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Abstract

AI applications powered by deep learning inference are
increasingly run natively on edge devices to provide better
interactive user experience. This often necessitates fitting a
model originally designed and trained in the cloud to edge
devices with a range of hardware capabilities, which so far
has relied on time-consuming manual effort.

In this paper, we quantify the challenges of manually gen-
erating a large number of compressed models and then build
a system framework, Mistify, to automatically port a cloud-
based model to a suite of models for edge devices targeting
various points in the design space. Mistify adds an intermedi-
ate “layer” that decouples the model design and deployment
phases. By exposing configuration APIs to obviate the need
for code changes deeply embedded into the original model,
Mistify hides run-time issues from model designers and hides
the model internals from model users, hence reducing the ex-
pertise needed in either. For better scalability, Mistify consoli-
dates multiple model tailoring requests to minimize repeated
computation. Further, Mistify leverages locally available edge
data in a privacy-aware manner, and performs run-time model
adaptation to provide scalable edge support and accurate infer-
ence results. Extensive evaluation shows that Mistify reduces
the DNN porting time needed by over 10⇥ to cater to a wide
spectrum of edge deployment scenarios, incurring orders of
magnitude less manual effort.

1 Introduction

AI-driven intelligent edge has already become a reality [9],
where millions of mobile and IoT devices or edge servers
analyze real-time data and transform those into actionable in-
sights on user-facing devices. For example, real-time video an-
alytics (e.g., traffic monitoring [43], security surveillance [5],
and smart retail [3]), natural language understanding (e.g.,
virtual assistance, smart email composition [63]), visual assis-
tance [48], and industrial automation (e.g., defect detection,
assembly line management [1, 5]) are already everyday ex-
amples. It is projected that, by 2022, over 60% of the data
locally generated by IoT, sensor, and mobile devices will drive
real-time intelligent decisions; 80% of the IoT and mobile
devices shipped will have on-device AI capabilities [6, 16].

Many AI functionalities today are powered by deep learn-
ing (DL), with a significant computation footprint. While edge
devices used to primarily offload related computation to the
cloud, increasingly inference workloads are run natively on

the edge devices to provide better interactive user experience
(e.g., ⇠10 ms real-time response), data privacy, and reliabil-
ity [60]. This often necessitates porting (i.e., tailoring and
deploying) a deep neural network (DNN) model originally
designed and trained on the cloud to edge settings.

Model porting is a non-trivial process even for a single
target. From an algorithmic perspective, the core techniques
involved are called model tailoring in the machine learning
literature. There are two steps, adapting the architecture of a
pre-trained model to fit a new resource specification, followed
by fine-tuning the new model parameters. Although there have
been numerous model tailoring algorithms [22, 25, 31, 82],
the complete porting process additionally requires “execut-
ing” the algorithms by correctly annotating a source model,
and then retraining the annotated model with the right data.
By various estimates, there will be over 50 billions IoT de-
vices [30] with very diverse hardware profiles. This creates a
massive design space for optimizing the resource usage and
performance of a new model.

Unfortunately, the current practice of porting relies on man-
ual effort, which simply cannot scale with the sheer size of
the design space. There are two issues: laborious manual an-
notations and the computational complexity. Even if porting
is a one-time need, it takes time to meticulously annotate
the original model to embed the correct model tailoring ob-
jectives. For instance, constructing the model tailoring logic
for ResNet50 [35] requires around 30 lines of source code
edits scattered around several files. Further, model adaptation
incurs significant computational complexity. Existing algo-
rithms can handle generating one model, but can not scale
well to large batches of model generation. If many model
variants are needed, either for different device hardware spec-
ifications or for different runtime conditions, manual tailoring
incurs significant repeated efforts. The effort needed to tailor
model variants could match that for training an original model.
Therefore, app developers currently perform little platform-
specific customization to the intractable target space [75],
even though lack of customization results in suboptimal per-
formance. (Section 2)

Fundamentally, the problem is the implicit coupling be-
tween model design and deployment currently. Model design-
ers need to both improve the inference accuracy and mini-
mize the memory and computation footprint for deployment.
Model users need to both compress the model without degrad-
ing accuracy significantly and accelerate the inference. Both
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stages require significant expertise spanning deep learning
algorithms and system runtime management.

In this paper, therefore, we build Mistify, a system frame-

work to automate and scale the porting process from a pre-
trained model to a suite of compact models tailored to di-
verse edge resource specifications (Section 3). Mistify does
not propose any new model tailoring algorithm. Instead, it
wraps over existing model tailoring algorithms and provides
additional system services for scalability. This is analogous
to a scheduling framework implementing common schedul-
ing algorithms so that application developers can outsource
scheduling considerations. With Mistify, model users (i.e.,
mobile app developers, often non-machine-learning experts)
can outsource model adaptation instead of understanding the
specifics of the model to adapt. In this way Mistify takes on
the role of a provider of models for on-device inference exe-
cution. Meanwhile, model designers (i.e., machine learning
experts) can use simple resource abstractions to evaluate the
model instead of undergoing detailed resource profiling.

From a system perspective, we propose new abstractions to
separate the model semantics from the execution characteris-
tics and several techniques (Collective adaptation, Privacy-

aware knowledge distillation, and Downtime-free run-time

model generation and switching), all incorporated in an end-
to-end framework. Mistify minimizes the need for “compile-
time” code changes when generating a model statically. In-
stead of requiring the user to annotate the original model,
Mistify generates model adaptation logic from the config-
uration file to correctly and scalably tailor to the resource
budgets and performance requirements of each device while
minimizing duplicate iterations (Section 4). Further, Mistify

leverages implicitly correlated edge data in a privacy-aware
manner to balance training data privacy and model accuracy
(Section 5). During the run time of the inference task, Mist-

ify employs a feedback mechanism to generate new models
as needed to adapt to fluctuating application demands and
resource availability (Section 6).

Note that we make a distinction between the end-to-end
process (porting) and individual model compression tech-
niques (neural architecture search, layer pruning, etc.). The
latter do not always produce a readily usable compressed
model. The (adapted) model still needs (re)training and that
process incurs several practical difficulties. In contrast, Mistify

automates the entire end-to-end process. Making it scalable
and adaptive while keeping training data local are non-trivial
efforts, and extend significantly beyond simply implementing
known algorithms for each component in one system.

Mistify is implemented following a client-server model,
built on TensorFlow [13]. We build example wrappers to
adopt state-of-the-art model adaptation algorithms like Mor-
phNet [31] and ChamNet [25], and evaluate Mistify using
representative vision and natural language processing (NLP)
models trained with widely used standard datasets. Extensive
evaluation shows that Mistify reduces the DNN porting time

needed by over 10⇥ and incurs orders of magnitude less man-
ual effort, all with little or up to 1% accuracy loss when com-
pared to manually running the adaptation algorithms. This
loss margin is well within the typical accuracy loss budget for
on-device inference [64].

Mistify is far more than a tool for convenience. It serves
as an intermediate layer that decouples the model design and
deployment stages. Model designers can focus on model per-
formance and advanced architecture design, without worrying
about deployment difficulties, whereas edge users can focus
on execution-centric issues such as optimizing the executable
binaries, computation kernels, and job scheduling, without
worrying about the inner workings of the model.

