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MIST: Accurate and Scalable 
Microscopy Image Stitching Tool 
with Stage Modeling and Error 
Minimization
Joe Chalfoun1, Michael Majurski1, Tim Blattner1, Kiran Bhadriraju2,3, Walid Keyrouz1, Peter 

Bajcsy1 & Mary Brady1

Automated microscopy can image specimens larger than the microscope’s field of view (FOV) by 
stitching overlapping image tiles. It also enables time-lapse studies of entire cell cultures in multiple 
imaging modalities. We created MIST (Microscopy Image Stitching Tool) for rapid and accurate stitching 
of large 2D time-lapse mosaics. MIST estimates the mechanical stage model parameters (actuator 
backlash, and stage repeatability ‘r’) from computed pairwise translations and then minimizes stitching 
errors by optimizing the translations within a (4r)2 square area. MIST has a performance-oriented 
implementation utilizing multicore hybrid CPU/GPU computing resources, which can process terabytes 

of time-lapse multi-channel mosaics 15 to 100 times faster than existing tools. We created 15 reference 
datasets to quantify MIST’s stitching accuracy. The datasets consist of three preparations of stem cell 
colonies seeded at low density and imaged with varying overlap (10 to 50%). The location and size 
of 1150 colonies are measured to quantify stitching accuracy. MIST generated stitched images with 
an average centroid distance error that is less than 2% of a FOV. The sources of these errors include 
mechanical uncertainties, specimen photobleaching, segmentation, and stitching inaccuracies. MIST 
produced higher stitching accuracy than three open-source tools. MIST is available in ImageJ at isg.nist.
gov.

Microscopy imaging of cell cultures must address the spatial scale mismatch between the microscope’s FOV 
(given its resolution and magni�cation) and the size of the specimen under study. For example, the area of 
a standard 6-well plate well is approximately 1000 times larger than the FOV acquired with a 10X objective. 
Automated microscopy overcomes this limitation by acquiring a grid of partially overlapping images that are 
stitched together into a time-sequence of composite images. A primary motivation for large coverage imaging is 
better statistical sampling and the capture of rare events. �e probability of observing interesting events increases 
with respect to the spatial extent and temporal length of the acquisition. �ese spatial and temporal scales pose 
challenges for image stitching so�ware. Creating a large mosaic is challenging because the stitching algorithm is 
sensitive to image feature sparsity in the overlapping regions of adjacent tiles (e.g., during the early period of cell 
colony growth) and in the computational resources needed for assembling the resulting mosaic. Furthermore, 
quantitative measurements, such as counts, densities, texture, and protein expressions, depend on the accuracy 
of stitching algorithms. Existing 2D stitching tools did not meet the accuracy or the runtime requirements to 
analyze our large dataset projects, like the Oct4 temporal gene expression analysis in stem cell colonies1, and some 
existing 3D stitching tools2 are not even applicable to 2D stitching problems.

We address the stitching problem of creating time-lapse mosaics from large 2D grids of overlapping images to 
enable time-lapse studies of entire cell cultures in multiple imaging modalities. Each tile has a vertical and hori-
zontal overlap with its neighbors. �ere are three steps for stitching a grid of image tiles: (1) compute candidate 

1Information Technology Laboratory, National Institute of Standards and Technology, 100 Bureau Dr, Gaithersburg, 
20878, MD, USA. 2Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau 
Drive, Gaithersburg, 20899, MD, USA. 3Fischell Department of Bioengineering, University of Maryland at College 
Park, College Park, 20742, MD, USA. Correspondence and requests for materials should be addressed to J.C. (email: 
joe.chalfoun@nist.gov)

Received: 23 January 2017

Accepted: 8 May 2017

Published: xx xx xxxx

OPEN

mailto:joe.chalfoun@nist.gov


www.nature.com/scientificreports/

2Scientific RepoRts | 7: 4988  | DOI:10.1038/s41598-017-04567-y

translations between adjacent tiles, (2) adjust translations to reduce errors in the stitched image, and (3) compose 
tiles to produce the mosaic image.

