lT City Research Online
UNIVEREI;;{]OSFgLfNDON

City, University of London Institutional Repository

Citation: Li, W., Mitchell, C. J. & Chen, T. (2018). Mitigating CSRF attacks on OAuth 2.0
Systems. 2018 16th Annual Conference on Privacy, Security and Trust (PST), pp. 280-284.
doi: 10.1109/PST.2018.8514180 ISSN 1712-364X doi: 10.1109/PST.2018.8514180

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/21570/

Link to published version: https://doi.org/10.1109/PST.2018.8514180

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Mitigating CSRF attacks on OAuth 2.0 Systems

Wanpeng Li
School of Computing, Mathematics and
Digital Technology
Manchester Metropolitan University
W.Li@mmu.ac.uk

Abstract—Many miillions of users routinely use Google, Face-
book and Microsoft to log in to websites supporting OAuth 2.0
and/or OpenID Connect. The security of OAuth 2.0 and OpenlID
Connect is therefore of critical importance. Unfortunately, as
previous studies have shown, real-world implementations of both
schemes are often vulnerable to attack, and in particular to cross-
site request forgery (CSRF) attacks. In this paper we propose a
new and practical technique which can be used to mitigate CSRF
attacks against both OAuth 2.0 and OpenID Connect.

Index Terms—QOAuth 2.0, OpenID Connect, CSRF

I. INTRODUCTION

Since OAuth 2.0 appeared in 2012 [13], it has been widely
used for single sign-on (SSO). Websites use OAuth 2.0 to
simplify user password management and save users from re-
entering attributes that are instead held by identity providers
(IdPs). There is a correspondingly rich infrastructure of IdPs
providing identity services using OAuth 2.0, e.g. as shown
by the fact that some Relying Parties (RPs), e.g. USATO-
DAY (https://login.usatoday.com/USAT-GUP/authenticate/?),
support as many as six different IdPs.

The theoretical security of OAuth 2.0 has been analysed [1],
[2], [4], [6], [11], [21], [26]. Research focusing on practical
security and privacy properties of OAuth 2.0 implementations
has also been conducted [7], [16], [17], [24], [27], [29], [32],
revealing that many real-world implementations of OAuth
2.0 and OpenID Connect have serious vulnerabilities, often
because IdP implementation advice is hard to follow.

In this paper we look at a class of cross-site request forgery
(CSREF) attacks applying to many real-world implementations
of both OAuth 2.0 and OpenID Connect (which is OAuth
2.0-based). We introduce a new class of mitigations which
can prevent such attacks; such techniques are needed because,
although existing mitigations are effective in principle, for a
variety of reasons these are often not deployed in practice.

The remainder of this paper is as follows. §II provides
background, and §III describes how RP support multiple IdPs.
§IV gives our adversary model and also details possible CSRF
attacks against OAuth 2.0 and OpenID Connect. In §V we
propose a new way of mitigating CSRF attacks. § VI describes
how CSRF attacks can be mitigated using a specific OAuth
2.0 client library. §VII describes possible limitations of our
approach and also possible ways of avoiding these limitations.
§VIII concludes the paper.

978-1-5386-7493-2/18/$31.00 © 2018 Crown

Chris J Mitchell
Information Security Group
Royal Holloway, University of London
C.Mitchell @rhul.ac.uk

Thomas Chen
Department of Electrical and
Electronic Engineering
City, University of London
Tom.Chen.1 @city.ac.uk

II. BACKGROUND
A. OAuth 2.0

OAuth 2.0 [13] allows an application to access resources
(typically personal information) protected by a resource server
on behalf of the resource owner, through the consumption
of an access token issued by an authorization server. The
OAuth 2.0 architecture involves the following four roles.
The Resource Owner is typically an end user. The Client
is an application running on a server, which makes requests
on behalf of the resource owner. The Authorization Server
generates access tokens for the client, after authenticating the
resource owner and obtaining its authorization. The Resource
Server stores protected resources and consumes access tokens
provided by an authorization server.

OAuth 2.0 has four protocol flows, i.e. ways for RPs to
obtain access tokens; we are only concerned here with the
Authorization Code Grant and Implicit Grant flows. Protocol
parameters given in bold below are mandatory [13].