To summarize, this paper makes three contributions: First,
we quantify the scalability challenges of porting pre-trained
DNN models to edge settings to motivate framework support.
Second, we design and implement Mistify as a framework for
automated porting at scale. Mistify achieves scalability with
collective adaptation and improves model quality with privacy
aware knowledge distillation and run-time model adaptation.
Third, Mistify provides a clean interface to separate DNN
model design and deployment. This could lower the bar for
wider usage of on-device deep learning at the edge.

2 Background and motivation

The lifecycle of a DNN model spans design and deployment,
and the need for automating model porting arises from the
complexity of the process. We discuss these in detail before
outlining the challenges and solutions.

2.1 Current DNN lifecycle

The lifecycle of a DNN encompasses at least three stages:
model design, publishing, and deployment. Publishing mainly
requires adding a well-trained model to public repositories,
while design and deployment are more involved.

DNN model design. Today’s models are designed for either
optimal inference quality or minimal resource footprint.

The former is typically assumed for workloads run on the
cloud. Given increasing computation power, cloud-centric
models employ advanced neural network topologies, mil-
lions of parameters and floating-point operations (FLOPs)
to achieve the highest accuracy. For example, BERT [28] and
ResNeXt [51] have 340 and 829 million parameters respec-
tively, hence extremely computation intensive.

The latter goal is geared towards resource-constrained edge
devices, including IoT nodes, smartphones and tablets. The
desirable models (e.g., MobileNet [38] and SqueezeNet [40])
are exceedingly compact, requiring only a few MBs for stor-
age and affordable computing budget, ready to run across
diverse hardware. However, these DNNs sacrifice accuracy in
exchange for super lightweight execution, aiming at maximal

deployment coverage.

DNN deployment at the edge. Many DL inference engines
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Figure 1: Steps to port a DNN model to an edge setting.

have been developed to serve DNN workloads on edge de-
vices. They focus on deployment optimizations such as cross-
platform compatibility, trimming executable size, and low-
complexity operator kernels [2, 24]. Once DNN models are
loaded (e.g., from model repositories or custom URLs), these
engines can execute the inference tasks efficiently.

Transition from design to deployment. When a pre-trained
model is ill-suited to a desirable deployment setting, it needs
to be tailored to the new resource budget and performance
goals. This requires adapting the model architecture (e.g., by
trimming network connections, skipping layers, quantizing
parameters) and then fine-tuning (i.e., retraining) the parame-
ters with local datasets (Figure 1). However, the end-to-end
model porting process is complex. The source model needs
to be correctly annotated to have its architecture adapted to
a desired setting. Fine-tuning also requires careful usage of
the training data to balance training quality (i.e., effective
specialization without overfitting) and data privacy.

2.2 The complexity of porting DNN models

As more edge devices adopt on-device inference, porting
cloud-based models to edge settings becomes increasingly
complex, facing several challenges: (i) the range of model
adaptation targets is huge as a result of the diversity in the
hardware specification; (ii) the porting process involves sev-
eral stages, each requiring coordination between multiple
parties; (iii) run-time dynamics and new deployment settings
may necessitate frequent model re-adaptations.

Heterogeneous execution environment. Edge devices are
incredibly diverse, ranging from embedded sensors, IoT de-
vices, mobile phones/tablets, to edge servers, covering a full
spectrum of hardware capability [75]. Table 1 lists the specifi-
cations of some GPU and ASIC accelerators and processors,
from high-end to low-end, widely employed at the edge for
DNN-based workloads. For the same DNN inference work-
load, the completion times for low-end (e.g., Jetson nano) and
high-end (e.g., 2080) devices can differ by orders of magni-
tude (e.g., 229 ms vs 9.8 ms to run inference with ResNet).

Meanwhile, the DNN inference times for the same task can
differ by up to 8⇥, and the quality (e.g., in accuracy, F1 score)
varies by as much as 25% [18, 66]. It is therefore essential to
match the desirable performance with the hardware capability.

These numbers outline a massive design space to explore
different tradeoff points between inference accuracy and la-
tency, where a sub-optimal choice could incur up to 10% accu-

Table 1: Popular DL hardware specifications.

GPU Peak perf Memory Bandwidth

V100 112 TFLOP 32 GB 900 GB/sec
2080 11.7 TFLOP 11 GB 480 GB/sec

Edge GPU Peak perf Memory Bandwidth

Jetson TX2 1.5 TFLOP 4 GB 58 GB/sec
Jetson nano 0.47 TFLOP 4 GB 25 GB/sec

ASIC Peak perf Memory Bandwidth

Edge TPU [4] 4 TFLOP - -
Raspberry pi 6 GFLOP 2 GB 8.5 GB/sec

racy loss (e.g., when running EfficientNet-BO unnecessarily
on the latest iPhone model) or miss the latency requirement
for real-time processing by over 100 ms (e.g., running ResNet
on a low-end smartphone) [76].

Clearly, one size does not fit all, but nor would a few sizes
only. Instead, it is desirable to tailor to each target at a fine
granularity. For instance, EfficientNet-B4 (a popular model
occupying a sweet spot of computation complexity and pre-
diction accuracy) is suitable for Samsung S9, achieving 83%
accuracy and 50 fps real-time response rate. However, using
the same DNN on its immediate predecessor (S8) and succes-
sor (S10) would reduce the response rate by 14 fps for S8 and
the accuracy by nearly 1% for S10. These are significant to
the model designers where even 0.1% accuracy improvement
merits tremendous effort (both intellectually and computation-
ally) into model design and training. Given the ever increasing
size of this adaptation space, it is impractical to either cover
all plausible operation points with a few DNN models, or
manually exhaust the entire space to customize the adaptation
tradeoff for each possible individual edge setting.

Multi-stage multi-party efforts. Tailoring a DNN model
involves first adapting to the right model architecture, and
then fine-tuning the model parameters (Figure 1).

The first stage is resource heavy and therefore takes place
where the original models are trained (i.e., in the cloud).The
second stage increasingly takes place at the edge given the
push for on-device inference and private learning. Edge de-
vices collect and maintain specialized data relevant to the
local context for model training [19, 42] and local data are
typically privacy sensitive [59]. However, smaller networks
with less abundant datasets are well known to be much harder
to train, as it is easy to overfit the model to the training data
such that the model may not generalize well to unseen test
data [37, 79]. Thus, it is also preferable for the edge to take
advantage of relevant datasets available elsewhere (e.g., in the
cloud or on other devices) to enhance the training dataset and
improve training quality.

To sum up, both stages of model tailoring require coor-
dination between the cloud and the edge, and resolving the
conflict between data privacy and fine-tuning quality.

Fluctuating run-time characteristics. The run-time char-
acteristics of deep learning inference tasks are highly dy-
namic, shown in two aspects. First, the performance require-
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ments, e.g., accuracy and response time, of an inference task
change frequently. For instance, the accuracy requirements of
a vision-based security surveillance workload differ between
crucial and trivial moments, while the latency requirements
fluctuate across peak and off-peak hours (e.g., daytime and
night) [41,42]. Further, the commonly used metric, FLOPS, is
sometimes an inaccurate proxy to statically estimate run-time
latency [72]. Second, the resource availability (e.g., memory
space, CPU cycles, accelerator quotas), varies on the edge de-
vice due to other workloads competing for the same resource.
For instance, when an edge device launches or completes a
workload, or adjusts the resource allocation of the containers
that serve the inference tasks, the perceived resource avail-
ability to the active workloads changes [23, 74].

