
J Med Syst (2018) 42: 149

https://doi.org/10.1007/s10916-018-0996-4

TRANSACTIONAL PROCESSING SYSTEMS

MIStore: a Blockchain-Based Medical Insurance Storage System

Lijing Zhou1 · LichengWang1 · Yiru Sun1

Received: 1 March 2018 / Accepted: 12 June 2018 / Published online: 2 July 2018

© The Author(s) 2018

Abstract

Currently, blockchain technology, which is decentralized and may provide tamper-resistance to recorded data, is

experiencing exponential growth in industry and research. In this paper, we propose the MIStore, a blockchain-based medical

insurance storage system. Due to blockchain’s the property of tamper-resistance, MIStore may provide a high-credibility

to users. In a basic instance of the system, there are a hospital, patient, insurance company and n servers. Specifically, the

hospital performs a (t, n)-threshold MIStore protocol among the n servers. For the protocol, any node of the blockchain

may join the protocol to be a server if the node and the hospital wish. Patient’s spending data is stored by the hospital in the

blockchain and is protected by the n servers. Any t servers may help the insurance company to obtain a sum of a part of

the patient’s spending data, which servers can perform homomorphic computations on. However, the n servers cannot learn

anything from the patient’s spending data, which recorded in the blockchain, forever as long as more than n − t servers are

honest. Besides, because most of verifications are performed by record-nodes and all related data is stored at the blockchain,

thus the insurance company, servers and the hospital only need small memory and CPU. Finally, we deploy the MIStore on

the Ethererum blockchain and give the corresponding performance evaluation.

Keywords Medical insurance · Blockchain · Secret sharing · Multi-parties computing

Introduction

Bitcoin, proposed in 2009 by Satoshi Nakamoto [1], is

the first decentralized cryptocurrency which maintains a

public transaction ledger, called blockchain, in a distributed

manner without the central authority. The core technological

innovation of Bitcoin is Nakamoto consensus which

provides a high-probability guarantee that an adversary

cannot alter a transaction once this transaction is sufficiently

deep in the blockchain, assuming honest nodes control the

majority of computational resources in the system. The

Nakamoto blockchain works in a permissionless model,

where any node can freely join and leave the protocol, and

there is no a-priori knowledge of the set of consensus nodes.

This article is part of the Topical Collection on Blockchain-

based Medical Data Management System: Security and Privacy

Challenges and Opportunities

� Licheng Wang

wanglc2012@126.com

1 State Key Laboratory of Networking and Switching

Technology, Beijing University of Posts and

Telecommunications, Beijing 100876, China

Alternative cryptocurrencies called altercoins (e.g., Litecoin

[2], Ripple [3] and Ethereum [4]) have achieved enormous

success. Several consensuses to manage blockchain-based

ledgers have been proposed: proof-of-work [5], proof-of-

stake [6, 7], proof-of-space [8], proof-of-activity [9], proof-

of-human-work [10], practical Byzatine fault-tolerance [11],

or some combinations [12–14]. Especially, most existing

cryptocurrencies, including Bitcoin, adopt proof-of-work.

Blockchain is a tamper-resistant timestamp ledger of

blocks that is utilized to share and store data in a distributed

manner. The stored data may be payment records (e.g.,

Bitcoin, Litecoin), contract (e.g., Ethererum) or personal

data. Currently, blockchain has attracted enormous attention

from academics and practitioners (e.g., computer science,

finance and law) due to its signal properties containing

distributed structre, security, privacy and immutability [17].

In blockchain, users can generate a arbitrary number of

public keys that effectively prevents them from being

tracked, and this ensure users’ privacy. Recently, blockchain

has been widely utilized in non-monetary applications

including but not limited to: securing robotic swarms [19]

and verifying proof of location [20]. Moreover, blockchain

can use cryptography technologies [31–33] to improve it

security, privacy and functionality.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10916-018-0996-4&domain=pdf
http://orcid.org/0000-0001-7792-2669
mailto: wanglc2012@126.com


149 Page 2 of 17 J Med Syst (2018) 42: 149

Recently, blockchain-based medical system is a hot topic.

Yue et al. [18] proposed a APP of sharing healthcare data,

where patients control, send and own their data easily.

Moreover, Qi et al. [30] proposed the MeDShare, a sys-

tem that can address the problem of medical data sharing

among medical big data servers in a trust-less environ-

ment. Besides, Ekblaw et al. [29] presented the MedRec,

decentralized record management system to resolve elec-

tronic health records by using blockchain. In the researches,

they did not provide the function of homomorphic comput-

ing for data recorded at the blockchain, and they just utilized

the blockchain as a storage tool. Therefore, in the systems,

a node cannot help others to process encrypted data.

In an ideal and basic medical insurance business, there

are a hospital, a patient and an insurance company. The

insurance company can to know a sum of the patient’s spec-

ified spending records, however the company cannot learn

the details of the spending records. Furthermore, servers can

help the insurance company to process a patient’s spend-

ing records without learning anything about the spending

records. Otherwise, it will result in a risk of information

leakage. Moreover, once the insurance company attempt to

know the patient’s sum of spending records, the insurance

company can get his desired result without any help of hos-

pital and patient. Finally, the most important point is that all

data must be verifiable and tamper-resistant. Otherwise, the

system could not be credible.

To address the problems, in the present paper, we propose

the MIStore, a blockchain-based medical insurance storage

system. Features of MIStore can be summarized as follows:

• Decentralization. There is no the third party authorities

to provide any authentication. Moreover, any node may

become some hospital’s server if the node and the

hospital wish. Besides, data is stored at the blockchain,

rather than cloud servers.

• Secure data storage. On the one hand, every trans-

action’s publicly verifiable data must be verified by

all record-nodes before the transaction is included in

the blockchain. On the other hand, we suggest that

MIStore adopts the Practical Byzantine Fault-tolerance

(PBFT) to be the consensus scheme of the blockchain,

and all related data is stored at the blockchain. Due to

PBFT’s property of tamper-resistance, data, which has

been included by record-nodes in the blockchain, can-

not be modified or deleted by anyone. Due to the above

two points, it provides high credibility to all users.

Therefore, once a transaction has been included in the

blockchain, all its publicly verifiable data is credible.

• Threshold. For instance, a hospital performs a (t, n)-

threshold MIStore protocol among a patient, an

insurance company and n servers. Firstly, the hospital

store confidential data in the blockchain. Secondly, the

servers cannot learn anything from the data if more than

n − t servers are honest. Thirdly, after the insurance

company sends a query to the blockchain, if he can

collect t correct responses to the query, then he can

obtain his desired result. Finally, anyone (including the

insurance company) cannot learn anything with less

than t responses.

• Verifiable. Key data stored at the blockchain is

verifiable. Specifically,

– Anyone can verify whether the verification key

is valid.

– Any server can verify whether his core-share is

correctly computed by the corresponding hospital.

– The insurance company can verify whether

responses are correctly computed by corre-

sponding servers, respectively.

– Patient may verify whether his spending data is

correctly processed by corresponding hospital.

• Efficient verification. Key data is recorded in the trans-

action’s payload, and most of key data is publicly ver-

ifiable. Therefore, record-nodes can help other nodes

to verify payloads’ data before the transactions are

recorded in the blockchain. Consequently, once a trans-

action has been recorded in the blockchain, the transac-

tion’s publicly verifiable data is credible. After that, the

transaction’s receiver needs not to perform the ver-

ifications performed by record-nodes. Moreover, the

receiver just needs to perform very little verification

that can be performed only by him. In this way, it sig-

nificantly reduces users’ verifying computations, and

receivers just perform some simple and few computa-

tions, rather than complex and massive computations.

• Efficient homomorphic computation. According to

insurance company’s query, servers can perform homo-

morphic multiplications and additions on their shares,

and then generate responses. Moreover, the homomor-

phic computations calculated by servers are efficient

additions and multiplications of finite field.

Organization In “Background”, background is introduced. In

“System setting and model”, we show the system setting

and model. In “An overview of MIStore”, an overview of

MIStore is given. We introduce construction of the MIStore

system in “MIStore”. In “Performance evaluation”, a

performance evaluation is given. Finally, a short conclusion

is given in “Conclusion”.

Background

Bitcoin [1] is a decentralized payment scheme in which

every participant maintains its own local copy of the whole



J Med Syst (2018) 42: 149 Page 3 of 17 149

transaction history, “chain” of “blocks” called blockchain.

