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Anonymity-Communication Overhead Trade-off
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Abstract—Denial-of-service attacks are a significant threat
to mission critical communication infrastructures, e.g., to
industrial control systems. They are relatively easy to per-
petrate, as an attacker that has access to communication
links or equipment could observe the source and destination
addresses for every message, and can identify and discard
the messages exchanged between particular communication
participants. Mix networks and anonymity networks could
render these attacks more difficult by providing anonymous
communication via relaying. Nevertheless, relaying introduces
overhead and increases the end-to-end message delivery delay,
which in practice must often be low. Hence, an important
question is how to optimize anonymity for limited over-
head and delay. In this paper we address this question by
studying two anonymity networks: MCrowds, an extension
of Crowds, which provides unbounded communication delay
and Minstrels, which provides bounded communication delay.
We derive exact and approximate analytical expressions for
the relationship anonymity for these systems. Using MCrowds
and Minstrels we show that, contrary to intuition, increased
overhead does not always improve anonymity. We investigate
the impact of the system’s parameters on anonymity and
on the optimal anonymity network parameters, and the
sensitivity of anonymity to the misestimation of the number
of attackers.

I. INTRODUCTION

Many communication systems, for example modern in-
dustrial networks [1], [2], require high availability between
a fixed set of nodes on a pairwise basis. The nodes can
be the subsidiaries of an enterprise connected by a virtual
private network over the public Internet, or they can be
sensors, actuators and operation centers in a wide area
industrial control system, e.g., in a supervisory control
and data acquisition (SCADA) network. Cryptography may
provide authentication, confidentiality and data integrity for
the communication, but source and destination addresses
would still be visible to an outside attacker who is able to
observe one or more network links. The outside attacker
may identify traffic patterns: who is communicating with
whom, when and how often. Using this information the
attacker can infer the importance of messages, and may
perform targeted denial-of-service (DoS) attacks on the
communication between any two nodes. It may, for ex-
ample, drop messages carrying important status or control
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information. Such an attack can lead to incorrect system
operation, e.g., it can destabilize a modern industrial control
system [3]–[5], and it may be hard to prevent and to
detect [6].

Mix networks [7] are a way to mitigate outside attacks
by providing relationship anonymity, i.e., by making it un-
traceable who communicates with whom [8]. Mix networks
consist of a set of mixes that relay messages in such a way
that an outside attacker cannot link an outgoing message
with an incoming message, and therefore ensures sender-
receiver unlinkability against an eavesdropper observing
communication links. While relaying renders outside at-
tacks more difficult, it introduces the possibility of inside
attacks. Due to the often long life-cycles of industrial
systems, software corruption is a threat and the complexity
of the code-base makes it hard to detect. Corrupted nodes
that are part of the mix network can perform inside attacks
to determine the sender-receiver pair for messages that
are relayed through them. Anonymity networks can also
mitigate against outside attacks but also provide some level
of relationship anonymity against inside attackers (e.g., [9],
[10]) by hiding the sender or the receiver from the relay
nodes. Good sender (or receiver) anonymity in itself does
not necessarily lead to good relationship anonymity [11],
hence we focus on relationship anonymity in this paper.

The relationship anonymity provided by mix networks
and anonymity networks comes at the price of delay and
communication overhead. Excessive delays can negatively
impact the system performance, while overhead leads to
high resource requirements, so that in practice both have to
be kept low. At the same time, the relationship anonymity
may be a function of the number of nodes in the system and
the number of nodes controlled by the attacker. Since the
number of attacker nodes is unknown, finding the optimal
level of overhead can be challenging.

We consider an attacker that wants to perform a DoS
attack on the communication between a particular pair of
nodes by dropping the messages that they exchange. To de-
fend against such attacks, we use two anonymity networks
that provide relationship anonymity. First, MCrowds, a
modification of Crowds [10], which provides anonymity by
introducing unbounded message delivery delay. MCrowds
provides sender anonymity using the same mechanism
as Crowds, which was shown to provide optimal sender
anonymity for given average path length [12], but, unlike
Crowds, it also hides the receiver among a small subset of



anonymity network nodes. Second, Minstrels, which pro-
vides relationship anonymity by introducing bounded mes-
sage delivery delay. Bounding the path length is achieved
by limiting the number of visited nodes for each message.
We use these two anonymity networks to investigate the
inherent trade-off between the communication overhead
introduced and the level of provided relationship anonymity.
While intuition says that increased overhead should result
in better anonymity, our results show that this is not
necessarily the case. The results also show that larger
anonymity networks provide better relationship anonymity
for the same ratio of attacker nodes. Moreover, we show
that it is in general better to overestimate the number of
attacker nodes when choosing the level of overhead.

