
Mitigating Code-Reuse Attacks with Control-Flow Locking

Tyler Bletsch Xuxian Jiang Vince Freeh
Department of Computer Science,

NC State University, Raleigh, NC, USA
{tkbletsc, xuxian_jiang, vwfreeh}@ncsu.edu

ABSTRACT
Code-reuse attacks are software exploits in which an attacker
directs control flow through existing code with a malicious
result. One such technique, return-oriented programming, is
based on“gadgets”(short pre-existing sequences of code end-
ing in a ret instruction) being executed in arbitrary order as
a result of a stack corruption exploit. Many existing code-
reuse defenses have relied upon a particular attribute of the
attack in question (e.g., the frequency of ret instructions in
a return-oriented attack), which leads to an incomplete pro-
tection, while a smaller number of efforts in protecting all
exploitable control flow transfers suffer from limited deploy-
ability due to high performance overhead. In this paper, we
present a novel cost-effective defense technique called con-
trol flow locking, which allows for effective enforcement of
control flow integrity with a small performance overhead.
Specifically, instead of immediately determining whether a
control flow violation happens before the control flow trans-
fer takes place, control flow locking lazily detects the viola-
tion after the transfer. To still restrict attackers’ capability,
our scheme guarantees that the deviation of the normal con-
trol flow graph will only occur at most once. Further, our
scheme ensures that this deviation cannot be used to craft
a malicious system call, which denies any potential gains an
attacker might obtain from what is permitted in the threat
model. We have developed a proof-of-concept prototype in
Linux and our evaluation demonstrates desirable effective-
ness and competitive performance overhead with existing
techniques. In several benchmarks, our scheme is able to
achieve significant gains.

1. INTRODUCTION
Computers are under constant threat of being compro-

mised by increasingly sophisticated attackers. In the con-
text of network daemons, attackers send maliciously crafted
packets which exploit software bugs in order to gain unau-
thorized control. Research into preventing the existence of
such bugs has been ongoing, but so far has failed to yield

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’11 Dec. 5-9, 2011, Orlando, Florida USA
Copyright 2011 ACM 978-1-4503-0672-0/11/12 ...$10.00.

a silver bullet to the problem of exploitable security flaws.
However, solutions targeting different aspects of the attack
itself have had some success; this has led to an arms race
between malicious attackers and security researchers.

One of the earliest attack techniques is the code injection
attack, in which new machine code is written into the vulner-
able program’s memory, then a bug is exploited to redirect
control flow to this new code. Fortunately, the protection
technique known as W⊕X, which ensures that memory is
either writable or executable (but not both), largely miti-
gates this attack [1]. However, attackers have responded by
employing code-reuse attacks, in which a software flaw is ex-
ploited to weave control flow through existing code-base to
a malicious end. For example, the return-into-libc (RILC)
technique is a relatively simple code-reuse attack in which
the stack is compromised and control is sent to the begin-
ning of an existing libc function [2]. Often, this is used to
call system() to launch a process or mprotect() to create a
writable, executable memory region to bypass W⊕X.

To achieve greater expressiveness, a more sophisticated
code-reuse attack known as return-oriented programming
(ROP) was introduced [3]. In this technique, so-called gad-
gets (small snippets of code ending in ret) are weaved to-
gether in arbitrary ways to achieve Turing complete com-
putation without code injection. In response to this threat,
researchers developed defenses which relied upon particular
attributes of this attack, such as the the frequency of ret

instructions [4, 5] or reliance on the stack [6, 7, 8, 9, 10].
Unfortunately, recent evidence has revealed that code-reuse
attacks need not rely on the stack or the ret instruction to
govern control flow, negating these defenses [11, 12]. With
that, it is not desirable to continue the trend of developing
piecemeal defenses against each new code-reuse variant. In-
stead, there is a need to enforce control flow integrity (CFI),
the property that a program’s execution is restricted to the
control flow graph (CFG) dictated by its source code. The
CFI property was formalized by Abadi et al. in 2005; this
work included a system capable of enforcing CFI in practice
[13]. Unfortunately, this system has not seen significant pro-
duction deployment possibly due to performance concerns.

In order to address this problem, we present an alterna-
tive technique, control flow locking (CFL), which achieves
protection functionally equivalent to CFI enforcement with
small performance overhead (e.g., negligible slowdown for
many workloads). The key insight that allows for CFL’s
improved performance over earlier systems is that the va-
lidity check is performed lazily, i.e. after the actual control
flow transfer has occurred. This leads to a better use of the

CPU’s split L1 cache, as code need not be loaded as data
(see Section 5.2 for details).

Control flow locking is analogous to mutex locking, except
instead of synchronization, the lock is asserted to ensure cor-
rectness of the control flow of the application. Specifically,
a small snippet of lock code is inserted before each indirect
control flow transfer (call via register, ret, etc.). This code
asserts the lock by simply changing a certain lock value in
memory; if the lock was already asserted, a control flow vi-
olation is detected and the program is aborted. Otherwise,
execution passes through the control flow transfer instruc-
tion onto the destination. Each valid destination for that
control flow transfer contains the corresponding unlock code,
which will de-assert the lock if and only if the current lock
value is deemed “valid”. If an invalid code is found (such
as a lock from another point of origin), the process will be
aborted. In our system, we further take additional precau-
tions to ensure the lock value is not modified by other code,
and that unintended instructions cannot be used (see Sec-
tion 3). Given this, an attacker can now only subvert the
natural control flow of the application at most once before
being detected. Further, the instructions for system calls
can have lock-verification code prepended to them so that
this single control flow violation cannot be used to issue a
malicious system call. This means that the only consequence
of the attack are potential changes to the program’s memory
state, which is an ability the attacker is already assumed to
have based on the threat model (see Section 3).

We have implemented a proof-of-concept control-flow lock-
ing prototype on a commodity x86 system. Though our cur-
rent prototype mainly supports statically-linked programs,
it has been shown to offer performance overhead competi-
tive with existing techniques, achieving significant gains in
several benchmarks. We believe control-flow locking repre-
sents a step further to address code-reuse attacks with a
performance penalty small enough for possible deployment
in real-world situations. The rest of this paper is organized
as follows: Section 2 discusses related work. Section 3 intro-
duces the overall system design and Section 4 presents the
implementation. Section 5 evaluates the system in terms
of performance and correctness, and Section 6 discusses its
implications as a whole. Section 7 concludes this paper.

2. BACKGROUND AND RELATED WORK
In this section, we first present a brief primer on the x86

architecture which readers familiar with that platform may
safely skip. After that, we review recent code-reuse attacks
as well as existing defenses.