Blockchain is maintained by anonymous record-nodes,

called miners, via executing a consensus scheme that

extends the blockchain. The record-nodes are connected by

a reliable peer-to-peer network. Bitcoin consistency relies

on the idea of computational puzzles—a.k.a. moderately

proof-of-work put forth by Dwork and Naor [16]. In

Bitcoin, payers broadcast transactions and miners collect

transactions into their local blocks. A block contains

two parts: block-body and block-header. Specifically, the

block-body contains the transactions. The block-header

contains the hash value of previous block, the current

Unix time, target value, a nonce and a merkle root of

transactions. In Bitcoin consensus, a block to be valid if

the cryptographic hash of its header must be smaller than

a target value. Moreover, if some miner finds a solution of

the cryptographic puzzle, then he immediately broadcasted

his block including the solution to others. After that, upon

verifying the block, others will receive and add this block

as a new one in its local blockchain and then continue the

mining process on its updated blockchain. The creator of the

block is rewarded with bitcoins (coins in Bitcoin system)

via the coinbase transaction which is the first transaction

in the block-body. Consequently, bitcoins are created and

distributed among miners. Moreover, this creator is also

rewarded by transactions fees for all transactions included

in the block. Besides, Bitcoin assumes that a majority of

computational power is controlled by honest players.

Smart contract is proposed by Ethereum [15] that is simi-

lar as Bitcoin. Smart contracts represent the implementation

of a contractual agreement, whose legal provisions have

been formalized into source code. Contracting parties can

structure their relationships efficiently, in a self-executing

method and without the ambiguity of words. Reliance on

source code enables willing parties to simulate the agree-

ment’s performance before execution and model contractual

performance. Moreover, smart contracts introduce new rela-

tionships that are both automatically enforced and defined

by code, but that are not linked to any underlying contractual

rights or obligations. In the present paper, before hospi-

tal and servers work, they should mortgage coins in smart

contracts, respectively. Besides, if someone does not work

honestly, then anyone can input the corresponding evidences

to obtain a part of the “wrongdoer”’s guarantee deposit.

In the paper, the security of Shamir’s (t, n)-secret sharing

(SSS) [21] is the security base of our system. We extend

SSS to obtain a threshold secure multi-parties computing

protocol that will be described in the Appendix. Besides, we

use elliptic curve [22, 23] point multiplication to generate

commitments of core data. Then we utilize bilinear map

(pairing computations) [25] to verify the correctness of the

committed core data.

Figures presented in the paper are created by using Visio.

System setting andmodel

Blockchain network and cryptographic keys

MIStore is comprised of record-nodes and light-nodes.

Specifically, all record-nodes are connected by a reliable

peer-to-peer network, and each light-node connects with

a certain number of record-nodes. Record-nodes are

responsible to maintain the blockchain via Practical

Byzantine Fault-tolerance (PBFT) consensus and store the

entire blockchain list. Specifically, time is divided in to

epoches. In an epoch, record-nodes collect and verify

transactions sent to the blockchain network, and they record

valid transactions in their local blocks. By performing

PBFT, some record-node’s block become the valid block of

the epoch. After that, all record-nodes join in the next epoch

to build the next block. While, light-nodes do not store the

entire blockchain, and they store all block-headers.

Moreover, in the system, there is no trusted public

key infrastructure. It means that any node can generate a

arbitrary number of key-pairs by itself. In a blockchain

system, all users communicate with each other via

transactions of blockchain, and they only trust messages

presented at blockchain. Additionally, each record-node can

poll a random oracle [24] as a random bit source. Besides,

by mortgaging a certain amount of coins with an address,

a light-node can become a hospital or insurance company

with the address.

A node is honest if it follows all protocol instructions and

is perfectly capable of sending and receiving information.

Furthermore, a node is malicious if it can deviate arbitrarily

from protocol instructions. Finally, in a blockchain system,

all users communicate with each other via transactions

of blockchain, and they only trust messages presented at

blockchain.

In the implementation of MIStore, we utilize ECDSA

[27] to be the signature schceme Sig(·), ECIES [28] to be the

encryption scheme Enc(·) and SHA-256 [1] to be the hash

function H(·).

Assumptions

According to Practical Byzantine Fault-tolerance [11]

consensus scheme, we assume that 2
3

of record-nodes are

honest in the system. Therefore, the blockchain of the

system does not fork. In other words, once a transaction has

appeared in the blockchain, then the transaction cannot be

modified or deleted by anyone. Moreover, we assume that

digital signature Sig(·), encryption scheme Enc(·) and hash

function H(·) used in MIStore are ideal such that no one

can violate Sig(·), Enc(·) and H(·). Finally, we assume that

hospital and servers are partially trusted. Therefore, data

sent by them should be verified.



149 Page 4 of 17 J Med Syst (2018) 42: 149

The basic instance In the paper, we mainly introduce the

basic instance that contains a patient, a hospital and insur-

ance company. For the patient, a more complex instance can

be combined by the basic instance. Moreover, we assume

that medical payments recorded in the blockchain belong to

the range of the corresponding medical insurance.

An overview of MIStore

In this paper, we propose a blockchain-based medical

insurance storage system, called MIStore. The system

may help an insurance company to obtain the sum of

patient’s medical medical spending records. Moreover, the

medical spending data recorded at the blockchain are always

confidential to servers as long as a certain number of

servers are honest. In this system, there are four parties that

are patients, hospitals, servers and insurance companies.

All related data is recorded at the blockchain. Due to the

property of tamper-resistance of blockchain, all users may

trust data recorded at the blockchain.

To introduce MIStore’s working process, we take

the basic instance as a example, which contains a

hospital H , a patient P , an insurance company I and n

servers Sr1, Sr2, · · · Srn. Specifically, H performs a (t, n)-

threshold MIStore protocol among the n servers by sending

an initialize-transaction to the blockchain network. After

that, H may send P ’s confidential medical spending data

to the blockchain network by sending record-transactions.

At some later time, if I wants to know the sum of some

P ’s spending records, then I may send a query-transaction

to the blockchain network. After that, active servers will

generate and send responses to the blockchain network by

sending respond-transactions. Finally, if I collects at least

t correct responses, then he can recover the real result.

However, it must be pointed that anyone (including I )

cannot learn anything about the correct result with less than

t responses. The protocol is secure as long as more than

n−t servers are honest. An overview of MIStore is shown in

Fig. 1.

In the MIStore, most data is verifiable. For instance,

anyone can verify the validation of the initialize-transaction

sent by the hospital, a server may verify the correctness of

his core share sent by the hospital, an insurance company

can verify whether responses are correctly computed by

corresponding servers, and a patient can verify whether his

spending data is correctly processed by the corresponding

hospital. Moreover, because MIStore is decentralized, so

there is no centralized node to punish the “bumblers”. To

punish the bumblers’ mistake, we adopt the smart contract.

Specifically, before hospitals and servers perform a MIStore

protocol, they should a certain amount of mortgage coins in

smart contracts, respectively. If someone of them publishes

some invalid data in the blockchain, then anyone can input

the evidences in the corresponding smart contract to obtain

a part of the bumbler’s guarantee deposit.

MIStore

In this section, we introduce how MIStore works. We will

describe transaction and block used in the system at first.

Fig. 1 An overview of MIStore. Step 1: Hospital sends a initialize-

transaction to blockchain networl. Step 2: Hospital sends record-

transactions to blockchain network. Step 2.5: The patient can verify

whether his spending records are correctly computed by hospi-

tal. Step 3: Insurance company sends a query-transaction to query

some result. Step 4: Servers read the query-transaction and related

record-transactions from blockchain. Step 5: After locally computing,

servers generate their responses and then send respond-transactions

to blockchain network. Step 6: Insurance company collects respond-

transactions and obtains t correct responses. Step 7: Insurance com-

pany recovers the result with the t correct responses



J Med Syst (2018) 42: 149 Page 5 of 17 149

Table 1 Format of transaction

Transaction header

Hash The transaction’s hash value

Block number Block containing the transaction

Order The transaction’s number in the block

Timestamp Creation time of the transaction

Sender Sender’s ID

Receiver Receiver’s ID

Signature Sig{the transaction’s hash value}

Payload: Data

data1, data2, · · · , datan

Transaction and block

In MIServer, a transaction contains two parts that are

transaction header and payload. Transaction header and

payload are shown in Table 1.