Frequent changes in the performance requirements and
resource availability necessitate a mechanism to better serve
combinations of the individual operation points, including a
suite of models to switch to dynamically, and asynchronously
tailoring new ones as the demand warrants.

2.3 The need to automate DNN porting

Current practice. To tailor DNNs towards heterogeneous de-
ployment settings, currently either the model designers should
generate different DNNs to cater to each possible resource
budget and performance goal, or the model users should pre-
pare the custom datasets, select and apply the algorithms to
tailor already published DNNs towards their custom settings.

The latest adaptation algorithms, such as AutoML [82],
EfficientNet [73], and others [14,22,25,31], all address target-
specific adaptation case by case as an additional step in the de-

sign phase. While the techniques differ (e.g., gradient-based,
evolutionary, and recurrent neural network based), they revise
the model architecture to be closer to the required resource
and performance targets with successive training iterations.

Problems with current porting practice. The overarching
problems of the existing practice are they do not scale from a
system perspective (e.g., hundreds of GPU hours for a single
setting [71, 82]) and largely rely on manual effort (e.g., thou-
sands of lines of code spread across source files [10]). Such
a manual tailoring process is not easily turned to a configu-
ration style that is agnostic to the number of cases because
distinct structure adapting terms have to be added to different
DNN models/layers and at specific positions, which makes
it difficult and error-prone. Furthermore, it is infeasible for
the model designers to prepare for all possible deployment
settings, or for the model users to be well versed in machine
learning literature to run the right algorithm.

The need for an automated framework. The current model
porting process implicitly couples DNN design and deploy-
ment, even though they are conceptually separate stages. This
coupling introduces unnecessary complexity to both model
designers and model users. This motivates adding a separate
model porting stage to the model lifecycle, i.e., an intermedi-

ary to decouple design from deployment and automatically
port pre-trained DNNs towards heterogeneous edge settings.

Mistify is therefore built as an intermediate framework to
encapsulate diverse adaptation algorithms and address the
end-to-end porting challenges outlined above, analogous to
scheduler frameworks for distributed systems implementing
scheduling algorithms and providing services.

2.4 System requirements

To address the challenges above, an automated model porting
framework should meet the following requirements.

Avoiding deeply embedded and unscalable manual code

changes. Since the existing model adaptation step is often
coupled with model design itself, a side effect is that rele-
vant code changes are embedded deep into the model design
code. Therefore, the system challenge is to simplify the code
modifications needed to specify the adaptation logic.

Mistify addresses this challenge in two steps (Section 4).
First, we expose the right high-level abstractions of adap-
tation choices to users. This elevates per-model code edits
(embedded in the particular script specifying the model) to
framework level configuration parameter changes. Second, we
parse the adaptation requirements from the configuration files
and merge implicitly correlated model adaptation requests to
reduce duplicate iterations and improve scalability.

Cloud-edge coordination. To automate the two-stage model
tailoring process with the best training outcome, the main
challenge is to simultaneously ensure that private data stay lo-
cal but parameter tuning can benefit from the data distributed
across devices. We address this by adopting mutual knowl-
edge distillation. Our system implicitly coordinates multi-
ple devices in the same tailoring batch to maximally “share”
available training data in a privacy aware fashion, without
explicitly exchanging and examining the raw data (Section 5).

Fast response to run-time dynamics. Fundamentally, the
system challenge is to effectively handle the mismatch be-
tween a statically trained model and the dynamic execution
environments during run time. Specifically, this requires gen-
erating new models as needed and switching to them with
minimal downtime. We address the challenge with a feedback
mechanism between the model deployment points (e.g., edge
devices) and the model tailoring point (e.g., a central server or
cloudlet) to perform real-time DNN re-adaptation (Section 6).

3 Mistify demystified

The overarching goal for Mistify is two-fold: (i) Mistify should
separate the model design and deployment stages with a clean
interface; and (ii) Mistify should bridge the two stages with
a framework that automatically explores the design space
at scale and generates models best suited to user-specified
tradeoff points, hiding such complexity from both sides.

Therefore, Mistify is designed as an intermediate frame-
work between DNN model design toolkits and deployment
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Figure 2: Mistify system architecture.

engines, as shown in Figure 2. The arrows across different
shaded blocks show how Mistify interacts with model design-
ers and users. Mistify exposes APIs to the model users and
inference engines to specify their porting configurations (Fig-
ure 3), either in a batch mode during initialization or in a
streaming mode incrementally during run time.

The primary challenge for Mistify is therefore how to gener-
ate a large number of adapted DNN models with minimal com-
putation and manual intervention. In general, our approach is
collective adaptation, i.e., parsing adaptation goals and har-
nessing the implicit correlation among the goals to reduce
unnecessary computation (Section 4). Mistify parses a collec-
tion of individual adaptation goals into a dependency tree with
each node corresponding to a distinct goal, so that each goal
is adapted only from its immediate parent via a desirable, au-
tomatically selected adaptation algorithm. Next, the adapted
models are distributed to the endpoints, where the Mistify

client runtime will prepare the deployment of the adapted
model by fine-tuning the parameters (Section 5). Finally, the
models start running on edge devices, and the Mistify client
monitors the execution environment (e.g., resource availabil-
ity and desirable performance goals). The Mistify client will
trigger on-demand model re-adaptation asynchronously when
the environmental changes warrant a new model (Section 6).

Example deployment strategies. Following the common
practice of on-device DL inference deployment [2, 5], Mistify

can be deployed in two ways. The Mistify server can be de-
ployed in the cloud by the DNN application developers, inter-
facing with the model repository (e.g., TF-Hub) and exposing
APIs to the public. Alternately, the server can be maintained
by the model users (e.g., edge device administrators) in their
private clouds to serve local devices (e.g., IoT nodes). Mistify

clients are simply deployed on the edge devices as a module
extension to the native DL engine.

Mistify server. The Mistify server consists of two functional
modules: an architecture adaptor and a parameter tuning

coordinator. Once the architecture adaptor receives the origi-
nal DNN model and the adaptation settings from the model
users and/or the Mistify client, it generates the adapted models
and sends those to the corresponding clients (Section 4). The
parameter tuning coordinator serves as the central point to
coordinate the parameter fine-tuning process across the Mist-

ify clients (Section 5.2), whereas the actual tuning logic is
executed on each client locally (Section 5.1).

[ // start of all configurations  
    {
        "id": "1",
        "model": "Resnet",
        "dataset": {
            "train": "/path/to/train",
            "test": "/path/to/test"
        },
        "algorithm": {
            "name": "Morphnet",
            "config": {
                "threshold": 0.1,
                "init_reg_strength": 1e-9
            }
        },
        "adaptation_goal": {
            "latency": "30ms",
            "accuracy": 0.80,
            "FLOP": "5G",
            "num_of_params": "20M"
        }
    },
    // more configurations ...