2.1 Background on the x86
To understand the technique presented in this paper, it

will be useful to review the technical details of the 32-bit x86
architecture, where our technique has been implemented.

First, note that the x86 assembly language presented is
written in AT&T syntax. Registers are written with a per-
cent sign (e.g. %eax), literals with a dollar sign (e.g. $1),
and memory locations as plain symbols (e.g. k). Unlike
Intel syntax, here the destination operands appear last, so
add %edx,%ecx indicates ecx ← ecx + edx. Memory deref-
erencing is indicated either with an asterisk (e.g. *%eax) or
with parenthesis (e.g. (%eax)).

Second, instructions are of variable length and are not
aligned. This allows for the existence of unintended code:

new interpretations of existing code achieved when jumping
to a non-instruction boundary. For example, if an add in-
struction contains the bytes 0xff,0x10 in an operand, one
could jump into that instruction at those bytes, and the
CPU would now interpret the code as call *%eax.

Third, the x86 has a hardware-managed stack supported
by two CPU registers: esp, the top-of-stack pointer, and
ebp, the bottom-of-frame pointer. In addition to manual
manipulation of stack memory, several x86 CPU instruc-
tions implicitly affect the stack. For our purposes, the most
important are call, which pushes the next instruction’s ad-
dress onto the stack, and ret, which pops the stack and
jumps to the popped address. These instructions are used
to maintain control flow for function call and return, re-
spectively. The ret instruction is referred to as an indirect
control flow transfer, meaning that, based on the content
of the stack, control flow can be redirected anywhere. This
is what makes the ret instruction vulnerable to exploita-
tion by the return-into-libc and return-oriented program-
ming techniques—simply altering memory by means of a
software exploit can lead to arbitrary control flow. In ad-
dition to ret, there are indirect variants of call and jmp

instructions: they may take a register or memory reference
as an operand, allowing a similarly unrestricted change of
control flow.

Therefore, to guard against code-reuse attacks in the gen-
eral case, it is necessary to not only protect ret, but also
the indirect forms of call and jmp.

2.2 Code-Reuse Attacks
The return-into-libc (RILC) technique is one of the earli-

est forms of code-reuse attack. The simplest variant, which
calls a single libc function, was documented as early as 1997
[2]. The technique was subsequently refined in order to allow
for the chaining of multiple functions [14].

To achieve greater expressiveness from the attack, Shacham
introduced return-oriented programming (ROP) in 2007 [3].
In this technique, the attacker seeks out small snippets of
code within the existing codebase, each ending in a ret.
These gadgets may perform memory load/store operations,
arithmetic, logic, system calls, etc. By laying out malicious
stack content full of ROP gadget addresses, the attacker can
execute an arbitrary number of these gadgets. Further, be-
cause gadgets may affect the stack pointer itself, it is possible
to construct conditional “branches”, meaning that execution
of return-oriented gadgets need not be linear. This allows
for attacker-controlled Turing complete computation in the
context of the vulnerable application. ROP has been demon-
strated on a variety of platforms, from x86 [3] to RISC [15,
16, 17] to even embedded environments [18]. A variant of
ROP has been adapted to the higher-level constructs in the
PHP scripting language, culminating in a data stealing ex-
ploit as well as an attack on the PHP exception handler that
is able to launch to a traditional machine-code-level code-
reuse attack [19].

Return-oriented programming has also been applied to
the kernel environment: a ROP-based kernel rootkit has
been shown to negate all existing kernel integrity protec-
tions [20]. Also, this work demonstrated the feasibility of
developing ROP attacks in an automated manner based on
a ROP “compiler”. Further, it has been shown that the
codebase needed to achieve Turing completeness in a ROP
attack need not be very large. Even the bootloader of an

embedded device may have enough gadgets to implement a
return-oriented rootkit, which has negative implications for
software attestation techniques which seek to ensure pro-
gram integrity [21].

In response to this, researchers examined the specific at-
tributes that characterize a ROP attack in order to develop
corresponding defenses. ROPDefender [7] rewrites binaries
to maintain a shadow stack in order to verify each return
address. This builds upon previous work in stack protec-
tion, including other shadow stack system [8, 9, 10], as well
as canary-based stack protection such as StackGuard [22].
Systems like DROP [4] and DynIMA [5] can detect a ROP-
based attack based on the short length of ROP gadgets,
which results in a very high frequency of ret instructions
being encountered. The return-less approach even goes so
far as to systematically remove every ret instruction so that
no gadgets can be found in the resulting binary [6].

In response to these defenses, code-reuse attacks were de-
veloped which did not rely on ret. Checkoway et al. intro-
duced a technique of finding gadgets which end in sequences
equivalent to ret, such as pop X ; jmp X or the Branch-
Load-Exchange (BLX) instruction on ARM [12]. Bletsch
et al. went further, establishing jump-oriented programming
(JOP) as a means to maintain malicious control flow without
any ret-equivalent instructions through the introduction of
a special dispatcher gadget [11]. These attacks indicate the
need for general defenses, because ad-hoc defense techniques
that target specific attributes of specific attacks are insuffi-
cient to address the breadth of code-reuse attack techniques
available. The existing work in this vein is discussed in the
following subsection.

2.3 Existing Defenses
There are several defense techniques proposed to mitigate

code reuse attacks. For example, Address-space layout ran-
domization (ASLR) randomizes a process memory layout,
making it difficult for an attacker to figure out what point-
ers to inject into the attack buffer [23, 24, 25, 26]. Unfor-
tunately, ASLR shares its own limitations [14, 27]. In fact,
a so-called de-randomization attack has been shown to de-
feat the popular PaX ASLR system in just 216 seconds [28].
Nevertheless, ASLR still raises the bar for attacks and has
been widely adopted.

In order to guarantee protection in the face of code-reuse
attacks, it is necessary to restrict indirect control flow trans-
fers so that they can only arrive at certain destinations. One
of the first techniques seeking to achieve this kind of protec-
tion was program shepherding, in which a security policy is
applied to all control flow transfers [29]. It is implemented
on top of a code interpreter framework with a dynamic opti-
mization system to cache native translations of basic blocks.
This approach achieves good protection, but had unaccept-
ably high overhead for some workloads (up to 760% in one
case).

Abadi et al. introduced the notion of Control Flow In-
tegrity (CFI), which seeks to ensure that execution only
passes through approved paths taken from the software’s
control flow graph [13]. To achieve this, at each indirect
jump/call and return instruction, the target address is checked
to see if it follows a valid path in the control flow graph. Un-
fortunately, this particular implementation of CFI suffered
from large overhead, and has not seen wide deployment.
However, the core idea of enforcing control flow integrity

would effectively mitigate the threat of code-reuse attacks,
provided it could be achieved at a reasonable cost. Subse-
quent work on the notion of CFI has allowed for additional
security features, including Data Flow Integrity (DFI) [30]
and others [31, 32, 33].