Moreover, the payload might contain secret or public data

that may be used in verifications or computations. In the

system, according to payload, transactions can be divided

into four types. They are initialize-transaction, record-

transaction, query-transaction and respond-transaction, and

they can be described by Tinitialize, Trecord, Tquery and

Trespond as follows:

Transaction Header

Payload

Server1’s ID

Server2’s ID

Server ’s ID

record

Transaction Header

Payload

ID
initialize

IDinvoice data

ID
initialize

IDinvoice data

query

Transaction Header

Payload

ID
initialize

respond

Transaction Header

Payload

ID
initialize

Resp

Resp

In MIStore, time is also divided into epoches. In each

epoch, record-nodes will generate a block belong to the

epoch via selected consensus scheme, and a block can be

described as follow (Table 2):

Besides, record-nodes are responsible to verify all pub-

licly verifiable data of transactions before the transactions

are included in the blockchain. If any publicly verifiable

data is invalid, then honest record-nodes will reject cor-

responding transactions. The transaction then will not be

included in the blockchain. Moreover, due to adopting the

Practical Byzantine Fault-tolerance consensus scheme, if a

transaction has presented at the blockchain, then all nodes

Table 2 Format of block

Block header

Name Description

Version Block version number

Hash The block’s hash value

Parent hash The previous block’s hash value

Difficulty The proof-of-work target difficulty

Timestamp Creation time of the block

Merkle root The root of Merkle Tree of transactions

Nonce A random counter for proof-of-work

Block body: Transactions

Transaction1, Transaction2 · · · , Transactionn

can consider that the transaction’s publicly verifiable data is

credible. Therefore, other nodes can trust the transaction’s

publicly verifiable data without any other verifications.

Futhermore, in the MIStore system, record-nodes may

perform two kinds of verifications on transactions. The first

one is the basic verification, which should be performed on

all transactions. They are:

– The transaction’s inputs have not been used previously.

– The transaction’s signature is valid.

– The sum of input coins is equal to the sum of output

coins.

The second one is the payload verification, which

can be performed on initialize-transactions and respond-

transactions. It means that, in the payloads of initialize-

transaction and respond-transaction, there is publicly ver-

ifiable data that may be verified by record-nodes. If a

transaction has presented at the blockchain, then it means

that most of record-nodes have accepted the transac-

tion’s publicly verifiable data. Therefore, the transaction’s

receiver can consider that the transaction’s publicly verifi-

able data is credible. Thus the receiver just needs to perform

some other verifications that can be performed only by

him. In this way, the most of verification computations

are performed by record-nodes and it helps to decreases

servers’ and insurance company’s verification computa-

tions significantly. Figure 2 describes verifications of

initialize-transaction, record-transaction, query-transaction

and respond-transaction.

Construction of MIStore

To clearly introduce the MIStore system, in this subsection,

we describe the basic instance that contains a hospital, a

patient, an insurance company and n servers. Specifically,

Sr1, Sr2, · · · , Srn denote n servers’ IDs, IDH is the

hospital’s ID, IDP is the patient’s ID and IDI describes

the insurance company’s ID. Essentially, more complex



149 Page 6 of 17 J Med Syst (2018) 42: 149

Fig. 2 Basic verifications and

payload verifications. All

transactions are verified by

record-nodes before they are

recorded in the blockchain. For

query-transactions and record-

transactions, record-nodes just

perform basic verifications.

While for initialize-transactions

and respond-transactions,

record-nodes perform basic

verifications and payload

verifications

instance can be constructed with the basic instance. The

symbols used in the paper are shown in Table 3.

At first, the hospital and n servers should have published

smart contracts to mortgage a certain amount of guarantee

coins at the blockchain, respectively. If someone publishes

some incorrect data that is verifiable, then the discoverer

can send the corresponding evidences to the bumbler’s smart

contract to prove that the bumbler sent an incorrect data.

Then, the discoverer can automatically obtain a amount of

reward from the bumbler’s smart contract.

After mortgaging guarantee coins, the MIStore system

can be performed as follows:

• Step 1: Initialization. Hospital randomly samples two

polynomials F1(x) and F2(x) of degree t − 1 over Fp

as the following polynomials:

F1(x) = at−1x
t−1 + at−2x

t−2 + · · · + a1x + score,1,

F2(x) = dt−1x
t−1 + dt−2x

t−2 + · · · + d1x + score,2,

Table 3 Symbols of MIStore

Symbol Description

g The generator of a cyclic group G

e The bilinear map, e: G × G → G

Fp The finite field with character p

IDH The hospital’s ID

Sri The i-th servers’ IDs

IDI The insurance company’s ID

IDTi
The transaction Ti ’s ID

IDP The patient’s ID

V K The verification key

{pkH , skH } The hospital’s key pair

{pki , ski} The i-th server’s key pair, for i from 1 to n

{pkI , skI } The insurance company’s key pair

di The i-th plaintext message protected by n servers

{CFi,1, CFi,2, Chi} The i-th server’s core-share

Respi The i-th server’s respnse

where score,1, score,2, a1, · · · , at−1, d1, · · · , dt−1 ∈

Fp, at−1 �= 0 and dt−1 �= 0. Let

f1(x) = at−1x
t−1 + at−2x

t−2 + · · · + a1x,

f2(x) = dt−1x
t−1 + dt−2x

t−2 + · · · + d1x.

Then, we have F1(x) = f1(x) + score,1 and F2(x) =

f2(x) + score,2. Hospital computes

f1(x)f2(x) = q2t−2x
2t−2 + q2t−3x

2t−3 + · · · + q2x
2.

After that, hospital randomly samples l(x) of degree

t − 1 from Fp[x] as follow:

l(x) = ct−1x
t−1 + ct−2x

t−2 + · · · + c1x.

Let

h(x) = f1(x)f2(x)− l(x) = b2t−2x
2t−2 +b2t−3x

2t−3 +· · ·+b1x.

Then hospital generates a verification key VK as

follow:

VK = {g, gat−1 , · · · , ga1 , gscore,1 , gdt−1 , · · · , gd1 , gscore,2 ,

gb2t−2 , · · · , gb1 , gct−1 , · · · , gc1 },

where g is a base point of 256-bit Barreto-Naehrig

curve (BN-curve) [25]. For i from 1 to n, hospital does

as follows:

– Compute CFi,1 = F1(Sri), CFi,2 = F2(Sri)

and Chi = h(Sri). {CFi,1, CFi,2, Chi} is

Serveri’s core-share.

– Encrypts CFi,1, CFi,2, Chi with Serveri’s

public key pki into CCFi,1
= Encpki

(CFi,1),

CCFi,2
= Encpki

(CFi,2) and CChi
=

Encpki
(Chi) via ECIES. Only Serveri can

decrypt them since only Serveri has the

corresponding secret key ski .

– Compute commitments CMCFi,1
= gCFi,1 ,

CMCFi,2
= gCFi,2 and CMChi

= gChi . The

commitments will be used in later verifications

without obtaining CFi,1, CFi,2 and Chi .

Then, the hospital generates a initialize-transaction

Tinitialize as follows:



J Med Syst (2018) 42: 149 Page 7 of 17 149

initialize

Transaction Header

Payload

After that, the hospital sends the Tinitialize to blockchain

network.

• Step 2: Record-nodes verify Tinitialize. Honest record-

nodes will verify all new initialize-transactions before

appending them at the blockchain. For instance, when

an honest record-node receives the Tinitialize, he will

verify its verification key (V K) at first, and then

verify other data with the V K . If Tinitialize passes the

verifications, then the record-node accepts the Tinitialize

and writes it in his local block, otherwise, he will

reject the Tinitialize. The verifications are described as

follows:

– First, verify the verification key V K . The

record-node verifies whether polynomials

f1(x), f2(x), h(x) and l(x), committed in ver-

ification key, are well-formed. Specifically, the

record-node does as follows:

Randomly sample a number x0 ∈ Fp.

Compute

g1 = (gat−1 )x
t−1
0 (gat−2 )x

t−2
0 · · · (ga1 )x0

= gat−1xt−1
0 +at−2xt−2

0 +···+a1x0

g2 = (gdt−1 )x
t−1
0 (gdt−2 )x

t−2
0 · · · (gd1 )x0

= gdt−1xt−1
0 +dt−2xt−2

0 +···+d1x0

g3 = (gb2t−2 )x
2t−2
0 (gb2t−3 )x

2t−3
0 · · · (gb1 )x0

= gb2t−2x2t−2
0 +b2t−3x2t−3

0 +···+b1x0

g4 = (gct−1 )x
t−1
0 (gct−2 )x

t−2
0 · · · (gc1 )x0

= gct−1xt−1
0 +ct−2xt−2

0 +···+c1x0

If

e(g1, g2) = e(g3g4, g),

then the record-node accepts that

f1(x), f2(x), h(x) and l(x) satisfy

relationships and forms mentioned

at Step 1. Otherwise he rejects the

Tinitialize and stops his verifications.