B. OpenlD Connect

OpenID Connect 1.0 [22] is an identity layer on top of
OAuth 2.0, enabling RPs to verify user identities by relying
on authentications performed by an OpenID Provider (OP). To
enable RPs to verify user identities, OpenlD Connect adds a
new token type to OAuth 2.0, the id_token. This complements
the OAuth 2.0 access token and code. An id_token contains
claims about the authentication of an end user by an OP,
together with any other claims requested by the RP. OpenlD
Connect supports three authentication flows [22]: Hybrid
Flow, Authorization Code Flow and Implicit Flow.

C. OAuth 2.0 used for SSO

When using OAuth 2.0 for SSO, the resource server and
authorization server jointly form the IdP, the client is the RP,
and the resource owner is the user. OAuth 2.0 and OpenlD
Connect SSO systems build on user agent (UA) redirections,
where a user (U) wishes to access services protected by the
RP which consumes the access token generated by the IdP.

1) RP Registration: The RP must register with the IdP,
during which the IdP gathers RP information, including the
RP’s redirect uri, the URI to which the UA is redirected
after the IdP has generated the authorization response. The
IdP issues the RP with a client _id and a client_secret, which
can be used by the IdP to authenticate the RP.

2) Authorization Code Grant: OAuth 2.0 Authorization
Code Grant is very similar to OpenID Connect Authorization
Code; we thus only give the description of Authorization
Code Grant. This flow relies on certain information having
been established during registration (see §1I-C1). The protocol
proceeds as follows.

1) U — RP: The user clicks a login button on the RP, which
causes the UA to send an HTTP request to the RP.

2) RP — UA: The RP sends an authorization request
to the UA, including: response_type=code, requesting
Authorization Code Grant; state, an opaque value used
by the RP to maintain state between request and callback
(step 6 below); and scope, the scope of the requested
permission; client_id and redirect_uri.

3) UA — IdP: The UA redirects the request to the IdP.

4) IdP — UA: The IdP first compares the value of redi-
rect_uri received in step 3 with the registered value; if
the comparison fails, the process terminates. If the user
has already been authenticated by the IdP, then the next
step is skipped. If not, the IdP returns a login form which
is used to collect user authentication data.

5) U — UA — IdP: The user completes the login form and
grants permission for the RP.

6) IdP — UA — RP: The IdP generates an authorization
response and redirects the UA back to the RP. The
authorization response contains code, the code generated
by the IdP; and state, the value sent in step 2.

7) RP — IdP: The RP sends an access token request to
the IdP token endpoint directly (i.e. not via the UA).
The request includes grant_type=authorization_code,
client_id, client_secret, code, and the redirect_uri.

8) IdP — RP: The IdP checks client_id, client_secret
(if present), code and redirect_uri and, if the checks
succeed, responds to the RP with access_token.

9) RP > IdP: The RP passes access_token to the IdP via
a defined API to request the user attributes.

3) Implicit Grant: OAuth 2.0 Implicit Grant is very similar
to OpenlD Connect Implicit and Hybrid, and so we only
describe Implicit Grant. We specify below only those steps
where Implicit Grant differs from Authorization Code Grant.

2. RP — UA: The RP sends an OAuth 2.0 authorization
request back to the UA including: response_type=token,
indicating that Implicit Grant is requested; client _id,;
redirect_uri; state and scope.

6. IdP — UA — RP: The IdP generates an access token and
redirects the UA back to the RP using the redirect_uri.
The access token is appended to redirect_uri as a URI
fragment (i.e. a suffix to the URI following a # symbol).

As URI fragments are not sent in HTTP requests, the
access token is not immediately transferred when the UA
is redirected to the RP. Instead, the RP returns a web page
(typically HTML with an embedded script) which accesses
the full redirection URI including the UA-retained fragment
and extracts the access token from the fragment. The RP can
now use the token to retrieve data from the IdP.

III. SUPPORTING MULTIPLE IDPS

As described in §I, RPs can support multiple IdPs, since
users will have varying IdP trust relationships — e.g., one user
may prefer Facebook, whereas another may prefer Google. We
next describe two ways in which this is achieved in practice.