Recently, Onarlioglu et al. have introduced G-Free, an-
other system aimed at addressing the threat of code-reuse in
the general case [34]. This system works by systematically
editing assembly code so that it does not contain indirect
control flow transfers as unintended instructions. It can then
secure the intended control flow transfers using data pro-
tection techniques similar to prior work (e.g. StackGuard
[22], etc.). This technique appears to have much improved
performance compared to CFI (∼ 3%). However, it is diffi-
cult to discern how it performs with control flow intensive
benchmarks, as the only evaluation of performance overhead
for application-wide protection was on workloads in which
control flow was not on the critical path (i.e. IO-bound or
computation-kernel based workloads).

The control flow locking technique presented in this work
shares many of the same goals as CFI and G-Free, in that
it seeks to protect control flow from diversion by attackers.
However, it does so in a very different way from these tech-
niques, allowing greatly reduced overhead compared to CFI
as well as G-Free in some cases.

3. DESIGN
In this paper, we assume that the attacker can put a pay-

load into memory and exploit a bug to overwrite some con-
trol data (a return address, function pointer, etc.), despite
the presence of W⊕X protection. Further, we assume that
the altered control data will be used at some point to govern
control flow. Currently, this data can be used (or abused) to
send control flow literally anywhere in the executable region,
including unintended code, function entry points, or various
return- or jump-oriented gadgets. This freedom on the part
of the attacker is what we will be addressing.

The root problem of code-reuse attacks is their promis-
cuous use of control flow data in general (return addresses,
function pointers, etc.). Therefore, there is a need to restrict
this data to only valid targets as dictated by the program’s
control flow graph. To be specific, the control flow opera-
tions that must be protected are: (1) unintended code which
happens to implement ret, call, or jmp; (2) ret instruc-
tions; and (3) indirect call and jmp.

To address the first category, we turn to existing software-
fault isolation (SFI) technique introduced by McCamant et
al. [35] and refined by the Google Native Client project
[36]. This technique effectively eliminates the danger of un-
intended code. More specifically, because unintended code
arises as a result of variable-sized non-aligned instructions,
it can be eliminated by imposing alignment artificially. To
achieve this, three changes can be applied to the software at
the assembly code level. First, no instruction is permitted
to cross an n-byte boundary. For the offending ones, no-ops
will be inserted to re-align them. Second, all indirect con-
trol flow transfers are restricted to targeting n-byte bound-
aries. Third, all targets for indirect control flow transfers
(e.g. post-call sites, function entry points, etc.) are forced
to align to an n-byte boundary. These rules, when taken
together, ensure that unintended code cannot be reached1.
In practice, the value of n is a power of two, and control

1See [35] for a formal proof of this property.

Function
(indirectly callable)

Function
(not indiretly callable)

ret ret

Indirect call Direct call

Return site Return site k=0 k=0

k=1 k=0k=0

k < 0 k > 1k < 0

Figure 1: A simplified view of the control flow graph used in the CFL technique. Indirect jmp instructions,

which generally arise from compiler optimizations, are not shown. The value of the control flow key k is shown

next to each edge; grey edges do not require control flow locking and are simply present for completeness.

flow transfers are restricted by means of a simple bit mask.
The value of n must be larger than any single instruction,
and there is a trade-off between smaller n (more frequent
instruction alignments) and larger n (longer no-ops before
control flow transfers, increased pressure on the CPU in-
struction cache). In practice, n = 32 is a typical value that
is chosen when the corresponding transformation is applied
at the assembly phase of the build process.

With unintended code removed from consideration, we
now focus exclusively on control flow transfers in the rest
two categories, i.e., ret, indirect call and jmp. To this end,
we apply a novel technique called control flow locking.

3.1 Control Flow Locking
To explain this technique, we begin with a degenerate vari-

ant of it called single-bit control flow locking. In this model,
we first locate all indirect control flow transfer sites, which
consists of ret instructions and the indirect variants of jmp
and call. Before each of these sites, we insert “lock” code,
which implements the following pseudo-code:

if (k != 0) abort();
k = 1;

Here, k is known as the control flow key, and is simply
a word of memory at a fixed location. In this model, the
value 0 means “unlocked” and 1 “locked”. This is analogous
to a mutex lock operation, though atomicity and waiting are
not required for our purposes. At each valid indirect control
flow target2 found in the control flow graph, we apply the
corresponding “unlock” operation:

k = 0;

In normal operation, every lock will immediately be fol-
lowed by a transfer to a corresponding unlock. The at-
tacker’s ability to employ a code-reuse exploit, however, has
been sharply limited. Control flow from an indirect trans-
fer must pass through an unlock operation before encoun-
tering another indirect transfer. Because the only unlock
operations correspond to valid transfer targets, this means
using coarse-grained pieces of code, such as entire functions.
Further, it will not be possible to apply RILC-style whole-
function chaining as proposed in [14], because the so-called
esp-lifter gadget used to connect the functions has been
eliminated. Therefore, the only code eligible for use by the
attacker are those which are valid indirect transfer targets
and happen to themselves include a legitimate control flow
transfer.

2The exact definition of an indirect jump target varies de-
pending on the code in question. For statically linked code
(including the OS kernel) and code destined to be a stan-
dalone executable, only those locations explicitly used as
function pointers in the source code are considered targets.
For dynamic library code, however, any exported function
symbol is also a potential entry point.

From the attacker’s perspective, this selection is orders of
magnitude smaller than the full gamut of gadgets normally
available. Moreover, we can make a further addition to make
it functionally equivalent to full enforcement of control flow
integrity. The above locking algorithms merely ensure that
the target of an indirect transfer must pass through any
valid entry point before jumping again. However, we can
extract additional information from the control flow graph
to place finer granularity on our enforcement. To this end,
k can be changed from a single bit to an integer, with values
corresponding to paths along the control flow graph. We call
this variant multi-bit control flow locking. In this model, the
lock and unlock algorithms may be rewritten as:

lock(value):
if (k != 0) abort();
k = value;

unlock(value):
if (k != value) abort();
k = 0;

Here, value is a parameter determined at link-time based
on the control flow graph, which limits control flow to valid
paths specified in the program’s source code. The manner
in which the k value is selected is covered in the following
section.

3.2 Restricted Control Flow Graph
The general meaning of “control flow graph” includes ev-

ery basic block in the software as nodes and any labels or
deviations from linear execution as edges. This includes con-
ditional branches, direct jumps, etc. For the purposes of this
work, however, we need only concern ourselves with indirect
control flow transfers, i.e. those that jump to a location
stored in memory or a register as opposed to in the instruc-
tion itself. Therefore, we use a restricted control flow graph
which consists of the following classes of nodes: (1) entry
points into functions; (2) locations in the code which may
be the target for indirect jmp or call; (3) return sites; and
(4) indirect call and ret.