There are two commonly used general approaches to compute the translations between adjacent tiles, 
feature-based3–8 and Fourier-based2, 9–14. Feature-based approaches identify matching features in adjacent images 
and then use these features to compute image translations. However, these techniques require a feature extraction 
step to detect common features of interest present in two adjacent images. Approaches based on Fourier trans-
forms use image frequency components as the main features. �is approach assumes that images have enough 
pixels with unique frequency components in the overlapping image areas. Both approaches can be e�ective; the 
choice of which one to use depends on the overall image content and the characteristics of matching features. Due 
to its simplicity and predictable parallelism, we decided to include the Fourier-based translation computation.

For the translation improvement step, microscopy imaging of sparsely populated cell cultures generates 
feature-poor images (e.g., imaging live colonies with low colony density) that introduce errors in the trans-
lation computation. A global optimization of the computed translations will reduce the errors in the stitched 
image. Multiple different optimization techniques can be used to perform this translation optimization: 
Levenberg-Marquardt3 or weighted least squares9, 15 applied to all translations, maximize the number of features 
found in the overlap areas5, minimize an error function between hypothesized and actual point correspondences 
using a joint registration algorithm8, maximize the normalized cross correlation2, minimize a prede�ned energy 
function13, or use global geometric and radiometric parameter estimation16. �ese optimization methods do not 
consider the physical system (e.g., the microscope stage) limitations on the search space, which may lead to large 
residual errors a�er optimization in sparse experiments. In contrast, MIST estimates the mechanical stage model 
parameters from the computed translations to limit the optimization search space and achieve better stitching 
accuracy.

For the mosaic construction step, multiple approaches exist to assemble the mosaic based on the computed 
translations. Some treat the translations and their corresponding normalized cross correlations as an undirected 
graph where an algorithm like the minimum spanning tree5, 15 is used to assemble the mosaic. Others treat the 
problem as an over constrained system of linear equations and solve it using least squares methods9, 12, 14, iterative 
square displacement minimization7, or singular value decomposition2. With our optimization approach, a mini-
mum spanning tree algorithm produced an accurate mosaic.

We present a novel grid stitching technique called Microscopy Image Stitching Tool (MIST) that estimates the 
mechanical stage model parameters (actuator backlash, stage repeatability ‘r’, and camera angle) from computed 
pairwise translations and then minimizes stitching errors by constraining and optimizing the translations within 
a square area of (4r)2. �is constraint reduces the maximum error related to the translation computation for any 
pair of images. �e stage modeling and error minimization methodology is applicable to microscopy images or 
any mechanical instrument that acquires a 2D grid of image tiles. Another novel aspect of MIST is its multicore 
hybrid CPU/GPU implementation which can process terabytes of 2D time-lapse multi-channel mosaics 15 to 100 
times faster than existing tools. We quantify MIST’s accuracy on three preparations of stem cell colonies seeded 
at low density and imaged with varying spatial overlap (10 to 50%) where the location and size of 1150 colonies 
are automatically measured on the microscope. MIST generated stitched images with an average colony centroid 
distance error less than 2% of a FOV and an average colony area error less than 5%. �e sources of these errors 
include mechanical uncertainties, sample photobleaching, segmentation, and the stitching itself. We show that 
the area error is mainly due to photobleaching and not stitching, see Supplementary Document section 1 for 
details. MIST produced the most accurate stitching result when compared to three open-source tools used in the 
literature on the reference datasets.

Results
MIST highlights. Figure 1 highlights MIST’s algorithm and novel aspects: the global optimization and the 
performance.

Application across image content, modalities, and instruments. We evaluated MIST’s applicabil-
ity and robustness on over a thousand fully stitched images (Fig. 2). �ese large and diverse datasets comprise 
multiple image content types, imaging modalities, microscopes, and data sizes. �ey were acquired using �ve 
microscopes (Leica, Olympus, Nikon, Focused Ion Beam Scanning Electron Microscope (FIB-SEM), and Zeiss), 
four imaging modalities (�uorescent, phase contrast, bright-�eld, and FIB-SEM), eight content types (A10 cells, 
carbon nanotubes, Human Bone Marrow Stromal Cells (HBMSC), Induced Pluripotent Stem Cells (IPSCs), 
paper nanoparticles, rat brain cells, Human Embryonic Stem Cells, and C. elegans), large range of image overlaps 
(10–70%), and a large range of grid sizes (5 × 5 to 70 × 93). �ese datasets are available at isg.nist.gov.