– Second, verify commitments CMCFi,1
,

CMCFi,2
, CMChi

, i from 1 to n. Specifically,

the record-node computes as follows:

Compute

CF ∗
i,1 = (gat−1 )Sr t−1

i · · · (ga1 )Sri (gscore,1)

CF ∗
i,2 = (gdt−1 )Sr t−1

i · · · (gd1 )Sri (gscore,2)

Ch∗
i = (gb2t−2 )Sr2t−2

i · · · (gb1 )Sri

If

CF ∗
i,1 = CMCFi,1

, CF ∗
i,2 = CMCFi,2

and Ch∗
i = CMChi

,

(1)

then the record-node accepts that

CMCFi,1
, CMCFi,2

and CMChi
are

correctly computed by the hospital,

otherwise he rejects the Tinitialize and

stop his verifications.

If any data cannot pass corresponding verification, then

the record-node rejects the Tinitialize.

Remark 1 Because the record-node randomly samples the

number x0, so the Eq. 1 is enough to prove the validation of

the verification key.

• Step 3: Servers verify core-shares. i from 1 to n,

when the Serveri sees the Tinitialize at the blockchain, the

server may perform the following computations:

– Decrypt CCFi,1
, CCFi,2

and CChi
. Then he

obtains CFi,1, CFi,2 and Chi .

– If

CMCFi,1
= gCFi,1, CMCFi,2

= gCFi,2 and CMChi
= gChi ,

then the server accepts that the Tinitialize is

valid, otherwise he can send his evidences

IDTinitialize
, CFi and Chi to the hospital’s smart

contract. After that, the server can obtain a

amount of reward.

• Step 4: Record. After seeing the Tinitialize at

the blockchain, the hospital may generate record-

transactions. Moreover, let da1, da2, · · · , dam denote

the patient’s spending records. The each spending

record has a unique invoice number, IDi
invoice. How-

ever, they belong to the same initialize-transaction

Tinitialize. Without loss of generality, we assume that

the hospital generates two record-transactions (T1 and

T2), and the patient’s spending records are da1, da2,

da3, da4. Then, i from 1 to 4, hospital randomly divides

dai into dai = ddi,1ddi,2. Then, the hospital computes

si,1 = ddi,1 − score,1, si,2 = ddi,2 − score,2.

Then, it generates transactions T1, T2 as follows:



149 Page 8 of 17 J Med Syst (2018) 42: 149

1

Transaction Header

Payload

ID ID
1

s1 1 s1 2

ID ID
2

s2 1 s2 2

2

Transaction Header

Payload

ID ID
3

s3 1 s3 2

ID ID
4

s4 1 s4 2

After that, the hospital sends T1, T2 to blockchain

network.

• Step 4.5: Patient verifies spending records. The

patient knows the true spending records da1, da2, da3,

da4. After seeing the transactions T1 and T2 at

the blockchain, he can verify the correctness of his

spending data of T1 and T2. Specifically, he verify

whether the following equations are correct, i from 1 to 4.

e(gdai , g) = e(gscore,1gsi,1 , gscore,2gsi,2)

If the above equation holds for each i from 1 to 4, then

the patient considers that his spending data is correctly

processed by the hospital. Otherwise, he will consider

that the hospital is dishonest and send the evidences to

the hospital’s smart contract to get a certain number of

reward.

• Step 5: Query. When the insurance company wants to

get a sum of spending records related to the initialize-

transaction Tinitialize, he may send a query-transaction

Tquery containing IDTinitialize
to the blockchain network.

The Tquery is described as follows:

query

Transaction Header

Payload

ID

When the query-transaction is appended at the blockchain,

it means that insurance company wants to know the sum

of all spending records of the patient corresponding to

IDTinitialize
until now.

Remark 2 After the Tquery is correctly responded by at

least t servers, when the patient performs new payments

with the hospital, the hospital should generates another new

initialize-transaction, including a new verification key, for

the patient.

• Step 6: Respond. After the Tquery has presented at

blockchain. If a server wishes to respond the query,

then he will generate a response according to the Tquery.

After that, the server will secretly send his response

to the insurance company via a respond-transaction

Trespond. If insurance company collets at least t

responses correctly computed by corresponding servers,

then insurance company can recover the correct sum of

spending records related to the IDinitialize. To introduce

the process, without loss of generality, we assume that

the t servers are Server1, Server2, · · · , Servert and they

wish to respond the Tquery. According to Tquery, the

servers can obtain s1,1, s1,2, s2,1, s2,2, s3,1, s3,2, s4,1, s4,2

which are recorded in T1 and T2. First, i from 1 to t , the

Serveri computes as follows:

Respi =

4∑

j=1

(CFi,1 + sj,1)(CFi,2 + sj,2) − 4 · Chi .

Then Serveri encrypts Respi into

CRespi
= EncpkI

(Respi)

with insurance company’s public key pkI . Then Serveri

computes a commitment of Respi as follow:

CMRespi
= gRespi .

After that, Serveri generates a respond-transaction

T i
respond, containing IDTinitialize

, CMRespi
and CRespi

.

The Trespond can be described as follow:

Transaction Header

Payload

ID Resp Resp

Overall, servers Server1, Server2, · · · , Servert will

generate CResp1
, CResp2

, · · · , CRespt
and CMResp1

,

CMResp2
, · · · , CMRespt

. Then, Server1, Server2, · · · ,

Servert generate transactions T 1
respond, T 2

respond, · · · ,

T t
respond, respectively. Because only the insurance

company has the corresponding secret key skI , so only

the insurance company can decrypt CResp1
, CResp2

, · · · ,

CRespt
. After that, the servers send T 1

respond, T 2
respond,

· · · , T t
respond to the blockchain network.

• Step 7: Record-nodes verify T 1
respond, T 2

respond, · · · ,

T t
respond. After receiving the respond-transactions

T 1
respond, T 2

respond, · · · , T t
respond, a record-node may ver-

ify validations of their CMResp1
, CMResp2

and CMRespt
.

Specifically, i from 1 to t , the record-node performs as

follows:

– Compute

gCFi = (gat−1)Sr t−1
i · · · (ga1)Sri (ga0) = gat−1Sr t−1

i +···+a1Sri+score

gChi = (gb2t−2)Sr2t−2
i · · · (gb1)Sri = gb2t−2Sr2t−2

i +···+b1Sri

– With s1,1, s1,2, s2,1, s2,2, s3,1, s3,2, s4,1, s4,2

and the bilinear map e, the record-node further



J Med Syst (2018) 42: 149 Page 9 of 17 149

computes

Ei = e(gCFi,1gs1,1 , gCFi,2gs1,2)

×e(gCFi,1gs2,1 , gCFi,2gs2,2)

e(gCFi,1gs3,1 , gCFi,2gs3,2)

×e(gCFi,1gs4,1 , gCFi,2gs4,2)

– If

Ei/e(g
Chi , g4) = e(CMRespi

, g),

then the record-node considers that CMRespi
is

valid.

• Step 8: Recover. Because the T 1
respond, T 2

respond, · · · ,

T t
respond present at the blockchain, it means that

the transactions pass all previous all verifications.

Therefore, the insurance company just needs to perform

the final verification that can by performed only by him.

That is, i from 1 to t , the insurance company decrypts

CRespi
and then obtain Respi . If

CMRespi
= gRespi ,

then insurance company accepts that the Respi is

correctly computed by Serveri . Otherwise he rejects

the response and can send his evidences IDTrespond
and

Respi to the Serveri’s smart contract, and then insurance

company can obtain a amount of reward. If all the

t responses pass the verifications, then the insurance

company uses lagrange interpolation to reconstruct a

polynomial as follow:

F̃ (x) =

t∑

i=1

Respi

t∏

j=1,j �=i

x − Srj

Sri − Srj
.

Finally, the insurance company calculates F̃ (0) that is

the desired result.

Performance evaluation

In this section, we evaluate a performance of the MIStore

system. The performance evaluation can be broken into

three parts. The first part studies the processing time

of cryptographic and mathematic computations in this

system. The time of processing transactions is researched

in the second part. The last part further demonstrates the

processing time of blocks when different transactions are

sent to the blockchain network. The section starts with the

prototype system setting.