Accordingly, the graph has the two types of edge: The
first type represents the control flow resulting from a ret

instruction or an indirect call or jmp. The second type
is implied from a function’s entry point to each of its ret

instructions. In Figure 1, we illustrate the two types of edges
in our control flow graph. For each black edge, the origin
endpoint is the location of “lock” code, and the destination
endpoint contains corresponding “unlock” code. The grey
edges are direct transfers of control flow, and therefore do
not require locking.

Control flow locking is a general mechanism to enforce
restrictions on indirect control flow transfers – its accuracy
depends on the manner in which k is selected at each node
and the granularity with which it is matched at each desti-
nation. The degenerate single-bit variant discussed earlier

k value Meaning

k = 0 Unlocked.
k = 1 Indirect jmp or call.
k > 1 Return from a non-indirectly-callable function.
k < 0 Return from a indirectly-callable function.

Table 1: Possible k values in multi-bit CFL.

is equivalent to enforcing k = 1 for every black edge. In this
work, we evaluate multi-bit CFL with a policy derived from
static analysis of the source code’s control flow graph. The
possible values of k are enumerated in Table 1.

To protect ret instructions in a given function, the lock
code before each ret sets k to a specific value based on which
instructions may call it. The specific value is computed as
follows. First, we determine the list of direct call instruc-
tions which refer the function in question. This list is hashed
to a produce the value d. Second, we determine if the func-
tion may be called indirectly. In practice, this means finding
if the function’s symbol has been used in a data declaration
or as an operand to a non-control-flow instruction, such as
mov. This fact is stored in the boolean indir. Based on
the above, assuming a word size of 32-bits, the value of k is
computed as:

(indir ? 0x80000000 : 0) | (0x7FFFFFFF & d)

The lower 31 bits represent the caller hash d with the sign
bit representing indir. This means that functions which
may be called indirectly will have a negative k value, while
those that cannot will have a positive k. (In the unlikely
event that d = indir = 0, a positive d will be chosen.)
Choosing the values of k in this way allows the comparison
code to be written in the fewest x86 instructions possible
(see Section 4).

In the implementation presented in Section 4, all indirect
call and jmp operations share the k value of 1. This is
due to a limitation in static code analysis: any symbol that
represents a location in code which is also used as data may
be stored and referenced in arbitrary ways, through multiple
pointers, overlapping data structures, etc. As such, it is
not possible to automatically identify which locations an
indirect call or jmp may lead to in general. Therefore, we
conservatively assume that any indirect control flow transfer
may go to any code location whose symbol is used as data.

This is not a limitation of the CFL technique, however. If
additional control flow information can be provided by the
programmer or the higher level language (e.g., a more re-
strictive language than C), then CFL could readily make use
of this information to enforce this new finer-grained control
flow graph. As originally introduced by Abadi et al., assign-
ing keys to indirect jmp/call control flow paths can lead to a
problem of destination equivalence [13]. This occurs because
two indirect call sites may have non-disjoint sets of poten-
tial destinations. For example, suppose X may call A or B,
while Y may call B or C. In this case, list of callers of A, B,
and C differ, but B must allow control to flow from either
X or Y with a single k value. There are three possible solu-
tions to this problem. First, when ambiguity is present, we
may assign a single k value for all functions involved (e.g., X

and Y would share a k value). Second, we may apply more
fine-grained comparison, such as each destination checking
a subset of bits of k (e.g., B only checks the lower 16 bits).
Third, we may duplicate whole functions, providing different
k values for the each (e.g., B is replicated as B

′). These tech-
niques can be combined depending on the precise structure

of the indirect CFG. Due to limitations of static code anal-
ysis, however, the implementation presented treats indirect
jmp and call instructions as equivalent. This granularity is
sufficient to prevent the jump-oriented programming tech-
nique presented in [11], because it precludes the existence of
jump-oriented gadgets.

The edges of Figure 1 have been annotated with values for
k. At each edge origin, the lock code sets k to the specified
value. At each target, the unlock code verifies that the value
of k is one of those set by an incoming edge. For example,
the return site after a direct call will verify that k is equal
to the specific key value for the called function, whereas the
return site after an indirect call will merely confirm that
k < 0, as this confirms that control flow was transferred by
a ret within an indirectly callable function.

Two additional considerations are needed to ensure that
control flow locking cannot be bypassed. First, we must en-
sure that the value of k cannot be modified directly through
code other than the lock and unlock routines. The x86 ar-
chitecture has a feature that allows this to be achieved in
a straightforward way – memory segmentation. Segmenta-
tion permits applications to have multiple separate memory
maps which can be uniquely addressed via segment selec-
tor registers. Modern operating systems use a flat memory
model, and therefore make little use of this feature, mean-
ing that an entire segment register can be dedicated solely
to deal with storing k. Because there is no unintended code
and no explicit segment selection in application-generated
code, the only code available to address k lies in the lock
and unlock routines.

Second, we must ensure that the attacker cannot redirect
control flow directly into a system call (e.g., a sysenter in-
struction). This can be achieved simply by prepending lock
verification code to each system call instruction which will
validate that k is in the unlocked state (0). This forces con-
trol flow for a system call to pass through the corresponding
function entry point.

4. IMPLEMENTATION
To assess the performance impact of the CFL technique,

an implementation was developed on a 32-bit x86 Debian
Linux 5.0.4 system with an Intel Core 2 Duo E8400 3.0GHz
CPU. Because the protection must be applied to complete
software stack, a CFL-enabled libc was built based on di-
etlibc3 version 0.32 [37]. In addition, gcc itself includes a
static library called libgcc for inclusion in all binaries –
this library contains helper functions unique to each hard-
ware architecture. A CFL-enabled variant of this library
was also produced. This implementation is based on stati-
cally linked binaries; Section 6 discusses how the technique
can be extended to dynamically linked binaries.

4.1 Overview
The CFL system was implemented as two additional phases

within the normal gcc build system: (1) an assembly lan-
guage rewriter and (2) a small post-link patch-up phase. The

3This libc variant was designed to minimize code size, but
the reason that it was selected for this work is its simplic-
ity and adherence to best practices where assembly code is
concerned (such as proper use of locally scoped symbols).
These factors simply eased the implementation; there’s no
reason why a more common libc implementation, such as
GNU libc, could not be used instead.