A. Using redirect URIs

An RP can support multiple IdPs by registering a different
redirect_uri with each IdP, and setting up a sign-in endpoint
for each. It can then use the endpoint on which it receives
an authorization response to learn which IdP sent it. E.g.,
AddThis (http://www.addthis.com/) has registered:

o https://www.addthis.com/darkseid/account/
register-facebook-return as its Facebook redirect_uri and
« https://www.addthis.com/darkseid/account/
register-google-return as its Google redirect_uri.
If AddThis receives an authorization response at the endpoint
https://www.addthis.com/darkseid/account/register-facebook-
return?code=[code_generate_by_Facebook], (in step 7
of §II-C2), it assumes that this response was generated
by Facebook, and thus sends the authorization code to the
Facebook server (step 8 of §II-C2) to request an access_token.

B. Explicit User Intention Tracking

Alternatively, an RP keeps a record of the IdP each user
wishes to use (e.g. it could save the identity of the user’s
selected IdP to a cookie). In this case, when a authorization
response is received by the RP, the RP can retrieve the identity
of the IdP from the cookie and then send the code to this
IdP. This method is typically used by RPs that allow for
dynamic registration, where using the same URI is an obvious
implementation choice [11].

IV. CSRF ATTACKS AGAINST OAUTH 2.0 SYSTEMS
A. Adversary Model

We suppose the adversary is a web attacker, i.e. it can share
malicious links or post comments which contain malicious
content (e.g. stylesheets or images) on a benign website,
and/or can exploit vulnerabilities in an RP website. The
malicious content might trigger the web browser to send an
HTTP/HTTPS request to an RP and IdP using the GET or
POST methods, or execute attacker-crafted JavaScript.

B. CSRF attacks

A CSREF attack [3], [5], [9], [15], [19], [23], [31] operates
in the context of an ongoing interaction between a target UA
(used by a target user) and a target website. A malicious
website causes the target UA to initiate a request of the
attacker’s choice to the target website. This can cause the
target site to execute actions without user involvement. E.g.,
if the target user is currently logged into the target site, the
target UA will send cookies containing an authentication token
generated by the target site for the target user, along with the
attacker-supplied request, to the target site. The target site will
then process the malicious request as though it was initiated
by the target user. According to a 2017 OWASP report [20],

CSRF vulnerabilities are present in 5% of web applications,
meaning that such attacks are a real practical danger.

C. CSRF Attacks Against the Redirect URI

CSREF attacks against the OAuth 2.0 redirect_uri [18] can al-
low an attacker to get authorization to access OAuth-protected
resources without user consent. Such attacks are possible for
both Authorization Code Grant and Implicit Grant. An attacker
first acquires a code or access_token for its own resources.
The attacker then aborts the redirect flow back to the RP on
the attacker’s own device, and then, by some means, tricks
the victim into executing the redirect back to the RP. The
RP receives the redirect, fetches the attributes from the IdP,
and associates the victim’s RP session with the attacker’s
resources accessible using the tokens. The victim user then
accesses resources on behalf of the attacker. The impact of
such an attack depends on the type of resource accessed. For
example, the user might upload private data to the RP, thinking
it is uploading information to its own profile, and this data
will subsequently be available to the attacker. Alternatively,
as described by Li and Mitchell [16], an attacker can use a
CSRF attack to control a victim user’s RP account without
knowing the user’s username and password.

D. Existing CSRF Defences

Barth et al. [3] describe four website mitigations for CSRF
attacks. One involves the use of a secret validation token, sent
in each HTTP request; this token can be used to determine
whether the request came from an authorized source. The
“validation token” should be hard to guess for an attacker who
does not already have access to the user’s account. If a request
does not contain a validation token, or the token does not
match the expected value, the server should reject the request.
The other three techniques all involve distinguishing between
same-site and cross-site requests and so, as we discuss below,
they do not help in the context of OAuth 2.0.

According to the OAuth threat model [18], two possible
mitigations for CSRF attacks on OAuth 2.0 RPs are:

¢ a state parameter (i.e. a secret validation token, as above)
should be used to link the authorization request to the
redirect URI used to deliver the code or access_token;

o RP developers and end users should be educated not to
follow untrusted URLs.

The other three CSRF defences described by Barth et al. [3]
are not recommended. This is because the OAuth 2.0 response
to the redirect URI is a cross-site request, since the request
is generated by the IdP and is redirected to the RP by the
browser; thus these three CSRF defences will not work in this
case.