Quantitative accuracy measurement. Accuracy metrics: we use the following three metrics to quantify 
the stitching accuracy when comparing reference and stitched measurements over regions of interest (ROI): (1) 
false positive (added ROIs) & false negative (undetected ROI), (2) centroid distance error in pixels (Derr), and (3) 
percent area error (Serr) between ROIs.

We used three regular 6-well plates of stem cell colonies to generate stitching reference and testing datasets. 
Only one well is used in each plate where stem cell colonies are seeded at low density to allow for colony growth.

Reference dataset: for each plate, we automatically imaged each colony with an exposure time that produces 
a high quality �uorescent image and centered it inside the FOV by an automated microscopy feedback loop. �is 
loop minimizes the di�erence between the colony centroid and the middle of the FOV until it reaches conver-
gence (di�erence less than 1 µm). �e �nal centroid location for a colony is saved from the microscope stage con-
troller and its area measured by segmentation. More detail is available in Supplementary Document section 1.5.
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Test dataset: for each plate, we imaged an inscribed square area with �ve overlap values ranging from 10% to 
50% for a total of 5 × 3 stitched test datasets.

We ran MIST and three other open-source tools on the test datasets and generated the corresponding stitched 
images. �ese tools: FijiIS9, TeraStitcher15, iStitch17, had implementations available from the literature and operate 
on 2D images. We measured stitching accuracy using the three metrics FP + FN, Derr, and Serr. Table 1 summarizes 
the stitching accuracy quantitative measurement across all three reference datasets. �e results were combined 
on all three experiments by adding the FP + FN metric and by reporting the average and standard deviation of 
the Derr, and Serr metrics.

It is important for any stitching tool to minimize all three metrics, but paramount is the FP + FN metric, 
which measures ROI duplication or deletion. �e FP + FN metric should have a value as close as possible to zero 
for any accurate stitching. �e results show that MIST has the lowest FP + FN metric among all evaluated tools. 
Any colony with a centroid distance error larger than the smallest dimension of the FOV is considered missed, 
thereby increasing the value of the FP + FN metric. �e Derr metric measures the global accuracy of a stitching 
method over the entire reconstructed image. MIST has consistently one of the lowest average and standard devi-
ation Derr. �e Serr metric measures the local stitching accuracy over an ROI (in this case a colony). Both MIST 
and FijiIS performed well locally over the colonies area. TeraStitcher did well on the low overlap datasets but not 
as well on the higher overlaps. iStitch did not produce any results for all the test datasets.

Qualitative accuracy measurement. For our application, feature sparse image grids occur at the early 
time-points of a time-lapse experiment where colonies are seeded at low density to allow for growth1. Time-lapse 
stem cell colony experiments o�en start with very low colony seeding densities to give the colonies room to 
grow. �e test dataset for qualitative accuracy measurement is our Stem Cell Replicate11. Each grid of the 161 
phase-contrast time-lapse images consists of 18 × 22 images (396 total) acquired at 10% overlap.

Due to the lack of reference measurements in these large-coverage time-lapse experiments with live stem cells 
we resorted to visual inspection and a qualitative distance error metric to measure the general correctness of the 
stitched images.

�is qualitative stitching accuracy illustrates the robustness of MIST in stitching large feature-sparse datasets. 
Figure 3 shows three example images of each tool for di�erent time points and Fig. 4 displays the distance error to 
the reference 10% overlap image grid and the corresponding runtime for each tool.