Prototype system setting

MIStore’s efficiency mainly depends on the blockchain

platform and performance of cryptographic schemes. For

instance, in the paper, we use the Ethererum blockchain as

the blockchain platform. Specifically, Ethereum’s block can

contains transactions of at most 62,360 bytes, its average

block interval is about 15 s and its transaction’s payload

contains at most 1014-byte data, so the MIStore’s efficiency

is significantly limited by the Ethererum blockchain.

Therefore, if we use some other more suitable blockchain,

then we might get a better throughput. Besides, we use

our BN-curve code to perform the pairing and point

multiplication. Therefore, time cost of pairing and point

multiplication may be longer than the previous optimal

works. For instance, in Pinocchio [34], due to their excellent

code, a pairing computation just takes 0.9 ms, while ours

takes about 84.651 ms. Therefore, if we use their computer

platform and code, maybe the performance of the prototype

system could be improved.

We implement a prototype system that is a (2,3)-

threshold MIStore protocol among three servers. Specifi-

cally, it contains a hospital, a patient, an insurance company

and three servers. We use laptops and virtual machines to

perform the prototype system. Our laptop’s configuration is

described as follows: the Intel i5-5300 CPU with 2.30GHz,

4GB memory, Windows 10 OS. In the local area network,

we deploy a local blockchain via go-ethereum that is a Go

implementation of the Ethereum protocol (https://github.

com/ethereum/go-ethereum). In the blockchain network, we

deploy four record-nodes (miners), and we use transac-

tion simulator (https://github.com/ethereum/go-ethereum)

to simulate the hospital, servers and insurance company

to generate and send transactions. Moreover, we record

MIStore system’s data in the transaction’s payload. In the

Ethereum blockchain, a transaction’s payload can record

data of at most 1014 bytes.

Additionally, Ethererum has a embedded signature

scheme that is the ECDSA with the secp256k1 elliptic curve

[26]. For convenience, we use the scheme to sign messages.

Besides, to encrypt key data recorded in the payloads of

initialize-transaction and respond-transaction, we use the

encryption scheme ECIES with the elliptic curve secp256k1

to encrypt the key data via receiver’s public key. It results

in that each encrypted message has a length of 96 bytes.

Moreover, the encrypted data can be decrypted only by the

corresponding receivers since only he has the corresponding

private key.

Furthermore, for committing data and verifying commit-

ted data, we utilize 256-bit Barreto-Naehrig curve (BN-

curve) [25] to commit the data via the base point multiplica-

tion. For instance, let G be the base point of the BN-curve.

Then, the secret s can be committed by sG. Therefore, a

commitment has a length of 64 bytes since any point of the

BN-curve has two coordinates and each of the coordinates

is of 32 bytes. Moreover, we use the bilinear map e (pair-

ing computation) constructed by the BN-curve to verify the

https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum


149 Page 10 of 17 J Med Syst (2018) 42: 149

correctness of the commitments. Specifically, e(ga, gb) =

e(gab, g). For instance, if we want to verify ab = c and

we do not want to reveal a, b and c, then we may use the

following equation to verify ab = c.

e(ga, gb) = e(gc, g).

Processing time of cryptographic schemes

Generally, the time cost of performing cryptographic

schemes will have a certain degree of influence on the

time of processing transactions, and then it may influence

the efficiency of the system. Therefore, in the sub-section,

we discuss the processing time cost of cryptographic and

mathematic components.

For each of encryption, decryption, point multiplication,

point addition, signing, verifying signatures, pairing,

field addition and field multiplication, we perform 1000

experiments to obtain their average time cost. Their average

time cost is shown in Table 4.

Generating transactions

In MIStore system, different transactions may have different

payloads. For instance, an initialize-transaction includes

a verification key, 9 commitments, 3 servers’ IDs and

9 encrypted messages, while a respond-transaction only

contains a initialize-transaction’s ID, an encrypted response

and a commitment about the response. Moreover, the sizes

of payloads of initialize-transaction, query-transaction and

respond-transaction are fixed, while the size of payload

of record-transaction is variable. Therefore, different

transactions may have different generation time. In the

sub-section, we study generation time of transactions in

the implementation. We discuss the initialize-transaction at

first.

In our prototype system, according to “Construction of

MIStore”, a Tinitialize’s payload includes a verification

Table 4 Average Time cost of cryptographic schemes

Scheme Time cost

BN-curve Point Mul 29.569 ms

BN-curve Point Add 0.236 ms

Pairing 84.651 ms

Field Add 0.071 µs

Field Mul 0.531 µs

Secp256k1-curve ECDSA Sign 4.425 ms

Secp256k1-curve ECDSA Verify Sig 9.137 ms

Secp256k1-curve ECIES Encryption 8.745 ms

Secp256k1-curve ECIES Decryption 4.367 ms

Block Interval 15.2 s

key, three servers’ IDs, 9 encrypted messages and 9

commitments. Moreover, according to “Prototype system

setting”, the data recorded in the Tinitialize’s payload is of

1504 bytes. However, the payload of a transaction, in the

Ethererum blockchain, can include at most 1014 bytes. In

other words, one transaction cannot contain 1504 bytes.

Therefore, in the prototype system, we divide the Tinitialize

into T 1
initialize, T 2

initialize and T 3
initialize in order to record all its

data. Specifically, the both transactions can be described as

follows:

1

initialize

Transaction Header

Payload

2

initialize

Transaction Header

Payload

3

initialize

Transaction Header

Payload

Indeed, record-transactions may have payloads with

variable sizes. Moreover, a basic message recorded in

a record-transaction’s payload is a array of {IDinitialize,

IDinvoice, sk,1, sk,2} which is of 128 bytes. Due to that

the a payload can include at most 1014 bytes, a record-

transaction’s payload can contain at most 7 × 128 =

896 bytes. For convenience, in the prototype system,

we only generate record-transactions with the largest

payload. Specifically, we only generate two kinds of record-

transactions which are described as follows:

1

Transaction Header

Payload

ID ID
1

s1 1 s1 2

ID ID
2

s2 1 s2 2

2

Transaction Header

Payload

ID ID
3

s3 1 s3 2

ID ID
4

s4 1 s4 2

.

A query-transaction, whose payload just includes a

initialize-transaction’s ID, can be shown as follows:

query

Transaction Header

Payload

ID

A respond-transaction’s payload contains the corre-

sponding initialize-transaction’s ID, an encrypted response

and a commitment of the response. Specifically, Serveri’s

respond-transaction can be described as follow:



J Med Syst (2018) 42: 149 Page 11 of 17 149

Transaction Header

Payload

ID Resp Resp

In the prototype system, sizes of transactions’ payloads

are shown in Table 5. For each of T 1
initialize, T 2

initialize,

T 3
initialize, Trecord, Tquery and Trespond, we generate 1000

transactions in order to obtain their average generating time

cost. Then their average time cost are shown in Table 6.

Verifying transactions

In the system, before a transaction is appended at the

blockchain, most record-nodes must verify the transaction.

Specifically, record-nodes verify all publicly verifiable data

of the transaction. Moreover, if a transaction has appeared

at the blockchain, then it means that it has been accepted

by most record-nodes. Therefore, the transaction’s publicly

verifiable data is credible. Consequently, others (e.g.,

hospital, patient, insurance company and servers ) do not

have to verify the transaction’s publicly verifiable data. In

this way, it significantly reduces verifying computations of

users. In the sub-section, we study transactions’ verification

time cost. All publicly verifiable data of transactions are

summarized as follows:

– All transactions’ signatures are publicly verifiable data

that can be verified by record-nodes. Therefore, if a

transaction has appeared at the blockchain, then the

transaction’s signature is credible, and others need not

to verify the signature.

– Except signatures, the payloads of initialize-transaction

and respond-transaction have public verifiable data

that can be verified by record-nodes. Specifically, they

are the initialize-transaction’s verification key, commit-

ments of core-shares and commitments of responses.

Consequently, if an initialize-transaction (or a query-

transaction) has appeared at the blockchain, then its

publicly verifiable data is credible. Therefore, the trans-

action’s receiver need not to verify the public verifiable

data.

In this way, the transaction’s receiver just needs to verify

some key data that can be verified by only him.

For each of T 1
initialize, T 2

initialize, T 3
initialize, Trecord, Tquery

and Trespond, we verify 1000 transactions, and then obtain

their average verifying time cost. Then their average

verifying time cost are shown in Table 6. Specifically, in

Table 6, S is a signing computation, V denotes a signature

verification, PM describes a point multiplication on the

ECC, PA is a point addition on the ECC, Pairing means

a pairing computation, E is a encryption, D denotes a

decryption, FM describes a field multiplication and FA is

a field addition. For instance, “2PM+3PA+1V+6Pairing”

denotes that the corresponding computations contain 2 point

multiplications, 3 point additions, 1 signature verification

and 6 pairing computations.

