point index, 𝑄𝑙𝑎𝑡𝑖 , 𝑄𝑙𝑜𝑛𝑖 are the geodetic coordinates (𝑑𝑒𝑔), 𝑄𝑒𝑙𝑒𝑖 the elevation

(𝑚), 𝑄𝑇𝑒𝑚𝑝𝑖 the temperature (𝐾), 𝑄𝑤𝑖𝑛𝑑𝑠𝑝𝑒𝑒𝑑𝑖 the wind speed (𝑚/𝑠), 𝑄𝑤𝑖𝑛𝑑𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑖 the wind

direction (𝑑𝑒𝑔) and 𝑄𝐶𝑙𝑜𝑢𝑑𝑠𝑖 the cloud index (%).

Whatever points are used in the analysis/optimization that do not exactly correspond to those

obtained above, its elevation and weather values are interpolated from the four nearest points

in the map, as observed in Figure 25.

Figure 25 – Example of a point P (centre)
obtained by the interpolation of four

coordinates (“Q” dots) [11]

 22

3.1.3 Solar Model

In order to take full advantage of the solar component and its impact on the endurance of the

LEEUAV, a solar model was developed to better optimize a route, taking into account:

• the orientation of the PV panels in relation to the sun (𝜃𝑖);
• the area (𝑆𝑃𝑉) and efficiency (𝜂𝑃𝑉) of the PV panels;

• the irradiance of the sun (𝐽), which itself depends on the hour of the day (𝐻), the day

of the year (𝑑𝑛) and the latitude of the location of the vehicle (𝜑);

• the clear sky index (𝐾𝐶), where a value of 1 means a clear sky and a value of 0 means

an overcast sky with total obstruction of the solar irradiance.

Values for the clear sky index are obtained directly from the weather text files or from manual

input in the pre-defined route. The calculation of the total energy the PV panels can harvest is

summarized by the equation:

 𝐸𝑠𝑜𝑙𝑎𝑟|𝑡𝑜𝑡𝑎𝑙 = ∫ 𝐽 𝐾𝐶 𝑆𝑃𝑉 𝜂𝑃𝑉 cos(𝜃𝑖) 𝑑𝑡𝑡𝑓𝑡
(3.3)

In the way that the distribution of power is set, solar power gained from the PV panels is directly

used to compensate the required power of the electric motor plus all active systems onboard.

If the solar power is greater than the required, its excess power is used to charge the battery.

On the other hand, if all of the solar power is not enough to compensate the required power of

the UAV, battery power must also be used.

Internally to the program and present in output files, a convention in the sign of used or flow

of energy and power was set – Positive values indicate energy/power consumption, while

negative ones indicate energy/power gain (from the only source of energy, the PV panels).

3.1.4 Propulsion Data

Although the MPP may use representation from combustion piston engines, it was primarily

developed to use electric motors. As such, some considerations in the present work must be

taken to describe the priority propulsion model that represents the solar LEEUAV with which to

fly a mission. As pointed out in [11] this model was presented in reference [51]. The propulsion

of the vehicle is mainly represented in two parts: data for its motor(s)/engine(s) and data for

its propeller(s).

An electric motor converts electrical power to mechanical torque and rotational speed, while

the propeller converts this torque into forward thrust. The power required at the end of this

system (absorbed by the propeller) depends on a number of variables, and it must equal the

power available at the motor shaft, 𝑃𝑠ℎ𝑎𝑓𝑡. Propeller and motor matching conditions are thus

achieved when motor shaft power and propeller absorbed power are equal at the same

 23

rotational speed. This comes from the definition that power is the torque (𝑄𝑚𝑜𝑡𝑜𝑟) multiplied

by the angular speed (2𝜋𝑛).

Starting with the propellers, in order for the program to calculate their performance, values

for the diameter, pitch and number of blades are required. In addition, values for the propeller

efficiency 𝜂𝑝𝑟𝑜𝑝 and the power coefficient 𝐶𝑝 must also be known. Both of these depend on the

propeller advance ratio (𝐽𝑝𝑟𝑜𝑝), which is defined by the equation:

 𝐽𝑝𝑟𝑜𝑝 = 𝑉𝑛. 𝑑
(3.4)

where 𝑉 is the linear velocity, 𝑛 is the propeller’s revolutions per second and 𝑑 is the diameter.

The power required at the shaft of the motor is then calculated by:

 𝑃𝑠ℎ𝑎𝑓𝑡 = 𝐶𝑝𝜌 𝑛3𝑑5 (3.5)

The values needed for the propeller efficiency and power coefficient may be obtained using

one out of five different representations that can be chosen in the program:

• Linear interpolation of data points (𝐶𝑝(𝐽) and 𝜂𝑝𝑟𝑜𝑝(𝐽));
• Least squares polynomial approximation of data points (𝐶𝑝(𝐽) and 𝜂𝑝𝑟𝑜𝑝(𝐽));
• Polynomial representation from user coefficients (𝐶𝑝(𝐽) and 𝜂𝑝𝑟𝑜𝑝(𝐽));
• Approximation using default polynomial curves (𝐶𝑝(𝐽 , 𝑑, 𝑝) and 𝜂𝑝𝑟𝑜𝑝(𝐽 , 𝑑, 𝑝));
• Approximation using user polynomial curves (𝐶𝑝(𝐽 , 𝑑, 𝑝) and 𝜂𝑝𝑟𝑜𝑝(𝐽 , 𝑑, 𝑝)).

The last two representations’ polynomial curves depend not only on the propeller advance ratio

(𝐽), but its diameter (𝑑) and pitch (𝑝) as well. The default representation uses polynomial

coefficients defined in [51] and is explained in Annex C. The other uses user-input coefficients.

On the other part of the system, the total power consumed by the motor is obtained by:

 𝑃𝑒𝑙𝑒 = 𝑈 𝐼 (3.6)

, already considering all voltage and current losses. These losses are represented by the motor

resistance 𝑅 and the no-load current 𝐼0. Together with its mass, speed constant 𝐾𝑣, maximum

current 𝐼𝑚𝑎𝑥 and voltage 𝑈𝑚𝑎𝑥, these values are specified by the manufacturer, and are needed

by the program. The useful power, otherwise known as effective power (𝑃𝑒𝑓𝑓) is calculated as

follows:

 24

 𝑃𝑒𝑓𝑓 = 𝑈𝑒𝑓𝑓 𝐼𝑒𝑓𝑓 = (𝑈 − 𝑅𝐼)(𝐼 − 𝐼0) (3.7)

At the end of the calculation of the segment required power 𝑃𝑟𝑒𝑞, which depends on the drag

and speed of the UAV (explained in Annex B, page 97), the analysis/optimization process will

calculate three basic parameters – the motor power setting 𝛿𝑠𝑒𝑡, the motor speed 𝑛 and the

input voltage 𝑈 . In this iterative process the input current 𝐼 and the motor power setting 𝛿𝑠𝑒𝑡
are adjusted to meet the condition of the propeller-motor matching (rotational speed, torque

and power must be the same) and the condition where propeller power must be equal to flight

required power. Following that, the total electric power for a segment 𝑗 is calculated, using

the electric motor power 𝑃𝑒𝑙𝑒𝑗 and the systems required power 𝑃𝑠𝑦𝑠𝑗 :
 𝑃𝑇𝑗 = 𝑃𝑒𝑙𝑒𝑗 + 𝑃𝑠𝑦𝑠𝑗 = (𝑈𝐼 + (𝑅𝐸𝑆𝐶 𝐼 2 + 𝑅𝑈 𝐼 2))𝑗 + 𝑃𝑠𝑦𝑠𝑗 (3.8)

where 𝑅𝐸𝑆𝐶 and 𝑅𝑈 are the electronic speed controller and battery resistance, respectively.

The total energy used is obtained from the sum of electric power of all segments times the

respective segment elapsed time 𝑑𝑡𝑗:
 𝐸 = ∑(𝑃𝑇𝑗 𝑑𝑡𝑗)𝑛𝑗=1

(3.9)

3.1.5 Mission Optimization

The optimization of a mission is the main goal of the Mission Planner Program. Out of all

previously discussed models and data, the MPP will try to optimize a route based on its design

parameters, constraints and objective function.

FFSQP Algorithm

The only algorithm used for the optimization of all routes in previous and present work was the

FFSQP algorithm. FFSQP stands for “Fortran Feasible Sequential Quadratic Programming”. It is

basically a set of Fortran subroutines created to solve optimization problems using nonlinear or

linear inequality and equality constraints [52]. These constraints are set by the user and must

always be respected throughout the iteration process. This process can be summarized in Figure

26.

Figure 26 – Flowchart of the iterative process [11]

 25

In a symbolic explanation, the SQP algorithm minimizes the objective function (𝑓𝑖(𝑥𝑛)), using

a set of design parameters 𝑥 constrained by lower and upper boundaries (𝑔𝑟𝑒𝑓 (𝑥𝑛), reference

values defined by the user) at every iteration 𝑖, within a feasible space 𝑋 and a number of

iterations 𝐼 ([52]):

 𝑚𝑖𝑛{𝑓𝑖(𝑥𝑛)}, 𝑥 ∈ 𝑋 𝑎𝑛𝑑 𝑖 ∈ 𝐼 (3.10)

The 𝑚 number of inequality constraints are defined as ([52], [53]):

 𝑔𝑗(𝑥𝑛) ≤ 𝑔𝑟𝑒𝑓 (𝑥𝑛), 𝑗 = 1,2, … , 𝑚 (3.11)

The complete list of constraint functions and design parameters used can be found in Annex D.

Throughout the process, the SQP algorithm estimates gradients for a certain constraint

function, using forward finite differences (though the MPP provides the choice to use backward

or central finite differences) with a certain increment ∆𝑥 set by the user. In short, this

estimation has the goal of finding a step direction 𝑝𝑖 which, when multiplied with the gradients ∇𝑓 (𝑥𝑖), has to be negative to minimize the objective function:

 [𝑝𝑖, ∇𝑓 (𝑥𝑖)] < 0 (3.12)

After that, the algorithm calculates the step length 𝛼𝑖, whereby the new objective function

must be validated by:

 𝑓(𝑥𝑖 + 𝑝𝑖𝛼𝑖) < 𝑓 (𝑥𝑖) (3.13)

On this condition, the new set of design variables 𝑥𝑖+1 are calculated and the next iteration

begins. As soon as the Hessian matrix of the objective function reaches 0 or within a tolerance

value 𝜀, a final converged solution has been achieved [11], [53]. Figure 27 presents a

summarized flowchart of the process ([53]):

 26

Objective functions

There are three calculated mission performance values serving as objective functions, that the

optimization process will try to minimize: mission total consumed energy (𝐸); mission flight

time; and mission distance. Only one can be chosen by the user at a time.

Design variables and Constraint functions

The set of route parameters that the mission planner changes to optimize the objective function

are the basic waypoint’s coordinates – latitude (𝜑), longitude (𝜆) and altitude (ℎ) – and the

LEEUAV’s airspeed (𝑉). Another design parameter is the mission initial hour (𝑡𝑖𝑛𝑖𝑡) which was

added in the scope of this work and is further explained in section 3.2. Besides these, there is

a group of variables that must satisfy equality and inequality constraints established by the

user. The constraint functions act in every iteration of the FFSQP algorithm to limit solutions

to only viable ones, so as to resemble reality as much as possible. There are two possible types

of constraints that can be established by the user: equality and inequality constraints.

Although not used in the optimization process, the only design variables that can be limited by

equality constraints are the engine/motor setting (𝛿𝑠𝑒𝑡):
 𝛿𝑠𝑒𝑡 = 𝛿𝑙𝑖𝑚𝑖𝑡 , 𝛿𝑙𝑖𝑚𝑖𝑡 ∈]0,1] (3.14)

where 𝛿𝑙𝑖𝑚𝑖𝑡 is the limit engine/motor setting of the constraint, and the motor current (𝐼):

 𝐼 = 𝐼𝑟𝑒𝑓 (3.15)

where 𝐼𝑟𝑒𝑓 is the reference motor current value of the constraint.

The inequality constraints include the engine/motor setting (equation 3.16) and motor current

(equation 3.17) constraints:

Figure 27 – Flowchart of the iterative process of the FFSQP algorithm [11]

 27

 𝛿𝑠𝑒𝑡 ≤ 𝛿𝑙𝑖𝑚𝑖𝑡 , 𝛿𝑙𝑖𝑚𝑖𝑡 ∈]0,1] (3.16)

 𝐼 ≤ 𝐼𝑚𝑎𝑥 (3.17)

where 𝐼𝑚𝑎𝑥 is the maximum current of the motor; the stall speed condition, to prevent the

stall of the LEEUAV:

 (𝑉𝑚𝑖𝑛𝑉𝑠)2 𝐶𝐿 ≤ 𝐶𝐿𝑚𝑎𝑥
(3.18)

where 𝑉𝑠 is the stall speed and 𝑉𝑚𝑖𝑛 is the minimum speed to guarantee, by default, a safety

speed factor (𝑉𝑚𝑖𝑛𝑉𝑠) of 1.2. 𝐶𝐿𝑚𝑎𝑥 is the maximum lift coefficient allowed by the constraint; the

height condition:

 ℎ ≥ ℎ𝑟𝑒𝑓 , ℎ𝑟𝑒𝑓 > 0 (3.19)

which, at waypoints not including take-off or landing, limits the LEEUAV to fly at or above a

reference height value (ℎ𝑟𝑒𝑓) set by the user; the minimum required power constraint:

 𝑃𝑟𝑒𝑞 ≥ 𝑃𝑟𝑒𝑓 , 𝑃𝑟𝑒𝑓 > 0 (3.20)

which limits the segment required power (𝑃𝑟𝑒𝑞) of the LEEUAV to be at or above a reference

value (𝑃𝑟𝑒𝑓) set by the user; and the battery energy left condition:

 𝐸𝑙𝑒𝑓𝑡 ≥ 𝐸𝑟𝑒𝑓 (3.21)

which limits the battery energy remaining at the end of a segment (𝐸𝑙𝑒𝑓𝑡) at or above the

reference value 𝐸𝑟𝑒𝑓 .

3.2 Added features

In the scope of the present work, some additional features were added to enhance the

functionality of Coelho’s Mission Planner Program.

The first, a stretch of Fortran code added to the “main program” subroutine, instructs the MPP

to create an empty “dummy checker” text file into the executable’s directory. This allows the

present work’s Mission Optimization Interface to check that the program has finished all

calculations, and that it is cleared to proceed to the retrieval of data from output text files

(“mission_convergence.txt” and/or “mission_out.txt”) created by the Mission Planner Program.

The GUI automatically terminates the MPP and deletes the “dummy checker” once this file is

detected.

 28

The second feature involves a small correction to the minimization of energy usage in the

optimization method and consequently the calculation of energy flow. Before this modification,

the algorithm would only try to maximize the energy obtained from the solar component

(calculated by equation 3.3), neglecting the minimization of consumed energy (calculated by

equation 3.9), during the optimization of the design parameters. Additional power and energy

flow values were added to one of the output files, “mission_out.txt”.

The third feature is ground-breaking – the addition of a “mission initial hour” design parameter

for the optimization process. This design parameter allows for a new range of better

optimization results for both energy and time minimization, taking into account a greater

amount of data from the ever-changing weather. It also provides the user an expectation of

the best time of the day to launch the LEEUAV.

In the way this new design parameter works, a new time system had to be designed. This system

works much like the Unix Timestamp, which is the UTC count in seconds since 1st January 1970,

used in a number of applications and computers [54]. However, the timestamp in this program

is set in hours, and it is referenced from 0h 1st January year 0. Therefore, from data specified

in the “mission_waypoints.txt” file, the mission initial hour takes the following format,

internally to the code:

 𝑡𝑖𝑛𝑖𝑡 = 𝑡𝑖𝑛𝑖𝑡ℎ + 𝑡𝑖𝑛𝑖𝑡𝑑𝑎𝑦 × 24 + 𝑡𝑖𝑛𝑖𝑡𝑦𝑒𝑎𝑟 × 365 × 24 (3.22)

where 𝑡𝑖𝑛𝑖𝑡𝑑𝑎𝑦 is the day of the year, ranging from 1 to 365/366.

The setting of the mission initial hour acts as a reference to the “mission initial hour” design

parameter. From it, a non-zero offset value in hours may be introduced, and from this reference

offset, lower and upper bounds for the minimum and maximum time instants, respectively, are

introduced. The optimization is then undertaken solely within this interval.

Finally, a correction was added to the stall speed constraint. This constraint was applied only

at a segment average speed condition and not at the waypoints. This could result in very low

speeds at the waypoints violating the safety speed margin. Now this constraint is enforced at

the waypoints as well.