All three open-source tools (TeraStitcher, iStitch, and FijiIS) failed to produce a correctly stitched image at 
some point in the time-sequence. �e �nal stitched images should not have any blank pixels inside the gridded 
boundaries because the 10% overlap between FOVs (67 µm) is large enough to overcome any actuator backlash 
or stage position errors. A blank pixel in grayscale images is de�ned as a pixel that is neither a background nor 
a foreground and has no intensity value ( = 0). Figure 3 shows blank pixels cutting through the colonies for the 
TeraStitcher assembled image at t = 150. TeraStitcher performed well for the early time points, but was challenged 
by the later time points. Figure 4 illustrates stitching errors for TeraStitcher at late time-points (t = [125,140] and 
t = [155,161]) similar to the example shown (t = [150] in Fig. 3). �is tool’s slow runtime (multiple hours per 
image) prevents its use on such large datasets. iStitch was unable to produce viable results for any time point, in 
some cases it had not �nished a�er 104 s. FijiIS has a regression threshold (rT) parameter, which when lowered 
improved the accuracy of the stitched image at the cost of longer runtimes. �e default rT value (0.3) does not 
yield a viable result for any time-point. Even with a very low regression threshold, FijiIS does not produce reliable 
stitched images during the early time points. It does well at later time points where colonies are big enough to 
cover the overlapping area between consecutive images. However, for such a low regression threshold value, FijiIS 
is as slow as TeraStitcher during the early time points.

Figure 1. Schematic description of MIST’s algorithm summary and novelties.
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Performance. �e MIST ImageJ plugin was developed with performance in mind so it can process large 
datasets in a timely manner especially with respect to time-lapse studies. Our speci�c performance goal is to 
stitch large grids (55 × 55 images of 1040 × 1392 pixels each) in less than 1 minute, thereby allowing enough 
computing time to analyze the acquired images before the start of the next imaging cycle. Our strategy to achieve 
this goal is to take advantage of the hardware parallelism that is available in a single machine with multicore CPUs 
and GPUs. As an illustration of MIST’s temporal scalability, MIST stitches all 161 time points of the feature-sparse 
Stem Cell Replicate1 dataset (Fig. 4) in 67.2 minutes on our test system (with two high end Intel Xeon CPUs). 
In contrast, FijiIS (rT = 0.01) requires 73.7 hours using the same hardware (nearly 65 × slower). Furthermore, 
adding one NVIDIA Tesla K40 GPU to the test machine nearly halves the dataset’s processing time, down to 
36.6 minutes (1.8 × speedup). Individual time points stitch at interactive rates, requiring an average of 25 and 
14 seconds for the CPU and GPU, respectively. �is allows users to interact with their data in near real-time. In 
general, adding a second GPU can reduce the execution time for large grids; however, this is not the case for the 
18 × 22 grids in this dataset as processing with two GPUs becomes dominated by disk I/O.

Figure 5 illustrates the scalability of all 4 stitching tools for successively larger image grids. To reduce potential 
confounding factors, each grid is a subset of a 55 × 55 tile dataset consisting of phase contrast images of stem 
cell colonies acquired with a 10× objective covering a 10 cm well with 10% image overlap (50 000 × 70 000 pixel 
stitched image). By sub-setting a single dataset, both image content and overlap are constant while the grid size 
varies. �e reported times are an average of 10 consecutive runs with the 10th and 90th percentiles removed. 
MIST-CPU outperforms the other stitching tools by 1–3 orders of magnitude and scales better as the image grid 
increases in size. Additionally, MIST-1GPU is on average 3.6× faster than MIST-CPU with identical scaling. 
�is speedup improves upon the 1.8× speedup from the temporal experiment, which is limited by the Stem Cell 
Replicate1 image data being stored on a standard hard drive versus this dataset being cached in memory. �is 

Figure 2. MIST application example images: (1) A10 cells, (2) Carbon Nanotubes, (3) HBMSC, (4) IPS cell 
colonies, (5) Paper nanoparticle, (6) Rat brain cells, (7) Stem cell colonies, and (8) Worms.