    // ... more configurations,
    {
        "id": "9",
        "model": "Efficientnet",
        "dataset": {
            "train": "/path/to/train",
            "test": "/path/to/test"
        },
        "algorithm": {
            "name": "Chamnet",
            "config": {
                "init_population": 10,
                "crossover_rate": 0.7,
                "mutation": 0.08
            }
        },
        "adaptation_goal": {
            "latency": "30ms",
            "accuracy": 0.80,
            "FLOP": "5G",
            "num_of_params": "20M"
        }
    }
 ] // end of all configurations

Figure 3: Example porting configurations.

Mistify client. The Mistify client consists of a run-time adap-

tation initiator, a parameter fine-tuner and a run-time perfor-

mance monitor. The run-time adaptation initiator intercepts
the native DNN model loading path of the inference engine
to automatically trigger model adaptation during initializa-
tion, and then listens for run-time re-adaptation requests. The
parameter fine-tuner takes an adapted DNN model as the
starting point, optimizes its parameters jointly based on the
local (private) training data and the guidance from the cor-
related neighboring counterparts (coordinated by the Mistify

server). This approach aims to overcome overfitting while
maintaining data privacy. The run-time monitor tracks the
current performance as well as resource availability. Once
these profiles change significantly, it will trigger an online
model switching as well as an offline re-adaptation request.

4 Scalable model architecture adaptation

Instead of requiring the user to manually annotate the source
models, Mistify provides expressive configuration interfaces
to specify adaptation goals and constraints (Section 4.1) and
suitable abstractions to capture common algorithmic steps that
meet these constraints (Section 4.2). To further scale to a large
target space, Mistify merges adaptation instances to avoid
duplicate efforts (Section 4.3) with collective adaptation.

4.1 Adaptation goal specification

An adaptation goal reflects the desirable inference perfor-
mance given static and dynamic device conditions. We as-
sume these goals are immutable, and any changes in the run-
time conditions simply generate new goals. A user provides
two sets of input: hardware profiles and performance targets.
Hardware profiles mainly include compute power (GFLOP/s)
and memory bandwidth (GB/s). Performance targets cover
latency and accuracy requirements. The specification can be
extended to support custom resource capability and perfor-
mance metrics by adding the corresponding profiling libraries
and tools (Section 4.2). We leverage a JSON-like format (Fig-
ure 3) to specify multiple goals in a single configuration file,
which is parsed before adaptation.

We next formulate the cost budgets of a given DNN struc-
ture based on the specification of the adaptation goal pro-
vided by the user. In terms of computation cost, each layer
contributes Cin ⇤Cout ⇤ Skernel ⇤ Sout multiplications and ad-
ditions. Cin and Cout denote the input and output channels;
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Skernel and Sout denote the convolution kernel and output size
for Conv operations; for normal Matmul operations, Skernel

and Sout both equal 1 as they are equivalent to 1⇥1 convolu-
tion on 1⇥1 inputs. For memory cost, each layer contributes
Cin ⇤Cout ⇤ Skernel parameters (Skernel is 1 for Matmul opera-
tions similarly). Combined with the quantization strategy, the
total memory consumption of a neural network layer can be
calculated. For latency cost, we first calculate the previous
two costs Ccomp and Cmem respectively. Then, we leverage
the hardware specifications (peak computation power and the
memory bandwidth) to translate these costs into the latency
cost as Cmem/mem_bandwidth+Ccomp/comp_power.

4.2 Adaptation Executor

Common DNN adaptation workflows. State-of-the-art
DNN adaptation algorithms follow a similar process. They
take a source DNN model and adaptation goals, and search
for variants of the base model architecture that fits each sce-
nario. The search explores a high-dimensional vector space,
where each hyperparameter of the DNN (e.g., #layers, #filters,
kernel size, and quantization) corresponds to a specific dimen-
sion. The search process runs iteratively until the costs of the
current model optimally match the adaptation goal. Typical
search strategies include evolutionary search [25,77], gradient
descent [14, 31], and RNN-based search [72, 73].

Adaptation executor. In light of this common process, we
design an abstraction, an Adaptation Executor, that col-
lects all adaptation settings as a closure, and exposes three
function APIs (Init(), Measure(), and Adjust()). Init()
loads the adaptation settings, the model, and the constraints,
and then instantiates the executor that runs the chosen adap-
tation algorithm (default or user specified). Measure() is
called after each adaptation iteration to determine the costs

of the current model (e.g., model size or accuracy). Custom
metrics and profiling mechanisms can be incorporated by im-
plementing the Measure() API. Adjust() will then tune the
control knobs of the algorithms (e.g., dimension-wise step
size, threshold, or learning rate) to steer the cost refinements
towards the adaptation goals in an optimal direction. These
APIs abstract away the inner workings of heterogeneous adap-
tation algorithms in a universal approach, obviating the need
to directly annotate the models to embed the adaptation logic.
A new adaptation algorithm can interface with Mistify by
implementing the above APIs, and the user can specify the
preferred algorithm in the configuration.

Case study: Running MorphNet via an adaptation execu-

tor. The vanilla DNN training starts with defining an accuracy
loss function (Lout put) based on the difference between the
model outputs and the ground-truth labels. The loss is back-
propagated to each layer i (with parameter θi) as Li(θi). Each
layer calculates the gradient of the loss, and optimizes the
parameters (θi) iteratively by minimizing the loss via gradient
descent. Namely, θnew

i = θold
i �η ·∇θi

Li(θi).

MorphNet (a recent gradient based search algorithm [31])
converts the resource costs of DNNs as additional penalty
terms of the loss function. This way, the DNN architecture
is iteratively optimized via gradient descent along with the
vanilla DNN training. For instance, the “useless” weight pa-
rameters will be suppressed to zero and trimmed during train-
ing when minimizing the overall loss, as they do not contribute
to reducing the accuracy loss but increase the architectural
loss. The adaptation process completes when each structure-
related cost (e.g., number of FLOPs) satisfies the correspond-
ing constraint, or when the pre-defined maximal running time
is reached for the non-converged cases.

Manually adapting a model using MorphNet requires sev-
eral steps: (i) selecting the penalty term for each opera-
tor appearing in the DNN (e.g., the Gamma regularizer for
BatchNorm), (ii) specifying the input and output operators of
the model, (iii) instantiating the penalty terms with the right
arguments such as the trimming threshold and the learning
rate, and adding them to the overall training loss, and (iv)
adding the cost monitoring operators and the termination con-
ditions. All these steps are needed for each adaptation target,
and require modifying the source code of the DNN definition
and training scripts. In contrast, Mistify only requires users
to specify the high-level configurations (e.g., the adaptation
algorithm, the trimming threshold) and adaptation goals (e.g.,
memory usage, number of FLOPs) in a single JSON file.