3.3 Directory Structure Breakdown

Understanding the directory structure that makes up the Mission Planner Program is crucial to

the development of the Mission Optimization Interface, explained in chapter 4.

In the main folder containing the program, one can find three parts: the “Mission.exe”

executable through which the MPP is run; the “mission_directory.txt” text file, which points

the paths to the various necessary data text files; and the “Missioncode” folder. The functioning

 29

Fortran code files of the MPP are spread out in 10 folders within “Missioncode”. They are sorted,

together with input and output data text files, according to their respective section. The

diagram in Figure 28 sums up this structure.

Figure 28 – Breakdown of the directory structure of the
Mission Planner Program

 30

 31

Chapter 4

GUI Development

This chapter is dedicated to a thorough explanation of the development and functionality of

the Mission Optimization Interface, a graphical user interface intended to be used alongside

the Mission Planner Program created by Coelho, described in the previous chapter.

The GUI was developed using a binding of Python v3.7 code with The Qt Company’s Qt v5

application framework – better known as PyQt5 – under a GPL license [55]. Although Qt’s priority

development code is C++ and Java, Python was chosen for its simplicity and ease of learning,

characteristic of a high-level programming language.

Besides defining the elements that make up the framework of the interface, the way PyQt5

works is focused around signals and slots. Every time an action of potential interest happens in

the interface framework (like clicking a button), a signal that may or may not be connected to

a slot is triggered [56]. Slots may take different shapes, varying between a simple change of a

label text, to the calling of complex code functions.

Due to its complexity, the project was divided in two parts:

• Creation of the GUI application framework – the window itself – using Qt Designer. Only

a few signals and slots where introduced into buttons, widgets and other items within

the main window.

• Implementation of the necessary Python code functions that provide the majority of

signal/slot functionality to the interface as a whole. Within these are also the code

functions that bridge the GUI with the Mission Planner Program, as well as the freeware

MissionPlanner.

Worth noting is the fact that the development of the window framework was dependent on the

Python code implementation. Changes in widgets, buttons and other items’ names had to be

accompanied with necessary changes to this code, and vice-versa. Therefore, after first

finishing the basic framework, these two parts were continuously developed in parallel with

each other towards the end of this thesis.

 32

4.1 Basic Features

The GUI framework is divided into three basic areas of operability, as seen in Figure 29 – the

menu bar (outlined in red), a central tab widget (outlined in green), and a bottom section

(outlined in blue).

The top menu bar contains various functions, some of which are also present in the central and

bottom areas of the interface. Figure 30 shows the appearance of the File menu, the actions

of which are described below:

• “Load flight data” allows the user to load a .dat file containing edited data of the UAV

or mission specifications. With this, the interface replaces data in all fields (except API

keys in the Earth tab) with the loaded data.

• “Load MissionPlanner flight plan” directs the interface to read a .waypoints file created

by the freeware MissionPlanner. This action is explained in section 4.9.1.

Figure 29 – Areas of the GUI main window: menu bar (top, red), tab widget (centre,
green) and bottom section (bottom, blue)

Figure 30 – Interface File menu

 33

• “Read Saved Flight Data optimization results” loads results from a previous

optimization/analysis run of the Mission Planner Program and shows it in the

“Finalization” tab of the central widget, which is further explained in section 4.8.3.

• “Export Files” instructs the interface to export the data edited in the GUI into text

files, which are placed into a folder specified at the bottom section browsers (explained

ahead), as well as the directory text file necessary to the MPP executable.

• “Export Files and Run Optimization” not only exports the files, but it also commands

the start of the MPP using the options described in the “Program Options” tab.

• “Save flight data” allows the user to save the edited interface data into a .dat file, in

a folder of his/her choice.

• “Exit” simply terminates the GUI.

The Edit menu contains actions related to data editing and other miscellaneous actions:

• “Fill all with default values” replaces all editable fields in the interface with default

data loaded from a text file (“default_values.txt”), which can be manually edited, in

the interface executable’s directory.

• On the other hand, “Clear All” simply clears the interface and deletes any data in all

editable fields.

• “Play Alarm when Optimization Program is finished” commands the GUI to trigger a

two-beep alarm when the Mission Planner Program is terminated;

• “Shutdown after Optimization” commands the GUI to shutdown the computer when the

Mission Planner Program is terminated.

The Help menu lists “About” information of the interface, and “Help”, which is a widget with

a separate framework created to aid the user with the operation of the interface. This widget

is merely presentational and does not feature any functionality whatsoever. Figure 32 shows

the first of 13 pages of the “Help” window.

Figure 31 – Interface Edit menu

 34

At the centre area (outlined in Figure 29), the main tab widget is where data processing takes

place. It was divided according to the text files’ subjects where data is stored as input to the

Mission Planner Program – 6 tabs – as was described in section 3.1. Two more tabs are also

present: “Program Options”, which is an intermediate step between exporting files and starting

the MPP; and “Finalization”, where output data is processed and shown to the user (explained

in detail in section 4.8.3).

Lastly, as seen in Figure 33, the Bottom area section handles directory management and

operation triggers:

• The first browser, “Import Mission Planner Waypoint file”, is an action equal to that

described in the File menu, “Load MissionPlanner flight plan” and is explained in section

4.9.1;

• The “Mission Optimizer Main Directory” browser indicates the path to the Mission

Planner Program, which contains the executable “Mission.exe” and the “Missioncode”

folder containing all Fortran subroutines and text files. This is necessary for a large

number of functions within the GUI, including one calling the start of the executable;

• The “Save data and files to project folder” browser specifies a path to which all files

are exported, and the MPP’s working directory, in other words where it will export files

Figure 32 – Introduction page of the “Help” window

Figure 33 – Bottom section of the interface

 35

with output data from analysis/optimization processes. This path is written to the

“mission_directory.txt” file in the directory above. If it is not specified, the MPP uses

files exported to various folders within “Missioncode”.

• The last part contains two buttons – “Export files” and “Export and Run” – which when

clicked instruct actions already described in the File menu. It also contains a progress

bar to the right, which indicates the status of the export operation of the GUI.

Throughout sections 4.2 to 4.7, every subject’s data export operation to a text file involves the

running of Python functions which are called as soon as the GUI checks the integrity of all of

the GUI’s edited data and directory specification. The check processes are described

particularly in every section, and overall in 4.8.

4.2 Aerodynamics

The Aerodynamics subject, important for the calculation of aerodynamic forces and power

requirements for propulsion, involves the exporting of data in two parts: the LEEUAV’s

geometry, and data representing its drag and lift coefficients.

4.2.1 Geometry Data

In the geometry subsection, only four variables are needed:

• Wing reference area (𝑆);

• Fuselage cross section area (𝑆𝐹);

• Fuselage wetted area (𝑆𝑊𝑒𝑡);
• Type of propeller (tractor or pusher).

Figure 34 – GUI’s Aerodynamics section tab

 36

Once the GUI is commanded to export the data, a “checker” function is called. This function

checks if all editable text fields – lineEdits – are convertible to valid numbers. The last variable

is a combo box and it always displays a valid option (index), regardless of the user’s choice.

The flowchart in Figure 35 describes this process.

If any of the fields is an invalid number, the process continues to the next section (Drag Polar

data), but displays an error message and stops the GUI operation “Export Files” at its end,

preventing any files from being exported. Otherwise, the “aerodynamics_geometry.txt” file is

exported at the end of all interface checks.

4.2.2 Drag Polar Data

In this subsection there are 12 editable text fields:

• Up to 9 coefficients, to be used in the drag equation:

 𝐶𝐷(𝐶𝐿) = ∑ 𝐶𝐷𝑖 . 𝐶𝐿(𝑖−1)𝑛𝑖=1
(3.23)

• Fuselage skin friction coefficient (𝐶𝐹);

• Maximum lift coefficient (𝐶𝐿𝑚𝑎𝑥);

• Take-off lift coefficient (𝐶𝐿𝑡𝑎𝑘𝑒𝑜𝑓𝑓).

The first field of the Drag Polar data subsection specifies the number of coefficients to be used

in equation 3.23, and also enables/disables lineEdit boxes accordingly. The rest of the fields

are treated much like in the Geometry section.

After the geometry section is complete, while in the “Export Files” GUI operation, a

“checkAeroPolar” function is called, to validate any and all text inputs. If unsuccessful, an

error message is displayed at the end and no data is exported. Otherwise, a

“aerodynamics_polar.txt” file is exported. This process is described by the flowchart in Figure

36.

Figure 35 - Aerodynamics/Geometry export operation flowchart

 37

4.3 Earth

The Earth section is one of the most complex and important sections developed in the Mission

Optimization Interface. Besides providing terrain elevation data in one part, the other provides

the weather conditions, which may or may not help the optimization process. In some cases,

weather can make this process impossible or even forbid the operation of the LEEUAV

altogether.

L. Coelho’s Python routines that generate the elevation and weather maps, described in section

3.1.2, were integrated into the interface’s “Export Files” slot as callable functions by the

Elevation Data and Weather Data file generation functions, respectively. In addition, new

features were added to these code routines, which will be explained in their respective

sections.

Figure 36 – Aerodynamics/Drag Polar export operation flowchart

Figure 37 – Design of the Earth tab in the interface

 38

4.3.1 Elevation Data

Besides the original API website from which L. Coelho’s elevation map generation function

retrieves data [57], an additional elevation API from Google was added as a possible source of

data [58]. Either one or the other may be chosen in a combo box within the interface, while

also specifying the resolution and keys required.

In addition to this, the following data is also needed:

• A southwest (SW) and northeast (NE) corner points’ coordinates (𝐿𝑎𝑡𝑆𝑊 , 𝐿𝑜𝑛𝑆𝑊 and 𝐿𝑎𝑡𝑁𝐸 , 𝐿𝑜𝑛𝑁𝐸) delimitating the map to be generated;

• The number of points at the border (precision), the square of which gives the total

number of points in the map.

The check system of this section (function “checkElev”) is similar to that of Aerodynamics, as

all values must also be numbers. Additionally, however, the northeast point coordinates must

have greater values than the ones from the southwest point, the latitudes and longitudes must

be within the intervals [−90, 90] and [−180, 180], respectively, and the precision value must be

a positive integer. Unless the user checks the box “Skip elevation map file generation”, stopping

the function altogether, the GUI must ensure an internet connection is established to one of

the API’s IP addresses. These are listed in the file “ip_config.txt”.

If all above conditions are met, then a map can successfully be generated and exported at the

end of the “Export Files” slot operation. This can be summarized by the flowchart in Figure 38.

Figure 38 – Earth/Elevation export operation flowchart

 39

4.3.2 Weather Data

The weather data interface panel is similar to the elevation section. However, a few additional

features are displayed, as seen in Figure 37.

While not added to the Mission Planner Program Fortran code itself, a new improvement made

to the Python weather map generation function created by L. Coelho allows for the automatic

retrieval of several forecasts on the same map. It also automatically adds three more columns

in the generated “earth_weather_n.txt” text files, representing information on the date of

those forecast conditions – hour, day and year.

The weather data API allows for the download of data up to 5 days from the current forecast

hour, which is set to the nearest 3-hour multiple in the 24-hour day cycle. Forecasts are set 3

hours apart from each other, therefore up to 40 weather files can be downloaded at once for

the same map. Of course, the LEEUAV currently developed by UBI and IST is not designed to fly

more than 8 hours straight, and no more than 5 to 7 weather files have to be used. The number

of files needed to fly a route is specified by the part of the interface shown in Figure 39.

In an internal slot function, two variables are needed to calculate the number of weather files

for the same map:

• The “Mission initial hour” (𝑡𝑖𝑛𝑖𝑡ℎ) and day of the year (𝑡𝑖𝑛𝑖𝑡𝑑𝑎𝑦), which are set in the

“Mission” tab;

• The “Mission time duration” (𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛), the expected duration of the mission

adjustable by the user.

The way this function works is that it computes the current forecast (𝑓𝑜𝑟𝑒𝑛𝑜𝑤), using the

computer’s current hour (𝑡𝑛𝑜𝑤ℎ) and rounds it to the nearest 3-hour multiple in the 24-hour day

cycle, where:

 𝑡𝑛𝑜𝑤ℎ ∈ [𝑖 − 1.5; 𝑖 + 1.5[⟹ 𝑓𝑜𝑟𝑒𝑛𝑜𝑤 = 𝑖, 𝑖 = 0,3,6,9,12,15,18,21,24 (3.24)

Following that, in a similar way, the mission initial forecast (𝑓𝑜𝑟𝑒𝑖𝑛𝑖𝑡) and mission final forecast

(𝑓𝑜𝑟𝑒𝑓𝑖𝑛𝑎𝑙) hours are computed:

 𝑡𝑓𝑖𝑛𝑎𝑙ℎ = 𝑡𝑖𝑛𝑖𝑡ℎ + (𝑡𝑖𝑛𝑖𝑡𝑑𝑎𝑦 − 𝑡𝑛𝑜𝑤𝑑𝑎𝑦) × 24 + 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (3.25)

Figure 39 – Closeup of the lower part of the GUI’s Weather Data section

 40

 𝑡𝑖𝑛𝑖𝑡ℎ ∈ [𝑖 − 1.5; 𝑖 + 1.5[⟹ 𝑓𝑜𝑟𝑒𝑖𝑛𝑖𝑡 = 𝑖, 𝑖 = 0,3,6,9, … (3.26)

 𝑡𝑓𝑖𝑛𝑎𝑙ℎ ∈ [𝑖 − 1.5; 𝑖 + 1.5[⟹ 𝑓𝑜𝑟𝑒𝑓𝑖𝑛𝑎𝑙 = 𝑖, 𝑖 = 0,3,6,9, … (3.27)

where 𝑡𝑖𝑛𝑖𝑡ℎ is the mission initial hour, 𝑡𝑖𝑛𝑖𝑡𝑑𝑎𝑦 is the mission initial day (1 to 365/366), 𝑡𝑛𝑜𝑤𝑑𝑎𝑦

is the current day (1 to 365/366) and 𝑡𝑓𝑖𝑛𝑎𝑙ℎ is the mission final hour. Finally, the number of

files to be used can then be calculated:

 𝑛𝑤𝑒𝑎𝑡ℎ𝑒𝑟 = 𝑓𝑜𝑟𝑒𝑓𝑖𝑛𝑎𝑙 − 𝑓𝑜𝑟𝑒𝑖𝑛𝑖𝑡3 + 1
(3.28)

Displayed in the box at the bottom right corner of Figure 39 is the list of forecast hours to be

used (from 𝑓𝑜𝑟𝑒𝑛𝑜𝑤). This list is the group of all usable forecasts contained in the interval [𝑓𝑜𝑟𝑒𝑖𝑛𝑖𝑡, 𝑓𝑜𝑟𝑒𝑓𝑖𝑛𝑎𝑙].
As in elevation, the rest of the data needed for the generation of weather maps is the following:

• A southwest (SW) and northeast (NE) corner points’ coordinates (𝐿𝑎𝑡𝑆𝑊 , 𝐿𝑜𝑛𝑆𝑊 and 𝐿𝑎𝑡𝑁𝐸 , 𝐿𝑜𝑛𝑁𝐸) delimitating the map to be generated;

• The number of points at the border (precision), the square of which gives the total

number of points in the map;

• An API key.

The check system for the weather data section (function “checkWeather”) is almost identical

to that of the elevation data section, however: because the weather API cannot provide past

forecasts, the “checkWeather” function must ensure that the date of the start of the mission

is not set before the current date; on the other hand, because the weather API is limited to

forecasts up to 5 days, the mission initial forecast (𝑓𝑜𝑟𝑒𝑖𝑛𝑖𝑡) and/or mission final forecast

(𝑓𝑜𝑟𝑒𝑓𝑖𝑛𝑎𝑙) hours must not cross this threshold. Should any of these happen, an ERROR message

with description of the violated condition will fill the forecasts’ list box.

Regardless of this, the user still has the choice to run an optimization/analysis using past

weather data files, if the “Skip weather map files generation” checkbox is checked and the

mission date (start-to-finish) is contained within the weather forecasts (files) to be used.

The flowchart in Figure 40 resumes the operation of “checkWeather” after the “Export Files”

slot is called.

 41

4.4 Masses

As its name suggests, the Masses section is the one responsible for exporting data related to

the mass of the aircraft. A simple list of mass values obtained from various parts and systems

that make up the aircraft was embedded into the interface:

• “Structural mass of the aircraft” excludes all other parts in this list;

• “Fuel mass” is present in the case of combustion piston aircraft;

• “Solar system mass” is the sum of the mass of all parts in the solar component;

Figure 40 - Earth/Weather export operation flowchart

Figure 41 – Design of the Masses tab in the interface

 42

• “Propulsion system fixed mass” excludes rotating parts such as motors and propellers;

• “Propulsion system mass” is the sum of the engine/motor mass and the propeller mass,

values that are edited from the “Propulsion” tab;

• “Battery pack mass” is the product of the number of cells in series, number of cells in

parallel and single cell mass, values that are edited from the “Propulsion” tab;

• “Other systems mass” is the sum of the mass of all items in the list present in the

“Systems” tab;

• “Payload mass” is the useful mass carried by the aircraft.