Metric Tool
10% 
overlap

20% 
overlap

30% 
overlap

40% 
overlap 50% overlap

FP + FN 
(Count)

MIST 1 1 1 2 2

TeraStitcher 2 8 6 13 5

iStitch 1008 1052 960 574 748

FijiIS 3 2 4 4 5

Derr (Pixels)

MIST 14 ± 7 16 ± 8 16 ± 9 16 ± 8 16 ± 8

TeraStitcher 18 ± 9 16 ± 10 19 ± 11 19 ± 9 18 ± 10

iStitch 153 ± 0 679 ± 0 586 ± 87 164 ± 80 254 ± 122

FijiIS 14 ± 44 29 ± 52 15 ± 8 15 ± 7 29 ± 40

Serr (Percent)

MIST −1 ± 4 1 ± 5 0 ± 5 1 ± 5 0 ± 5

TeraStitcher −1 ± 5 3 ± 6 2 ± 7 5 ± 8 5 ± 8

iStitch −14 ± 0 −59 ± 0 1 ± 8 3 ± 5 0 ± 7

FijiIS −1 ± 4 1 ± 5 0 ± 5 1 ± 5 0 ± 5

Table 1. Stitching accuracy measurement results across all three experiments.
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factor highlights the e�ect that disk I/O has on scalable performance. Adding a second GPU improves perfor-
mance for grids larger than 25 × 25; providing an average 4.5× speedup compared to MIST-CPU. With grids 
smaller than 20 × 20 MIST-2GPU is slower than the 1 GPU version due to setup overhead, GPU-to-GPU com-
munication, and there not being enough work to keep both GPUs busy.

Discussion
MIST is a robust 2D time-lapse multi-channel stitching tool that can be used on any grid-based dataset like those 
acquired by a microscope. Its demonstrated accuracy, performance, and scalability make MIST optimal for han-
dling large microscopy datasets. MIST is available in MATLAB and as an ImageJ/Fiji plugin with CPU and GPU 
implementations from isg.nist.gov.

MIST has several limitations that should be noted. It was designed to stitch microscopy images acquired using 
a mechanical stage which moves the sample in a repeatable grid pattern. Additionally, MIST expects the overlap 
error between images to be less than a pre-de�ned actuator backlash (default value of ±3%). Any computed 

Figure 3. Example of stem cell colonies over time that are stitched by all four tools and with di�erent values of 
the regression threshold in FijiIS.

Figure 4. (a) Qualitative stitching accuracy and (b) Execution time throughout the time-sequence.
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overlap value beyond that error is deemed unreliable. �is stage mechanical model prevents MIST from handling 
stitching problems with varying overlaps within the same acquisition. MIST is designed to perform 2D time-lapse 
multi-channel stitching. It cannot perform volumetric (3D) stitching, but MIST’s ability to stitch a time sequence 
makes it usable for 3D data if the z-stack is acquired for every (x,y) location as explained in Supplementary 
Document section 3.2. MIST uses normalized cross correlations (ncc) to compute image registrations. �e pres-
ence of high levels of image noise can a�ect this metric and impact stitching accuracy. If the images being stitched 
are very noisy, then they may need to be preprocessed before stitching. Preprocessing images with a Gaussian �l-
ter, for example, can reduce the noise level and smooth the derived ncc surface. Supplementary Document section 
3.3 presents an example of preprocessing noisy carbon-nanotubes images.

Methods
Regular stitching algorithms typically consist of three steps: (1) compute candidate translations between adjacent 
tiles, (2) optimize translations to reduce stitching errors in the mosaic image, and (3) produce the mosaic image 
based on the translations.

Our algorithm introduces an estimation of the microscope mechanical stage parameters as a new step between 
the steps 1 and 2 if the stage parameters are not provided by the user. MIST uses the stage modeling to perform 
translation optimization. Translation optimization is needed in experiments with intensity-homogeneous back-
ground and sparse foreground objects because of poor signal in overlapping areas. �is causes large errors in the 
estimated tile translations. In addition, translations have a large uncertainty in the relative stage position due to 
the stage repeatability, that amounts to 1 to 2 microns for good microscopes, and the microscope’s camera angle 
between the stage coordinate system and the camera coordinate system. �e user might specify a desired 10% 
spatial overlap between consecutive tiles but the actual overlap value could �uctuate between 8% and 12%. �is 
�uctuation is the reason why naïve stitching with �xed overlap will not be accurate. Our method takes advantage 
of the stage modeling to limit the search space around the 10% value within a range that is proportional to the 
amount of estimated (or given) stage repeatability.