To encapsulate the MorphNet algorithm in a Mistify adapta-
tion executor, we implement the APIs as follows. For Init(),
we additionally implement the operations of deriving the po-
sitions (e.g., Conv layers) to add architectural loss terms, es-
sentially by first finding the input layers, and then traversing
the whole DNN graph topologically along the dependencies
to insert the loss terms into the corresponding layers until
the outputs. Measure() simply calculates the resource and
performance costs of a given DNN independent of the adap-
tation algorithms. For Adjust(), we implement the logic of
setting the learning rate of the loss term corresponding to each
resource and/or performance constraint. The implementation
of these APIs is lightweight (Section 7).

4.3 Collective adaptation

Multiple adaptation goals often share similar initial steps or
training iterations. Handling each adaptation goal indepen-
dently is very inefficient when deploying the same model to
a range of devices. Therefore, Mistify provides a mechanism
to “merge” adaptation goals to avoid duplicating the same
steps. We parse the adaptation goals into an n-ary tree struc-
ture following certain rules. Goals along a branch are fulfilled
one by one serially in a single pass. We also design a tree
traversal mechanism to meet the constraints (e.g., time and
space usage) of all goals simultaneously.

Adaptation goals compilation. As mentioned above, each
single goal consists of several resource and performance
constraints, and can be abstracted as a multi-dimensional
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Figure 4: Example adaptation goals parsed into a tree.

vector. Combining the hardware specifications and perfor-
mance constraints, we generate a partial order of all adap-
tation goal vectors, from the least demanding to the most.
Figure 4 shows an example of 7 goals (C1 to C7), each with
two constraints (memory usage mem and computation com-
plexity comp). Goals Ci and C j follow a strict order, Ci <C j,
only when Ci.mem <C j.mem and Ci.comp <C j.comp.

Following the partial order between goals, we further gen-
erate a tree structure, with each node representing a goal, and
each edge leading to one of its immediate more demanding
goals. Hence, each branch of the tree corresponds to an inde-
pendent adaptation path (marked with a red arrow in Figure 4).
Along each path, every two goals are consistently ordered
on all constraints. This ensures that they can be collectively
adapted in one pass without conflicts. Note that the accuracy
does not strictly increase over the path. When Mistify starts
to traverse a path from one point to the next, the accuracy
will first drop to a certain level, and then climb back while
the training continues. Meanwhile, the resource profiles will
move to the most desirable positions.

Given the tree structure, we first uniformly expand the
architecture of the original DNN so that, for each constraint
dimension, its actual cost value is larger than that of the root
node (the least demanding goal). Then, starting from the root,
we run the encapsulated adaptation algorithm to trim the DNN
architecture iteratively along each adaptation path. Every time
a goal is satisfied, the corresponding version of DNN is stored
as a checkpoint for future use.

Note that even though the mapping between partially or-
dered goals to a tree structure is usually not unique, we find
that there is only marginal difference in the overall adapta-
tion time between different mappings. Hence, it is not worth
optimizing the mapping given it is NP-hard.

Structure loss scheduling. When executing the adaptation
along a path, an essential question is how to control the adapta-
tion towards the optimal direction (via Adjust()), i.e., how to
meet multiple desirable constraints simultaneously. Although
this can be achieved by forking a new adaptation schedule
for each change of the adaptation “direction” [69], constant
forking does not scale to a large number of adaptation goals
and can not achieve fine-grained continuous control.

Instead, we adjust the control knobs based on the weighted
combination of the corresponding architecture losses. The
overall DNN loss function is the sum of the normal loss (L)
and architecture losses corresponding to a set of constraints
{Gi}. For each Gi, their control knob (e.g., learning rate for
gradient-based algorithms) can be viewed as a weight param-

eter wi. Hence, the overall loss Lall = L +∑i wi ·Gi. To adjust
the adaptation “direction” towards a specific constraint fi, we
only need to increase the weight wi of the loss Gi.

Initially, all the weights wi are equal and sum to 1. Suppose

for the loss of constraint fi we have the initial value G
(0)
i and

the target value G
(+)
i . Then, for every k training iterations (em-

pirically set to 200), we reschedule the weights once. The n-

th iteration weight w
(n)
i is calculated as Share

(n)
i /∑i Share

(n)
i ,

where Share
(n)
i =

G
(+)
i �G

(n�1)
i

G
(+)
i �G

(0)
i

. In essence, we proportionally

assign the next value of the weight w
(n)
i according to how far

the corresponding loss value G
(n�1)
i deviates from the target,

and finally normalize these weights.

5 Privacy-aware fine-tuning at the edge

After adjusting the model architecture with respect to the
resource and performance constraints, the weight parameters
need to be fine-tuned before actual deployment. If all training
data are collected and stored in the cloud, parameter tuning
simply follows the standard training process for the adapted
DNN. The challenge arises when specializing the DNNs only
using the local contexts of edge devices.

Recall (Section 2.2) that DNNs are hard to train with a
small dataset, usually the case for individual edge device,
and can easily overfit. On the other hand, the data local to
each device is often more relevant but private, making it diffi-
cult or infeasible to aggregate the data from different devices
into a larger dataset for centralized training. Therefore we
need to balance protecting edge data privacy and ensuring
training quality (in terms of how well individual models gen-
eralize). While many works (e.g., federated learning [19]
and others [20, 52, 70]) address decentralized private DNN
training, they assume different endpoints train the same DNN

structure with different local datasets. The situation is differ-
ent for Mistify, where the models on different devices have
different architectures to meet specific adaptation goals.

Knowledge distillation (KD). To tackle the aforementioned
dilemma, we need a mechanism for DNN “knowledge” shar-
ing between distinct peer models and without explicitly ex-
changing private data between devices. Fortunately, mutual

knowledge distillation [15, 81] comes to the rescue. When
training a DNN model (M1, the student model) from scratch,
leveraging additional help from another similar but indepen-
dently trained model (M2, the peer teacher model) can signif-
icantly improve the validation accuracy of M1.

Specifically, the optimization of parameter θi follows:
θi = θi � η∇θi

{φ(y,M1(x)) + ϕ(M2(x),M1(x))}, where ∇θ

denotes taking derivatives with respect to the variable θ, φ and
ϕ denote the loss functions (e.g., cross-entropy) respectively
defined for the ground-truth labels and the teacher model
M2’s outputs, and η denotes the learning rate as usual. The
corresponding parameter values in M2 are incorporated as
added constraints. This way, the student model receives extra
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supervision from the teacher model during training, beyond
optimizing for conventional learning objectives like the cross-
entropy loss subject to the ground-truth training labels.

5.1 Client: KD-enhanced parameter tuning

Observe that a DNN trained locally on an edge device encap-
sulates the “knowledge” extracted from the private local data.
Therefore, to take full advantage of the edge data distributed
across devices without exchanging the private data, our algo-
rithm instead shares the DNN models trained independently
on each device. The ensemble of DNNs from other devices
serves as the “teacher” to guide the current device’s model
just like in standard mutual knowledge distillation.

Our algorithm proceeds as follows.
(i) Each participating endpoint device (Ei) first tunes their

adapted version of DNN model (Mi) with locally available
training data until convergence.

(ii) Each endpoint sends its current model along with its
loss and accuracy statistics to the central coordinator and waits
for a response, namely a set of models (M1 to Mn) trained
on the other devices. An operator is added over the n outputs
of these models (M1 to Mn), taking their average as the final
output of the model ensemble.