The sum of the mass of all items in the list is displayed after all fields have valid numbers and

is automatically updated whenever any lineEdit field is edited. After the “Export Files” slot

function is triggered, the check function “checkMasses” is called, checking if all lineEdit fields

are valid numbers and if there is a “Total” value. The flowchart for this process is very simple.

4.5 Systems

The Systems tab allows the user to edit data regarding mass and power consumption of various

systems present in the aircraft. These systems exclude the propulsion and solar components,

and the edited values are important for the calculation of the total electric power (𝑃𝑇) and

total energy used (𝐸). As in the Masses tab, a list was embedded into the interface, which

allows for the input of up to 7 systems in the aircraft. In the end, all active systems’ power and

their masses are summed up and their total is displayed at the bottom of the list.

Each line (system) of the list contains 3 editable fields - the system’s name, mass and input

power (consumed power). The system can also be specified to be active or not in a checkbox

to the right. If left unchecked, the power input data is ignored in the calculation of total power

input. To allow editing of the line (system), the “onboard” checkbox also has to be checked,

in the far right. Figure 43 shows an example of a list of systems.

Figure 42 - Masses export operation flowchart

 43

Before any file is exported in the “Export Files” slot, the function “checkSystems” ensures the

validity of data in the Systems tab. All active lineEdit fields in this tab must not be empty, and

the mass and power input boxes must be numbers. Only positive values are allowed in the mass,

but negative values are accepted in the power input field, a way for the user to specify a system

that provides, instead of consuming, power. This function is summarized in the flowchart of

Figure 44.

The calculation of the total mass and power input values is automatically made whenever a

lineEdit field is edited and the content in all enabled fields are valid numbers. Following a

successful calculation of the total mass of these systems, this value is also copied over to the

Masses tab.

Figure 43 - Design of the Systems tab in the interface

Figure 44 – Systems export operation flowchart

 44

4.6 Propulsion

The subject of propulsion is very important to the optimization/analysis process of the LEEUAV.

Editing of data for export in this section is spread through three main parts, all of them

dependent on each other - battery data, motor/engine data, and data representing the

propeller model.

4.6.1 Battery

The first part of the propulsion tab concerns representation of the battery used in the LEEUAV.

Input of data in this part of the GUI is very straightforward. The following is the list of values

required by the MPP:

Figure 45 - Design of the Propulsion tab in the interface

Figure 46 – Closeup of the battery data
section

 45

• Values for nominal (𝑈𝑐𝑒𝑙𝑙), minimum (𝑈𝑐𝑒𝑙𝑙𝑚𝑖𝑛) and maximum (𝑈𝑐𝑒𝑙𝑙𝑚𝑎𝑥) cell voltages;

• Cell capacity (𝐶𝑐𝑒𝑙𝑙);
• Cell maximum current (𝐼𝑐𝑒𝑙𝑙𝑚𝑎𝑥);

• Nominal cell resistance (𝑅𝑐𝑒𝑙𝑙);
• Single cell mass (𝑚𝑐𝑒𝑙𝑙);
• Number of cells in series (𝑛𝑐𝑒𝑙𝑙𝑠,𝑠𝑒𝑟𝑖𝑒𝑠) and in parallel (𝑛𝑐𝑒𝑙𝑙𝑠,𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙).

Values for the battery pack mass (𝑚𝑏𝑎𝑡𝑡) and specific energy (𝑢𝑏𝑎𝑡𝑡) are automatically calculated

as soon as valid entries into the number of cells in series (𝑛𝑐𝑒𝑙𝑙𝑠,𝑠𝑒𝑟𝑖𝑒𝑠) and parallel (𝑛𝑐𝑒𝑙𝑙𝑠,𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙),
cell voltage (𝑈𝑐𝑒𝑙𝑙), cell capacity (𝐶𝑐𝑒𝑙𝑙) and cell mass (𝑚𝑐𝑒𝑙𝑙) are introduced, via the following

equations:

 𝑚𝑏𝑎𝑡𝑡 = 𝑛𝑐𝑒𝑙𝑙𝑠,𝑠𝑒𝑟𝑖𝑒𝑠 × 𝑛𝑐𝑒𝑙𝑙𝑠,𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 × 𝑚𝑐𝑒𝑙𝑙 (3.29)

 𝑢𝑏𝑎𝑡𝑡 = 𝑈𝑐𝑒𝑙𝑙 × 𝐶𝑐𝑒𝑙𝑙𝑚𝑐𝑒𝑙𝑙
(3.30)

As soon as a value of the battery pack mass is obtained, it is copied over to the Masses tab.

During the export operation to a text file, values for the battery resistance (𝑅𝑈), nominal

(𝑈𝑏𝑎𝑡𝑡), minimum (𝑈𝑏𝑎𝑡𝑡𝑚𝑖𝑛) and maximum (𝑈𝑏𝑎𝑡𝑡𝑚𝑎𝑥) voltages, battery capacity (𝐶𝑏𝑎𝑡𝑡) and

battery maximum current (𝐼𝑏𝑎𝑡𝑡𝑚𝑎𝑥) are also computed internally, by:

 𝑈𝑏𝑎𝑡𝑡 = 𝑛𝑐𝑒𝑙𝑙𝑠,𝑠𝑒𝑟𝑖𝑒𝑠 × 𝑈𝑐𝑒𝑙𝑙 (3.31)

 𝑈𝑏𝑎𝑡𝑡𝑚𝑖𝑛 = 𝑛𝑐𝑒𝑙𝑙𝑠,𝑠𝑒𝑟𝑖𝑒𝑠 × 𝑈𝑐𝑒𝑙𝑙𝑚𝑖𝑛 (3.32)

 𝑈𝑏𝑎𝑡𝑡𝑚𝑎𝑥 = 𝑛𝑐𝑒𝑙𝑙𝑠,𝑠𝑒𝑟𝑖𝑒𝑠 × 𝑈𝑐𝑒𝑙𝑙𝑚𝑎𝑥 (3.33)

 𝐶𝑏𝑎𝑡𝑡 = 𝑛𝑐𝑒𝑙𝑙𝑠,𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 × 𝐶𝑐𝑒𝑙𝑙 (3.34)

 𝐼𝑏𝑎𝑡𝑡𝑚𝑎𝑥 = 𝑛𝑐𝑒𝑙𝑙𝑠,𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 × 𝐼𝑐𝑒𝑙𝑙𝑚𝑎𝑥 (3.35)

 𝑅𝑈 = 𝑛𝑐𝑒𝑙𝑙𝑠,𝑠𝑒𝑟𝑖𝑒𝑠 × 𝑅𝑐𝑒𝑙𝑙𝑛𝑐𝑒𝑙𝑙𝑠,𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
(3.36)

The export operation of battery data into the “propulsion_battery.txt” text file first involves

the calling of the check function “checkPropBatt” to ensure all values were introduced (input

of the battery name is optional). All lineEdit fields have built-in validators that only allow the

input of positive numbers. The process flowchart can be seen in Figure 47.

 46

4.6.2 Engine/motor

The engine/motor part is located at the centre of the Propulsion tab. In it, one of two types of

propulsion systems can be chosen: a combustion piston engine, or an electric motor.

Afterwards, six editable general data fields proceed the “Type of propulsion” combo box:

• Name of the engine/motor, which is an optional entry;

• Number of engines/motors (𝑛𝑒𝑛𝑔);

• The throttle limit of the LEEUAV (𝛿𝑙𝑖𝑚𝑖𝑡);
• Mass of a single engine/motor unit (𝑚𝑒𝑛𝑔);

• Gearbox ratio (𝑟𝑔𝑒𝑎𝑟), which is set to 1 by default or if a gearbox is not present;

• Gearbox efficiency (𝜂𝑔𝑒𝑎𝑟), also set to 1 by default or if a gearbox is not present.

Depending on the chosen type of propulsion, different data to be edited appears in a stack

widget below the general data. This is shown in Figure 49.

Figure 47 – Propulsion/Battery export operation flowchart

Figure 48 – Closeup of the Engine/Motor upper
part

 47

In case the combustion piston engine is chosen as the propulsion type, 6 values must be

introduced:

• The maximum power of the engine (𝑃𝑚𝑎𝑥);

• Its maximum speed, at maximum power (𝑁𝑚𝑎𝑥);

• Minimum power at idle throttle (𝑃0);

• Minimum speed at idle throttle (𝑁0);

• Specific fuel consumption (𝑠𝑓𝑐);

• Power required for systems (𝑃𝑠𝑦𝑠,𝑒𝑛𝑔).

In case the electric motor is chosen as the propulsion type, 7/8 values must be introduced:

• The motor speed constant (𝐾𝑣);

• Torque constant (𝐾𝑡) (if chosen to be used, in the checkbox);

• Motor internal resistance (𝑅𝑚𝑜𝑡𝑜𝑟);

• Motor reference no-load current, representing current losses (𝐼0);

• “Motor reference no load voltage” (𝑈0), the voltage for the situation of no-load current;

• Maximum input current (𝐼𝑚𝑎𝑥);

• Maximum input voltage (𝑈𝑚𝑎𝑥);

• Electronic speed controller (ESC) resistance (𝑅𝐸𝑆𝐶).

When the propulsion data is to be exported into the file “propulsion_engine.txt”, a

“checkPropEng” function checks if the relevant lineEdit fields are not empty. This is enough to

ensure the validity of data, as all fields (except the engine/motor name) have built-in validators

that only allow input of positive numbers (integers in the number of engines/motors). In either

type of propulsion chosen, the other’s set of data in the stack widget is irrelevant to this

function – if, in it, a field is found to be empty, its default value will be exported instead. The

flowchart in Figure 50 describes the export process.

Figure 49 – Closeup of the Engine/motor lower part. The left section shows combustion piston
engine data, while the right section shows electric motor data

 48

4.6.3 Propeller

The last part of the Propulsion tab is the propeller section, where data of the LEEUAV’s

propeller must be introduced. Besides the input of the propeller’s diameter (𝑑), pitch (𝑝),

number of blades (𝑛𝑏𝑙𝑎𝑑𝑒𝑠) and mass (𝑚𝑝𝑟𝑜𝑝), one out of five representations must be chosen

and edited for the calculation of the propeller’s power coefficient (𝐶𝑃) and efficiency (𝜂𝑝𝑟𝑜𝑝),

as seen in section 3.1.4.

Figure 50 - Propulsion/Engine export operation flowchart

Figure 51 - Closeup of the
Propulsion/Propeller section

 49

The representation is chosen in the “Type of propeller” combo box, and according to the type,

a set of data is shown in a stack widget at the lower part, below the “Propeller mass” lineEdit

field. The following is a description of how data is introduced in the stack widget, for each

representation:

• Linear interpolation of data points (𝐶𝑝(𝐽), 𝜂𝑝𝑟𝑜𝑝(𝐽)) – a certain number of tables with

specified propeller speeds (𝑁) must be filled with values of advance ratio (𝐽), power

coefficient (𝐶𝑃) and propulsive efficiency (𝜂𝑝𝑟𝑜𝑝) in each line. The number of tables,

as well as the number of lines in each table (“number of advance ratio values”) are

specified in two spin boxes in the upper part of the stack widget;

• Least squares polynomial approximation of data points (𝐶𝑝(𝐽), 𝜂𝑝𝑟𝑜𝑝(𝐽)) – similar to the

above representation, except only one table for a single propeller speed (𝑁) is filled;

• Polynomial representation from user coefficients (𝐶𝑝(𝐽), 𝜂𝑝𝑟𝑜𝑝(𝐽)) – a vector of

coefficients for either 𝐶𝑃 (𝐽) and 𝜂𝑝𝑟𝑜𝑝(𝐽) polynomials must be introduced;

• Approximation using default polynomial curves (𝐶𝑝(𝐽 , 𝑑, 𝑝), 𝜂𝑝𝑟𝑜𝑝(𝐽 , 𝑑, 𝑝)) – the default

model, described in Annex B;

• Approximation using user polynomial curves (𝐶𝑝(𝐽 , 𝑑, 𝑝), 𝜂𝑝𝑟𝑜𝑝(𝐽 , 𝑑, 𝑝)) – coefficient

vectors for 𝐽𝑚𝑎𝑥(𝑑, 𝑝), 𝐶𝑃0 (𝑑, 𝑝), 𝜂𝑚𝑎𝑥(𝑑, 𝑝), 𝐶𝑃 (𝐶𝑃0 , 𝐽 , 𝐽𝑚𝑎𝑥) and 𝜂(𝜂𝑚𝑎𝑥, 𝐽 , 𝐽𝑚𝑎𝑥)
polynomials must be introduced.

Figure 52 – Linear interpolation of data
points, in the Propulsion/Propeller

section

Figure 53 – Least squares polynomial
approximation of data points, in the

Propulsion/Propeller section

 50

Upon the valid entry of the mass of the propeller, its value is automatically copied over to the

Masses tab.

As happened in all previous sections, a function “checkPropProp” is responsible for ensuring

the validity of Propeller data, when the export operation is triggered by the user. Though most

of the lineEdit fields have built-in validators that only allow input of values (positive real

numbers in diameter, pitch, mass and propeller speed; positive integers in the number of

blades), this function must check if all fields are not empty. Moreover, if one of the first two

propeller representations are chosen, the check function must ensure all items in the active

tables are valid positive real numbers.

Figure 54 – Polynomial representation
from user coefficients, in the
Propulsion/Propeller section

Figure 55 – User polynomial curves
representation, in the

Propulsion/Propeller section

 51

4.7 Mission

The Mission tab involves the editing and exporting of data from the input route to be

analysed/optimized, design parameters, equality/inequality constraints, algorithm information

and generic optimization options, such as the objective function. Three files are required by

the MPP, therefore, three sections were also designed in the GUI: Route and Waypoints,

Optimization Criteria and FFSQP Parameters.

Figure 56 - Propulsion/Propeller export operation flowchart

Figure 57 - Design of the Mission tab in the interface

 52

4.7.1 Route and Waypoints

This is a common starting point in the input of data in the interface, and as the name suggests,

the route to be analysed/optimized is introduced here. This section is divided in two parts:

general data in the upper part, and the waypoints’ stack widget at the lower part (which

includes the waypoints table and loiter table).

In the upper part, the following data is edited:

• “Method of waypoints input” – specifies the input method of the route, either externally

from MissionPlanner (explained in section 4.9.1) or internally (manual);

• “Type of coordinates” – choosing from either Geodetic (GEO) or East-North-Up (ENU),

each type of coordinates displays the corresponding page in the waypoints’ stack widget

at the lower part. ENU coordinates are only available if the “Method of waypoints

input” is checked to manual;

• “Type of weather input” – allows the user to instruct the MPP to use downloaded

forecast files (generated at the Weather tab) or data from manual input in the

waypoints table;

• “Mission initial hour” and “Mission date” – self-evident. These values are used as the

reference date (ℎ) in the added Mission Initial Hour design parameter (sections 3.2 and

4.7.2) and in the calculation of forecasts in the Weather tab (section 4.3.2);

• “Number of additional intermediate calculation waypoints (per segment)” – self-

evident. Higher values specified will severely increase the MPP’s overall run time.

Figure 58 - Closeup of the Mission/Route
and Waypoints upper section

 53

The lower part is where the waypoints’ stack widget is located, containing both a waypoints

and loiters table. An expanded view of both coordinates types’ waypoints tables is presented

in Figures 59 and 60.

Each line in the tables represents a waypoint, which can be specified to have or not loiter, and

to be or not ground waypoints, in combo boxes at the 2nd and 3rd columns, respectively.

Ground and #2 waypoints are fixed in the optimization process. In other words, they do not

have active latitude, longitude, or altitude design parameters, while the airspeed design

parameter is only inactive in the first waypoint (see section 4.7.2). First and last waypoints

must always be “ground” and not have loiter. Data for the proceeding columns is summarized

in Table 1.

If the user chooses to input a route manually, he/she can add, remove or move up and down

waypoints using buttons above the table. Moreover, in the case of ENU coordinates, an

additional reference point with geodetic coordinates must be provided to the interface. If the

route is loaded from a MissionPlanner file, the user is also presented the choice to set the

reference point’s coordinates with the ones from the “Home” point set in the MissionPlanner’s

imported route.