Both recommended mitigations need to be implemented
by RPs; however, in practice, RPs do not always correctly
implement CSRF countermeasures. A 2015 study by Shernan
et al. [25] found that 25% of websites in the Alexa Top 10,000
domains using Facebook’s OAuth 2.0 service appear vulnera-
ble to CSRF attacks. Further, a 2016 study by Yang et al. [30]
revealed that 61% of 405 websites using OAuth 2.0 (chosen

© o

o

from the 500 top-ranked US and Chinese websites) did not
implement CSRF countermeasures; even worse, of those RPs
which support the state parameter, 55% remain vulnerable to
CSRF attacks due to misuse of the state parameter. They also
found four scenarios where the state parameter can be misused
by RP developers. Thus, if CSRF attacks are to be prevented
in practice, new, simple-to-implement countermeasures would
be extremely valuable, motivating the work described below.

V. A NEW APPROACH

Since RP developers often fail to add a state parameter to
authorization requests, large numbers of real-world OAuth 2.0
implementations are vulnerable to CSRF attacks; moreover
traditional Referer header, Origin header and Custom header
countermeasures [3] are infeasible in the OAuth 2.0 frame-
work. We propose instead to combine the Referer header and
the fact that RPs register different URIs for different IdPs
(see §III-A) to provide a novel means of mitigating CSRF
attacks. We first describe how a Referer header can be used
to mitigate CSRF attacks against the redirect_uri in both the
Authorization Code Grant Flow of OAuth 2.0 and the (very
similar) Authorization Code Flow of OpenID Connect.

A. Protecting the Authorization Code (Grant) Flow

An authorization response is typically only generated after a
user clicks on a IdP-rendered grant button. The HTTP message
(see, e.g., Listing 1) of such an authorization response contains
a Referer header which points to the IdP domain.

7| Referer:

9| Connection:

// privacy related values have been suppressed using #*#**
GET /AIdP-callback?code=[code_generated_by_ AIdP]

Host: RP.com
User—-Agent:
Accept:
Accept-Language: en-US,en;g=0.5
https://AIdP.com/

* ok ok

ok k

Cookie: #xx

close

Listing 1. HTTP message of a normal OAuth 2.0 Authorization Response

In practice, major IdPs, such as Google, Facebook and
Microsoft, implement an ‘automatic authorization granting’
feature [17]. That is, when the user has logged in to his/her
OAuth 2.0 IdP account, the IdP generates an authorization
response without explicit user consent. The HTTP message
(see, for example, Listing 2) of such an authorization response
contains a Referer header which points to the RP domain.

In the proposed mitigation, when the RP receives an autho-
rization response it first retrieves the identity of the IdP from
redirect_uri, and then checks that the domain in the Referer
header is either the RP Domain or the IdP domain. If so, then
the RP knows it is a genuine authorization response coming
from the IdP; otherwise, the RP should discard this HTTP
message and send an error page to the user.

2| Host:
3| User—-Agent:

7| Cookie:

GET /AIdP-callback?code=[code_generated_by_ AIdP]
RP.com

*kx

Accept: x*x*

Accept-Language: en-US,en;g=0.5
Referer: https://RP.com/

* ok ok

Connection: close

Listing 2. HTTP message of an automatic authorization granting OAuth 2.0
Authorization Response

For example, suppose a web attacker puts »
the link https://rp.com/AldP-callback ?code=[code_ .
BelongsToAttacker_generated_by_AIdP] on attacker.com *

to try to attack the redirect_uri that the RP registered with :
the target IdP (which we call AIdP). The HTTP message of

the attack request will contain a Referer header which points
to attacker.com (see Listing 3). The RP can detect this is an
attack by examining the domain in the Referer header.

©

3| User-Agent:

6| Referer:

GET /AIdP-callback?code=[code_BelongsToAttacker_generated_by_ AIdP]
Host: RP.com

*kx

Accept: *x*
Accept-Language:
https:
* ok k

en-US,en;g=0.5

Cookie:

Connection: close

ETIES

%

10
11
12,

16

18
19
20|

Listing 3. HTTP message of a CSRF attack against redirect_uri

B. Protecting the Implicit Grant Flow

We next describe how a Referer header can be used to
mitigate CSRF attacks against the redirect_uri in both the
Implicit Grant Flow of OAuth 2.0 and the Implicit Flow and
Hybrid Flow of OpenID Connect.