(iii) KD-enhanced tuning is then invoked to optimize the
parameters θi of model Mi: θi = θi � η∇θi

{φ(y,Mi(x)) +
ϕ( 1

n�1 ∑ j 6=i M j(x),Mi(x))}. Namely, the outputs of each local
model Mi are compared with both the ground-truth labels y

and the outputs of the assembled teacher model to calculate
loss. We follow similar hyperparameter settings as in [37],
using cross-entropy loss for φ and Kullback-Leibler (KL)
divergence [45] for ϕ to measure the distance between the
teacher and local models, and a default value 0.001 for η.

(iv) Now loop over steps (i) to (iii) until the model finally
converges. Noticeably, to improve generalization and avoid
being skewed by some poor performing models, we randomly
skip max(n/10,1) of the models used for each round of KD-
enhanced tuning in step (iii).

Privacy-aware tuning. Although less privacy-sensitive than
the training data, DNN models can still leak information from
the private training data. To overcome this privacy leak, we
can add noise to the fine-tuning process to achieve differential
privacy [39, 56]. The noise can be added to either the training
data, or the model parameters sent to the Mistify server. How-
ever, the latter provides less privacy protection, is easier to
“denoise”, and does not provide fine-grained control easily.

Therefore, we augment the algorithm above with an op-
tional step after (i). Specifically, we add Laplacian noise to
the local training data, and train the model (Mi) for additional
epochs until convergence. Then, this noisy model (M0

i) is sent
to the central coordinator in step (ii). This provides differen-
tial privacy to the model parameters and reduces information
leakage from the private data. The level of noise added is
chosen empirically according to existing privacy-preserving
machine learning practice (e.g., PATE [56] and Myelin [39])

with the same level of privacy loss preference (e.g., ε < 5).
Mistify is amenable to this differentially private approach

by design. As Mistify aims to scale to a large batch of end
devices (hundreds or more), potentially there is a large number
of peer models to draw from during the intermediate steps.
Even if the individual noisy intermediate model (M0

i) is less
accurate than its noiseless counterpart, the accuracy loss is
compensated for by the ensemble of other peer models [55].

5.2 Server: Client model coordination

One particular concern of our aforementioned algorithm is
whether the models used for KD-enhanced tuning indeed add
knowledge rather than noise. Fortunately, our approach is
supported by the evidence of correlation between training
data and the models. First, datasets from nearby edge devices
exhibit spatio-temporal correlation [32,33,78]. Second, given
training datasets sufficiently similar in their semantic contexts
(e.g., types of objects, hidden feature occurrence frequencies),
the models thus trained perform semantically equivalent func-
tionality and can provably generalize to achieving the same
capability [53, 67, 80].

In practice, we use common spatio-temporal hints (e.g.,
location, time, view angle) sent by each client along with their
models as a coarse-grained mechanism to estimate data corre-
lation. There are myriad alternative lightweight approaches
to measure dataset similarity without piece-wise comparison
of the actual raw data (e.g., by calculating dataset feature
summaries [46, 57]). They are easily pluggable into Mistify

with the corresponding API implementations. Regardless of
the exact metrics used to measure correlation, they are repre-
sented as multi-dimensional vectors. The central coordinator
on the Mistify server maintains a Locality-Sensitive Hash-
ing (LSH [26]) structure to index the vectors for large-scale
nearest neighbor lookup at a sublinear complexity [21].

6 Run-time model adaptation

Existing algorithms and libraries only port DNN models stat-
ically in a batch mode. Instead, Mistify further provides a
streaming mode, where the client actively monitors runtime
changes of the resource and performance constraints and re-
quests new model generation in response to such dynamics.

Constructing a multi-branch model. To support on-the-fly
adaptation to fluctuating resource constraints, each DNN
model is further constructed in a multi-branch form (Fig-
ure 5) during the architecture adaptation process. First, the
aforementioned adaptation algorithm is triggered as usual
until the constraints specified in the configuration are satis-
fied. Now, besides continuing to adapt to other configurations,
a new adaptation thread is spawned. This thread separately
adapts the current DNN into a k-branch DNN. For instance,
a 5-branch DNN is built by freezing the first few layers and
adapting the remaining layers towards 5 different configura-
tions, whose resource budgets range from 1

3 of to 3 times that
of the original DNN model. The branches share the same base,
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Figure 5: Multi-branch model construction.

achieve the same inference task, but satisfy different resource
budgets and performance goals. In practice, k is set based on
the extent of fluctuation typically observed in the resource
availability and performance targets. After fine-tuning the pa-
rameters of the multi-branch DNN, we add a case conditional
operator (e.g., tf.case for Tensorflow) between the base and
different branches.

Foreground path: downtime free branch switching. The
foreground path is tightly coupled with the user-facing infer-
ence serving logic, performing real-time adjustments of the
current DNN model based on the dynamic constraints. To
achieve this, Mistify picks a branch from the multi-branch
DNN with the closest resource and performance profiles. The
branch switching is done on the fly by setting the correspond-
ing value of the conditional variable (the red arrow in Figure 5)
of the case operator in the DNN, avoiding additional overhead
such as memory allocation and runtime resource instantiation.

Background path. Meanwhile, in the background, the Mist-

ify client will send the new adaptation configuration to the
Mistify server. The server compares the new configuration
with existing ones in terms of their resource constraints, based
on the partial ordering explained in Section 4, in order to re-
trieve the immediate predecessor configuration of this new
incoming one. Then, the new DNN model is incrementally
adapted from the corresponding “predecessor” DNN, until
the constraints of the new configuration are met.

7 Implementation

We implement Mistify on TensorFlow (TF) 1.13 [13] (Fig-
ure 2), consisting of around 8.5K lines of Python code for
both the server and client modules. The source code will be
available later at [8].

Interfacing with the native environment. Recall that Mist-

ify can be activated at two stages (Section 3), when initializing
inference serving or during the run time. For the former, the
function tfhub.load() is intercepted to trigger the model
porting process (when fed the special argument). For the lat-
ter case, the Mistify runtime monitor is by default registered
with the live Session of the TensorFlow engine to collect
runtime statistics (tf.RunMetadata), and invoke the Mistify

client to initiate the re-adaptation process on demand. The
foreground branch switching is implemented by assigning a
suitable value to the predicate variable of the tf.case op.

Encapsulating adaptation algorithms. Mistify implements
wrappers over two representative, state-of-the-art adaptation

algorithms, MorphNet [31] (using sparsifying regularizers)
and ChamNet [25] (using evolutionary algorithms). Adding
new adaptation algorithms to Mistify is fairly easy, following
the process outlined in the MorphNet case study in Section 4.2.
Each wrapper implementation around these algorithms for
Mistify requires around 100 lines of code (LoC), which is
fairly modest compared to the thousands of LoC in the origi-
nal codebases of these algorithms.

8 Evaluation

Hardware setup. Following Figure 2, a Linux server with
8-core 2.1 GHz Intel Xeon CPU, and NVIDIA 2070 GPU acts
as the server side of Mistify. For the client-side operations of
Mistify, we use a server with a low-end NVIDIA P600 GPU,
a Google Edge TPU [4], and a Samsung S9 smartphone, to
represent diverse types of edge hardware.