Figure 59 – Example of a route in the GEO coordinates waypoints table

Figure 60 – Same route as in figure 59, ENU coordinates waypoints table

 54

Table 1 – Variables for GEO and ENU waypoint tables

Waypoints Table Variables

GEO Description [Units] ENU Description [Units]

Latitude [𝑑𝑒𝑔] x-position From reference point [𝑚]

Longitude [𝑑𝑒𝑔] y-position From reference point [𝑚]

Altitude Above MSL (Absolute) [𝑚] z-position Above MSL [𝑚]

Airspeed True airspeed [𝑚/𝑠] Airspeed True airspeed [𝑚/𝑠]

 x-Windspeed True airspeed [𝑚/𝑠]

Windspeed True airspeed [𝑚/𝑠] y-Windspeed True airspeed [𝑚/𝑠]

Wind direction True heading [𝑑𝑒𝑔] z-Windspeed True airspeed [𝑚/𝑠]

Temperature

Deviation
From ISA [°𝐶]

Temperature

Deviation
From ISA [°𝐶]

Cloud Cover 0 to 100 [%] Cloud Cover 0 to 100 [%]

In case a loiter is added or removed from the waypoints table, the loiters table must be

updated, by clicking the “Refresh loiter table”. An example is shown in Figure 61.

Each line in this table represents a single loiter. The first column indicates the loiter’s order,

while the second indicates the waypoint it is located at. The rest of the columns have the

following data to be filled:

• Time – how long will the LEEUAV circle around. A positive value will make it circle

clockwise, while a negative one will make it circle counter clockwise;

• Airspeed, at which the LEEUAV will circle around;

Figure 61 – Closeup of the loiters table

 55

• Radius, of the loiter circle.

In the “Export files” operation slot, the “checkMissionWpts” function is called to check the

validity of data in this section. As one of the most complex in the GUI, this function checks if

any required field of data is empty or invalid, and these required fields are determined

depending on the user’s choice of the “Type of coordinates” and “Type of weather data to

use”.

If the GEO type of coordinates is chosen, “checkMissionWpts” will only check tables from the

GEO page of the waypoints stack widget. The same applies to ENU coordinates. Meanwhile, if

the user chooses to use weather from forecast files, this function will ignore the last 4 (GEO)

or 5 (ENU) columns regarding the manual input of weather.

Furthermore, if the number of active loiters in the waypoints table is different from that of the

loiters table, or any waypoint numbers are not coincidental, or any field is empty or invalid,

the check function will also prevent the export operation and display an error at the end of the

slot. The flowcharts in Figures 62 and 63 describe the check-export process of this section, with

the final generated file being “mission_waypoints.txt”.

Figure 62 – Mission/Route and Waypoints export operation flowchart #1

 56

4.7.2 Optimization

The optimization section allows the user to edit data relative to the way the Mission Planner

Program is going to run, in particular its optimization method. The following is a list of variables

needed for the MPP:

• Option of optimization – the two methods that are available – analysis only, or

optimization;

• Optimization algorithm – the choice of algorithm to be used in the optimization (FFSQP

is set as default);

• Design parameters – 5 types of design parameters are present: latitudes, longitudes,

altitudes, airspeeds and the mission initial hour. These parameters are edited in 5

tables, which become visible in a stack widget according to the “Design parameters”

combo box displayed option. Special instructions/restrictions are shown in notes above

each table, for a correct introduction of values.

• Design variable scaling – specify if the scale factor values in the tables are active or

not;

• Scaling interval limit – interval limit for the scaling;

• Objective Function – one of three objective functions can be chosen: Minimize Energy,

Minimize Time or Minimize Distance;

• Equality Constraints – the equality constraints limit the optimization of the design

parameters to certain values. The user specifies if the constraint is active in a

checkbox, a scale factor, and a valid value. Up to two can be currently used;

Figure 63 - Mission/Route and Waypoints export operation flowchart #2

 57

• Inequality Constraints - the inequality constraints limit the optimization of the design

parameters to above or below certain values. The user specifies if the constraint is

active in a checkbox, a scale factor, and a valid value. Up to ten can be currently used;

• Constraints scaling – specify if scale factors in the constraints are to be used or not;

• Design variable perturbation – instructs the MPP to override (or not) the approximation

of gradients by finite differences with a specified value;

• Gradients – specifies the type of finite differences to use during convergence of values.

Figure 64 – Expanded view of the Mission/Optimization section. Outlined are the optimization options
(pink), design parameters stack widget (green), objective function (red), equality constraints (blue) and

inequality constraints (yellow)

 58

A line in every design parameter table (except Mission Initial Hour) represents a waypoint of

the input route, with its design parameter value in the 2nd column. Before anything can be

edited however, the button just above the stack widget, “Copy values from waypoints’

coordinates” must be clicked in order to update all tables with the correct number of lines and

values from the Route and Waypoints section. If the waypoints table was filled with ENU

coordinates, the copying function automatically converts them to GEO coordinates. The

function “checkMissionWpts” is also called, ensuring that data in the Route and Waypoints

section was correctly introduced. If not, the copying operation is halted with an error message.

Following the values’ column, the 3rd column indicates whether the design parameter is active

or not. By updating the tables, the first, second and last waypoints automatically have their

latitude, longitude and altitude design parameters set to inactive, and only the first waypoint’s

airspeed design parameter is set to inactive, for the optimization. The rest of data is divided

into four columns: Lower bound, the lowest value that the parameter can get during the

optimization; Upper bound, the highest value that the parameter can get during the

optimization; Increment, to be used while changing values during the optimization; and Scale

Factor, used to scale the design parameter value for a balanced optimization (kept as 1 by

default). Figure 65 illustrates examples of the design parameter tables used.

The design parameter value in the mission initial hour assumes a value of 0 by default, meaning

it will use the reference defined in section 4.7.1 and adjust it (if active) between the lower

and upper bounds. However, the user can change its optimization reference for better results.

Like in all previous sections, when the “Export files” slot is triggered, the data for this section

is checked with the function “checkMissionOpt” before it is exported into the file

“mission_optimization.txt” for the MPP to use. This function checks that all tables do not have

Figure 65 – Expanded view of Latitude design parameter table (similar to longitude, altitude
and airspeed tables) (upper) and mission initial hour design parameter table (lower)

 59

empty or invalid fields, the number of waypoints, as well as its values, are the same as the

waypoints table in the Route and Waypoints section (4.7.1), and that the “ground” waypoints

are not active design parameters. It also checks, for all active constraints, and if the “Design

variable perturbation” is set to override, that their “Value” lineEdit fields have valid numbers.

This operation is summarized in the flowchart of Figure 66.

4.7.3 FFSQP

The FFSQP section contains data essential to the functionality of the FFSQP algorithm used in

the optimization method.

Figure 66 – Mission/Optimization export operation flowchart

 60

Data edited is this section includes:

• “Optimization parameters (mode)” – specifies the optimization mode, with an assumed

C-B-A number structure, the meaning of which is defined in Table 2, according to [52];

Table 2 – Modes of Optimization values table

Modes of Optimization

Number Value Job Options

C

1

During line search, the function that rejected the previous step size is

checked first; all functions of the same type (“objective” or

“constraints”) as the latter will then be checked first

2
All constraints will be checked first at every trial point during the line

search

B
0 Monotone decrease of objective function after each iteration

1 Monotone decrease of objective function after at most 4 iterations

A

0 Ordinary minimax problems

1
Ordinary minimax problems with each individual function replaced by

its absolute value, i.e. an 𝐿𝑖𝑛𝑓𝑡𝑦 problem

Figure 67 – Closeup of the Mission/FFSQP
section

 61

• “Desired output” – print level indicator (𝑖𝑝𝑟𝑖𝑛𝑡). According to its value, the following

options apply, as described in [52]: 0 – “no normal output except error information (this

option is imposed during phase 1)”; 1 – “a final printout at a local solution”; 2 – “a brief

printout at the end of each iteration”; 3 – “a detailed information is printed out at the

end of each iteration for debugging purposes”; 10 × 𝑁 + 𝑀 – “𝑁 any positive integer, 𝑀 = 2 or 3. Information corresponding to 𝑖𝑝𝑟𝑖𝑛𝑡 = 𝑀 will be displayed at every

(10 × 𝑁)th iteration at the last iteration”;

• “Maximum number of iterations” (𝑚𝑖𝑡𝑒𝑟), allowed to solve the problem;

• “Infinite bound” (𝑏𝑖𝑔𝑏𝑛𝑑) – assumes a positive infinite value;

• “Final norm requirement for the Newton direction” (𝑒𝑝𝑠) – stopping criterion that

ensures, at a solution, that the norm of the Newton direction vector is smaller than the

specified value;

• “Maximum violation of non-linear equality constraints” (𝑒𝑝𝑠𝑒𝑞𝑛) – the tolerance of the

violation of non-linear equality constraints allowed by the user at an optimal solution;

• “Perturbation size suggested to use in approximating gradients by finite differences”

(𝑢𝑑𝑒𝑙𝑡𝑎) – perturbation size in computing gradients by finite differences. The true

perturbation is determined by 𝑠𝑖𝑔𝑛(𝑥𝑖) × max {𝑢𝑑𝑒𝑙𝑡𝑎, 𝑟𝑡𝑒𝑝𝑠 × max (1, |𝑥𝑖|)} for each

component 𝑥𝑖 of 𝑥 (𝑟𝑡𝑒𝑝𝑠 is the square root of the machine precision). Should be set to

0 if the user has no idea how to choose it;

• “Correction factor to size the increment in design variables in the search process”

(𝑢𝑓𝑎𝑐𝑡𝑜𝑟) – self-explanatory. User may check this correction factor to be used or not in

a checkbox (if not used, the correction factor is set to a value of -1, internally).

• “Force optimization stop” – forces a controlled stop of the optimization. This is not

used at the start, and “Continue” should be chosen at all times. The manual controlled

stop of the MPP from the GUI is a feature not yet developed;

• “Average perturbation for variable increment” (𝑑𝑒𝑙𝑡𝑎) – perturbation size when variable

increments are used;

• “Maximum no. of iterations during execution” (𝑐𝑜𝑢𝑛𝑡𝑚𝑎𝑥) – the convergence process

will stop if a solution is repeated more than the specified times.

Data from this section is exported to the file “mission_ffsqp.txt”, when the “Export files” slot

is triggered and the function “checkMissionFFSQP” verifies the validity of all data. This function

simply ensures that no active lineEdit fields are empty. The “mode”, 𝑚𝑖𝑡𝑒𝑟, and 𝑐𝑜𝑢𝑛𝑡𝑚𝑎𝑥

variables have built-in validators that only allow positive integers, while the rest of variables

accept all sorts of values, positive and negative. Still in terms of input of data, this section

demands a greater level of attention from the user than the rest of the GUI. The check function

before export is summarized in the flowchart of Figure 68.

 62

4.8 Functioning Structure

Following input in all 6 tabs of the central tab widget and directory fields of the bottom section,

the user is able to export the data, and if so wishes, to run the Mission Planner Program. These

operations are both triggered by clicking the “Export and Run” button, whereas the “Export

Files” button only triggers the export operation. Hence, the basic functioning structure of the

Mission Optimization Interface is built around two main operation slots: “Export Files”, made

up by the “check” functions and the “run” functions (that export files); and “Export and Run”,

that calls “Export Files” and proceeds to run the MPP.

4.8.1 Exporting Files

There are 13 “check” and 13 “run” functions, which corresponds to the total number of text

files exported. Each check function returns a “stop” variable at its end, where a value of 1

corresponds to a successful validation, and a value of 0 corresponds to an unsuccessful

validation. If the product of the 13 “stop” check values is 0, the operation triggered by the user

stops, and all errors sent by check functions of affected sections appear. Otherwise, the export

part of the operation – the “run” functions – may commence.

Figure 68 - Mission/FFSQP export operation flowchart

Figure 69 – Example of an error box showing the affected section

 63

At each “run” function’s end, a signal is sent to update the progress bar at the bottom section,

reaching 100% when all files will have been exported. The “Export Files” slot is summarized in

the flowchart of Figure 70.

The function “checkMissionDir” checks that the folders, the directories of which specified at

the bottom section – “Mission Optimizer Main Directory” and, if applicable, “Save data and files

to project folder” – and needed files, such as “Mission.exe”, exist. If successfully checked, the

directory texts are exported to the file “mission_directory.txt”.

4.8.2 Running the MPP

The “Export and Run” slot is triggered by clicking the button of the same name, at the bottom

area section of the interface. The “Export Files” slot is then called, and in case the return value

“stop” of that function is 1, then the MPP can be started. Otherwise, if it is 0, the GUI stops

the operation, because the check system in section 4.8.1 detected errors in data input. This

system prevents crashes of the GUI or MPP, as well as bad optimization runs.

Figure 70 – “Export Files” slot operation flowchart

 64

At the end of the export process, all 6 previous tabs are locked and a new tab is shown –

“Program Options” – where three basic execution options are displayed: option of optimization,

optimization algorithm and objective function (set in section 4.7.2). This is the last chance for

the user to edit data and cancel the start of the MPP, which can be done by clicking the button

“Back to data input”. Otherwise, the MPP is started by clicking the “Run” button.

By clicking the “Run” button, the GUI starts the “Mission.exe” file in the program’s main

directory, and automatically inputs the option with which to run the program, using virtual

keyboard strokes. Because of the limitations of this interface system, it is important to keep

the GUI and then the “Mission.exe” window up front in the computer screen, otherwise the key

strokes are applied elsewhere and the optimization is not successfully started.

Depending on the amount or type of input data and optimization options, the “optimizer” may

take from some minutes to several hours to finish. For the interface to know when that happens,

a loop function checks at every second if a “dummy_checker.txt” file is present in the

executable’s main directory, because that file is created by the MPP when it finishes (see

section 3.2).

If by any reason the executable’s window is unknowingly or manually closed, the GUI stops the

loop check function and displays an error message informing about the situation. Upon this, it

does not read any output data files.

4.8.3 Finalization

After the MPP finishes and creates the “dummy_checker.txt” file, the executable’s window is

closed and the checker file is deleted by the GUI. Afterwards, a new tab called “Finalization”

is open, and one of three situations may then happen:

Figure 71 - GUI’s Program Options tab

 65

1. The Mission Planner Program successfully optimized a route and created the output

files “mission_out.txt” and “mission_convergence.txt” with no errors;

2. The Mission Planner Program could not find an optimized solution for the input route,

and only the “mission_out.txt” analysis file was created, with no errors;

3. The Mission Planner Program could not find an optimized solution, neither could

successfully analyse the input route, in which case only the “mission_out.txt” output

file was created, with errors.

In a normal situation (1), a message will be displayed, warning the user to save the results. The

output data is retrieved from “mission_out.txt” and “mission_convergence.txt”, and displayed

in several fields:

• Mission initial hour – depending on whether the respective design parameter was active

or not, the calculated or fixed initial hour is displayed in this field;

• Objective function – the obtained optimized value for the chosen objective function is

displayed here;

• Battery energy/fuel fraction left – indicates the remaining fraction of energy left at the

end of the mission;

• Analysed/Optimized Mission route summary – a table that displays the new optimized

route, or the input route;

• Total Mission Distance – always shows the calculated distance of the route;

• Total Mission Time – displays the calculated or optimized duration of the mission.

These results can then be saved, via the “Save Optimized Data” button, into a .dat file, which

is readable by the action “Read saved flight data optimization results” in the file menu. The

new route is also displayed in the table at the lower part, and can be converted to a

MissionPlanner’ readable .waypoints file, using the button “Convert route to MissionPlanner

waypoints file” (explained in section 4.9.2).

Figure 72 – GUI’s Finalization tab

 66

In case situation 2 happens, the GUI will display an error message, informing the user that a

solution was not found in the optimization process. Only data from the analysis process is loaded

into the fields above, the objective function field will display the calculated used energy

instead, and the table at the lower part will display the input route. The results can still be

saved into a .dat file.

In case situation 3 happens, the GUI will not display any data at all, and no export/save actions

are possible.

The user can then go back to data editing (from the present session, and not from .dat results

files) using the button “Back to data input”.

4.9 Interface with MissionPlanner (freeware)

This section is dedicated to explaining the interface process behind the import and export of

routes to and from the freeware MissionPlanner by Michael Oborne.

4.9.1 Import route

Importing a route from MissionPlanner facilitates the insertion of data into the waypoints’ table

inside the GUI’s Mission tab, Route and Waypoints section. It also provides intuitive visual aid

to the creation of the waypoints themselves, as the route can be visualized on a map.

In MissionPlanner, a route is defined by a set of commands. These are executed by the UAV (in

autopilot mode) by the order they appear in the list. Due to this, specific commands should be

set in a certain priority in relation to one another, so that the UAV can successfully fly the

route. Additionally, some commands like TAKEOFF or LAND are necessary for the UAV’s

autopilot (ArduPilot).