The rest of the paper is organized as follows. In Sec-
tion II, we discuss the related work. Section III describes
our system model, the attack model, the anonymity metric,
and the traffic analysis methods. Section IV describes the
MCrowds and Minstrels anonymity networks. In Section V,
we develop analytical models of the relationship anonymity
provided by MCrowds and Minstrels, and we show numer-
ical results based on the models in Section VI. Section VII
concludes the paper.

II. RELATED WORK

Early works on traffic analysis attacks against anonymity
networks by an external global attacker considered long
term intersection attacks [11], [13], [14]. These attacks
exploit the distribution of message destinations to decrease
the relationship anonymity by relying on cases when the
sender’s anonymity is not beyond suspicion, i.e., the sender
is distinguishable from other nodes. Disclosure attacks
considered in [15] formulate traffic analysis as an opti-
mization problem, under more general assumptions. More
recent works have formulated traffic analysis attacks by
an external global adversary in the context of Bayesian
inference [11], [16], [17]. These attacks consider that the
receiver is outside the anonymity network. In our system
the sender and the receiver are part of the anonymity
network, and message destinations can have an arbitrary
distribution. We use Bayesian inference, but we consider
an internal adversary instead of an external global observer.
The relationship between anonymity and traffic overhead
was investigated in [18] for a global adversary. The authors
considered an anonymity network in which routes have a
fixed length, and padding (i.e., dummy traffic) is sent over
links to hide traffic patterns. In our work the overhead
is measured in terms of route length and the adversary
cannot observe the global traffic, only traffic traversing
compromised nodes. Sender anonymity in the presence of
compromised nodes was considered for Crowds [12] and
for systems inspired by Crowds [18]. In our work, we con-
sider relationship anonymity instead of sender anonymity,
and address the trade-off between anonymity and overhead.

Related to our work are studies on DoS attacks [6], par-
ticularly DoS attacks in industrial control systems [4], [19]–
[22]. In [6], the authors present taxonomies for classifying

DoS attacks and defenses in any networked system. DoS
attacks against industrial control systems can significantly
degrade the performance of such systems [20], and even
destabilize them, e.g., power systems in [22]. There have
been a number of techniques proposed for detection of
DoS attacks caused by malicious communication nodes
flooding network with packets to cause congestions [6],
[19], [20]. To protect against such attacks, the system can
identify the source of the attack, i.e., the flooding node,
and filter the traffic coming from the node at the point
where the traffic enters the network [6], [19], [20]. In the
case of DoS attacks that result in packet loss on links, e.g.,
due to link jamming or intentional message dropping, the
system can optimize the control loop in order to decrease
effects of the attacks [4], [21]. In our work, we protect
the system against targeted message dropping attacks by
using anonymity networks: anonymity networks make the
attacker uncertain about the sender-receiver pair for the
messages it observes, and therefore, renders the targeted
attacks much more difficult.

III. SYSTEM MODEL AND METRICS

We consider an anonymity network that consists of a
set N of nodes, N = ||N ||. The nodes act as sources,
destinations and as relay nodes for each others’ messages.
The underlying communication network is a complete
graph: messages can be exchanged between any two nodes
without visiting other nodes. We consider that encryption
and authentication are done end-to-end between the sender
and the receiver, but the relay nodes do not perform
cryptographic operations on the messages in order to limit
their computational burden.

We use s (s ∈N ) to denote the node that originates a
message, i.e., the sender, and r (r ∈N \{s}) to denote the
node for which the message is intended, i.e., the receiver.
We use a and b to denote any two nodes in the network
(a∈N ,b∈N \{a}), including the sender and the receiver,
and we use (a→ b) for a sender-receiver pair (a ∈N ,b ∈
N \{a}).