Application benchmarks. Computer Vision (CV) and Natu-
ral Language Processing (NLP) tasks almost dominate deep
learning use scenarios. We select one workload each, Object

Recognition and Question & Answering corresponding to the
two application categories, as the representative benchmarks.
While there are numerous other CV and NLP applications, for
example, scene segmentation for CV and machine translation

for NLP, these are based on DNN models derived from the
same base structures as those used for our benchmarks (e.g.,
ResNet blocks for object recognition and detection, Trans-
former blocks for Q&A and named entity recognition). There-
fore, the results obtained for our benchmarks are representa-
tive of a wide range of scenarios.

Specifically, we select three carefully designed, state-
of-the-art DNNs, MobileNet [38], ResNet50 [35], and
ResNeXt101 [51], with increasing computation complexity
(0.5 to 16 GFLOPs), parameter size (16 to 320 MB), and
accuracy (68% to 79%) for object recognition. MobileNet
is originally designed for mobile devices, whereas the other
two mostly run in the cloud. For Q&A, the input is a ques-
tion along with a context paragraph containing the answer
to the question. The “accuracy” metric for this is the Exact
Match (EM) score, i.e., whether the output answer exactly
matches the question. We prepare two DNNs, BiDAF [68],
and BERT [28]. The former is lightweight but task-specific
(customized for Q&A) (10⇥ MB), whereas BERT is much
larger, generically supporting various downstream tasks.

Datasets. We use domain specific standard datasets to adapt
network architectures, fine-tune their parameters, and val-
idate their performance. Specifically, ImageNet [27] and
Cifar100 [44] are used for object recognition, whereas
SQuADv1.1 [61] is used for Q&A.

8.1 Collective architecture adaptation

Collective adaptation time. We generate 128 different
adaptation configurations based on four DNNs (MobileNet,
ResNet50, ResNeXt101, and BERT). Among these, the least
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Table 2: Accuracy - collectively adapted models (Mistify)

vs individually adapted models (Per-case)

DNN Per-case (%) Mistify (%) Relative diff (%)

MobileNet
55.8 54.7 -2.0%
69.4 69.5 +0.1%

ResNet50
68.2 68.0 -0.3%
72.9 72.5 -0.6%

ResNeXt101
74.0 74.3 +0.4%
77.6 77.9 +0.3%

BERT
71.4 70.6 -1.2%
79.1 78.8 -0.4%

and most demanding configurations respectively constrain
the adapted DNNs to 2⇥ and 0.5⇥ the default DNN memory
usage and computation complexity. Then, we select different
subsets of these 128 configurations, adapt all of them with and
without Mistify, and compare their overall time consumption
to evaluate our collective adaptation approach (Section 4.3).
Figure 6(a) shows the relative time needed without Mistify

over with Mistify. Mistify accelerates the overall adaptation
time almost linearly with the number of configurations when
it is less than 10, consistently achieving around 10x accelera-
tion even for DNNs as small as MobileNet. For large DNNs,
such as BERT, that are structurally more amenable to adap-
tation (i.e., easier to prune a subset of the network without
affecting validation accuracy), the acceleration scales well
with over 100 configurations.

Adaptation quality. Next, we examine the quality of the
DNNs collectively adapted by Mistify versus those adapted
individually. Table 2 shows two rows for each network, cor-
responding to compression and expansion by a factor 4 with
respect to the complexity and memory consumption of the
original DNN. This spans the range from low- to high-end
hardware [75]. For instance, the inference times of the com-
pressed and expanded ResNet50, running on a Google Nexus
5 (low-end, 2013 model) and a Samsung Galaxy 10 (high-end,
2019 model), are both around 30 ms, low enough for practi-
cal usage. “Accuracy” corresponds to the EM score (exactly
matching the ground-truth answer) for NLP. To avoid being
affected by the parameter tuning quality, all adapted DNNs
are trained with the whole datasets, and without considering
any device-specific constraints. Mistify’s collective adaptation
achieves almost the same accuracy compared to the case-by-
case strategy, with less than 0.5% accuracy loss for most cases
and only 1% for the worst scenario (e.g., when adaptation con-
figurations are incompatible with total ordering, causing the
overall adaptation path to detour substantially). These are
within the typical range of accuracy loss in exchange for
resource efficiency [64].

8.2 Parameter tuning

We use a more specialized dataset Cifar100 to evaluate pa-
rameter tuning on the edge. The whole dataset is partitioned
into subsets, mimicking the local data of each edge device.
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Figure 6: Speed and performance improvements for ar-

chitecture adaptation and parameter tuning with Mistify.
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Figure 7: The ratio of communication time over training

time, reflecting the scalability of fine-tuning in Mistify.

Convergence speed and quality. We compare the conver-
gence speed and test accuracy for three different networks
(MobileNet, ResNet50, and ResNeXt101), with and with-
out Mistify’s support for parameter tuning (Section 5.1).
Figure 6(b) shows that, even without additional data, KD-
enhanced parameter tuning (solid lines) already achieves over
3⇥ faster convergence as well as better accuracy.

Scalability. We assess the scalability of the parameter tuning
algorithm (Section 5.1) in terms of the ratio of the commu-
nication time over the training time given different network
bandwidths. We consider two model extremes, MobileNet
(very compact) and BERT (very sophisticated). In Figure 7,
each line corresponds to a specific network bandwidth in
MB/s. When the network bandwidth exceeds 5 MB/s, our al-
gorithm is consistently scalable, with communication merely
taking less than 15% of the time relative to training. Fur-
ther, the lines almost flatten when more than three neighbors’
DNNs are used, so using more peer DNNs for our tuning does
not impact scalability.

Accuracy of parameter tuning. We randomly partition Ci-
far100 and SQuAD each into 5 subsets, each used by an edge
device for local training. Then, we compare the fine-tuning ac-
curacy using different approaches. Table 3 shows that knowl-
edge distillation (KD) improves parameter tuning accuracy
by 40% over local training alone. Compared to the ideal distil-
lation case where an exceptionally accurate teacher network
is available (a pre-trained, cloud version), the ensemble of 4
peer DNNs achieves within 10% of the optimal KD, despite
using half the training data and adding differential privacy to
the model parameters.

8.3 Run-time model re-adaptation overhead

The foreground path. Switching DNNs in response to the
run-time dynamics (Section 6) incurs two types of overhead:
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Table 3: The accuracy of parameter tuning with Mistify.

Scenario
DNNs (%)

MobileNet ResNet50 BERT

Local training 39.7 43.9 22.5
KD 66.4 75.3 78.8

1-peer tuning 53.8 61.5 51.9
2-peer tuning 58.1 67.2 65.6
4-peer tuning 59.8 69.0 71.8

Table 4: Additional number of parameters and DNN

switching time overhead.