�e MIST algorithm consists of the following four steps: (1) compute candidate translations between adjacent 
tiles, (2) estimate mechanical stage model from computed translations if model parameters are not given by the 
user, (3) optimize translations to reduce stitching errors in the mosaic image, and (4) compose tiles to produce 
the mosaic image.

Translation computation. MIST uses a Fourier-based approach for simplicity and predictable performance 
since it does not need an additional feature detection tool. MIST implements the Phase Correlation Method18 
(PCM) to compute translations between adjacent tiles. PCM is based on the Fourier Shi� �eorem which com-
putes the spatial shi� between two images as a phase shi� in the frequency domain.

In real images, phase correlation (PC) contains several peaks that correspond to di�erent translation values9. 
To determine the correct translation, the top two peaks in the PC matrix are evaluated. �e number of peaks is 
adjustable and the default is two. Due to the periodicity of the Fourier domain, each peak corresponds to four 
di�erent possible translations (in 2D). We evaluate these four possible translations, for each peak, using the nor-
malized cross-correlation (ncc) of the overlap area between adjacent images. �e candidate translation with the 
highest ncc value is selected as the translation between two adjacent images.

Estimation of mechanical stage model from pairwise translations. �ere is a degree of uncertainty 
in the translation computation that causes errors in the stitching results. �e sources of errors that a�ect transla-
tion computation between pairs of images are: (1) the signal to noise ratio in the acquired image, (2) the amount 
of signal in the overlap area, (3) the signal distribution with respect to the stage movement in the overlap area 
(i.e., �at-�eld e�ect in some imaging modalities, uniform or periodic signal distribution), and (4) the mechanical 
imperfections of the automated microscope stage (i.e., stage repeatability and actuator backlash).

Moreover, the mechanical stage model parameters vary over time and the variation magnitude depends on the 
microscope usage. If the microscope’s user calibrated the equipment and measured the stage repeatability, there is 
an option to input such parameters in the advanced tab of the tool. If the user inputs those parameters, then MIST 

Figure 5. Stitching execution times for varying grid sizes (number of images).
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does not estimate them. However, it is di�cult and time consuming to calibrate and estimate the mechanical stage 
properties of the microscope.

Additionally, there are research environments where a microscope might have multiple users. Each user might 
adjust/change/perturb the camera settings or mechanical stage. �ese physical changes can alter the microscope 
to be out of calibration.

Finally, there are time-lapse experiments in which touching the mechanical stage cannot be avoided. For 
example, cells in live experiments need to be fed intermittently. To do this, the sample is removed from the micro-
scope and then put back on the stage a�er media change. �is feeding process can alter the mechanical stage 
properties among many other experimental settings.

�erefore, we are o�ering an automated way to estimate these stage parameters from the computed transla-
tions to prevent the user from having to calibrate and measure these parameters before every acquisition.

An automated microscope has two co-planar coordinate frames, the observation frame (i.e., camera) and the 
control frame (i.e., stage actuators), that are related by the camera angle α, as shown in Fig. 6.a. �is angle is di�-
cult to calibrate. �erefore, a misalignment between the camera and stage axes will remain in most experiments. 
�e camera observes the horizontal and vertical stage movements, H and V, as (Hx,Hy) and (Vx,Vy) which are 
computed as follows:
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A motorized mechanical XY-Stage moves a biological sample relative to the microscope’s optical column. �is 
movement is carried out by two independent stepper motor linear actuators, one for each direction. �e mechan-
ical uncertainty of such a system is known as the stage repeatability. Moreover, the imperfection of the stage as a 
mechanical device introduces a variable overlap between adjacent tiles. Modeling the mechanical properties of a 
stage provides an upper bound to the variable overlap and can be used to limit the search for optimal translations, 
thereby minimizing the margin of stitching error.