For the creation of a route to be exported to the Mission Optimization Interface, some of these

rules may not be necessary. However, each waypoint (from start to finish) should have the

following command sequence:

1. WAYPOINT (coordinates);

2. DO_CHANGE_SPEED (airspeed);

3. LOITER_TIME (loiter, optional).

If a waypoint does not have loiter, the LOITER_TIME command can be ignored. Like a normal

route creation, a set of HOME coordinates must also be specified to be exported to the GUI,

and they can be the same as the first waypoint coordinates. Also, the use of absolute (above

MSL) altitudes is recommended, as the first two and last waypoints of the final optimized route

use altitudes directly from the input route (see section 4.9.2). An example of a route ready for

export to the GUI is shown in Figure 73.

 67

The route can then be exported to a .waypoints file using the button “Save WP File” to a folder

of the user’s choice, and imported by the Mission Optimization Interface.

The way the import function of the GUI works, is that it amalgamates the three WAYPOINT,

DO_CHANGE_SPEED and LOITER_TIME commands’ data into single waypoints, and displays the

converted route in the GEO waypoints’ table in the Route and Waypoints section. The HOME

coordinates can be copied to the ENU waypoints’ table reference point if the user chooses to

do so. Finally, an information message is displayed if the import process is successful.

4.9.2 Export route

This is the final step in the mission planning process that began in data editing and route import.

In a similar way as route import, the export process to MissionPlanner allows the user to actually

fly the optimized/analysed route in a real UAV, using the ArduPilot autopilot.

As was explained in the previous section, a number of commands, particularly TAKEOFF, LAND

and DO_SET_HOME are essential to the correct functioning of the autopilot in the UAV. As such,

those commands are added in the function that converts the route displayed in the table at the

lower part of the “Finalization” tab. It is worth noting that the altitude to be used in

MissionPlanner should always be Absolute, without the “Verify Height” checkbox checked.

The DO_SET_HOME command is added right at the top of the list that will make up the route,

as displayed in the MissionPlanner. It automatically sets the HOME coordinates from the first

waypoint displayed in the GUI. ArduPilot does not take into account any starting waypoint, as

it only starts the commands list with TAKEOFF, maintaining the heading set by the user on the

ground, until it reaches the height specified in the command. In essence, the HOME coordinates

become waypoint #1.

TAKEOFF is the second command added to the list. During its execution, the ArduPilot instructs

the UAV to fly, maintaining its initial heading, until the altitude and with a “pitch angle”

specified in the command line. By default, the altitude set is the first waypoint’s altitude plus

Figure 73 – Example of a 5-waypoint route in MissionPlanner ready to be exported to the GUI

 68

60 metres, and the pitch angle is set to 25 degrees. These can later be changed by the user in

MissionPlanner. Following this, the speed is changed to that of waypoint #1 using a

DO_CHANGE_SPEED command. The 4th command sets the coordinates of waypoint #2, using the

altitude set in TAKEOFF, and the 5th sets the airspeed of waypoint #2, using a

DO_CHANGE_SPEED command.

The rest of commands are added in a similar fashion, always with the coordinates first and the

change in speed in second.

In case a loiter was added to a waypoint, a DO_CHANGE_SPEED command that sets the loiter

speed and a LOITER_TIME command that sets the time and radius, are added between the

WAYPOINT and DO_CHANGE_SPEED commands of the affected waypoint. This is done so that

after the UAV finishes loitering, it will change its speed to that originally set in the waypoint.

The LAND command is the last to be added to the list, with the same coordinates and altitude

as the last waypoint. By default, its abort altitude is set to 5 metres.

On a final note, the route exported to MissionPlanner should not directly be used by the UAV.

All altitudes should first be checked (as warned by a message in the GUI), and some waypoints

may have to be moved for operational reasons. Ultimately, the user has the authority and

responsibility for the operational functionality of the route to be flown automatically by the

autopilot, or to act as an aid to manual flying by a human pilot. Flexibility is one of the many

advantages that MissionPlanner presents to the operation of UAVs.

Figure 74 – Example of a converted route in MissionPlanner. Highlighted are the DO_SET_HOME
command (red), the TAKEOFF and LAND commands (green), and the example of a waypoint (blue) with

loiter commands (yellow)

 69

Chapter 5

GUI Application and Mission Optimization Tests

5.1 Introduction

In order to prove the efficiency and reliability of both the Mission Planner Program and the

latest added features to the software, including the developed interface of this thesis, several

tests under different conditions, parameters and objective functions were performed, and are

presented in this chapter.

Although a large number of tests were performed to the GUI throughout its development, they

are not described in the present work as they are considered to be part of the development

phase itself. Rather, only testing of the final product sequence – MissionPlanner-GUI-

Optimization-GUI-MissionPlanner – is described and discussed in the following sections.

5.1.1 Choice of route

For the matter of simplicity and availability of time, a single route was chosen for the testing

procedures, where a large number of conditions can be tested and its results compared much

more easily. Using more than one route is unnecessary to prove the functionality of the Mission

Planner.

The departing point of the route was chosen at Terlamonte airfield (N40.2956° W7.4369°,

elevation 506 m), near the city of Covilhã, Portugal. The LEEUAV then flies to a point 60 metres

above Castelo Branco Municipal Airport (N39.8506° W7.4431°, elevation 377 m), where it loiters

for 10 minutes, and proceeds to return to Terlamonte, where it finally lands. There was a desire

in reducing the number of waypoints as much as possible, in order to reduce the running time

of the optimization process of the MPP. A minimum of 8 waypoints were used for the definition

of the input route, a number which is high enough to not compromise the optimization process

in any way, guaranteeing 2 free waypoints in the Terlamonte-Castelo Branco route, and another

2 in the back course.

In addition, the route was designed to not have a segment climb or descent inclination of more

than 8 degrees, to make sure that the LEEUAV can climb or descend within the maximum power

setting and minimum power constraints. Moreover, after an initial testing sequence, the route

was feasible in order to be flyable by the LEEUAV. This was necessary, as the tests were made

in October-November and the weather conditions were not the most favourable.

 70

Tables 3 and 4 show how the input route and some of its design parameters should look like in

the Mission Optimization Interface’ Mission tab, Route and Waypoints section.

Table 3 – Waypoints table of the input route

Waypoints table

Waypoint

Number

Ground/

Air
Loiter

Latitude

[deg]

Longitude

[deg]

Altitude

[m]

Airspeed

[m/s]

1 G N 40.2955981 -7.4369381 506 0

2 G N 40.2954416 -7.4377535 507 10

3 A N 40.1000000 -7.4638367 1000 10

4 A N 39.8840715 -7.4602962 700 10

5 A Y 39.8505562 -7.4430656 437 10

6 A N 40.1085378 -7.4500000 1000 10

7 A N 40.2700000 -7.4291825 600 10

8 G N 40.2955838 -7.4369341 506 10

Table 4 – Loiters table of the input route

Loiters table

Loiter Number Waypoint Number Time [s] Airspeed [m/s] Radius [m]

1 5 600 10 100

Figures 75 and 77 display the input route as was edited in the freeware MissionPlanner, before

exporting it to the Mission Optimization Interface.

Figure 75 – List of commands of the input route in the MissionPlanner

 71

After exporting the MP route to the GUI, waypoint #5’s latitude, longitude and altitude design

parameters were deactivated for optimization in the Design Parameters’ tables, ensuring that

the loiter in waypoint #5 is fixed. The automatic copying process described in section 4.7.2

ensures that waypoints #1, #2 and #8 are also fixed, as shown in Figure 76.

Figure 76 – Top-down map view of the route in MissionPlanner

Figure 77 – View of input route data in the GUI’s Mission tab

 72

5.1.2 Elevation and Weather conditions

The tests were run using downloaded elevation and real-time weather data for 5 days,

optimizing according to two objective functions – “Minimize Energy” and “Minimize Time” – and

two types of LEEUAV propulsion data, detailed in section 5.1.3. Also, on each choice, 5 tests

were run using a fixed mission initial hour, plus another with an active (variable) mission initial

hour design parameter. At the end, the best fixed-hour solution for each day was further

optimized with a variable initial hour parameter. This adds to a total of 140 tests performed.

The elevation map’s latitude and longitude coordinates are comprised within the intervals [39.30°; 40.80°] and [−8.00°; −7.00°], respectively. The software Tecplot enables an in-depth

visualization of the elevation map, which is shown in Figures 78 and 79, with the initial route.

The weather map’s latitude and longitude coordinates are comprised within the intervals [39.30°; 40.80°] and [−8.00°; −7.00°], respectively. The different weather conditions obtained

from 5 days (24-27 October and 16 November) are set in the earlier hours, from 3h to 15h.

Figures 80 and 81 show the representation of the wind and cloud percentage maps, for 9h and

12h, respectively.

Figure 78 – 3D view of the terrain map and input route

Figure 79 – Side view of the terrain map and input route. Departing point is on the right side

 73

Figure 80 - Tests’ daily cloud and wind analysis at 9 o’clock. North is to the right side

Figure 81 - Tests’ daily cloud and wind analysis at 12 o’clock. North is to the right side

 74

An analysis of the previous maps shows that cloud coverage conditions worsen from 9h to 12h

in days 1, 4 and 5, while wind changes are mixed in all 5 days. Day 4 appears to have the worst

weather to fly a mission, showing the highest cloud coverage, and a change in wind direction

from due west to due north-west. In opposite terms, days 3 and 5 appear to have the best cloud

coverage to fly, ranging from complete clear sky (0%) to about 25% partially overcast. However,

wind changes may result in higher or lesser energy usage, depending on the starting hour of the

mission. Stronger winds present in days 2, 3 and 4 may outweigh any advantage from a clearer

sky. It is also worth noting that the temperatures for day 5 (16 November) are considerably

lower than that of days 1-4 (24-27 October), by a margin of approximately 6 to 8 degrees

Celsius.

Despite in-depth analysis of the weather, only a thorough calculation of energy usage and flight

time of the route by the MPP can provide the clearest picture of what are the best conditions

and times to fly the LEEUAV.

5.1.3 LEEUAV data

Two types of propulsion (“engine”) data for the same LEEUAV model were used in the

optimization tests, for a greater diversity of result values. This model uses only one motor and

a 2-blade propeller. In summary, the differences between the two types are presented in tables

5 and 6, while data related to aerodynamics, mass, systems and battery is the same for both

engine types 1 and 2. Unspecified parameters are defined at the Nomenclature section.

Table 5 – LEEUAV Motor Data

LEEUAV Motor Data

 Motor 1 - Scorpion SII-4025-520kV Motor 2 - Hyperion ZS3025-10 𝛿𝑙𝑖𝑚𝑖𝑡 1 1 𝑚𝑒𝑛𝑔 [𝑘𝑔] 0.353 0.198 𝑟𝑔𝑒𝑎𝑟 1 1 𝜂𝑔𝑒𝑎𝑟 1 1 𝐾𝑣 [𝑟𝑝𝑚/𝑉] 520 775 𝑅𝑈 [Ω] 0.009 0.019 𝐼0 [𝐴] 1.4 1.61 𝑈0 [𝑉] 10 10 𝐼𝑚𝑎𝑥 [𝐴] 100 65 𝑈𝑚𝑎𝑥 [𝑉] 25.2 16.8 𝑅𝐸𝑆𝐶 [Ω] 0.005 0.006

 75

Table 6 – LEEUAV Propeller Data

LEEUAV Propeller Data

 Propeller 1 - General 2-blade Propeller 2 - General 2-blade 𝑑 [𝑖𝑛] 19.09 16 𝑝 [𝑖𝑛] 15.43 8 𝑛𝑏𝑙𝑎𝑑𝑒𝑠 2 2 𝑚𝑝𝑟𝑜𝑝 [𝑘𝑔] 0.072 0.072

Table 7 – LEEUAV Aerodynamics-Geometry Data

Aerodynamics – Geometry 𝑺 [𝒎𝟐] 𝑺𝑭 [𝒎𝟐] 𝑺𝑾𝒆𝒕 [𝒎𝟐] Type of propeller

1.485 0.0144 0.2 Tractor

Table 8 - LEEUAV Aerodynamics-Drag Polar Data

Aerodynamics – Drag Polar Coefficients 𝑪𝑫𝟎 𝑪𝑫𝟏 𝑪𝑫𝟐 𝑪𝑫𝟑 𝑪𝑫𝟒

0.057597933 -0.13382301 0.24208129 -0.15192704 0.041836736

Table 9 – LEEUAV Aerodynamics-Aircraft Representation data

Aerodynamics – Aircraft Representation 𝑪𝑭 𝑪𝑳𝒎𝒂𝒙 𝑪𝑳𝒕𝒂𝒌𝒆𝒐𝒇𝒇

0.001 1.5 0.8

Table 10 – LEEUAV Masses Data

Masses [𝒌𝒈]
Structural Fuel Solar System Propulsion System Fixed

2.624 0 0.801 0.1

Propulsion System Battery Pack Other Systems Payload

0.425 (1) or 0.27 (2) 0.75 0.5 0.2

 76

Table 11 – LEEUAV Systems Data

Systems

System Mass [𝒌𝒈] Power [𝑾]
Avionics 0.5 11.750

Table 12 – LEEUAV Battery Data

Battery – SPS_APL_3S1P_10000mAh 𝑼𝒄𝒆𝒍𝒍 [𝑽] 𝑼𝒄𝒆𝒍𝒍𝒎𝒊𝒏 [𝑽] 𝑼𝒄𝒆𝒍𝒍𝒎𝒂𝒙 [𝑽] 𝑪𝒄𝒆𝒍𝒍 [𝑨𝒉] 𝑰𝒄𝒆𝒍𝒍𝒎𝒂𝒙 [𝑨]
3.95 3.3 4.2 10 150 𝑹𝒄𝒆𝒍𝒍 [𝛀] 𝒎𝒄𝒆𝒍𝒍 [𝒌𝒈] 𝒏𝒄𝒆𝒍𝒍𝒔,𝒔𝒆𝒓𝒊𝒆𝒔 𝒏𝒄𝒆𝒍𝒍𝒔,𝒑𝒂𝒓𝒂𝒍𝒍𝒆𝒍 𝒖𝒃𝒂𝒕𝒕 [𝑾𝒉/𝒌𝒈]
0.001 0.25 3 1 158.0

5.1.4 Mission constraints

Some of the constraint functions described in section 3.1.5 were used during the optimization

tests to actively limit the calculation of variables in those functions to only feasible ones. No

equality constraint functions were ever used, and the inequality constraints used are listed in

Table 13.

Table 13 – Inequality constraint functions used during the optimization tests

Inequality Constraint Functions

Description Scale factor Value

Engine setting ≤ Engine setting max (𝛿 ≤ 𝛿𝑙𝑖𝑚𝑖𝑡) at design

conditions
1 1.00

Motor current ≤ Motor current max (𝐼 ≤ 𝐼𝑚𝑎𝑥) at design

conditions
1 100 A (𝑉𝑚𝑖𝑛𝑉𝑠)2𝐶𝐿 ≤ 𝐶𝐿𝑚𝑎𝑥 at design conditions 1 1.5

Segment height min ≥ [sel. value] (ℎ𝑗 ≥ ℎ𝑟𝑒𝑓) 1 50 m

Segment power min ≥ [sel. value] (𝑃𝑗 ≥ 𝑃𝑟𝑒𝑓) 1 0.1 W

Mission energy left min ≥ [sel. value] (𝐸𝑙𝑒𝑓𝑡 ≥ 𝐸𝑟𝑒𝑓) 1 20.0 %

In order to better obtain similar results from any subsequent repetition of the tests made in

section 5.2, it is also necessary to mention that the values used for the upper and lower bounds

of the latitude, longitude, altitude and airspeed design parameters are listed in Table 14.

 77

Table 14 – Lower and Upper bounds used during the optimization tests for the design parameters

Design Parameters’ Lower and Upper bounds

Description Lower Bound Upper Bound Units

Latitude (𝜑) 39.8 40.31 deg

Longitude (𝜆) -7.5 -7.39 deg

Altitude (ℎ) 0 2500 m

Airspeed (𝑉) 0 100 m/s

An increment value of 0.00001 and a scale factor of 1 was used for all design parameters.

When active, values for the lower and upper bounds of the initial hour design parameter were

adjusted, according to the reference initial hour used, in order to maintain a [8ℎ, 12ℎ] time

interval. The exceptions are in the 8h and 12h reference initial hours, where the time intervals

of [7ℎ, 12ℎ] and [8ℎ, 13ℎ] were used, respectively.

5.2 Test Results

In order to facilitate organization, a project folder was created for the GUI to export the files

to. This folder contains several subfolders with test data, the names of which follow the code

division presented in Table 15.