A. Attack Model

The inside attacker is in control of a set C ⊂N (C =
||C ||) of compromised nodes. The attacker can observe
the messages traversing the nodes in C and the protocol
specific information contained in the messages. It can make
use of the payload of the messages to recognize if the same
message visits several compromised nodes. The attacker
has an a-priori belief of the system traffic matrix in the
form of the distribution T (S(a),R(b)) for every pair of
nodes (a,b) : a ∈ N ,b ∈ N \ {a} (nodes do not send
messages to themselves over the anonymity network). Entry
T (S(a),R(b)) of the traffic matrix is the message sending
rate from a to b normalized by the total message rate. For
example, the distribution T could be uniform if the attacker
has no a-priori knowledge of the actual traffic matrix.

The aim of the attacker is to perform a targeted attack
on the communication between a particular pair of nodes,
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which we refer to as the targeted s-r pair. In principle,
the attacker could drop every message that gets relayed
over the nodes C it controls to maximize the effect of the
attack, but then such an attack could be detected easier
as no message would ever been successfully relayed over
the nodes in C . Instead, for every message it observes, the
attacker decides whether to drop or to continue relaying the
message based on its belief that the message is part of the
communication between the targeted s-r pair. The belief can
be formulated as the a-posteriori probability P(Ŝ(a), R̂(b))
that the attacker assigns to the targeted s-r pair being
the sender and the receiver of the observed message. The
attacker decides to drop the message with a probability that
is a function of the belief, i.e., the message is dropped
with probability g(P(Ŝ(a), R̂(b))) for the targeted s-r pair.
We consider two attack methods that differ in the function
g(P(Ŝ(a), R̂(b))), and we describe them in Section III-B1
and Section III-B2. We show the efficiency of the targeted
attack as a part of numerical results in Section VI.

B. Overhead and Anonymity Metrics

We consider two metrics: the overhead of the anonymity
network and the relationship anonymity. We define the
overhead as the average number of nodes E[K] that
an arbitrary message visits. We quantify the relationship
anonymity by the probability that a message sent from s
to r is dropped when the (s,r) pair is the targeted s-r
pair, i.e., the expected true positive rate. The lower the
relationship anonymity is, the more difficult it is for the
attacker to perform a successful targeted message dropping
attack. Note that the relationship anonymity may not be
the same for (s,r) and for (r,s). In general, the relationship
anonymity depends on three factors. First, on the proba-
bility of having an attacker node on the path. Second, on
the a-posteriori probability assigned to the sender-receiver
pair P(Ŝ(s), R̂(r)) by an attacker node on the path. Third,
on the function g(P(Ŝ(s), R̂(r))). The first two factors
are functions of the anonymity protocol, the number of
nodes N and the number of inside attacker nodes C. The
function g(P(Ŝ(s), R̂(r))) depends on the method used by
the attacker. We consider the following two methods.

1) Maximum posteriori method: Using the Maximum
Posteriori (MP) method, when the attacker intercepts a
message, it populates the set Q = {(a,b) : P(Ŝ(a), R̂(b))≥
P(Ŝ(a), R̂(b))} of most likely sender-receiver pairs. If
(s,r) ∈Q then the attacker drops the message with proba-
bility 1/||Q||. Thus, g(P(Ŝ(a), R̂(b))) = 1/||Q|| if (s,r) ∈
Q, and g(P(Ŝ(a), R̂(b))) = 0 otherwise. The set Q may
be a singleton, ||Q|| = 1, in which case the anonymity is
likely to be low, but it may just as well contain all possible
sender-receiver pairs, ||Q|| = (N−C) · (N−C−1), which
would correspond to perfect relationship anonymity. Note
that (a,b) ∈ Q does not imply that (a,b) is the actual
sender-receiver pair, not even when ||Q||= 1.

Let us denote by H1+ the event that there is an attacker
node on the path that the message traverses. If H1+ and
(s,r) ∈Q happen then the attacker drops the message with

probability 1/||Q||, otherwise it does not drop the message.
We can thus express the relationship anonymity under the
MP method as

AMP(s,r)=
P((s,r) ∈Q|H1+,S(s),R(r))

||Q||
·P(H1+|S(s),R(r)).