Figure 6.b shows a grid tiling with the positions (x,y) that the stage will visit. Each position has an uncertainty 
equal to the stage repeatability (x ± rx,y ± ry). However, translations (dx,dy) computed in the vertical or horizontal 
directions between adjacent tiles are di�erences between respective positions. �erefore, the maximum possible 
error in the computed translation values is (dx ± 2rx,dy ± 2ry).

�e horizontal and vertical translations in the image coordinate system must account for the camera angle 
as well as the mechanical uncertainties. �e equations for horizontal and vertical translations that include the 
microscope models are the following:
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MIST estimates the following four quantities from the translation matrices H and V: (1) overlap amount, 
(2) the camera angle, (3) the microscope stage repeatability, and (4) the microscope backlash. Supplementary 
Document section 5 describes the details of this estimation.

Translation optimization constrained by stage repeatability. Figure 6.b shows each column in H as 
having the same dxi and the same dyi for each row in V within a ±2r limit. dxi values di�er between the columns 
of H while dyi values are di�erent between the rows of V due to backlash and mechanical imperfections. As such, 
we �lter H column wise and V row wise where we replace all computed translations, whose dxi or dyi values 
deviate from the median value by more than 4 × r (the stage repeatability), by the median value in that direction. 
We then apply Constrained Hill Climbing19 to the ncc values centered at the median translation and constrained 
within 4 × r region. Hill climbing will �nd the translation with the maximum ncc value by following the steepest 
gradient. �e 4 × r constrain comes from the model and bounds the algorithm to a small search space while con-
verging to an optimal value.

Figure 6. Stage mechanical model. (a) Stage displacements as observed by the camera. (b) Uncertainty and 
errors of horizontal and vertical tile translations due to stage mechanical properties.
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Mosaic assembly. �e assembly problem can be represented as an undirected graph where vertices are tiles 
and ncc values are edges. Each tile is connected to its surrounding four neighbors, three neighbors for tiles on 
edges and two neighbors for tiles on corners. �is over-constraint problem needs to be resolved to construct a 
well-formed image. We use the weighted maximum spanning tree algorithm20 to �nd the optimal subset of edges 
that connects all tiles together, without any circular subsets of edges per tile (each tile is connected only once to 
the reconstructed image) while maximizing the sum of all weights along that path. �e weight of all computed 
translations that satisfy the physically plausible o�set stage model criteria (o�sets <4r) are increased to ensure 
preferential selection of these translations during assembly. When creating the �nal stitched image, a linear or 
non-linear blending is applied to each individual tile12 to compensate for shading di�erences in overlapping areas 
between adjacent tiles. Supplementary Document section 6 gives more detail about the mosaic assembly process.

Accuracy measurement. �e mathematical formulas of the two performance metrics are:
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where Derr is the centroid distance error metric, x y( , )m mi i
 is the measured centroid location of reference colony i 

and x y( , )c ci i
 is its computed centroid location from the stitched image. Serr is the size error metric in percent, Ami

 

is the measured area in pixels of reference colony i and Aci
 is the computed area from the stitched image and 

i = 1,…,N is the number of reference colonies.
�e reference measurements are single colony images where the colony is automatically centered in the mid-

dle of the FOV and the corresponding stage coordinate locations (xr,yr) are saved in a CSV �le. �e output of a 
stitching method is a mosaic image from which colonies are segmented, cropped, and their locations computed. 
�is will generate one image per centered colony. We then use the Hungarian algorithm21 to �nd the optimal 
matching pairs between the two datasets. We apply the Hungarian algorithm to the similarity matrix T based on 
the ncc value between all reference colonies and the stitched ones. �e output of a stitching method may result 
in adding some colonies by duplication or deleting some colonies by misaligning tiles. �is results in a di�er-
ence between the reference and stitched colony counts. �is di�erence is characterized by the FP + FN metric. 
Furthermore, FN and FP metrics increase in value when the centroid distance of two matching colonies is larger 
than half a �eld of view (e.g., 340 µm). �e corresponding match between such colonies is deleted; the reference 
colony will be considered as missed and the corresponding stitched colony as added.