Table 15 – Codes to organize the tests

Test codes

E1 Engine-propeller data 1

E2 Engine-propeller data 2

ME Minimize Energy objective function

MT Minimize Time objective function

D(i) Day (number) of weather data

F(i)H Fixed i-hour optimization

VarH Variable hour optimization

VarH2 Variable hour 2nd optimization

5.2.1 ME Tests

The first batch of tests executed were the “Minimize Energy” (ME) tests, for both E1 and E2

engine-propeller types. Firstly, five fixed mission initial hour optimizations (4h, 6h, 8h, 10h and

12h) were performed, as well as optimizations with variable mission initial hour parameters

within the [8ℎ, 12ℎ] time interval. Following this, a series of 2nd optimizations, with variable

 78

mission initial hour parameters of the underlined best solutions obtained from the fixed initial

hours, was performed. The results obtained are presented in Tables 16 and 17.

Table 16 – Engine-propeller type 1, Minimize Energy (E1-ME) test results

Test E1 – ME

Time Variable Day 1 Day 2 Day 3 Day 4 Day 5

Initial hour: 8h 653492 J 690911 J 649817 J 665903 J 674464 J

Initial hour: 10h 649320 J 657011 J 649416 J 660647 J 679598 J

Initial hour: 12h 669576 J 673894 J 680306 J NS 746196 J

Variable Initial

hour (2nd opt.)*

648735 J

(9h:58m)

656140 J

(9h:58m)

640907 J

(8h:51m)

659853 J

(9h:58m)

670074 J

(8h:49m)

Variable Initial

hour

644454 J

(9h:13m)

655562 J

(9h:12m)

645275 J

(9h:3m)

652641 J

(8h:47m)

669888 J

(9h:28m)

Data presented as: energy (initial hour); *Optimization of previous best result; NS=No Solution

Table 17 – Engine-propeller type 2, Minimize Energy (E2-ME) test results

Test E2 – ME

Time Variable Day 1 Day 2 Day 3 Day 4 Day 5

Initial hour: 8h 744497 J 757012 J 756580 J 751675 J 769485 J

Initial hour: 10h 739432 J 749986 J 756870 J 754011 J 775785 J

Initial hour: 12h 777085 J 770858 J 785644 J NS 858212 J

Variable Initial

hour (2nd opt.)*

736077 J

(9h:52m)

749998 J

(9h:59m)

742366 J

(8h:25m)

749780 J

(8h:14m)

764210 J

(8h:57m)

Variable Initial

hour

739546 J

(9h:28m)

752454 J

(9h:31m)

733002 J

(8h:56m)

746759 J

(8h:47m)

764059 J

(9h:12m)

Data presented as: energy (initial hour); *Optimization of previous best result; NS=No Solution

All Mission Planner Program runs in the fixed 4h and 6h initial hours are not displayed in these

tables, because no solution was obtained from the optimization process. This is due to the fact

that the UAV runs out of energy before reaching Castelo Branco, as there is no solar light in

that time of the day to balance the energy consumption (during the last days of October and

early days of November, the sun rises at just past 7 o’clock). The testing experience also showed

that fixed 8h initial hour tests are more prone to optimizations with no solutions, because of

very low angles of incidence between the sunlight and the PV panels surface.

In short, engine-propeller data 1 is more efficient for the flight conditions than engine-propeller

data 2. This may be explained by the fact that motor 1 can run on a higher power setting

(𝑈𝑚𝑎𝑥. 𝐼𝑚𝑎𝑥), and propeller 1 has a higher diameter and pitch values than propeller 2. Due to

the lower efficiency of the propulsion system of data 2, more altitude and airspeed

 79

modifications to the initial route had to be made to turn the initial route flyable, while

optimizations using data 1 used less or none at all. In general, there is not much difference

between both data types, regarding the best time to launch the UAV, which is mostly set

between 9h and 10h.

The lack of any solutions at 12h of day 4 confirms the expectation made in section 5.1.2 that

this is the worst time to fly the aircraft. On another note, energy values from day 5 are higher

than any other day, despite good cloud coverage, whereas the lowest energy values are found

in days 1 and 3. Explanation for this can be found in the changing wind directions in days 1-4

(Figures 80 and 81), which are always favourable if the aircraft takes off at 9h, and returns

around 12h. Wind direction barely changes in day 5.

Despite the variable initial hour time window ranging from 8h to 12h, the results from E2-ME-

D1-VarH and E2-ME-D2-VarH are not the lowest energy used values obtained from the

optimization tests for each corresponding day. However, the remaining variable-hour

optimizations did get the lowest energy usage for each day, proving the reliability of this added

design parameter.

An analysis of the series of second optimizations shows that, with the exception of E1-ME-D3-

VarH2, E2-ME-D1-VarH2 and E2-ME-D2-VarH2, the values obtained from these optimizations are

generally higher than the first variable initial hour tests. This can be understood by looking at

the obtained initial hours, which are mostly near the design parameter references. This shows

that the program gets “stuck” in the local minimum of the existing solution, and does not

converge to the lowest minimum of the objective function, evidencing a limitation in the

converging process of the optimization.

5.2.2 MT Tests

The second batch of tests executed were the “Minimize Time” (MT) tests, for both E1 and E2

engine-propeller types. Likewise, results from a set of fixed and variable mission initial hour

tests, followed by a series of second optimizations of the best solutions from the fixed initial

hour tests, are presented in Tables 18 and 19.

 80

Table 18 - Engine-propeller type 1, Minimize Time (E1-MT) test results

Test E1 – MT

Time Variable Day 1 Day 2 Day 3 Day 4 Day 5

Initial hour: 8h 2h:16m:2s 2h:16m:5s 2h:15m:33s 2h:32m:8s 2h:26m:54s

Initial hour: 10h 2h:2m:23s 2h:0m:36s 1h:59m:36s 2h:26m:26s 2h:8m:7s

Initial hour: 12h 2h:2m:31s 2h:0m:27s 2h:1m:8s NS 2h:13m:6s

Variable Initial

hour (2nd opt.)*

2h:1m:49s

(10h:30m)

1h:59m:8s

(10h:51m)

1h:58m:33s

(10h:39m)

2h:24m:0s

(9h:15m)

2h:6m:55s

(10h:29m)

Variable Initial

hour

2h:1m:49s

(10h:30m)

1h:58m:53s

(10h:52m)

1h:58m:33s

(10h:39m)

2h:24m:0s

(9h:15m)

2h:6m:55s

(10h:28m)

Data presented as: energy (initial hour); *Optimization of previous best result; NS=No Solution

Table 19 - Engine-propeller type 2, Minimize Time (E2-MT) test results

Test E2 – MT

Time Variable Day 1 Day 2 Day 3 Day 4 Day 5

Initial hour: 8h 2h:24m:58s 2h:24m:14s 2h:37m:8s 2h:48m:1s 2h:37m:54s

Initial hour: 10h 2h:10m:24s 2h:8m:5s 2h:6m:59s 2h:40m:58s 2h:16m:41s

Initial hour: 12h 2h:13m:3s 2h:7m:56s 2h:9m:19s NS 2h:22m:23s

Variable Initial

hour (2nd opt.)*

2h:9m:27s

(10h:27m)

2h:6m:18s

(10h:46m)

2h:5m:59s

(10h:34m)

2h:36m:29s

(9h:10m)

2h:15m:32s

(10h:23m)

Variable Initial

hour

2h:9m:33s

(10h:26m)

2h:6m:39s

(10h:47m)

2h:6m:16s

(10h:33m)

2h:36m:29s

(9h:10m)

2h:33m:50s

(10h:32m)

Data presented as: energy (initial hour); *Optimization of previous best result; NS=No Solution

Like in the previous section, optimization tests for fixed initial hours 4h and 6h did not result

in any solution, already explained by the lack of sunlight. The very low angles of incidence

between the sunlight and the PV panels surface also affected the fixed 8h initial hour tests,

which are more prone to optimizations with no solutions.

The availability of excess power allows the UAV to fly faster and higher, resulting in lower flight

times. This is confirmed by comparing the results (in both data) of fixed 8h initial hour tests

with the rest. The lower solar power available at that time of the day limits the UAV to fly

slower and at lower altitudes, resulting in higher flight times. The more efficient propulsion

system of engine-propeller data 1 also allows for optimization solutions with lower flight times,

in comparison with engine-propeller data 2.

Little difference of flight time is shown between all days, however, days 2 and 3 show the best

flight times, and days 4 and 5 show higher flight times, for both data. Results from day 4 are

 81

the worst, having the highest flight times and optimizations at 12h with no feasible solutions,

again confirming the expectation of this being the worst time to fly.

The best times to launch, obtained from the variable initial hour tests, are generally different

from those obtained in “Minimize Energy” by a margin of plus one hour. This might be explained

by the necessity of the UAV to have more excess power at the start of the mission, in order to

fly faster and higher. This excess power can only be obtained from solar power, which is greater

close to noon. The exception is found in the very high cloud coverage close to noon in day 4,

which limits the time to launch to an earlier hour, closer to 9h, where there is a greater

availability of solar energy.

Unlike the “Minimize Energy” tests, the flight times resulting from the second optimizations

are almost always equal or lower than each respective variable initial hour time obtained from

the first optimizations. The convergence to better solutions in this optimization process may

be due to a greater flexibility in the variation of the design parameters, whereas the design

parameters obtained in “Minimize Energy” often result in solutions closer to the limit

constraints, therefore not allowing for changes in these parameters, which would otherwise

result in an unflyable route. Therefore, the local minima convergence limitation seen previously

is more prevalent in the “Minimize Energy” tests than in the “Minimize Time” tests.

5.2.3 Running time comparisons

Complementing the analysis of objective functions’ results, an analysis of the running time of

the optimization process for each test was also made. The graph in Figure 82 shows the running

time for each “Minimize Energy” test of the MPP, according to the mission initial hour, engine-

propeller data type and central processing unit used (an older or newer CPU).

0

100

200

300

400

500

600

700

800

900

1000

4
h

-d
a

y
1

4
h

-d
a

y
2

4
h

-d
a

y
3

4
h

-d
a

y
4

4
h

-d
a

y
5

6
h

-d
a

y
1

6
h

-d
a

y
2

6
h

-d
a

y
3

6
h

-d
a

y
4

6
h

-d
a

y
5

8
h

-d
a

y
1

8
h

-d
a

y
2

8
h

-d
a

y
3

8
h

-d
a

y
4

8
h

-d
a

y
5

1
0

h
-d

a
y

1

1
0

h
-d

a
y

2

1
0

h
-d

a
y

3

1
0

h
-d

a
y

4

1
2

h
-d

a
y

1

1
2

h
-d

a
y

2

1
2

h
-d

a
y

3

1
2

h
-d

a
y

4

v
a

r-
d

a
y

1

v
a

r-
d

a
y

2

v
a

r-
d

a
y

3

v
a

r-
d

a
y

4

D
u

ra
ti

o
n

 [
m

in
]

Mission initial hour and day

E2-ME (older processor) E1-ME (Newer processor)

Figure 82 – Running time comparison between different CPUs for the ME optimization tests

 82

The results clearly show, in general, the greater amount of time required by the older CPU (a

2007 Intel Core 2 Duo) to run the tests. During the testing process, the newer CPU (a 2017 Intel

Core i7-8550U) allowed to run about 4 optimizations for each one using the older CPU.

A comparison of running times was also made, for engine-propeller data 1, between the types

of objective function used (“Minimize Energy” or “Minimize Time”), which is shown in Figure

83.

The graph shows that almost no difference is present between the type of objective function

used. However, for both graphs, the running time also depends on how close the initial route

is to a solution – the closer it is, the less time the MPP will take to reach the solution. Also, if

the initial route is barely or not flyable at all (considering all constraints), the MPP’s running

time will also be shorter, because no solution can ever be reached and/or optimized.

0

20

40

60

80

100

120

140

160

180

200

4
h

-d
a

y
1

4
h

-d
a

y
2

4
h

-d
a

y
3

4
h

-d
a

y
4

4
h

-d
a

y
5

6
h

-d
a

y
1

6
h

-d
a

y
2

6
h

-d
a

y
3

6
h

-d
a

y
4

6
h

-d
a

y
5

8
h

-d
a

y
1

8
h

-d
a

y
2

8
h

-d
a

y
3

8
h

-d
a

y
4

8
h

-d
a

y
5

1
0

h
-d

a
y

1

1
0

h
-d

a
y

2

1
0

h
-d

a
y

3

1
0

h
-d

a
y

4

1
0

h
-d

a
y

5

1
2

h
-d

a
y

1

1
2

h
-d

a
y

2

1
2

h
-d

a
y

3

1
2

h
-d

a
y

4

1
2

h
-d

a
y

5

v
a

r-
d

a
y

1

v
a

r-
d

a
y

2

v
a

r-
d

a
y

3

v
a

r-
d

a
y

4

v
a

r-
d

a
y

5

D
u

ra
ti

o
n

 [
m

in
]

Mission initial hour and day

E1-MT E1-ME

Figure 83 – Running time comparison between ME and MT optimization tests for engine-
propeller data 1

 83

Chapter 6

Conclusions

6.1 Achievements

This thesis followed Coelho’s work [11] on the creation of a mission planner program that

optimizes a route based on the minimization of energy, time or distance, taking into account

the initial route’s design parameters, constraints, terrain and weather conditions, LEEUAV

specifications and available solar power. A graphical user interface (GUI) was developed to

complement the Mission Planner, in order to provide the user with an easy way of changing the

various necessary data otherwise edited in a series of text files within the mission planner

program’s folders. This allowed for the application of an extensive testing procedure on the

mission planner, which validated both the planning and interface parts, and corrected,

improved and enlarged the capabilities of the mission planner software as a whole.

The development of the GUI allowed the importing and exporting of routes from and to a ground

control station that is able to connect to a LEEUAV’s autopilot, therefore providing a way of

visualizing routes on a map before applying the planning process to a real-world flight. This

addresses the issue underlined in section 2.2 of the State of the Art, of providing a flexible,

easy and fast way for the user to link the mission planning process with the piloting phase of

the LEEUAV.

The tests made at the end of this thesis identified the best capabilities, but also evidenced

major limitations inherent to the use of the mission planner, which should be tackled in future

developments. They relate to the optimization algorithm, weather, route, terrain and solar

model. If necessary, these developments should, as done in the past, be accompanied with

changes to the GUI.

6.2 Future Work

As a finishing note on this thesis, the development of the mission planner should be undertaken

with a continuous improvement philosophy in mind. Therefore, based on the limitations found

throughout this work, a series of developments are suggested, such as:

• Improve the optimization algorithm used: add stochastic processes that search the

complete design space, and/or other gradient-based methods, allowing a broader

 84

analysis of local minima in the objective function, which ensures that the obtained

solutions are closer to the global minimum and do not get “stuck” in a local minimum;

• Add more optimization algorithms to the Mission Planner;

• Improve the weather model and select a more complete database that: provides three-

dimensional wind gusts and thermals; provides weather conditions according to altitude

levels; takes account of precipitation, storms or other extreme events prejudicial to

the operation of the LEEUAV;

• Improve the time system used in the mission planner, in order to take account of time

zones, daylight-saving time (DST) changes or the more consistent local solar time;

• Add terrain or LEEUAV attitude-induced shadows to the solar model;

• Add no-fly zones and restrictions of heading to the optimization process, which is

particularly useful for the approach sequence before landing on a runway;

• Improve the computational time of the mission planner;

• Add visual components to the GUI, such as the visualization of weather conditions and

terrain profile with the initial and optimized routes;

• Add editable LEEUAV solar system data to the GUI;

• Perform real flight tests to prove the functionality of the Mission Planner Application

Software.

It would also be interesting to use this mission planning software for a LEEUAV that is able to

fly through the night, i.e. for endurances of 24 hours or more.

 85

References

[1] A. Ryan, M. Zennaro, A. Howell, R. Sengupta, and J. K. Hedrick, “An overview of

emerging results in cooperative UAV control,” in Proceedings of the IEEE Conference

on Decision and Control, 2004 [Online]. Available:

https://www.researchgate.net/publication/4142631_An_overview_of_emerging_result

s_in_cooperative_UAV_control

[2] A. C. Marta and P. V. Gamboa, “Long endurance electric UAV for civilian surveillance

missions,” 29th Congr. Int. Counc. Aeronaut. Sci. ICAS 2014, 2014.

[3] M. Oborne, “Mission Planner. ArduPilot.,” 2010. [Online]. Available:

https://github.com/ArduPilot/ardupilot_wiki/tree/master/planner

[4] L. F. V. Cândido, “Projeto de um UAV Solar de grande autonomia,” MSc Thesis,

Universidade da Beira Interior (UBI), Portugal, 2014.

[5] J. C. C. Sousa, “Solar System for a Long Endurance Electric UAV,” MSc Thesis,

Universidade da Beira Interior (UBI), Portugal, 2015.