For example, suppose a web attacker creates the
link https://rp.com/AldP-callback#access_token=[accsstoken_
BelongsToAttacker_generated_by_AIdP] on attacker.com to
launch a CSRF attack against the redirect_uri that RP regis-
tered with the target IdP, AIdP. As in §1I-C3, the access_token
in the Implicit Grant Flow is not immediately transferred
when the UA is redirected to the RP. Thus the HTTP request
message looks similar to the CSRF HTTP request in Listing
4. The only difference between a normal HTTP message and
a CSRF HTTP message in the OAuth 2.0 Implicit Grant is the
Referer header. The RP can detect a CSRF attack by checking
the domain of the Referer header is either the IdP identity
it retrieves from the redirect_uri or its own domain; it can
then respond with different HTML depending on the HTTP
messages it has received (see lines 18 and 41 in Listing 4).

6| Accept-Language:
7| Referer:

3| Last-Modified:

2| GET /AIdP-callback
3| Host:

RP.com
User—-Agent:
Accept:

*kx
*kx

en-US,en;g=0.5
https:

Cookie: #%x
HTTP/1.1 200 OK
Date:
Server:

*ox %
*oxx
*kk

Content-Length: *xx

5| Content-Type: text/html
Connection: Closed
<html>
<body>

<h1>This HTML can be used to extract the access_token!</hl>

</body>

23| </html>

25| GET /AIdP-callback

W oW R
=35 ®

26| Host:
27| User—-Agent:

29| Accept-Language:

RP.com

*kx
Accept: x*x*
en-US,en;g=0.5
Referer:
Cookie:

https:

*k ok

o

3l HTTP/1.1 200 OK

Date:
Server:
Last-Modified:
Content-Length:
Content-Type: text/html
Connection: Closed

* kK
kK
ok k

ok k

<html> <body> <hl>A CSRF attack is detected on the AIdP signin

2| endpoint!</hl> </body> </html>

Listing 4. Preventing CSRF attacks on OAuth 2.0 Implicit Grant

C. Supporting multiple 1dPs

We have seen how Referer can be used to mitigate CSRF
attacks against RPs using redirect_uri to track user login
intentions. We now describe how the Referer header can be
used to protect RPs using explicit user intention tracking. The
user log-in intention is stored by the RP as part of the session
state (Jsession=12345 in the example below). When the RP
receives an authorization response (e.g. that given in Listing
5), it retrieves the IdP’s identity from the session state and
checks whether the domain of the Referer header is either the
IdP identity or its own domain. If so then the RP knows that
this is a genuine authorization response; otherwise, it should
respond to the user with an error page.

2| Host:
3| User—-Agent:

5| Referer:
7| Cookie:

GET /oauth2-callback?code=[code_BelongsToAttacker_generated_by_AIdP]
RP.com

*kx

Accept: x*x*
Accept-Language: en-US,en;g=0.5
https://AIdP.com/
Jsession=12345
Connection: close

Listing 5. HTTP message of a CSRF attack against redirect_uri

VI. RPS USING SPECIFIC IDP CLIENT LIBRARIES

Many IdPs, such as Facebook' and Google?, implement
their own OAuth 2.0 client libraries. RPs can use these libraries
to simplify integration of the Facebook and Google OAuth 2.0
services with their websites. These libraries use postMessage
[8] to deliver OAuth 2.0 responses to the RP client. The RP
client must then use XMLHttpRequest to send the OAuth 2.0
response back to the RP OAuth 2.0 callback endpoint, e.g.
https://www.rp.com/AldP-callback.

The RP OAuth 2.0 callback endpoint might be different
from the redirect_uri the RP registered with the IdP, e.g.
https://www.rp.com; for example, Google requires RPs to
register an origin value if they want to use the Google OAuth
2.0 client libraries. Because the request to the RP’s OAuth
2.0 callback endpoint is initiated from the RP client using
XMLHttpRequest, the Referer header in the HTTP message
of the request always points to the RP domain.

An RP using these client libraries can detect a CSRF attack
by checking that the domain in the Referer header of the HTTP
message is as expected (i.e. RP.com in Listing 6).