We adjust the computed locations from the stitched image for rotation and translation due to the camera 
angle between absolute position read on the microscope controller and the relative positions computed from 
the stitched image. We use Kabsch’s algorithm22 to compute the optimal rotation matrix that minimizes the root 
mean squared deviation between the two sets. Supplementary Document section 1 gives more detail about this 
methodology.

Data acquisition protocols. �e H9 human embryonic stem cell line (WiCell, Madison, WI)23 was pre-
pared to express GFP under the in�uence of the native Oct4 promoter and images were collected as previously 
described24. �is study was approved by NIST and carried out in accordance with the approved guidelines of the 
NIST Human Subjects Protection O�ce. �e �nal dataset consists of three data collections, each collection with 
around 161 time-lapse images at roughly 20 000 × 20 000 pixels per stitched image frame.

Implementation. �e MIST ImageJ plugin is a parallel application that uses coarse-grained parallelism to 
take advantage of computing resources available in a high-end workstation, namely multi-core CPUs and zero or 
more GPUs25. �e salient features of MIST’s implementation are: (1) its pipelined work�ow architecture, (2) its 
use of GPUs, and (3) its memory management. �e pipelined work�ow architecture organizes the image stitching 
algorithm as a series of connected stages that operate concurrently on multi-core CPUs. Data �ows from one 
stage to the next using shared thread-safe �rst in, �rst out queues. �e processing stages within image stitching 
operate on either computational, input/output (I/O), or state update tasks. For example, one computational stage 
might perform Fourier transforms, while an I/O stage reads images, and a bookkeeper determines when to issue 
more work. �is creates a separation of concerns, disconnecting algorithm state management from the individ-
ual computational elements the algorithm is composed of. �is allows computational stages to begin processing 
without considering the overall state of the computation, which improves CPU utilization. A computational stage 
is con�gured to operate using multiple workers (threads); this design improves the stage’s data production and 
consumption rates. In addition, I/O stages and computational stages operate concurrently, which allows for data 
motion to overlap with computation (such as overlapping reading images from disk with computing the FFTs of 
other images).

�is work�ow system is also used to take advantage of GPUs by altering the computational stages to issue 
work for GPU accelerators, preceded by a copy between the address space of the CPUs and GPUs. Furthermore, 
MIST instantiates one GPU-based pipeline work�ow per GPU and distributes data across all pipelines, thereby 
allowing it to take advantage of multiple GPUs within a single machine.

MIST diligently manages memory and reclaims bu�ers so it only needs to keep one row (or column) of image 
tiles in memory. It does so by allocating all required memory bu�ers at startup and then recycling bu�ers as it 
completes the processing of individual image tiles. �is management is important to enable the CPU-oriented 
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implementation to process large datasets: the Fourier transform that corresponds to a tile or an adjacent tile pair 
is 8 or 16 times the size of the tile itself; keeping all the tiles and transforms in memory quickly uses up all the 
available physical memory in a machine and results in very poor performance. �is management of memory is 
even more critical when using GPUs because memory is a much scarcer resource on GPUs; even high-end GPUs 
have far less memory than comparable CPUs. See Supplementary Document section 2 for more details.

Hardware. All runtimes discussed were generated using Ubuntu 14.04.4 LTS (Linux kernel 3.19.0–68, 
OpenJDK IcedTea 2.6.7, and FFTW 3.326) with 2× Intel® Xeon® E5–2650 v3 CPUs @2.30 GHz, 128GB DDR4 
memory, 2× NVIDIA Tesla K40 GPUs (CUDA 7.527).

Disclaimer. �e identi�cation of any commercial product or trade name does not imply endorsement or rec-
ommendation by the National Institute of Standards and Technology, nor is it intended to imply that the materials 
or equipment identi�ed are necessarily the best available for the purpose.
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