(1)
2) Bayesian inference method: Using the Bayesian In-

ference (BI) method, when the attacker intercepts a message
(i.e., H1+ happens) it drops the message with the a-
posteriori probability P(Ŝ(s), R̂(r)), i.e., g(P(Ŝ(s), R̂(r))) =
P(Ŝ(s), R̂(r)). Unlike under the MP method, the attacker
may drop a message even in (s,r) is not the most likely
sender-receiver pair.

Using the above notation we can express the relationship
anonymity under the BI method as

ABI(s,r) = P(Ŝ(s), R̂(r)|H1+,S(s),R(r)) ·P(H1+|S(s),R(r)).
(2)

IV. ANONYMITY SYSTEM DESCRIPTIONS

In the following we describe the two considered
anonymity networks: MCrowds and Minstrels.

A. MCrowds system description

MCrowds is an anonymity network inspired by Crowds
[10], which was proven to provide optimal sender
anonymity [12]. In MCrowds the sender specifies a set M
of nodes as receiver for a message. The number M = ||M ||
of receiver nodes is a system parameter. Nodes specified in
the set M are not used for relaying. For a message to reach
its intended receiver r it must be that r∈M ; the other M−1
nodes are chosen uniformly at random. The sender then
relays the message to one of the N \M nodes (including
itself) selected uniformly at random. A relay node relays
the message with probability p f to one of the N \M nodes
chosen uniformly at random. Note that a node can relay the
message to itself, in which case the message does not leave
the node. Otherwise, the message is sent as a multicast
message to all receiver nodes specified in M (i.e., with
probability 1− p f ). Upon multicasting, the receiver set is
removed from the message. Node r recognizes that it is the
receiver while the other M \{r} nodes discard the message.
For M = 1 MCrowds is equivalent to Crowds, except that
the receiver node is part of the anonymity network, r ∈N .
In principle the nodes could use different values of M and
p f , but to ease the analysis we consider that all nodes use
the same parameter values.

B. Minstrels system description

Minstrels uses nodes as message relays in the same way
as Crowds with the difference that the number of nodes
visited by a message is bounded.

When a node s wants to send a message to a node r it
picks a node uniformly at random among the other N−1
nodes (excluding s) and forwards the message. The next
node forwards the message to one of the other N−2 nodes
(excluding itself and the sender node s) chosen uniformly
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Fig. 1. A simple example of Minstrels with five nodes.

at random. Every subsequent forwarder picks one of the
non-visited nodes to forward the message. When node r
receives the message, it will send the message further in
order to improve the receiver anonymity. The path ends
when all N nodes have been visited.

The message, or part of it, is encrypted with the receiver’s
public key. When a node receives the message, it checks
whether it is the receiver by trying to decrypt the encrypted
part of the message. If the decrypted part of the message
represents valid data, the node is the receiver. Note that a
node does not know who the receiver is, but it can check
whether it is the receiver itself.

To bound the path length, every message records the
set V of the visited nodes in its header. The set can be
implemented, for example, using a Bloom filter, to keep
its size small. When a relaying node receives a message,
it adds itself to the set V and relays the message to
one of the remaining non-visited nodes. To control the
maximum path length (i.e., delay) the sender can initialize
the set V of visited nodes with a number f ∈ {0, ...,N−1}
of the nodes in the system. These initialized nodes are
considered as visited so that the message can not be relayed
to them. A message traverses all nodes except for the
initialized nodes in the set V and hence the sender must
not include the receiver in the set V . The sender picks
the number of initialized nodes at random: it initializes
the set with f nodes with probability P(F = f ), where
∑

N−1
f=0 P(F = f ) = 1. For f = 0 the set is empty, for f = 1

the set is initialized only with the sender and for f > 1
the set is initialized with the sender and f −1 other nodes.
Note that for f > 0, the sender always includes itself in
the set. The distribution of F is a system parameter, and
we use it to explore the anonymity-overhead trade-off. In
principle the nodes could use different distributions for F ,
but again, to ease the analysis we consider that all nodes
use the same distribution.