.o

.lockinfo

section

.o

.lockinfo

section

cc1 Pre-as.c .s
.s

(locked)
as ld

binary
Post-ld

binary

k values set
.c.c .s.s

.s

(locked)

.s

locked

&

annotated

.o

List of indirectly called symbols

.lockinfo

section
.lockinfo

section

.lockinfo

section

Figure 2: Modified gcc workflow. The grey Pre-as and Post-ld phases are the only additional steps in the

build process.

complete workflow is diagrammed in Figure 2. The assem-
bly language rewriter performs the vast majority of the work,
encapsulating both the alignment transformations needed to
eliminate unintended code as well as the core CFL transfor-
mations. Placing the transformation at the assembly phase
allows both C and assembly-language code to be protected,
but has the downside of requiring our system to reconstruct
some semantic information, such as the call graph, control
flow graph, and the list of symbols eligible to be called in-
directly. Further, much of this information is not available
at level of the individual assembly language files, so it was
necessary to implement compilation as a two-pass process.

In the first pass, the assembly rewriter inserts lock and
unlock code under the assumption that no symbol may be
called indirectly. During this, records of each code sym-
bol, symbol reference, lock operation, and unlock operation
are noted in a new ELF section4 called .lockinfo. Then,
during the post-link phase, the .lockinfo can be used to
determine all indirectly callable code symbols. This symbol
list is exported for use in the second build pass.

During the second pass, the assembly rewriter can now
use the list of indirectly callable code symbols to insert ad-
ditional unlock operations as needed. As before, all lock and
unlock operations are noted in the .lockinfo section. The
k values used in these operations are simply dummy values,
as the call graph is not yet known. During the post-link
phase of the second pass, the call graph is available, and
every k value can be computed. The system therefore uses
the locations of the lock and unlock operations recorded in
the .lockinfo to patch in the proper k values directly into
the x86 code. At this time, the .lockinfo section can be
discarded to reduce the executable size; it is not needed at
runtime.

To summarize, the assembly rewriter phase will: (1) align
instructions and function entry points on 32-byte boundaries
and restrict control flow instructions to 32-byte boundaries;
(2) note all symbol references and code labels in .lockinfo;
(3) insert lock code before all indirect control flow transfers;
and (4) insert unlock code before all indirect control flow des-
tinations (including those found during the post-link phase
of the first pass). And the steps undertaken by the post-link
patch-up phase are: (1) use the .lockinfo to construct the
call graph and identify all lock and unlock code locations; (2)
make note of indirectly called symbols for use in the second
pass; and (3) patch the binary with the k values computed
for each function in all lock and unlock code.

4ELF binary objects in Linux are composed of multiple sec-
tions, such a .text for code and .data for writable data.
Arbitrary new sections can be introduced as needed and do
not affect normal operation of the program. These sections
are present in object files and linked together when build-
ing the final binary, at which time any symbols used are
resolved.

4.2 Lock/unlock operations
The specific values for k (described in Section 3.2) were

selected to allow the implementation of lock and unlock op-
erations to be done efficiently. This is achieved by exploiting
the difference between signed and unsigned comparisons on
the x86. Figure 3 depicts the key assembly code transfor-
mations which insert lock and unlock code.

Figure 3(a) shows the lock code inserted before each ret.
The first two lines ensure that k is 0, otherwise aborting with
a lock violation error. The third line sets k to the proper
value for this particular function. At assembly time, this
<key> is simply set to a dummy value, which is later filled
in during the post-link phase.

Figure 3(b) shows the corresponding unlock code for a
direct call. This code will ensure that k is set to the proper
value for the called function before clearing k back to 0.

Figure 3(c) shows two transformations. First, because this
is an indirect call operation, a lock is inserted before the call.
As before, this lock ensures that k is 0 (unlocked). It then
sets k to the proper value for an indirect call (1). After the
call returns, a special variant of the unlock code is inserted.
This variant must verify that k contains a value correspond-
ing to an indirectly callable function, i.e., a negative value.
Therefore, the first two lines of this unlock will compare k

to 0 and abort if k ≥ 0. Otherwise, k will be unlocked.
Figure 3(d) shows the code inserted at the site of a label

which may be indirectly called or jumped to. This unlock
code corresponds to the lock set in the first top half of Fig-
ure 3(c). This code may be reached via an indirect call or
jump, in which case k = 1, or it may be accessed via a di-
rect call or jump, in which case no locking has taken place
and k = 0. Therefore, this unlock code must accept only
those cases. To achieve this, we switch to using an unsigned
compare. To determine if k is 0 or 1, we compare it to 1

and abort if and only if k
u

> 1; otherwise, k is unlocked and
execution continues.

4.3 Assembly language caveats
It is important to note that, in principle, the concept of a

call graph only exists in the realm of higher level languages
such as C. Assembly code need not respect this concept.
For example, it is possible for one hand-coded (or compiler-
optimized) function to jump or fall through into another
without using a call instruction. In addition, the differen-
tiation between a full-fledged function and a mere label in
GNU assembly language is merely based on naming – lo-
cal labels start with .L. However, hand-coders of assembly
language need not follow this convention, as the only conse-
quence for making all symbols global is some confusion when
using the debugger.

Therefore, it was necessary to ensure that all manually
written assembly code (such as that found in dietlibc) be

ret

cmpl $0, k

jne violation

movl <key>, k

aligned_ret

call <function> call <function>

cmpl <key>, k

jne violation

movl $0, k

call *%ebx

cmpl $0, k

jne violation

movl $1, k

aligned_call *%ebx

cmp $0, k

jge violation

movl $0, k

indir_callable:

...

indir_callable:

cmpl $1, k

ja violation

movl $0, k

...

lock
unlock

lock

unlock

unlock

(a) (b)

(c) (d)

Figure 3: Code transformations responsible for control flow locking. Some transformations for alignment are

also shown: the macros aligned_ret and aligned_call are the same as the normal ret and call instructions,

except they restrict the operand to align to a 32-byte boundary.

made to conform to the same rules as code generated by the
C compiler (or at least have the exceptions noted explicitly).
To this end, minor changes were made to dietlibc to explic-
itly indicate fall-through, and direct jumps between func-
tions were detected and automatically annotated as well.
When two functions have such a relationship, we say that
they are jump-connected. Further, jump-connectedness is
a transitive relationship, so if A and B are each jump-
connected to C, then A is jump-connected to B, and vice
versa. Detecting such cases is necessary, because a function
may return on behalf of another. In this case, the k value
for the return lock code must match for the two functions.

Therefore, where previously we have made reference to
the list of callers of a function, a more accurate description
would be the list of callers to all functions jump-connected
to the one under consideration.

5. EVALUATION
In this section, we first present the security analysis on

the protection offered by CFL. Next, we measure the per-
formance overhead of our prototype.