DNN Addi. / orig. params (M) Time (s)

MobileNet-b3 2.67 / 3.43
2.11

MobileNet-b5 4.57 / 3.43

ResNet50-b3 18.2 / 23.9
3.34

ResNet50-b5 31.7 / 23.9

BERT-b3 92.4 / 110
21.84

BERT-b5 171 / 110

i) additional memory to store alternate DNNs; and/or ii) down-
time for loading the new DNN and on-demand preparation
of the resource runtime. The model size corresponds to the
in-memory size, not the on-disk size of the serialized form.
Table 4 illustrates the trends of additional memory or time
consumption for different DNNs. The suffix “-bk” means
adding k branches to the adapted DNN. Holding 75% to 1.5⇥
more parameters in memory is an affordable cost for modern
hardware, but can save us 2 to 20 seconds by avoiding loading
new DNNs on the critical path of inference serving.

Latency of modifying the configuration tree. We also mea-
sure the latency of generating a configuration tree (Sec-
tion 4.3) given various numbers of configurations. Using 1000
configurations, each consisting of 4 constraints, the whole tree
is built in 37 ms, and inserting into an existing configuration
tree only takes microseconds.

8.4 End-to-end performance

Based on the device specifications in Table 1 and typical
latency requirements for vision and NLP tasks [1, 63], we
generate different combinations of memory, complexity, and
latency constraints as the execution settings, and evaluate
the quality of the DNN models tailored by Mistify. We fur-
ther compare the manual overhead involved in Mistify with
running MorphNet [31] and ChamNet [25] directly.

Balancing performance and resource usage. We set the
memory budget to range from 0.1 GB to 10 GB, covering
embedded IoT devices to edge servers. The computation com-
plexity constraints for running inference on a DNN vary be-
tween 0.1 to 100⇥ GFLOPs, roughly equivalent to achiev-
ing 10s of microseconds of inference latency for resource-
constrained devices and powerful edge servers alike.

Figure 8 shows the three-way trade-offs between accuracy,
latency, and resource consumption. The top three plots corre-
spond to recognition, the lower three to Q&A. Mistify reduces

the compute requirements by over 20⇥ with less than 5%
accuracy loss for the CV workloads, and could achieve 50⇥
reduction of complexity in exchange for 12% relative quality-
of-result degradation. Note that the accuracy loss is due to
the adaptation algorithms, not Mistify itself. Similarly, Mistify

consistently achieves a near-optimal and practically usable
accuracy (comparable to existing hand-tuned on-device mod-
els in production [25, 49]) with between 0.5 to 10 GB of
run-time memory usage, hence significantly decreasing the
deployment complexity for state-of-the-art DNN models on
the edge. Mapping resource consumption to inference time,
Mistify consistently achieves near-optimal accuracy perfor-
mance even when the latency requirements vary by 8 to 10⇥,
corresponding to using accelerator hardware ranging from
advanced, datacenter grade to low-power, lightweight devices.

Reducing manual overhead. We further assess the end-to-
end manual effort and time overhead needed to port a pre-
designed DNN to different edge devices. The manual over-
head is quantified with two metrics: lines of code (LoC)
needed for code addition or modification, and number of files
(NoF) touched. The former depicts the overall overhead, and
the latter one captures the scatteredness of the modifications,
which correlates with the probability of making mistakes. For
NoF, we follow a typical file organization [12], i.e., model
definition, training, evaluation, and other stages are separated
into different files or folders.

Table 5 demonstrates that Mistify reduces the overall modi-
fication needed in LoC by 7 to 10⇥. More importantly, Mistify

exposes high-level configuration files to users, obviating the
need for source script modifications. Mistify only requires edit-
ing one file. Thus, it can reduce the number of files users need
to access by orders of magnitude (over 100⇥). Finally, Mist-

ify can batch-adapt to 100 execution settings using less than
3% of the time needed for the other approaches, highlighting
the enormous potential of harnessing the correlation among
configurations to optimize the overall porting efficiency.

9 Related work

We are not aware of any prior work that aims at providing an
automatic porting service bridging DNN design and seamless
edge deployment. The most related work revolves around
model adaptation and knowledge distillation algorithms.

Model adaptation. Production DNN models hand-tuned
by experts can run fast and accurately on mobile de-
vices [38, 40, 49, 62]. The essential techniques include quan-
tization, sparsification, and neural block optimization. Re-
cently, Distiller [11], AMC [36], MorphNet [31], OFA [22],
ChamNet [25], and many neural architecture search (NAS)
works [17, 50, 65, 83, 84] systematically explore the search
space for the optimal neural network structure, obviating the
hand-tuning by experienced experts. However, none of them
is directly usable like Mistify, because all are still algorithms,
requiring manually annotating source code to construct the
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Figure 8: The dynamic tradeoff between latency, accuracy, and resource consumption with Mistify.

Table 5: Comparison of overhead for porting DNN to edge with/without Mistify.

Metrics
2 configurations 10 configurations 100 configurations

Manual Mor. Chm. Mistify Manual Mor. Chm. Mistify Manual Mor. Chm. Mistify

Lines of Code >0.2k 55 97 6 >1k 138 159 14 >10k 782 511 104

Num of Files 6 4 5 1 30 12 32 1 300 102 302 1

Total time (%) 100 54.2 100 12.5 100 2.86

adaptation logic, hence not scalable to edge scenarios with
multiple adaptation instances. None supports on-device fine-
tuning or considers run-time adjustments. Mistify is orthogo-
nal as an automated system framework and can incorporate
them as pluggable algorithmic modules.

While frameworks like TF-Lite [2], PyTorch [58], and
MCDNN [34] provide some model compression and switch-

ing support, Mistify differs in the techniques supported and
the level of manual efforts needed. To generate a good model,
careful model architecture design is essential, which nor-
mally requires significant expertise. Mistify abstracts away the
model architecture searching process with the configurable
APIs to make it accessible to non-experts, automating the end-
to-end process and optimizing for batch model generation.

Knowledge distillation. Initially proposed as an optimization
for model training, knowledge distillation transfers "knowl-
edge" (i.e., parameter values) from a teacher network to a
student network [37]. The idea is then extended to mutual

distillation among peer models [15, 47, 81]. Mistify adopts
and revises the general idea in a selective distillation manner
to improve edge training accuracy while enhancing privacy.

Edge-centric deep learning inference engines. Emerging
frameworks such as TF-Lite [2] and more [7, 29, 54] are op-
timized for inference serving on mobile and IoT devices,
aiming to hide the deployment complexity from developers
and device users. However, the interface exposed by exist-
ing engines only permits model download from the cloud (or

the central server), without tailoring to edge runtime require-
ments and constraints, proactively or reactively. In contrast,
Mistify provides an interface for two-way state exchange and
a feedback loop between the cloud and the edge, facilitating
targeted model design and efficient execution on the edge.

10 Conclusion

Deep learning models today are typically trained in the cloud
and then ported to edge devices manually. Not only is manual
porting unscalable, it indicates a lack of separation between
model design (optimized for accuracy) and deployment (opti-
mized for resource efficiency).

In this paper, we design and implement Mistify, a frame-
work to automate this porting process, which reduces the
DNN porting time needed to cater to a wide spectrum of edge
deployment scenarios by over 10⇥, incurring orders of mag-
nitude less manual effort. Mistify not only provides a useful
service to complete the transition from DL workload design
to deployment on the edge, but cleanly separates these two
stages. We believe the system will further facilitate advanced
model design and seamless model deployment.
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