Fig. 1 shows two simple examples with five nodes, node
A as sender and node D as receiver. Fig. 1 (left) shows a
case when the set V is initialized with the sender node A
and the message is forwarded to node C. Node C checks if
it is the receiver, puts itself in the set and chooses the next
hop uniformly at random among nodes (B,D,E). The next
hop, node D, follows the same procedure with only two
forwarding options (B,E). Fig. 1 (right) shows another case
when the set V is initialized with the sender and node C,
and the message is forwarded to node B. Node B adds itself
to the set and decides to which of the remaining nodes (D,E)

to forward the message. Node C is considered as already
visited.

V. OVERHEAD AND ANONYMITY

In the following we derive expressions for the commu-
nication overhead and the relationship anonymity provided
against inside attackers for MCrowds and for Minstrels.

A. Communication Overhead
We start with calculating the communication overhead of

MCrowds and Minstrels. For MCrowds, the mean number
of nodes visited by a message is the expected value of a
geometric distribution with success probability 1− p f plus
the multicast messages, i.e.,

E[K] =
p f

1− p f
+1+M. (3)

For Minstrels and for a given number f of initialized nodes
in the set V , the number of nodes visited by a message is
equal to K = N − f . The mean number of visited nodes
depends on the distribution of F and it can be expressed as

E[K] =
N−1

∑
f=0

P(F = f ) · (N− f ). (4)

B. Relationship Anonymity for MCrowds
We start the calculation of the relationship anonymity

with expressing the probability of having an attacker node
on the path. This probability depends on the number of
receiver nodes M, and on the number of attacker nodes
in the set M of receiver nodes. We denote by cM the
number of attacker nodes in the receiver set. cM is a
realization of the random variable CM ∈ {max(0,M− (N−
C − 1)), ...,min(M − 1,C)}. For M = 1 there cannot be
attacker nodes in the receiver set, only the receiver r, and
therefore P(CM = 0) = 1. For M > 1, the sender selects the
other M−1 nodes uniformly at random from N−2 nodes
(excluding the sender and the receiver). Thus, once k trusted
and j attacker nodes have been selected, the next selected
node is a trusted node with probability N−C−2−k

N−2−k− j , and is
an attacker node with probability C− j

N−2−k− j . Observe that it
does not matter in what order the cM attacker nodes were
selected, and thus the probability that there are cM attacker
nodes in the set of receiver nodes is

P(CM = cM)=

(
M−1

cM

)
∏

M−cM
k=2 (N−C− k)∏

cM−1
k=0 (C− k)

∏
M
k=2(N− k)

.

(5)
Let us denote by Hi the event that the position of the first
attacker node is i. The event Hi happens if the message
is first relayed i− 1 times through trusted nodes, i.e., not
through attacker nodes in the set N \M , but the ith relay
is an attacker node. Since a message is relayed to one of the
C−cM attacker nodes with probability C−cM

N−M and the sender
must relay the message initially, conditioned on CM = cM
we have

P(Hi|cM,S(a),R(b)) =
C− cM

N−M
p(i−1)

f

(
1− C− cM

N−M

)(i−1)

,

(6)
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for a∈N \(C ∪M ) and b∈M \C . Note that for brevity
we use cM to denote the condition CM = cM in (6) and
henceforth. If the message is again relayed over an attacker
node on any position after i, the attacker does not gain any
additional information about the sender-receiver pair (s,r)
of the message: any node from the set N \M is equally
likely to be used as relay, and the receiver is still one of the
nodes in M . Hence, the probability assigned to the sender-
receiver pair does not change. Thus, it is enough to focus
on the position of the first attacker node on the path. Let
us now denote by H1+ the event that there is an attacker
on the path as a relay. This event happens if the event Hi
happens for any i > 0, and the Hi are mutually exclusive.
Therefore, conditioned on CM = cM , the event H1+ happens
with probability

P(H1+|cM,S(a),R(b)) =
∞

∑
i=1

P(Hi|cM,S(a),R(b))

=
C− cM

N−M− p f (N−C−M+ cM)
.

(7)

This expression is obtained using the same approach as
in [10], but considering that the number of attacker nodes
is C− cM and that the total number or relaying nodes is
N−M. We omit the derivation for brevity.