5.1 Security Analysis
In order to analyze the security provided by CFL, we will

review each possible destination for a ret instruction or in-
direct jmp or call that has been exploited. The possible
targets under consideration are the nodes of our indirect
CFG (ret, indirect jmp/call, function entry points, and re-
turn sites) as well as system call sites. Table 2 enumerates
all possible destinations and their eventual outcomes.

In this table, the only outcomes that do not result in the
software aborting are those on the valid CFG. The case of
control flow arriving “before an indirectly callable function”
requires clarification: because functions are n-byte aligned,
the only code available before a function is the content of the
previous function, and all control flow paths in that function
must end in a ret (or an equivalent operation, such as a
direct jmp to another function). Therefore, there is no lock-
free code path available before a function entry point that
would fall through into the function itself.

In Table 2, where “preceding code” may be executed, this
cannot include system calls, so the only side effect is a change
to program memory and CPU state. However, recall that
the attacker’s ability to alter CPU and memory state is al-
ready assumed, based on the threat model (presented at
the start of this section). Therefore, an attacker attempt-
ing a code-reuse attack on a CFL-enabled binary achieves
no greater control of the program than was provided by the

original bug being exploited. In addition, we note that it
is possible to mechanically determine if a binary has been
properly compiled with CFL protection. This is a straight-
forward extension of the reliable disassembly method in-
troduced in Native Client [36]. Once the alignment rules
have been confirmed, the only extension needed is to verify
that all indirect control flow transfers have corresponding
lock and unlock code. Because 32-byte alignment eliminates
the possibility of unintended code, this check is simply a
straightforward scan of the disassembled binary. This means
that system-wide CFL protection can be enforced by includ-
ing such a verification routine in the OS binary loader.

5.2 Performance Analysis
To evaluate the performance impact of CFL, we built a

number of C based benchmarks from the SPEC CPU 2000
and SPEC CPU 2006 suites, as well as some common UNIX
utilities. The SPEC CPU benchmarks were run using their
standard reference workloads. The workload for the UNIX
utilities were similar to those used in the evaluation of G-
Free [34]: md5sum computed the MD5 hash of a 2GB file,
grep searched a 2GB text file for a short regular expres-
sion, and dd created a 4GB file on disk by copying blocks
from /dev/zero. These applications were built using four
different assembly rewriter algorithms:

• None: No changes made.

• Just alignment: Only the alignment rules needed to
preclude unintended code are implemented.

• Single-bit CFL: The degenerate single-bit jump lock-
ing algorithm in which the only values for k are 0 and
1. The unlock code is simplified, as it need not check
for a locked state, and will instead simple set k to 0.

• Full CFL: The complete control flow locking scheme.

Overhead was computed for the latter three algorithms
compared to “None” as the base case; these results are pre-
sented in Figure 4. Overall performance impact can be di-
vided into four categories.

First, many of the workloads (mcf, milc, lbm, md5sum,
grep, and dd) exhibited negligible overhead. These applica-
tions likely did not perform a large amount of control flow
compared to useful computation, i.e., control flow operations
were not on the critical path. This may be due to their
primary computation being implemented as coarse-grained,
long-running functions, or (in the case of dd) another re-
source such as IO being on the critical path.

Second, the compression benchmarks gzip and bzip2 in-
curred 2–3% overhead just due to alignment, then almost

If control flow is directed... Then the system will...

at or before a ret instruction run preceding code; abort due to pre-ret lock

at or before an indirect jmp/call run preceding code; abort due to pre-call lock

before an indirectly callable function abort due to a lock within the previous function

at a valid function entry point (for jmp/call) proceed normally (valid control flow transfer)

at an invalid indirectly callable function abort on unlock due to k mismatch

at a valid return site (for ret) proceed normally (valid control flow transfer)

at an invalid return site abort on unlock due to k mismatch

before a return site (i.e. before a direct call) enter function; abort at the next lock operation

at or before a syscall run preceding code; abort due to pre-syscall trap

Table 2: Possible paths of exploited control flow and their outcomes.

no additional overhead from the inclusion of CFL. That is,
the no-ops and address masking operations involved in pre-
venting unintended code accounted for almost the entirety
of overhead for these workloads.

Third, the performance of art is an interesting case. In
single-bit CFL, it incurs almost 5% overhead, but yields
near-zero overhead for plain alignment and full CFL. This
case is puzzling, and it may be related to an idiosyncrasy of
working with the x86 assembly language and microarchitec-
ture. Modern x86 CPUs are super-scalar out-of-order pro-
cessors with complex branch and value prediction and multi-
ple layers of cache. In addition, some instructions have mul-
tiple forms with differing lengths. For example, the condi-
tional jump instruction can be short (encoded in 2 bytes for
distances less than 128 bytes) or long (encoded in 6 bytes for
larger distances). Therefore, it is possible for assembly-level
modifications to have unexpected subtle effects on perfor-
mance. For example, insertion of a three-instruction “lock”
code may make a conditional jump go from short to long
form, which in turn may ripple down and affect all subse-
quent alignment operations, which may in turn alter how the
code fits into the CPU instruction cache or the contention
for functional units within the ALU. It is very difficult to
identify how these subtle changes may affect a given pro-
cess’s execution on a given CPU, so it is not clear that such
effects are the necessarily culprit with art, but given that
full CFL involves strictly more inserted code than single-
bit CFL, yet has less overhead here, it is the best theory
available to explain this case.

Fourth, some workloads (gap, twolf, and sjeng) exhib-
ited significant overhead as more and more instructions were
added to govern control flow operations. It is likely that
these workloads make use of fine-grained control flow, such
as calling many short-lived functions, in the course of their
execution. This is supported through application profiling:
the gap benchmark, which saw the largest CFL overhead,
performed over 3.6×107 calls per second, whereas mcf, which
had negligible overhead, performed only 6.5×105 calls per
second. One interesting thing to note is that the CFL tech-
nique was applied with no modification to the C optimizer;
it may be the case that adjustments could be made to the
optimizer to reflect the newly increased cost of control flow
operations to mitigate this overhead. For example, the logic
that determines when a function should be inlined may need
to be re-calibrated to reflect the increased cost of function
calls. The question of how to mitigate the performance im-
pact of CFL opens an interesting avenue for future work.