[6] A. E. G. Duarte, “Development part of the Structure of a Long Endurance Electric

UAV,” MSc Thesis, Universidade da Beira Interior (UBI), Portugal, 2016.

[7] L. M. A. Parada, “Conceptual and preliminary design of a Long Endurance Electric

UAV,” MSc Thesis, Instituto Superior Técnico (IST), Lisboa, 2016.

[8] A. S. Rodrigues, “Airframe Assembly , Systems Integration and Flight Testing of a Long

Endurance Electric UAV,” MSc Thesis, Universidade da Beira Interior (UBI), Portugal,

2017.

[9] L. Freitas, “Aerodynamic Analysis of a Forward–Backward Facing Step Pair on the

Upper Surface of a Low-Speed Airfoil,” MSc Thesis, Universidade da Beira Interior

(UBI), Portugal, 2017.

[10] P. A. L. Moutinho, “Real-Time Estimation of Remaining UAV Flight Time Based on the

Total Energy Balance,” MSc Thesis, Universidade da Beira Interior (UBI), Portugal,

2017.

[11] L. M. M. Coelho, “Mission Planner for Solar Powered Unmanned Aerial Vehicles,” MSc

Thesis, Universidade da Beira Interior (UBI), Portugal, 2019.

[12] S. Houston, “The important skills pilots acquire from flying,” 2019. [Online].

Available: https://www.thebalancecareers.com/important-skills-pilots-acquire-

282950. [Accessed: 17-Oct-2019]

 86

[13] R. J. Boucher, “History of Solar Flight,” in Proc. of AIAA/SAE/ASME 20th Joint

Propulsion Conference, AIAA Paper 84-1429, 1984 [Online]. Available:

http://astrobobb.com/solarhistory.pdf

[14] US government, “Timeline of the Achievements in Solar,” Office of Energy Efficiency

and Renewable Energy. [Online]. Available:

https://www.energy.gov/eere/solar/history. [Accessed: 25-Oct-2019]

[15] H. Bruss, “Solar Modellflug Grundlagen, Enwicklung, Praxis.” Verlag für Technik und

handwerk, Baden-Baden, 1991.

[16] D. Stinton, The Design of the Aeroplane, 2nd ed. Oxford, UK: Blackwell Science, 2001.

[17] A. Noth, “Design of Solar Powered Airplanes for Continuous Flight,” Phd Thesis, Ecole

Polytechnique Fédérale de Lausanne, Switzerland, 2008.

[18] J. Ewald, “The Real Flight With Solar Energy, Icaré 2,” 2007. [Online]. Available:

https://web.archive.org/web/20070703230453/https://www.ifb.uni-

stuttgart.de/icare/Englisch/flugberengl.html. [Accessed: 27-Oct-2019]

[19] B. Piccard, “My Ups and Downs with Solar Impulse,” 2016. [Online]. Available:

https://www.linkedin.com/pulse/my-ups-downs-solar-impulse-bertrand-piccard.

[Accessed: 27-Oct-2019]

[20] “Solar Impulse Foundation,” Around the World, 2019. [Online]. Available:

https://aroundtheworld.solarimpulse.com/. [Accessed: 27-Oct-2019]

[21] “SolarStratos, To the Edge of Space,” 2019. [Online]. Available:

https://www.solarstratos.com/en/. [Accessed: 29-Oct-2019]

[22] G. Goebel, “The Prehistory Of Endurance UAVs,” Unmanned Aerial Vehicles, 2009.

[Online]. Available:

https://web.archive.org/web/20090211170130/http://www.vectorsite.net/twuav_12.

html. [Accessed: 27-Oct-2019]

[23] A. Noth, R. Siegwart, and W. Engel, “Autonomous Solar UAV for Sustainable Flight,” in

Advances in Unmanned Aerial Vehicles, State of the Art and the Road to Autonomy, K.

P. Valavanis, Ed. Springer Verlag, 2007.

[24] B. Keidel, “Auslegung und Simulation von hochfliegenden, dauerhaft stationierbaren

Solardrohnen,” Phd Thesis, Technische Universität München, 2000.

[25] T. C. Tozer, D. Grace, J. Thompson, and P. Baynham, “UAVs and HAPs - Potential

Convergence for Military Communications,” in IEE Colloquium on “Military Satellite

Communications,” 2000.

[26] G. Romeo and G. Frulla, “HELIPLAT: high altitude very-long endurance solar powered

UAV for telecommunication and Earth observation applications,” Aeronaut. J., vol.

108, no. 1084, pp. 277–293, 2004.

 87

[27] “Solar Powered, Unmanned QinetiQ Zephyr Plane Achieves Another Record,” Airline

World, 2007. [Online]. Available:

https://airlineworld.wordpress.com/2007/09/11/solar-powered-unmanned-qinetiq-

zephyr-plane-achieves-another-record/. [Accessed: 27-Oct-2019]

[28] J. Amos, “Solar plane makes record flight,” BBC News, 2008. [Online]. Available:

http://news.bbc.co.uk/2/hi/science/nature/7577493.stm. [Accessed: 27-Oct-2019]

[29] “Sky-Sailor, Autonomous Solar Airplane for Mars Exploration,” 2008. [Online].

Available: http://www.sky-sailor.ethz.ch/. [Accessed: 27-Oct-2019]

[30] “Solara 50 Atmospheric Satellite,” Aerospace Technology, 2013. [Online]. Available:

https://www.aerospace-technology.com/projects/solara-50-atmospheric-satellite/.

[Accessed: 29-Oct-2019]

[31] “NTSB Identification: DCA15CA117,” 2015 [Online]. Available:

https://www.ntsb.gov/_layouts/ntsb.aviation/brief.aspx?ev_id=20150505X85410&key=

1

[32] S. Weintraub, “Alphabet cuts former Titan drone program from X division, employees

dispersing to other units,” 9to5Google, 2017. [Online]. Available:

https://9to5google.com/2017/01/11/alphabet-titan-cut/. [Accessed: 29-Oct-2019]

[33] G. Warwick, “Facebook’s UAV Flies, Builds On Developments In Solar Power,” Aviation

Week & Space Technology, 2015. [Online]. Available:

https://aviationweek.com/technology/facebook-s-uav-flies-builds-developments-

solar-power. [Accessed: 29-Oct-2019]

[34] S. Trimble, “Facebook Unveils 42m-wingspan Aquila UAV,” Flight Global, 2015.

[Online]. Available: https://www.flightglobal.com/news/articles/facebook-unveils-

42m-wingspan-aquila-uav-415331/. [Accessed: 29-Oct-2019]

[35] “Facebook encerra projeto Aquila, o drone solar que ia levar internet às zonas remotas

do planeta,” SAPO Notícias, 2018. [Online]. Available:

https://tek.sapo.pt/noticias/internet/artigos/facebook-encerra-projeto-aquila-o-

drone-solar-que-ia-levar-internet-as-zonas-remotas-do-planeta. [Accessed: 29-Oct-

2019]

[36] D. Thisdell, “Airbus sets flight endurance record with Zephyr UAV,” Flight Global,

2018. [Online]. Available: https://www.flightglobal.com/news/articles/airbus-sets-

flight-endurance-record-with-zephyr-uav-451006/. [Accessed: 29-Oct-2019]

[37] “Unmanned Aerial Systems (UAS),” SKYbrary, 2019. [Online]. Available:

https://www.skybrary.aero/index.php/Unmanned_Aerial_Systems_(UAS). [Accessed:

26-Oct-2019]

 88

[38] A. T. Klesh and P. T. Kabamba, “Energy-optimal path planning for Solar-powered

aircraft in level flight,” AIAA Guid. Navig. Control Conf. Exhib., vol. 3, no. August, pp.

2966–2982, 2007.

[39] R. Dai, U. Lee, S. Hosseini, and M. Mesbahi, “Optimal path planning for solar-powered

UAVs based on unit quaternions,” in Proceedings of the 51st IEEE Conference on

Decision and Control, 2012, pp. 3104–3109 [Online]. Available:

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6425972&tag=1

[40] Y. Huang, H. Wang, and P. Yao, “Energy-optimal path planning for Solar-powered UAV

with tracking moving ground target,” Aerosp. Sci. Technol., vol. 53, pp. 241–251, 2016

[Online]. Available: http://dx.doi.org/10.1016/j.ast.2016.03.024

[41] Y. Huang, J. Chen, H. Wang, and G. Su, “A method of 3D path planning for solar-

powered UAV with fixed target and solar tracking,” Aerosp. Sci. Technol., vol. 92, pp.

831–838, 2019 [Online]. Available: https://doi.org/10.1016/j.ast.2019.06.027

[42] J. J. Kiam and A. Schulte, “Multilateral quality mission planning for solar-powered

long-endurance UAV,” IEEE Aerosp. Conf. Proc., pp. 1–10, 2017 [Online]. Available:

https://ieeexplore.ieee.org/document/7943802

[43] P. Oettershagen et al., “Design of small hand-launched solar-powered UAVs: From

concept study to a multi-day world endurance record flight,” J. F. Robot., vol. 34, no.

7, pp. 1352–1377, 2017 [Online]. Available:

https://www.doc.ic.ac.uk/~sleutene/publications/JFR_81hFlight_paper_final-1.pdf

[44] “AtlantikSolar, A UAV for the first-ever autonomous solar-powered crossing of the

Atlantic Ocean,” 2017. [Online]. Available: https://www.atlantiksolar.ethz.ch/.

[Accessed: 30-Oct-2019]

[45] P. Oettershagen, J. Förster, L. Wirth, J. Ambühl, and R. Siegwart, “Meteorology-Aware

Multi-Goal Path Planning for Large-Scale Inspection Missions with Long-Endurance

Solar-Powered Aircraft,” Zurich, 2017 [Online]. Available:

https://arxiv.org/pdf/1711.10328.pdf

[46] L. Amorosi, L. Chiaraviglio, F. D’Andreagiovanni, and N. Blefari-Melazzi, “Energy-

efficient mission planning of UAVs for 5G coverage in rural zones,” in IEEE

International Conference on Environmental Engineering, EE 2018 - Proceedings, 2018,

pp. 1–9 [Online]. Available: https://ieeexplore.ieee.org/document/8385250

[47] J. Wu, H. Wang, N. Li, P. Yao, Y. Huang, and H. Yang, “Path planning for solar-

powered UAV in urban environment,” Neurocomputing, vol. 275, pp. 2055–2065, 2018

[Online]. Available:

https://www.sciencedirect.com/science/article/abs/pii/S0925231217316880?via%3Dih

ub

 89

[48] B. Schellenberg, T. Richardson, A. Richards, R. Clarke, and M. Watson, “On-board real-

time trajectory planning for fixed wing unmanned aerial vehicles in extreme

environments,” Sensors, vol. 19, no. 19, 2019 [Online]. Available:

https://www.researchgate.net/publication/335981017_On-Board_Real-

Time_Trajectory_Planning_for_Fixed_Wing_Unmanned_Aerial_Vehicles_in_Extreme_En

vironments

[49] “QBase 3D, Intuitive Mission Planning,” Quantum Systems, 2019. [Online]. Available:

https://www.quantum-systems.com/qbase3d/. [Accessed: 04-Nov-2019]

[50] “QGroundControl, Intuitive and Powerful Ground Control Station for the MAVLink

protocol,” Drone Control, 2019. [Online]. Available: http://qgroundcontrol.com/.

[Accessed: 04-Nov-2019]

[51] P. F. Godinho Lopes Fernandes de Albuquerque, “Mission-Based Multidisciplinary

Design Optimization Methodologies for Unmanned Aerial Vehicles with Morphing

Technologies,” PhD Thesis, Universidade da Beira Interior (UBI), Portugal, 2017.

[52] J. L. Zhou, A. L. Tits, and C. T. Lawrence, “User’s guide for FFSQP version 3.7: A

FORTRAN code for Solving Constrained Nonlinear (Minimax) Optimization Problems,

Generating Iterates Satisfying All Inequality and Linear Constraints,” Electrical

Engineering Department and Institute for Systems Research, University of Maryland,

College Park, 1998 [Online]. Available:

https://www.researchgate.net/publication/2693409_User’s_Guide_for_FFSQP_Version

_37_A_FORTRAN_Code_for_Solving_Constrained_Nonlinear_Minimax_Optimization_Pro

blems_Generating_Iterates_Satisfying_All_Inequality_and_Linear_Constraints

[53] N. S. Ribau, “Automatic engine and propeller selection for mission and performance

optimization,” MSc Thesis, Universidade da Beira Interior (UBI), Portugal, 2018.

[54] “Unix Time Stamp,” Dan’s Tools, 2014. [Online]. Available:

https://www.unixtimestamp.com/. [Accessed: 12-Nov-2019]

[55] “Qt for Python,” The Qt Company, 2019. [Online]. Available: https://www.qt.io/qt-

for-python. [Accessed: 05-May-2019]

[56] “PyQt5 Support for Signals and Slots,” Riverbank Computing Ltd., 2019. [Online].

Available:

https://www.riverbankcomputing.com/static/Docs/PyQt5/signals_slots.html.

[Accessed: 13-Nov-2019]

[57] M. Granger, “Elevation API,” 2019. [Online]. Available: https://elevation-api.io/.

[Accessed: 14-Nov-2019]

[58] “Google Maps Platform,” Geo-Locations APIs, 2019. [Online]. Available:

maps.googleapis.com. [Accessed: 14-Nov-2019]

 90

 91

Annex A – List of parameters obtained from

Mission Planner Program’s mission analysis

Mission Analysis Obtained Parameters

Parameters SI Units

Mean Altitude (ℎ𝑎𝑣𝑒) m

Ground distance (𝑑𝑔) m

Altitude variation (𝑑ℎ) m

Flight path distance (𝑑𝑠) m

Angle of trajectory relative to the ground (xy-plane) (𝛾𝑔) deg

Angle of trajectory projection on xy-plane relative to the x-axis (𝜃𝑔) deg

Mean temperature deviation from standard ISA temperature (𝑑𝑇𝑠𝑡𝑑) K

Air density (𝜌) Kg/m3

Average cloud coverage (𝑐𝑙𝑜𝑢𝑑) -

Average solar incidence radiation (𝑃𝑠𝑢𝑛) W/m2

Average airspeed (𝑉𝑎) m/s

Average airspeed components (𝑉𝑎𝑥, 𝑉𝑎 𝑦 and 𝑉𝑎𝑧) m/s

Average wind speed (𝑉𝑊𝑎) m/s

Average wind speed components (𝑉𝑊𝑎𝑥 , 𝑉𝑊𝑎𝑦 and 𝑉𝑊𝑎𝑧) m/s

Average ground speed (𝑉𝑔𝑎) m/s

Average ground speed components (𝑉𝑔𝑎𝑥, 𝑉𝑔𝑎𝑦 and 𝑉𝑔𝑎𝑧) m/s

Average airspeed for aerodynamic forces (𝑉𝑎𝑣𝑒) m/s

Average lift and drag (𝐿 and 𝐷) N

Average lift and drag coefficients (𝐶𝐿 and 𝐶𝐷) -

Average lift-to-drag ratio (𝐿/𝐷) -

Average load factor (𝑛) -

Air path angle (𝛾𝑎) deg

Bank angle (𝜙𝑎) deg

Rate of climb (𝑅𝐶) m/s

Average acceleration (𝑎) m/s2

Average longitudinal inertial force (𝑚. 𝑎) N

Average ground friction force (𝐹) N

Average required thrust (𝑇𝑟𝑒𝑞) N

Average required power (𝑃𝑟𝑒𝑞) W

 92

Average electric power (𝑃𝑒𝑙𝑒) W

Average energy or fuel flow (𝑃𝑓𝑙𝑜𝑤) W or N/s

Average segment time (𝑑𝑡) s

Segment required energy or fuel (𝐸𝑢𝑠𝑒𝑑) J or N

Segment consumed energy or fuel (𝐸) J or N

Segment energy left in battery or fuel in tank (𝐸𝑙𝑒𝑓𝑡) - or N

Power setting (𝑓) -

Engine/motor speed (𝑟𝑝𝑚) rpm

Motor current (𝐼) A

 93

Annex B – Detailed summary of the MPP’s Mission

Analysis mode

The following is a summary of the methodology of the mission analysis mode of the Mission

Planner Program developed by Coelho [11], which can be found in his thesis.