It must be pointed that if the system does not use

blockchain to record transactions and does not use record-

nodes to help users to verify publicly verifiable data,

then transaction receivers should perform more verifying

computations than the blockchain-based system. Specifi-

cally, if that happens and we also use the above transactions

and cryptographic schemes, then this will result in:

– Because all transactions are stored by some centralized

nodes, so storages might be modified or deleted by the

centralized nodes.

– All related users must independently verify all public

verifiable data including the verification key and

commitments.

– Servers and insurance company might be heavier

than the blockchain-based system. Therefore, some

computations and operations cannot be processed

efficiently, even cannot be performed.

For instance, we assume that a non-blockchain-based

MIStore (pure system) is performed. If an insurance

company receives a respond-transaction, then it must verify

all verifiable data, otherwise it will not trust the transaction.

Specifically, he will costs about 528.297 ms to verify it.

However, if the system is based on a blockchain network,

that is the key point of the paper, then the insurance

company just needs to cost 33.936 ms to verify some key

Table 5 Payloads of

transactions used in our

prototype system

Payload Content Size

Payload of T 1
initialize A verification key 512 bytes

Payload of T 2
initialize 3 IDs, 9 encrypted messages 960 bytes

Payload of T 3
initialize 9 commitments 576 bytes

Payload of Trecord 1 to 7 arrays of spending data 128-896 bytes

Payload of Tquery 1 ID 32 bytes

Payload of Trespond A hospital’s ID, a encrypted response, a commitment 192 bytes



149 Page 12 of 17 J Med Syst (2018) 42: 149

Table 6 Average time cost of processing transactions

Operation on transaction Computations Time cost

Hospital generates a T 1
initialize 1S+7PM 212.209 ms

Hospital generates a T 2
initialize 1S+9E 83.931 ms

Hospital generates a T 3
initialize 1S+9PM 271.347 ms

Hospital generates a Trecord 1S+14FA 5.226 ms

Insurance company generates a Tquery 1S 5.226 ms

Server generates a Trespond 1S+5FM+12FA+1E+1PM 43.543 ms

Record-node verifies a T 1
initialize 1V+5PM+2PA 157.454 ms

Record-node verifies a T 2
initialize 1V 9.137 ms

Record-node verifies a T 3
initialize 1V+15PM+9PA 454.796 ms

Record-node verifies a Trecord 1V 9.137 ms

Record-node verifies a Tquery 1V 9.137 ms

Record-node verifies a Trespond 1V+2PM+10PA+5Pairing 494.361 ms

Server verifies a T 2
initialize 3D++3PM 101.807 ms

Insurance company verifies a Trespond 1D+1PM 33.936 ms

Insurance company recovers the result 4FA+4FM < 0.005 ms

In the table, S is a signing computation, V denotes a signature verification, PM describes a point multiplication on the ECC, PA is a point

addition on the ECC, Pairing means a pairing computation, E is a encryption, D denotes a decryption, FM describes a field multiplication and

FA is a field addition. For instance, “2PM+3PA+1V+6Pairing” denotes that the corresponding computations contain 2 point multiplications, 3

point additions, 1 signature verification and 6 pairing computations

data since other data has been verified by record-nodes.

Comparisons between the pure system and the blockchain-

based system are shown in Table 7. According to the

Table 7, if the system is not based on the blockchain, then

the insurance company and servers all need a certain amount

of verifying computations. However, if the system is based

on the blockchain, then most computations can be done by

record-nodes, then the insurance company and servers just

need to perform very few verifying computations.

Blockchain performance evaluation

We run our MIStore on the Ethereum blockchain. After

generating a certain number of blocks, the block interval

tends to be stable. That is, generating 1000 blocks takes

about 4.3 h. In other words, generating a block takes about

15.2 s on average. Furthermore, in the Ethereum blockchain,

a block can record transactions of at most 62,360 bytes, a

transaction with an empty payload is of 308 bytes and a

transaction’s payload can record data of at most 1014 bytes.

Therefore, a transaction’s size should be from 308 bytes to

308 + 1014 = 1322 bytes.

According to Table 5 and above contents, in our

implementation, any transaction’s size can be calculated.

Transactions’ sizes are shown in Table 8. A block can

record transactions of at most 62360 bytes. Therefore, if a

block only record identical transactions, then the number of

recorded transactions has a limit.

Table 7 Comparisons between pure MIStore and blockchain-based MIStore

Comparative item Time cost of pure MIStore Time cost of blockchain-based MIStore

Hospital Server IC Hospital Server IC Record-node

Verifying T 1
initialize 0 ms 157.4 ms 157.4 ms 0 ms 0 ms 0 ms 157.4 ms

Verifying T 2
initialize 0 ms 110.9 ms 9.1 ms 0 ms 101.8 ms 0 ms 9.1 ms

Verifying T 3
initialize 0 ms 454.7 ms 454.7 ms 0 ms 0 ms 0 ms 454.7 ms

Verifying Trecord 0 ms 9.1 ms 9.1 ms 0 ms 0 ms 0 ms 9.1 ms

Verifying Tquery 0 ms 0 ms 9.1 ms 0 ms 0 ms 0 ms 9.1 ms

Verifying Trespond 0 ms 0 ms 528.2 ms 0 ms 0 ms 33.9 ms 494.3 ms

IC denotes the insurance company



J Med Syst (2018) 42: 149 Page 13 of 17 149

Table 8 Transactions’ sizes in our prototype system

Transaction Size

T 1
initialize 820 bytes

T 2
initialize 1268 bytes

T 3
initialize 884 bytes

Trecord 436-1204 bytes

Tquery 340 bytes

Trespond 500 bytes

In our experiments, because different transactions have

different significance, so the more significant transaction

should be processed earlier. In the Ethererum blockchain,

record-nodes (miners) earlier process a transaction with

more transaction fee. Therefore, we set different transac-

tions with different transaction fees. When transactions are

pending in a record-node’s transaction pool, transactions

with more fees will be recorded earlier. In the MIStore

system, the initialize-transaction is the base of later transac-

tions. Therefore, it should has the first priority. For quickly

responding insurance company’s query, we set that query-

transaction has the second priority and respond-transaction

has the third priority. Finally, record-transaction has the low-

est priority. In this way, the system’s responding rate will

be obviously increased. In our experiments, their transaction

fees are shown in Table 9.

In our experiments, after an initialize-transaction has

appeared at the blockchain, the hospital continually send

record-transactions to the blockchain network. The record-

transactions are same as mentioned at “Construction of

MIStore”. The data of record-transactions’ payloads is

called as “spending-data”. Every block can contain at most

51 record-transactions with the most arrays of spending

data. Then, a block can store spending-data of at most 45696

bytes. Because the blockchain generates a block per about

15 s on average, so the system can record spending-data of

at most 3046.4 bytes per second on average. At some later

time, the insurance company sends a query-transaction to

the blockchain network. Consequently, in the next block,

the insurance company can get 3 response-transactions. The

Table 9 Transaction fee

Transaction Transaction fee

T 1
initialize 0.0001 ETH

T 2
initialize 0.0001 ETH

T 3
initialize 0.0001 ETH

Trecord 0.00001 ETH

Tquery 0.00006 ETH

Trespond 0.00003 ETH

ETH denotes the unit of Ethererum coin

respond-transactions are recorded by record-nodes earlier

than record-transactions since it has larger transaction fee.

Finally, the insurance company can recover his desired data.

The whole process only takes about 24 s.

MIStore’s efficiency mainly depends on the blockchain

platform. For instance, in the paper, we use the Ethererum

blockchain as the platform. Specifically, Ethereum’s block

can contains transactions of at most 62,360 bytes, its

average block interval is about 15 s and its transaction’s

payload contains at most 1014-byte data, so the MIStore’s

efficiency is significantly limited by the blockchain

platform. Therefore, if we use some other more suitable

blockchain platform, then it might get a better throughput.