Predecessor Node: Consider now that there is an attacker
on the path. When the first attacker node on the path gets
the message, the attacker knows the nodes in the set M ,
the number of attacker nodes cM in the set, and the node
that the message is received from, i.e., the predecessor p.
Let us denote by Ia the event that the predecessor is node
a (p = a), and by Īa the event that the predecessor is not
node a (p 6= a).

If H1 happens and thus the attacker node is on position
i = 1, then the sender of the message is the predecessor
and the event Ia happens if a is the sender. Otherwise,
if H2+ happens, i.e., the attacker is at position i > 1, we
have to distinguish two cases. If S(a) then any trusted node
from the set N \M is equally likely to be the predecessor,
and we have P(Ia|H2+,cM,S(a),R(b))= 1

N−C−M+cM
for any

b ∈N \C and b 6= a. If S(s) then Ia for a 6= s can only
happen if a 6∈M , but any a 6∈M is equally likely to
be the predecessor. The event a /∈M conditioned on S(s)
(a 6= s) happens with probability P(a /∈M |cM,S(s),R(b)) =
N−C−M−cM−1

N−C−2 , for any b ∈ N \C and b /∈ {s,a}. Thus,
P(Ia|H2+,cM,S(s),R(b)) = P(a/∈M |cM ,S(s),R(b))

N−C−M+cM
. Putting it all

together, the event Ia conditioned on H1+ and S(a) (s 6= a)
happens with probability

P(Ia|H1+,cM,S(a),R(b)) = P(H1|cM,S(a),R(b))+

P(Ia|H2+,cM,S(a),R(b)) ·P(H2+|cM,S(a),R(b)),
(8)

and for S(s) with probability

P(Ia|H1+,cM,S(s),R(b)) =

P(Ia|H2+,cM,S(s),R(b)) ·P(H2+|cM,S(s),R(b)).
(9)

Anonymity with Attacker as Relay: Let us now consider
the case when node s sends a message and the attacker
appears as a relay, i.e., the events S(s) and H1+ happen. If

node s is the predecessor (Is) then the probability that the
attacker assigns to node s being the sender of the message
is

P(Ŝ(s)|Is,H1+,cM,S(s),R(b)) =
∑
b

P(Is,H1+,cM|S(s),R(b)) ·T (S(s),R(b))

∑
(a,b)

P(Is,H1+,cM|S(a),R(b)) ·T (S(a),R(b))
,

(10)

where a ∈ N \ (M ∪ C ) and b ∈ M \ C . Recall that
T (S(a),R(b)) is the attacker’s a-priori belief of the
traffic matrix, which it uses as the probability that
node a sends a message to node b. The probability
P(Ŝ(s)|Īs,H1+,cM,S(s),R(b)) that the attacker assigns to
node s when it is not the predecessor (Īs) can be expressed
in a similar way.

Based on the above, the probability that a relaying
attacker assigns to the actual sender of the message, given
H1+ and CM = cM , is

P(Ŝ(s)|H1+,cM,S(s),R(b)) =

P(Ŝ(s)|Is,H1+,cM,S(s),R(b)) ·P(Is|H1+,cM,S(s),R(b))+

P(Ŝ(s)|Īs,H1+,cM,S(s),R(b)) ·P(Īs|H1+,cM,S(s),R(b)).
(11)

The probability the attacker assigns to the receiver is
P(R̂(r)|H1+,cM,S(s),R(r)) = 1

M−cM
. Note that the events

are conditionally independent since the receiver is one of
the trusted nodes in M , and the sender is one of the trusted
nodes in N \M . Hence, the probability assigned to the
sender-receiver pair (s,r) is the product of the two.

It can happen that there is an attacker node on the path
as a relay (H1+) and there is at least one attacker node
specified in the receiver set (CM > 0). Nevertheless, the
attacker does not gain more information about the actual
sender-receiver pair (s,r) upon receiving the message as a
member of the receiver set. We therefore do not have to
consider this case separately.