In the analysis mode, the calculation of the objective function and its constraints from the

design variables is the main purpose. There are 4 design variables for each waypoint – the

coordinates chosen by the user, which can either be of the Geodetic (GEO) type (latitude and

longitude) or the East-North-Up (ENU) type (x and y positions), altitude and airspeed. The GEO

and ENU sets of design variables are represented by the following equations, respectively:

 𝑑𝑣4𝑛 = (𝜑1, 𝜑2, … , 𝜑𝑛, 𝜆1, 𝜆2, … , 𝜆𝑛, ℎ1, ℎ2, … , ℎ𝑛−1, ℎ𝑛, 𝑉1, 𝑉2, … , 𝑉𝑛)
 𝜑𝑖, 𝜆𝑖, ℎ𝑖, 𝑉𝑖 ∈ ℕ for 1 ≤ i ≤ n

(3.37)

 𝑑𝑣4𝑛 = (𝑥1, 𝑥2, … , 𝑥𝑛, 𝑦1, 𝑦2, … , 𝑦𝑛, ℎ1, ℎ2, … , ℎ𝑛−1, ℎ𝑛, 𝑉1, 𝑉2, … , 𝑉𝑛)
 𝑥𝑖, 𝑦𝑖, ℎ𝑖, 𝑉𝑖 ∈ ℕ for 1 ≤ i ≤ n

(3.38)

where 𝑖 is the waypoint index, 𝑛 is the total number of waypoints, 𝜑 and 𝜆 are the latitude and

longitude of the Geodetic coordinates (in decimal degrees), ℎ is the altitude of flight measured

from the take-off ground elevation, 𝑉 is the airspeed, and 𝑥 and 𝑦 are the East-North-Up

coordinates (in meters). By default, the algorithm of analysis uses the ENU coordinate system,

therefore, an internal conversion of GEO to ENU coordinates is provided, if Geodetic

coordinates are used.

Afterwards, the calculation of the segment flight performance 𝛿𝑗 between two consecutive

waypoints 𝑤𝑖 and 𝑤𝑖+1 is done, according to the design variables of those waypoints. This is

visually represented in Figure 84.

 94

Firstly, the segment total distance is calculated by:

 𝑑𝑠𝑗 = √𝑑𝑔𝑗2 + 𝑑ℎ𝑗2 (3.39)

where 𝑑𝑔𝑗 is the segment ground distance:

 𝑑𝑔𝑗 = √(𝑥𝑗+1 − 𝑥𝑗)2 + (𝑦𝑗+1 − 𝑦𝑗)2 (3.40)

and 𝑑ℎ𝑗 is the segment height variation:

 𝑑ℎ𝑗 = ℎ𝑗+1 − ℎ𝑗 (3.41)

Next, the MPP calculates the average segment airspeed:

 𝑉𝑎𝑗 = 𝑉𝑖+1 + 𝑉𝑖2
(3.42)

followed by the calculation of average segment windspeed components, dependent on the

atmospheric data model:

 𝑉𝑊 𝑎𝑥𝑗 = 𝑉𝑊𝑥𝑖 + 𝑉𝑊𝑥𝑖+12
(3.43)

 𝑉𝑊 𝑎𝑦𝑗 = 𝑉𝑊𝑦𝑖 + 𝑉𝑊𝑦𝑖+12
(3.44)

 𝑉𝑊 𝑎𝑧𝑗 = 𝑉𝑊𝑧𝑖 + 𝑉𝑊𝑧𝑖+12
(3.45)

Figure 84 - Theoretical example of a route with 5 waypoints. δj represent the segment flight
performance calculated between consecutive waypoints [11]

 95

where the waypoint windspeed components are in turn dependent on the windspeed magnitude 𝑉𝑊𝑖 and the wind direction 𝜃𝑊𝑖 ∈ [0, 360[(degrees, where 0 represents the North → South way):

 𝑉𝑊𝑥𝑖 = 𝑉𝑊𝑖 cos (90 − 𝜃𝑊𝑖) (3.46)

 𝑉𝑊𝑦𝑖 = 𝑉𝑊𝑖 sin (90 − 𝜃𝑊𝑖) (3.47)

 𝑉𝑊𝑧𝑖 = 0 (3.48)

The angle of the wind direction is two-dimensional, so 𝑉𝑊𝑧𝑖 is considered as zero. The average

segment windspeed is therefore given by:

 𝑉𝑊𝑎𝑗 = √𝑉𝑊𝑎𝑥𝑗 2 + 𝑉𝑊𝑎𝑦𝑗 2 + 𝑉𝑊𝑎𝑧𝑗 2 (3.49)

Afterwards, the flight path direction angles – of the trajectory relative to the ground (xy-plane)

(𝛾𝑔), and of the projection on xy-plane relative to the x-axis (𝜃𝑔) – are calculated, between two

consecutive waypoints:

 𝜃𝑔𝑗 = arctan (𝑦𝑖+1 − 𝑦𝑖𝑥𝑖+1 − 𝑥𝑖) = arcsin (𝑑𝑔𝑦𝑗𝑑𝑔𝑥𝑗)
(3.50)

 𝛾𝑔𝑗 = arctan (𝑑ℎ𝑗𝑑𝑠𝑗)
(3.51)

With these angles known, the average segment ground speed components are calculated by the

following equations:

 𝑉𝑔𝑎𝑥𝑗 = 𝑉𝑔𝑎𝑗 cos(𝛾𝑔𝑗) cos(𝜃𝑔𝑗) (3.52)

Figure 85 – Flight path direction scheme [11]

 96

 𝑉𝑔𝑎𝑦𝑗 = 𝑉𝑔𝑎𝑗 cos(𝛾𝑔𝑗) sin(𝜃𝑔𝑗) (3.53)

 𝑉𝑔𝑎𝑧𝑗 = 𝑉𝑔𝑎𝑗 sin(𝛾𝑔𝑗) (3.54)

After a deduction process described in [11], the calculation of 𝑉𝑔𝑎𝑗 is obtained by solving the

equation:

 𝑎. 𝑉𝑔𝑎𝑗 2 + 𝑏. 𝑉𝑔𝑎𝑗 + 𝑐 = 0 (3.55)

where: 𝑎 = 1 𝑏 = 𝑉𝑊𝑎𝑥𝑗 2 + 𝑉𝑊𝑎𝑦𝑗 2 + 𝑉𝑊𝑎𝑧𝑗 2 − 𝑉𝑎𝑗 2 𝑐 = 𝑉𝑊𝑎𝑥𝑗 2 + 𝑉𝑊𝑎𝑦𝑗 2 + 𝑉𝑊𝑎𝑧𝑗 2 − 𝑉𝑎𝑗 2

The time in each segment (𝑑𝑡𝑗) and the total mission time (𝑡𝑡𝑜𝑡𝑎𝑙) can then be calculated with:

 𝑑𝑡𝑗 = 𝑑𝑠𝑗𝑉𝑔𝑎𝑗
(3.56)

 𝑡𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑑𝑡𝑗𝑛−1𝑗=1
(3.57)

After knowing the time of the mission, calculations to find the mission energy then proceed,

starting with the calculation of the air path angle 𝛾𝑎𝑗 :
 𝛾𝑎𝑗 = arcsin (𝑉𝑎𝑧𝑗𝑉𝑎𝑗)

(3.58)

where 𝑉𝑎𝑧𝑗 can also be represented as the average rate of climb in the respective segment, 𝑅𝐶𝑗.
For the calculation of the aerodynamic forces, the following equations apply:

 𝑉𝑎𝑣𝑒𝑗 = √𝑉𝑗2 + 𝑉𝑗+122
(3.59)

 𝐿𝑗 = 𝑊𝑖. cos(𝛾𝑎𝑗)cos(𝜙𝑎𝑗)
(3.60)

 𝐶𝐿 𝑗 = 𝐿𝑗12 𝜌. 𝑉𝑎𝑣𝑒𝑗 2
(3.61)

 97

 𝐶𝐷𝑗 = 𝑓 (𝐶𝐿𝑗) (3.62)

 𝐷𝑗 = 12 𝜌. 𝑉𝑎𝑣𝑒𝑗 2𝑆. 𝐶𝐷𝑗 (3.63)

where 𝑉𝑎𝑣𝑒𝑗 is the squared average velocity, 𝐿𝑗 is the average segment lift, 𝐷𝑗 is the average

segment drag, 𝐶𝐿𝑗 is the average segment lift coefficient, 𝐶𝐷𝑗 is the average segment drag

coefficient (a function depending on the lift coefficient), 𝑊𝑖 is the aircraft weight, 𝜙𝑎𝑗 is the

average bank angle, 𝑆 is the wing area, and 𝜌 is the air density.

Following this, calculation of the average acceleration 𝑎𝑗, average inertial force 𝑄𝐼𝐹𝑗 and

average rolling friction force 𝐹𝑗 leads to the calculation of the average required thrust 𝑇𝑗,
which is shown by Equations 3.64 through 3.67:

 𝑎𝑗 = 𝑉𝑔𝑎𝑗+1𝑑𝑡𝑗
(3.64)

 𝑄𝐼𝐹𝑗 = 𝑊𝑗𝑔 𝑎𝑗 (3.65)

 𝐹𝑗 = 𝜇𝑗(𝑊𝑗 − 𝐿𝑗) (3.66)

 𝑇𝑗 = 𝐷𝑗 + 𝑊𝑗 sin(𝛾𝑎𝑗) + 𝑄𝐼𝐹𝑗 + 𝐹𝑗 (3.67)

where 𝜇𝑗 is the coefficient of ground rolling friction. Finally, the average required power 𝑃𝑟𝑒𝑞𝑗 ,
average electric power 𝑃𝑒𝑗 and consumed energy at each segment 𝑑𝐸𝑗 are calculated by:

 𝑃𝑟𝑒𝑞𝑗 = 𝑇𝑗𝑉𝑎𝑣𝑒𝑗 (3.68)

 𝑃𝑒𝑗 = 𝑈𝑗𝐼𝑗 (3.69)

 𝑑𝐸𝑗 = 𝑃𝑒𝑗 𝑑𝑡𝑗 (3.70)

where 𝑈𝑗 and 𝐼𝑗 are the input motor voltage and current, respectively. After calculations in

the solar model, the positive required energy in each segment is subtracted by the total energy

gained from solar power, resulting in the final energy balance and power flow at each segment

as well as at the end of the mission, values which are shown in the “mission_out.txt” and

defined in Annex A.

 98

 99

Annex C – Default representation of propeller

power coefficients and efficiency values

𝐶𝑝 = 𝐶𝑝,0 × [𝐴0 + ∑ (𝐴𝑖 (𝐽𝑝𝑟𝑜𝑝𝐽𝑚𝑎𝑥)𝑖)4𝑖=1]

𝜂𝑝 = 𝜂𝑝,𝑚𝑎𝑥 × [𝐵0 + ∑ (𝐵𝑖 (𝐽𝑝𝑟𝑜𝑝𝐽𝑚𝑎𝑥)𝑖)6𝑖=1]

where: 𝐽𝑚𝑎𝑥 = 𝐶1𝑑 + 𝐶2𝑝 + 𝐶3𝑑2 + 𝐶4𝑑𝑝 + 𝐶5𝑝2 + 𝐶6𝑑3 + 𝐶7𝑑2𝑝 + 𝐶8𝑑𝑝2 + 𝐶9𝑝3 𝐶𝑝,0 = 𝐷1𝑑 + 𝐷2𝑝 + 𝐷3𝑑2 + 𝐷4𝑑𝑝 + 𝐷5𝑝2 + 𝐷6𝑑3 + 𝐷7𝑑2𝑝 + 𝐷8𝑑𝑝2 + 𝐷9𝑝3

𝜂𝑚𝑎𝑥 = 𝐸1𝑑 + 𝐸2𝑝 + 𝐸3𝑑2 + 𝐸4𝑑𝑝 + 𝐸5𝑝2 + 𝐸6𝑑3 + 𝐸7𝑑2𝑝 + 𝐸8𝑑𝑝2 + 𝐸9𝑝3

and the default coefficients are:

𝐴̅ =
[
 0.99997474738300.0026886303943−0.0542821394531−0.81411986107860.2382888347204−0.10602715817340.0222789611099]

 �̅� =
[
 0.00000000000002.8358158896651−4.674078798326617.2094772778345−45.73419422140155.789219497612−25.395785093511]

𝐶 ̅ =
[

 0.706462000000−0.0464051000000.0743501000000.001069860000−0.001664110000−0.000007715000−0.0000065210000.0000086886700.000002563530−0.000000703183]

 �̅� =
[

 0.050916200000−0.0055116400000.0074892800000.000144156000−0.0002390910000.000065509200−0.0000024073000.000005544700−0.0000038241000.000000875200]

 𝐸̅ =
[

 0.3754740000000.0133211000000.014884800000−0.0003584790000.000020627100−0.0001899670000.000003644830−0.0000040471100.000004028760−0.000000467311]

 100

Annex D – List of Design Parameters and

Constraint Functions

Design Parameters

Description Units

Mission Initial Hour (𝑡𝑖𝑛𝑖𝑡)* h

Latitude (𝜑) deg

Longitude (𝜆) deg

Altitude (ℎ) m

Airspeed (𝑉) m/s

*added in the present work

Equality Constraint Functions

Description Units

Engine setting = Engine setting max (𝛿 = 𝛿𝑙𝑖𝑚𝑖𝑡) %

Motor current = Motor current max (𝐼 = 𝐼𝑟𝑒𝑓) A

Inequality Constraint Functions

Description Units

Engine setting ≤ Engine setting max (𝛿 ≤ 𝛿𝑙𝑖𝑚𝑖𝑡) at design conditions %

Motor current ≤ Motor current max (𝐼 ≤ 𝐼𝑚𝑎𝑥) at design conditions A

Engine rpm ≤ Engine rpm max (𝑁 ≤ 𝑁𝑚𝑎𝑥) at design conditions rpm (𝑉𝑚𝑖𝑛𝑉𝑠)2𝐶𝐿 ≤ 𝐶𝐿𝑚𝑎𝑥 at design conditions -

Engine setting ≤ Engine setting max (𝛿 ≤ 𝛿𝑙𝑖𝑚𝑖𝑡) at static conditions %

Motor current ≤ Motor current max (𝐼 ≤ 𝐼𝑚𝑎𝑥) at static conditions A

Engine rpm ≤ Engine rpm max (𝑁 ≤ 𝑁𝑚𝑎𝑥) at static conditions rpm

Segment height min ≥ [sel. value] (ℎ𝑗 ≥ ℎ𝑟𝑒𝑓) m

Segment power min ≥ [sel. value] (𝑃𝑗 ≥ 𝑃𝑟𝑒𝑓) W

Mission energy left min ≥ [sel. value] (𝐸𝑙𝑒𝑓𝑡 ≥ 𝐸𝑟𝑒𝑓) %

	Acknowledgments
	Resumo
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Nomenclature
	Chapter 1
	Introduction
	1.1 Contextualization
	1.2 Motivation
	1.3 Objectives
	1.4 Thesis Outline

	Chapter 2
	State of the Art
	2.1 History of solar-powered aircraft
	2.1.1 Early developments
	2.1.2 Manned solar-powered aircraft
	2.1.3 Long Endurance UAVs

	2.2 Mission Planning

	Chapter 3
	Mission Planner Program
	3.1 Description and Functioning Structure
	3.1.1 Mission Analysis
	3.1.2 Ground Elevation and Atmospheric Data
	3.1.3 Solar Model
	3.1.4 Propulsion Data
	3.1.5 Mission Optimization

	3.2 Added features
	3.3 Directory Structure Breakdown

	Chapter 4
	GUI Development
	4.1 Basic Features
	4.2 Aerodynamics
	4.2.1 Geometry Data
	4.2.2 Drag Polar Data

	4.3 Earth
	4.3.1 Elevation Data
	4.3.2 Weather Data

	4.4 Masses
	4.5 Systems
	4.6 Propulsion
	4.6.1 Battery
	4.6.2 Engine/motor
	4.6.3 Propeller

	4.7 Mission
	4.7.1 Route and Waypoints
	4.7.2 Optimization
	4.7.3 FFSQP

	4.8 Functioning Structure
	4.8.1 Exporting Files
	4.8.2 Running the MPP
	4.8.3 Finalization

	4.9 Interface with MissionPlanner (freeware)
	4.9.1 Import route
	4.9.2 Export route

	Chapter 5
	GUI Application and Mission Optimization Tests
	5.1 Introduction
	5.1.1 Choice of route
	5.1.2 Elevation and Weather conditions
	5.1.3 LEEUAV data
	5.1.4 Mission constraints

	5.2 Test Results
	5.2.1 ME Tests
	5.2.2 MT Tests
	5.2.3 Running time comparisons

	Chapter 6
	Conclusions
	6.1 Achievements
	6.2 Future Work

	References
	Annex A – List of parameters obtained from Mission Planner Program’s mission analysis
	Annex B – Detailed summary of the MPP’s Mission Analysis mode
	Annex C – Default representation of propeller power coefficients and efficiency values
	Annex D – List of Design Parameters and Constraint Functions