Conclusion

In this paper, we propose a blockchain-based threshold

medical insurance storage system, called MIStore. Because

of combining with blockchain, the system obtains some

special advantages, e.g., decentralization, tamper-resistance

and record-nodes help users to verify publicly verifiable

data. Firstly, the blockchain’s property of tamper-resistance

gives users high-credibility. Moreover, due to the decentral-

ization, users can communicate with each other without the

third-parties. Secondly, the system supports the property of

threshold. That is, patient’s data is confidentially controlled

by servers specified by the hospital, and the stored data is

always confidential for the servers as long as a certain num-

ber of the servers are honest. Furthermore, according to the

insurance company’s query, the specified servers can per-

form homomorphic computations on the data and then get

responses. If the insurance company can collect a threshold

number of correct responses, then he can recover the cor-

rect patient’s spending data. Thirdly, all important data is

verifiable. In particular, most of data is publicly verifiable.

Therefore, record-nodes of blockchain can help users to

perform the public verifications. Consequently, this signif-

icantly reduces users computations. Finally, a performance

evaluation about the system is given.

Acknowledgments This work was supported by the National Key

R&D Program of China (Grant No. 2016YFB0800602), the National

Natural Science Foundation of China (NSFC) (Grant No. 61502048),

and Shandong provincial Key R&D Program of China (Grant No.

2018CXGC0701).

Compliance with Ethical Standards

This article does not contain any studies with human participants

performed by any of the authors.

Conflict of interests Lijing Zhou declares that he has no conflict of

interest. Licheng Wang declares that he has no conflict of interest. Yiru

Sun declares that she has no conflict of interest.



149 Page 14 of 17 J Med Syst (2018) 42: 149

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestricted

use, distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

Appendix: (t,n)-threshold verifiable
homomorphic confidential storage scheme

(t, n)-threshold verifiable homomorphic confidential stor-

age scheme (TVHCSS) contains three parties (a distributor,

n servers and a querier). Specifically, in TVHCSS, the dis-

tributor’s messages are protected and controlled by the n

servers, and in each server’s hands, messages are cipher-

text. When a querier sends a query to the n servers, if at

least t servers return correct answers to the querier, then the

querier can obtain what he wants. While if less than t servers

return answers to the querier, then the querier cannot obtain

anything.

A.1 Construction of TVHCSS

Symbols, used in the scheme, are summarized at Table 10.

– g is a generator of a cyclic group G.

– e is a bilinear map, e: G × G → G. For instance,

e(ga, gb) = e(g, g)ab.

– D is the distributor’s ID.

– Sr1, Sr2, · · · , Srn denote n servers’ IDs.

– Q describes the querier’s ID.

– {pki, ski} denotes the i-th server’s key pair, for i from

1 to n.

– {pkQ, skQ} is Q’s key pair.

Table 10 Symbols of TVHCSS

Symbol Description

g The generator of a cyclic group G

e The bilinear map, e: G × G → G

Fp The finite field with character p

D The distributor’s ID

Sri The i-th servers’ IDs

Q The querier’s ID

V K The verification key

{pkD, skD} The D’s key pair

{pki , ski} The i-th server’s key pair, for i from 1 to n

{pkQ, skQ} The insurance company I ’s key pair

di The i-th plaintext message protected by n servers

CMFi
CMFi

= gFi

CMhi
CMhi

= ghi

Sahrei The i-th server’s answer-share

– d1, d2, · · · , dm describe the plaintext messages that will

be protected by n servers in ciphertext.

– Sahreasr
i is the i-the server’s answer.

The TVHCSS can be described as follows:

• Initialize. Let Fp be a finite field with character p. D

randomly samples a polynomial F(x) of degree t − 1

over Fp as the following polynomial.

F(x) = at−1x
t−1 + at−2x

t−2 + · · · + a1x + score,

where score, a1, · · · , at−1 ∈ Fp and at−1 �= 0. We

denote that score is the core secret in the system. Let

f (x) = at−1x
t−1 + at−2x

t−2 + · · · + a1x.

Then we have F(x) = f (x) + a0. D computes

f (x)2 = q2t−2x
2t−2 + q2t−3x

2t−3 + · · · + q2x
2.

After that, D randomly samples l(x) of degree t − 1

from Fp[x] as follow:

l(x) = ct−1x
t−1 + ct−2x

t−2 + · · · + c1x.

Let

h(x) = f (x)2−l(x) = b2t−2x
2t−2+b2t−3x

2t−3+· · ·+b1x.

D samples a generator g that can generate a cyclic

group G. Then D publishes a verification key V K as

follow:

V K = {g, gat−1 , · · · , ga1 , gscore , gb2t−2 , gb2t−3 ,

· · · , gb1 , gct−1 , gct−2 , · · · , gc1}

• Verify committed polynomials. Anyone can verify

whether polynomials f (x), h(x), l(x), committed in

verification key, are well-formed and sound. Specifi-

cally, he can do as follows:

– Randomly sample t different numbers

x0, x1, · · · , xt−1 ∈ Fp.

– j from 0 to t − 1, compute

g
f
j = (gat−1)

xt−1
j (gat−2)

xt−2
j · · · (ga1)xj

= g
at−1x

t−1
j +at−2x

t−2
j +···+at−1xj

gh
j = (gb2t−2)

x2t−2
j (gb2t−3)

x2t−3
j · · · (gb1)xj

= g
b2t−2x

2t−2
j +b2t−3x

2t−3
j +···+b1xj

gl
j = (gct−1)

xt−1
j (gct−2)

xt−2
j · · · (gc1)xj

= g
ct−1x

t−1
j +ct−2x

t−2
j +···+c1xj

– If e(g
f
j , g

f
j ) = e(gh

j gl
j , g), for all j from

0 to t − 1, then the verifier accepts that the

polynomials, committed by verification key,

are well-formed and sound. Otherwise, he

rejects and return to step Inilialize.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


J Med Syst (2018) 42: 149 Page 15 of 17 149

Fig. 3 Work process of

TVHCSS

• Distribute. D computes

Fi = F(Sri) and hi = h(Sri).

D encrypts {Fi, hi} with Sri’s public key as Ci =

Encpki
(CFi, Chi). D sends Ci to Sri , respectively.

For Ci , only Sri can decrypt it since only Si has the

corresponding secret key. After obtaining Fi and hi , Sri
can verify the soundness of {Fi, hi} with verification

key

{g, gat−1 , · · · , ga1 , gscore , gb2t−2 , gb2t−3 , · · · ,

gb1 , gct−1 , gct−2 , · · · , gc1}.

Specifically, he computes

F ∗
i = (gat−1)Sr t−1

i · · · (ga1)Sri (gscore )

h∗
i = (gb2t−2)Sr2t−2

i · · · (gb1)Sri

If F ∗
i = gFi and h∗

i = ghi , then Sri accepts Fi and hi ,

otherwise he rejects.

• Publish. D computes

si = di − score

for 1 ≤ i ≤ m. Then D publishes s1, s2, · · · , sm that

can be seen by anyone including the servers. However,

only the servers can use s1, s2, · · · , sm to generate

answer shares that can be used by the querier to recover

the corresponding needed result.

• Query. The Querier Q sends servers a query that he

wants to know a data that can be described as the

following equation:

data = di1di2+di3di4+· · ·+dik1−1
dik1

+dik1+1
+· · ·++dik1+k2

,

(2)

where 1 ≤ i1, i2, · · · , ik1+k2
≤ m.

• Answer. If the i-th server Sri wishes to answer Q,

then he will generate a Sharei by calculating with

s1, s2, · · · , sm, Fi and hi as follows:

Sharei = (Fi + si1 )(Fi + si2 ) + · · · + (Fi + sik1−1
)(Fi + sik1

)

+ (Fi + sik1+1
) + · · · + (Fi + sik1+k2

) −
k

2
hi



149 Page 16 of 17 J Med Syst (2018) 42: 149

After that, Sri encrypts Sharei as Cshare
i =

EncpkQ
(Sharei) with Q’s public key. Then, Sri sends

Cshare
i to Q.

• Recover. If Q collects at least t correct and different

shares, he can recover the data as described in Eq. 2.