Anonymity with no Attacker as Relay: Let us now
consider the case when there is no attacker on the path. We
denote by H1+ the event that a message does not visit any
attacker node as a relay, the complement event of H1+. If
H1+ and CM = 0 happens then the attacker does not observe
the message. Otherwise, if H1+ happens but CM > 0 then
the attacker nodes in the receiver set M get the multicast
message from the last relay node (the one that decides to
send the message to the receivers with probability 1− p f ).
Observe that any trusted node from the set N \M is
equally likely to be the last relay (the predecessor), and
therefore for CM > 0 we have

P(Ia|H1+,cM,S(a),R(b)) = P(Ia|H2+,cM,S(a),R(b)),

P(Ia|H1+,cM,S(s),R(b)) = P(Ia|H2+,cM,S(s),R(b)), a 6= s.

Consequently, given H1+, CM > 0, and Is or Īs, the proba-
bility that the attacker assigns to node s being the sender
can be expressed similar to (10). Finally, the probability
P(Ŝ(s)|H1+,cM,S(s),R(b)) that the attacker assigns to the
actual sender, given H1+ and CM > 0, can be expressed
using the law of total probability conditioned on Is and Īs,
similar to (11).
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Since the last relay node removes the receiver set M
from the message, the receiver is hidden among N−C−1
trusted nodes (it cannot be the last relay). However, the
probability assigned to the receiver depends on whom the
attacker guesses to be the sender. If the attacker believes
that the predecessor is the sender, each of the other
N−C−1 trusted nodes is equally likely to be the receiver.
Therefore, if Is happens and the attacker assumes Ŝ(s) then
it assigns probability P(R̂(r)|Ŝ(s), Is,H1+,cM,S(s),R(r)) =

1
N−C−1 to the receiver. If the attacker believes that the pre-
decessor is not the sender then each of the N−C−2 trusted
nodes apart from the predecessor and the sender is equally
likely to be the receiver. Thus, if Īs happens and the attacker
assumes Ŝ(s) then the probability assigned to the receiver is
P(R̂(r)|Ŝ(s), Īs,H1+,cM,S(s),R(r)) = 1

N−C−2 . Thus, given
H1+ and CM = cM > 0, the probability assigned to the
sender-receiver pair (s,r) can be expressed as

P(Ŝ(s), R̂(r)|H1+,cM,S(s),R(r)) =

P(Ŝ(s)|Is,H1+,cM,S(s),R(r))
N−C−1

·P(Is|H1+,cM,S(s),R(r))+

P(Ŝ(s)|Īs,H1+,cM,S(s),R(r))
N−C−2

·P(Īs|H1+,cM,S(s),R(r)).
(12)

Tying it together: We are now ready to express the
relationship anonymity ABI(s,r) under the BI method using
the law of total probability, accounting for all possible
values of CM , and for all cases when the attacker receives
the message, i.e., either H1+ or H1+ and CM = cM > 0,

ABI(s,r) = ∑
cM

P(Ŝ(s), R̂(r)|H1+,cM,S(s),R(r))

·P(H1+|cM,S(s),R(r)) ·P(CM = cM)

+ ∑
cM 6=0

P(Ŝ(s), R̂(r)|H1+,cM,S(s),R(r))

·P(H1+|cM,S(s),R(r)) ·P(CM = cM).
(13)

In order to calculate the relationship anonymity AMP(s,r)
under the MP method, we need to determine the probability
that the sender-receiver pair (s,r) is one of the most likely
sender-receiver pairs, i.e., (s,r) ∈ Q. This can be easily
done for an arbitrary traffic matrix T given particular
events, e.g., Is and H1+. In the special case when the
attacker’s a-priori belief is that the traffic matrix is homoge-
neous, all pairs (a→ b) of trusted nodes are equally likely
to be the sender-receiver pair. Hence, if either H1+ or H1+
and CM = cM > 0 happens, then the predecessor is the sole
most likely sender. Therefore, (s,r)∈Q only if Is happens.
If this happens, then every trusted node in the receiver set
M is equally likely to be the receiver, thus ||Q||=M−cM .

C. Relationship Anonymity for Minstrels

When the first attacker node on the path gets the message,
the attacker knows the number cF of attacker nodes that the
set of visited nodes was initialized with by the sender. cF is
a realization of the random variable CF , whose distribution
depends on the number f of initialized nodes in the set of
visited nodes, V .