The CFL technique compares favorably against prior tech-
niques. One of the highest overheads recorded for the con-
trol flow integrity (CFI) technique proposed by Abadi et

al. [13], CPU2000’s gap benchmark, saw 31% overhead.
The CFL technique provides equivalent protection with 21%
overhead for this workload. For the other benchmarks avail-
able for direct comparison (bzip2, gzip, and twolf), CFI
achieved overheads between 0% and 5%; CFL achieves com-
parable results. A direct comparison between these figures
isn’t strictly possible, as the CFI work was conducted on a
different OS and CPU, and the source code for the system
is not available. However, CFL likely compares favorably
in the general case because it involves a similar amount of
instrumentation, but incurs strictly less L1 data cache pres-
sure compared to CFI. The reason for this is as follows.
The x86 L1 cache is split between instructions and data. In
CFI, when the destination is checked, memory at the jump
target must be loaded as data in the cache. Then, after
the comparison succeeds and control moves to the target,
the same memory must be loaded again, this time into the
instruction side of the L1 cache. In contrast, the CFL tech-
nique places the key values as immediate operands within
the instructions being executed, removing the need for this
double-load behavior. In short, CFL executes similar oper-
ations at each control flow transfer while removing needless
data cache pressure.

With regard to the G-Free system, making a comparison
is difficult because the published evaluation in that work
was limited to IO-bound and computation-kernel workloads5

[34]. As such, without a direct comparison of G-Free across a
larger number of workloads, it is difficult to speak generally
about the relative performance it versus CFL. Nevertheless,
for the metrics that are available, the CFL technique is com-
petitive. Four benchmarks are shared between this work and
G-Free’s evaluation: gzip, grep, dd, and md5sum. For gzip,
CFL achieved roughly equal overhead to G-Free: 3%. For
the others, CFL achieved essentially zero overhead (within
the standard deviation), whereas G-Free incurred between
0.6% and 2.6% overhead6. These results are promising, but
inconclusive. It is possible that neither technique is superior
in all cases; there may be a trade-off that makes one of the
two schemes more efficient for a given application.

5Specifically, the evaluation did end-to-end protection for
six workloads: gzip, grep, dd, md5sum, ssh-keygen, and
lame. In addition, a wider selection of benchmarks was
tested with their technique protecting libc only, not the ap-
plication code. Because control flow is seldom on the critical
path within libc, these measurements fail to characterize the
performance of the G-Free system with a workload rich in
control flow operations, so it is not possible to conclusively
compare those workloads to systems like CFL or CFI.
6No information on test repetitions or measurement variance
was provided in [34].

-5%

0%

5%

10%

15%

20%

gzip art gap twolf bzip2 mcf milc sjeng lbm md5sum grep dd

Just alignment Single-bit CFL Full CFL

SPEC CPU2000 SPEC CPU2006

Figure 4: Performance overhead of various forms of the CFL technique.

6. DISCUSSION
It is important to clarify the precise security benefit that

the CFL scheme offers: it constrains the path of execution
to the software’s control flow graph, allowing at most one vi-
olation, and guaranteeing that this violation cannot be used
to construct a malicious system call directly. In the follow-
ing, we further elaborate our system and examine possible
limitations in our prototype.

First, we highlight that the protection is only as good as
the control flow graph being enforced. In this implementa-
tion, an automatically derived graph was used. This graph
imposed tight restrictions on direct calls and their corre-
sponding rets, and limited indirect call and jmp instruc-
tions to those entry points which were used indirectly in the
assembly code. The indirect call/jmp protection could be
improved if the programmer or higher-level language pro-
vided more precise insight into how indirect control flow
transfers were to be used.

Second, our threat model presumes that the exploit in play
can be used to alter the application’s memory. The CFL
technique is only intended to mitigate the risk of a code-
reuse attack, which exploits the program’s control data. How-
ever, as Chen et al. correctly observed, “Non-control-data
attacks are realistic threats” [38]. That is, malicious attacks
on plain variables can yield significant security problems,
including unauthorized access and privilege escalation. Fur-
ther, one can easily imagine a scenario in which a pure-data
attack could even lead to malicious Turing complete behav-
ior without altering control flow. Interpreters are a straight-
forward example of this risk: overwriting the “code” being
interpreted yields arbitrary attacker-controlled behavior. As
such, the CFL technique is not a silver bullet for all the dan-
gers posed by software exploits; it mitigates the threat posed
specifically by code-reuse attacks.

The implementation presented in Section 4 was based on
statically linked binaries. This was primarily for ease of im-
plementation; there is no reason in principle why the tech-
nique could not be applied to dynamically linked binaries.
From a conceptual perspective, the conversion is straightfor-
ward: (1) the analysis of the call graph currently performed
in the post-ld phase would be moved to the runtime linker,
and (2) because we do not know at build time which ex-
ported symbols may be called indirectly, unlock code would
be inserted in all exported functions’ entry points, to be re-
moved as needed by the runtime linker. Of course, the call
graph of different programs would lead to different k values

within dynamic shared libraries, which is problematic, as
the library code pages would no longer be able to be shared.
One possible solution would be to add a layer of indirection
to the lookup of k values: instead of embedding the value
directly in the instruction, a lookup into a per-process table
could be substituted. It is not immediately clear what the
additional overhead of this modification would be and we
leave it to our future work.

The G-Free technique, which modifies assembly code to re-
move unintended indirect control flow transfers, may present
an interesting extension to CFL. Currently, the problem of
unintended code is solved by imposing alignment based on
prior work on sandboxing [35, 36]. However, it may be pos-
sible to replace this technique with the branch-removal algo-
rithm employed by G-Free, while leaving the actual control
flow lock/unlock code as-is. This hybrid technique may have
performance benefits which could make it more attractive
than the current G-Free or CFL systems. Examining this
possibility is another research question for us to explore.

7. CONCLUSION
This paper presented a novel defense against code-reuse

attacks called control flow locking (CFL). This technique
ensures that the control flow graph of an application is de-
viated from no more than once, and that this deviation can-
not be used to craft a malicious system call. CFL works
by performing a “lock” operation before each indirect con-
trol flow transfer, with a corresponding “unlock” operation
present at valid destinations only. The technique has been
implemented in practice on a commodity x86 system, and it
has been shown to offer performance overhead competitive
with existing techniques, achieving significant gains in sev-
eral benchmarks. CFL represents a step further to mitigate
code-reuse attacks with a small performance penalty.

8. REFERENCES
[1] Wikipedia. W∧X. http://en.wikipedia.org/wiki/W∧X.
[2] Solar Designer. Getting around non-executable stack

(and fix). Bugtraq, 1997.
[3] Hovav Shacham. The Geometry of Innocent Flesh on

the Bone: Return-into-libc without Function Calls (on
the x86). In 14th ACM CCS, 2007.

[4] Ping Chen, Hai Xiao, Xiaobin Shen, Xinchun Yin,
Bing Mao, and Li Xie. Drop: Detecting
return-oriented programming malicious code. In 5th
ACM ICISS, 2009.