Without loss of generality, we assume the t shares

come from Sr1, Sr2, · · · , Srt . First, Q should verify the

validations of Share1, Share2 and Sharet . Specifically, i

from 1 to t , Q computes

gFi = (gat−1 )Sr t−1
i · · · (ga1 )Sri (ga0 ) = gat−1Sr t−1

i +···+a1Sri+score

ghi = (gb2t−2)Sr2t−2
i · · · (gb1)Sri = gb2t−2Sr2t−2

i +···+b1Sri

After that, with si1 , si2 , · · · , sim and bilinear map e, Q

further computes

E1
i = e(gFi gsi1 , gFi gsi2 )e(gFi gsi3 , gFi gsi4 )

· · · e(gFi g
sik1−1 , gFi g

sik1 )

E2
i = e(g

Fi

i g
sik1+1 g

Fi

i g
sik1+2 · · · g

Fi

i g
sik1+k2 , g)

If

E1
i E

2
i /e(g

hi , g
k
2 ) = e(gSharei , g),

then Q considers that Sharei is correctly computed

by Sri . If all Share1, Share2 and Sharet are correctly

computed by senders, then Q can recover the data

with Share1, Share2 and Sharet . Specifically, Q can

reconstruct a polynomial of degree t − 1 by Lagrange

interpolating as follow:

F̃ (x) =

t∑

i=1

Sharei

t∏

j=1,j �=i

Srj − x

Srj − Sri

Finally, F̃ (0) equals to data.

References

1. Nakamoto, S., Bitcoin: A peer-to-peer electronic cash system,

Available: http://bitcoin.org/bitcoin.pdf, 2008.

2. Litecoin. https://litecoin.org.

3. Schwartz, D., Youngs, N., and Britto, A., The Ripple Protocol

Consensus Algorithm. Technical Report. https://ripple.com/files/

ripple consensus whitepaper.pdf, 2014.

4. Wood, G., Ethereum: A secure decentralised generalised transac-

tion ledger[J]. Ethereum project yellow paper 151:1–32, 2014.

5. Dwork, C., and Naor, M., Pricing via processing or combatting

junk mail[C]. In: Annual International Cryptology Conference,

pp. 139–147. Berlin: Springer, 1992.

6. King, S., and Nadal, S., Ppcoin: Peer-to-peer crypto-currency with

proof-of-stake[J]. Self-published paper, August, 2012, 19.

7. Kwon, J., Tendermint: Consensus without mining. 2014[J]. https://

tendermint.com/static/docs/tendermint.pdf, 2014.

8. Dziembowski, S., Faust, S., Kolmogorov, V., et al., Proofs

of space[C]. In: Annual Cryptology Conference, pp. 585–605.

Heidelberg: Springer, Berlin, 2015.

9. Bentov, I., Lee, C., Mizrahi, A., and Rosenfeld, M., Proof of

activity Extending bitcoin’s proof of work via proof of stake.

In: Proceedings of the ACM SIGMETRICS 2014 Workshop on

Economics of Networked Systems, NetEcon. 2, 2014.

10. Blocki, J., and Zhou, H. S., Designing proof of human-

work puzzles for cryptocurrency and beyond[C]. In: Theory of

Cryptography Conference, pp. 517–546. Berlin: Springer, 2016.

11. Castro, M., and Liskov, B., Practical Byzantine fault tolerance[C].

OSDI 99:173–186, 1999.

12. King, S., and Nadal, S., Ppcoin: Peer-to-peer crypto-currency with

proof-of-stake. https://peercoin.net/assets/paper/peercoin-paper.

pdf, 2012.

13. CryptoManiac, Proof of stake. NovaCoin wiki. https://github.com/

novacoin-project/novacoin/wiki/Proof-of-stake, 2014.

14. Bentov, I., Lee, C., Mizrahi, A., and Rosenfeld, M., Proof of

activity Extending bitcoin’s proof of work via proof of stake

[extended abstract]. SIGMETRICS Perform. Eval. Rev. 42(3):34–

37, 2014.

15. Buterin, V., A next-generation smart contract and decentralized

application platform, 2014[J] https://github.com/ethereum/wiki/

wiki/White-Paper (visited on 10/09/2016), 2014.

16. Dwork, C., and Naor, M., Pricing via processing or combatting

junk mail. In: CRYPTO’92, pp. 139–147, 1992.

17. Abramaowicz, M., Cryptocurrency-based Law[J]. Ariz. L. Rev.

58:359, 2016.

18. Yue, X., Wang, H., Jin, D., Li, M., and Jiang, W., Healthcare data

gateways: Found healthcare intelligence on blockchain with novel

privacy risk control. J. Med. Syst. 40(10):218, 2016.

19. Ferrer, E. C., The blockchain: A new framework for robotic swarm

systems. arXiv:1608.00695, 2016.

20. Brambilla, G., Amoretti, M., and Zanichelli, F., Using block chain

for peer-to-peer proof-of-location. arXiv:1607.00174, 2016.

21. Shamir, A., How to share a secret. ACM 22:612,613, 1979.

22. Joux, A., A one round protocol for tripartite Die-Hellman. J.

Cryptol. 17:263–276, 2004.

23. Joux, A., and Nguyen, K., Separating decision Die-Hellman from

computational Die-Hellman in cryptographic groups. J. Cryptol.

16:239–247, 2003.

24. Bellare, M., and Rogaway, P., Random oracles are practical: A

paradigm for designing efficient protocols[C]. In: Proceedings

of the 1st ACM Conference on Computer and Communications

Security, pp. 62–73: ACM, 1993.

25. Barreto, P. S. L. M., and Naehrig, M., Pairing-friendly elliptic

curves of prime order. In: Selected Areas in Cryptography (SAC),

2006.

26. Bernstein, D. J., and Lange, T., Safecurves: Choosing safe curves

for elliptic-curve cryptography. http://safecurves.cr.yo.to, 2013.

27. Johnson, D., Menezes, A., and Vanstone, S., The elliptic curve

digital signature algorithm (ECDSA)[J]. Int. J. Inf. Secur. 1(1):36–

63, 2001.

28. Smart, N. P., The exact security of ECIES in the generic group

model[C]. In: IMA International Conference on Cryptography and

Coding, pp. 73–84. Berlin: Springer, 2001.

29. Ekblaw, A., Azaria, A., Halamka, J. D., et al., A Case Study

for Blockchain in Healthcare: “MedRec” prototype for electronic

http://bitcoin.org/bitcoin.pdf
https://litecoin.org
https://ripple.com/files/ripple_consensus_whitepaper.pdf
https://ripple.com/files/ripple_consensus_whitepaper.pdf
https://tendermint. com/static/docs/tendermint.pdf
https://tendermint. com/static/docs/tendermint.pdf
https: //peercoin.net/assets/paper/peercoin-paper.pdf
https: //peercoin.net/assets/paper/peercoin-paper.pdf
https://github.com/ novacoin-project/novacoin/wiki/Proof-of-stake
https://github.com/ novacoin-project/novacoin/wiki/Proof-of-stake
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
http://arxiv.org/abs/1608.00695
http://arxiv.org/abs/1607.00174
http://safecurves.cr.yo.to


J Med Syst (2018) 42: 149 Page 17 of 17 149

health records and medical research data[C]. In: Proceedings

of IEEE Open and Big Data Conference, Vol. 13, p. 13,

2016.

30. Xia, Q., Sifah, E. B., Asamoah, K. O., et al., MeDShare: Trust-

less medical data sharing among cloud service providers via

blockchain[J]. IEEE Access 5:14757–14767, 2017.

31. Liu, X., Dong, M., Ota, K., Hung, P., and Liu, A., Service pricing

decision in cyber-physical systems: insights from game theory.

IEEE Trans. Serv. Comput. 9(2):186–198, 2016.

32. Chang, S., Zhu, H., Dong, M., Ota, K., Liu, X., and Shen, X.,

Private and flexible urban message delivery. IEEE Trans. Veh.

Technol. 65(7):4900–4910, 2016.

33. Yan, J., Wang, L., Dong, M., Yang, Y., and Yao, W., Identity-based

signcryption from lattices. Security and Communication Networks

8(18):3751–3770, 2015.

34. Parno, B., Howell, J., Gentry, C., et al., Pinocchio: Nearly practical

verifiable computation[C]. In: 2013 IEEE Symposium on Security

and Privacy (SP), pp. 238–252: IEEE, 2013.


	MIStore: a Blockchain-Based Medical Insurance Storage System
	Abstract
	Abstract
	Introduction
	Organization

	Background
	System setting and model
	Blockchain network and cryptographic keys
	Assumptions
	The basic instance


	An overview of MIStore
	MIStore
	Transaction and block
	Construction of MIStore

	Performance evaluation
	Prototype system setting
	Processing time of cryptographic schemes
	Generating transactions
	Verifying transactions
	Blockchain performance evaluation

	Conclusion
	Acknowledgments
	Compliance with Ethical Standards
	Conflict of interests
	Open Access
	Appendix : (t,n)-threshold verifiable homomorphic confidential storage scheme
	A.1 Construction of TVHCSS
	References