2| GET /AIdP-callback?code=[code_generated_by_AIdP]

3| Host:

RP.com

Thttps://developers.facebook.com/docs/facebook-login/web
Zhttps://developers.google.com/identity/sign-in/web/devconsole- project

User—-Agent: *xx*x
Accept:
Accept-Language:
Referer: https:
Cookie: **x*
Connection:

*kk
en-US,en;g=0.5

close

Listing 6. Defending RPs using specific IdP client libraries

VII. LIMITATIONS OF OUR APPROACH

A possible limitation of our Referer header approach is that
a UA might suppress the Referer header in a (non-secure)
HTTP request if the referring page is transferred via a secure
protocol (e.g. HTTPS) [12]. This means that an RP which
uses HTTP to register its redirect_uri with an IdP cannot use
the approach described in §V to defend against CSRF attacks
against its redirect_uri, since as part of suppression the Referer
header will be removed by the web browser when it redirects
the authorization response to the RP (we assume here 1dPs
use HTTPS at their OAuth 2.0 authorization endpoint).

In real-world cases this limitation often does not arise, since
many widely used IdPs, including Amazon and Microsoft,
require the RP to register its redirect_uri using the HTTPS
protocol. This means that the attack mitigation described
above will work successfully for RPs supporting Amazon
and Microsoft login. It would clearly be beneficial if other
IdPs could change their registration process to require RPs to
register their redirect_uri using HTTPS, enabling all RPs to
use our approach to mitigate CSRF attacks.

There is also a possible danger that, even if HTTPS is used
for redirect_uri registration, a UA will, for some other reason,
suppress the Referer header. This problem can be avoided
using the Referrer Policy [28]; that is, the IdP can set its
Referrer Policy to require UAs to not suppress the Referer
header in HTTP requests that originate from HTTPS domains,
preventing the UA from omitting this header by default.

VIII. CONCLUSIONS

We have proposed a new class of mitigations for CSRF
attacks against redirect_uri in OAuth 2.0 and OpenID Connect.
Our approach is practical and simple to implement, and
requires no changes to the IdP service; i.e. it can be adopted
by an RP independently of what any other party does. RPs
can adopt this approach to provide an additional layer of
protection against CSRF attacks for their OAuth 2.0 and/or
OpenlD Connect services. Of course, adoption would likely
be increased if this measure was recommended by major IdPs
and/or included in relevant specifications.

REFERENCES

[1] C. Bansal, K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis. Discover-
ing concrete attacks on website authorization by formal analysis. Journal
of Computer Security, 22(4):601-657, 2014.

[2] C. Bansal, K. Bhargavan, and S. Maffeis. WebSpi and web application
models. 2011. http://prosecco.gforge.inria.fr/webspi/CSF/.

[3] A. Barth, C. Jackson, and J. C. Mitchell. Robust defenses for cross-site
request forgery. In Proc. ACM CCS 2008, pages 75-88. ACM, 2008.

[4] B.Blanchet and B. Smyth. ProVerif: Cryptographic protocol verifier in the
formal model. http://prosecco.gforge.inria.fr/personal/bblanche/proverif/.

[5] J. Burns. Cross site reference forgery: An introduction to a com-
mon web application weakness. Security Partners, 2005. http:/dl.
packetstormsecurity.net/papers/web/XSRF_Paper.pdf.

[6] S. Chari, C. S. Jutla, and A. Roy. Universally composable security
analysis of OAuth v2.0. JACR Cryptology ePrint Archive, 2011:526, 2011.

[7]1 E. Y. Chen, Y. Pei, S. Chen, Y. Tian, R. Kotcher, and P. Tague. OAuth
demystified for mobile application developers. In Proc. ACM SIGSAC
2014, pages 892-903. ACM, 2014.

[8] B. de Medeiros, N. Agarwal, N. Sakimura, J. Bradley, and M. B. Jones.
OpenID Connect Session Management. 2014. http://openid.net/specs/
openid-connect-session-1_0.html.

[9] P. De Ryck, L. Desmet, W. Joosen, and F. Piessens. Automatic and
precise client-side protection against CSRF attacks. In Proc. ESORICS
2011, volume 6879 of LNCS, pages 100-116. Springer, 2011.