[5] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel
Winandy. Dynamic Integrity Measurement and
Attestation: Towards Defense against Return-oriented
Programming Attacks. In 4th ACM STC, 2009.

[6] Jinku Li, Zhi Wang, Xuxian Jiang, Mike Grace, and
Sina Bahram. Defeating return-oriented rootkits with
return-less kernels. In 5th ACM SIGOPS EuroSys
Conference, April 2010.

[7] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel
Winandy. ROPdefender: A detection tool to defend
against return-oriented programming attacks.
Technical Report HGI-TR-2010-001, Horst Görtz
Institute for IT Security, March 2010.

[8] Tzi-cker Chiueh and Fu-Hau Hsu. RAD: A
Compile-Time Solution to Buffer Overflow Attacks. In
21st IEEE ICDCS, April 2001.

[9] Mike Frantzen and Mike Shuey. StackGhost:
Hardware Facilitated Stack Protection. In 10th
USENIX Security Symposium, 2001.

[10] Vendicator. Stack Shield: A “Stack Smashing”
Technique Protection Tool for Linux.
http://www.angelfire.com/sk/stackshield/info.html.

[11] Tyler Bletsch, Xuxian Jiang, Vince Freeh, and Zhenkai
Liang. Jump-Oriented Programming: A New Class of
Code-Reuse Attack. In 6th AsiaCCS, March 2011.

[12] Stephen Checkoway, Lucas Davi, Alexandra
Dmitrienko, Ahmad-Reza Sadeghi, Hovav Shacham,
and Marcel Winandy. Return-Oriented Programming
Without Returns. In 17th ACM CCS, October 2010.

[13] Mart́ın Abadi, Mihai Budiu, Úlfar Erilingsson, and
Jay Ligatti. Control-Flow Integrity: Principles,
Implementations, and Applications. In 12th ACM
CCS, October 2005.

[14] Nergal. The Advanced Return-into-lib(c) Exploits:
PaX Case Study. Phrack Magazine, Volume 11, Issue
0x58, File 4 of 14, December 2001.

[15] Erik Buchanan, Ryan Roemer, Hovav Shacham, and
Stefan Savage. When Good Instructions Go Bad:
Generalizing Return-Oriented Programming to RISC.
In 15th ACM CCS, pages 27–38, New York, NY, USA,
2008. ACM.

[16] Felix ”FX” Lidner. Developments in Cisco IOS
Forensics. In CONference 2.0, November 2009.

[17] Tim Kornau. Return oriented programming for the
ARM architecture. Master’s thesis, Ruhr-Universität
Bochum, January 2010.

[18] Stephen Checkoway, Ariel J. Feldman, Brian Kantor,
J. Alex Halderman, Edward W. Felten, and Hovav
Shacham. Can DREs provide long-lasting security?
The case of return-oriented programming and the
AVC Advantage. In EVT/WOTE 2009, USENIX,
August 2009.

[19] Stefan Esser. Utilizing Code Reuse/ROP in PHP
Application Exploits. In BlackHat USA, 2010.

[20] Ralf Hund, Thorsten Holz, and Felix C. Freiling.
Return-oriented rootkits: Bypassing kernel code
integrity protection mechanisms. In 19th USENIX
Security Symposium, August 2009.

[21] Daniele Perito Claude Castelluccia,
Aurélien Francillon and Claudio Soriente. On the
Difficulty of Software-Based Attestation of Embedded
Devices. In 16th ACM CCS, New York, NY, USA,
2009. ACM.

[22] Crispin Cowan, Calton Pu, Dave Maier, Heather

Hintony, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, and Qian Zhang.
StackGuard: automatic adaptive detection and
prevention of buffer-overflow attacks. In 7th USENIX
Security, page 5, 1998.

[23] PaX Team. PaX ASLR Documentation.
http://pax.grsecurity.net/docs/aslr.txt.

[24] Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar.
Address Obfuscation: An Efficient Approach to
Combat a Broad Range of Memory Error Exploits.
12th USENIX Security, 2003.

[25] Sandeep Bhatkar, R. Sekar, and Daniel C. DuVarney.
Efficient Techniques for Comprehensive Protection
from Memory Error Exploits. 14th USENIX Security,
2005.

[26] Jun Xu, Zbigniew Kalbarczyk, and Ravishankar K.
Iyer. Transparent Runtime Randomization for
Security. 22nd SRDS, October 2003.

[27] Tyler Durden. Bypassing PaX ASLR Protection.
Phrack Magazine, Volume 11, Issue 0x59, File 9 of 18,
June 2002.

[28] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin
Goh, Nagendra Modadugu, and Dan Boneh. On the
Effectiveness of Address Space Randomization. 11th
ACM CCS, 2004.

[29] Vladimir Kiriansky, Derek Bruening, and Saman
Amarasinghe. Secure Execution Via Program
Shepherding. In 11th USENIX Security Symposium,
August 2002.

[30] Miguel Castro, Manuel Costa, and Tim Harris.
Securing Software by Enforcing Data-Flow Integrity.
In 7th USENIX OSDI, November 2006.

[31] Úlfar Erlingsson, Martin Abadi, Michael Vrable, Mihai
Budiu, and George C. Necula. XFI: Software Guards
for System Address Spaces. In 7th USENIX OSDI,
2006.

[32] Periklis Akritidis, Cristian Cadar, Costin Raiciu,
Manuel Costa, and Miguel Castro. Preventing
Memory Error Exploits with WIT. In 28th IEEE
Symposium on Security and Privacy, May 2008.

[33] Miguel Castro, Manuel Costa, Jean-Philippe Martin,
Marcus Peinado, Periklis Akritidis, Austin Donnelly,
Paul Barham, and Richard Black. Fast
Byte-Granularity Software Fault Isolation. In 22nd
ACM SOSP, October 2009.

[34] Kaan Onarlioglu, Leyla Bilge, Andrea Lanzi, Davide
Balzarotti, and Engin Kirda. G-free: Defeating
return-oriented programming through gadget-less
binaries. In ACSAC, 2010.

[35] Stephen McCamant and Greg Morrisett. Efficient,
verifiable binary sandboxing for a CISC architecture.
In MIT Tech Report MIT-CSAIL-TR-2005-030, 2005.

[36] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley
Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka,
Neha Narula, and Nicholas Fullagar. Native Client: A
sandbox for portable, untrusted x86 native code.
Communications of the ACM, 53(1):91–99, 2010.

[37] Felix von Leitner et al. dietlibc.
http://www.fefe.de/dietlibc/.

[38] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar,
and Ravishankar K. Iyer. Non-control-data attacks are
realistic threats. In 14th USENIX Security, pages
177–192, 2005.