[10] D. L Dill. The murphi verification system. In Proc. CAV ’96, volume
1102 of LNCS, pages 390-393. Springer, 1996.

[11] D. Fett, R. Kiisters, and G. Schmitz. A comprehensive formal security
analysis of OAuth 2.0. In Proc. ACM SIGSAC 2016, pages 1204-1215.
ACM, 2016.

[12] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. RFC 2616: Hypertext transfer protocol-HTTP/1.1, 1999.
https://tools.ietf.org/html/rfc2616.

[13] D. Hardt (editor). RFC 6749: The OAuth 2.0 authorization framework.
October 2012. http://tools.ietf.org/html/rfc6749.

[14] D. Jackson. Alloy 4.1. 2010. http://alloy.mit.edu/community/.

[15] N. Jovanovic, E. Kirda, and C. Kruegel. Preventing cross site request
forgery attacks. In Proc. SecureComm 2006, pages 1-10. IEEE, 2006.

[16] W. Li and C. J. Mitchell. Security issues in OAuth 2.0 SSO imple-
mentations. In Proc. ISC 2014, volume 8783 of LNCS, pages 529-541.
Springer, 2014.

[17] Wanpeng Li and Chris J. Mitchell. Analysing the security of Google’s
implementation of OpenID Connect. In Proc. DIMVA 2016, volume 9721
of LNCS, pages 357-376. Springer, 2016.

[18] T. Lodderstedt, M. McGloin, and P. Hunt. RFC 6819: OAuth 2.0
threat model and security considerations. 2013. http://tools.ietf.org/html/
rfc6819.

[19] Z. Mao, N. Li, and I. Molloy. Defeating cross-site request forgery attacks
with browser-enforced authenticity protection. In Proc. FC 2009, volume
5628 of LNCS, pages 238-255. Springer, 2009.

[20] OWASP Foundation. Owasp top ten project. 2017. https://www.owasp.
org/index.php/Top_10-2017_Top_10.

[21] S. Pai, Y. Sharma, S. Kumar, R. M. Pai, and S. Singh. Formal verification
of OAuth 2.0 using Alloy framework. In Proc. (CSNT) 2011, pages 655—
659. IEEE, 2011.

[22] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and M.
Chuck. Openid connect core 1.0. 2014. http://openid.net/specs/
openid-connect-core-1_0.html.

[23] H. Shahriar and M. Zulkernine. Client-side detection of cross-site
request forgery attacks. In Proc. ISSRE 2010, pages 358-367. IEEE
Computer Society, 2010.

[24] M. Shehab and F. Mohsen. Securing OAuth implementations in smart
phones. In Proc. CODASPY’14, pages 167-170. ACM, 2014.

[25] E. Shernan, H. Carter, D. Tian, P. Traynor, and K. R. B. Butler. More
guidelines than rules: CSRF vulnerabilities from noncompliant OAuth
2.0 implementations. Proc. DIMVA 2015, volume 9148 of LNCS, pages
239-260. Springer, 2015.

[26] Q. Slack and R. Frostig. Murphi analysis of OAuth 2.0 implicit grant
flow. 2011. http://www.stanford.edu/class/cs259/WWW11/.

[27] S.-T. Sun and K. Beznosov. The devil is in the (implementation) details:
An empirical analysis of OAuth SSO systems. In Proc. ACM CCS ’12,
pages 378-390. ACM, 2012.

[28] W3C. Referrer Policy. 2017. https://www.w3.org/TR/referrer-policy/.

[29] R. Wang, S. Chen, and X. Wang. Signing me onto your accounts through
facebook and google: A traffic-guided security study of commercially
deployed single-sign-on web services. In Proc. SP 2012, pages 365-379.
IEEE Computer Society, 2012.

[30] R. Yang, G. Li, W. C. Lau, K. Zhang, and P. Hu. Model-based security
testing: An empirical study on oauth 2.0 implementations. In Proc.
AsiaCCS 2016, pages 651-662. ACM, 2016.

[31] W. Zeller and E. W. Felten. Cross-site request forgeries: Exploitation
and prevention. Bericht, Princeton University, 2008.

[32] Y. Zhou and D. Evans. SSOScan: Automated testing of web applications
for Single Sign-On vulnerabilities. In Proc. USENIX Security Symposium
2014, pages 495-510. USENIX Association, 2014.