In Minstrels the probability that the attacker assigns to a
sender-receiver pair does not only depend on the node that
the message is received from, i.e., the predecessor p, but
also on the contents of the set V of visited nodes that the
message carries. Consequently, the attacker distinguishes
between three disjoint sets of nodes: the predecessor node
({p}), nodes in the set of visited nodes except the prede-
cessor (V \{p}), and nodes not in the set of visited nodes
(V ∪{p}). These sets form a partition of the set of all nodes
in the system, and trusted nodes belonging to the same set
are equally likely to be the sender (and the receiver). As
a shorthand for the universe of distinguishable events we
use the notation Ωs = {s = p,s ∈ V \ {p},s ∈ V ∪{p}},
where, for example, s = p is the event that the predecessor
is the sender. Similarly, we define Ωr = {r = p,r ∈ V \
{p},r ∈ V ∪{p}} for the distinguishable events regarding
the receiver.

If the message visits multiple attacker nodes on its path
then the attacker can identify the nodes that were visited
between the different attacker nodes. However, since any
node that has not been visited yet is equally likely to be
visited by the message, the attacker does not gain additional
information that it could use to assign higher probability
to the sender-receiver pair (s,r). Hence, it is enough to
consider the first attacker node on the path that gets the
message.

Given the information on V , cF , and p available to the
attacker, we can use the law of total probability to expand
(1) and (2) conditional on the size ||V || = v of the set of
visited nodes, ωs ∈Ωs, ωr ∈Ωr, and CF = cF ,

ABI(s,r) = ∑
cF

∑
v

∑
ωs

∑
ωr

P(Ŝ(s), R̂(r)|ωr,ωs,cF ,H1+,v,S(s),R(r)) (14)
·P(ωr,ωs,cF ,H1+,v|S(s),R(r)), (15)

AMP(s,r) = ∑
cF

∑
v

∑
ωs

∑
ωr

P((s,r)∈Q|ωr ,ωs,cF ,H1+,v,S(s),R(r))
||Q|| (16)

·P(ωr,ωs,cF ,H1+,v|S(s),R(r)). (17)

Note that (15) and (17) are the probability that a message
with (s,r) as sender-receiver pair is received by an attacker
node and carries particular information. The numerator in
eq. (16) corresponds to the probability that the sender-
receiver pair (s,r) ∈Q.

The key to calculate ABI(s,r) and AMP(s,r) is to calculate
the probability that the attacker assigns to the sender-
receiver pair (s,r) in (14), for which we have to rely on
the information available to the attacker upon receiving a
message. A message contains the information (||V || = v,
ωs ∈ Ωs, ωr ∈ Ωr, and CF = cF ), and based on these the
attacker would compute the probability that (s,r) is the
sender-receiver pair as

P(Ŝ(s), R̂(r)|ωr,ωs,cF ,H1+,v) =
P(ωr,ωs,v,cF ,H1+|S(s),R(r)) ·T (S(s),R(r))

∑(a,b) P(ωr,ωs,v,cF ,H1+|S(a),R(b)) ·T (S(a),R(b))
(18)

where the summation in the denominator is over all possible
non-attacker sender-receiver pairs (a→ b). T (S(a),R(b))
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is the a-priori probability that node a sends a message
to node b, i.e., the attacker’s a-priori belief of the traffic
matrix. In the special case when the attacker’s a-priori belief
is that the traffic matrix is homogeneous, T (S(a),R(b)) =

1
(N−C)(N−C−1) for all (a→ b), and these probabilities cancel
out each other in (18). In what follows we compute the
probabilities in (18).

Number of Initialized Attacker Nodes: Before
we turn to the calculation of the probability
P(ωr,ωs,v,cF ,H1+|S(s),R(r)) we introduce the notation
H(v,cF |F = f ) for the joint event ||V || = v, H1+, and
CF = cF for a given number of initialized nodes f . Clearly,
v≥ f . The probability of this event can be expressed as

P(H(v,cF |F = f )) =
C

N−1 v = 0, f = 0
P(CF = 0|F = f )N−C−1

N−1
C

N−v ∏
v−1
z=1

N−C−z
N−z v≥ 1, f = 0

P(CF = cF |F = f )C−cF
N−v ∏

v−1
z= f

N−C+cF−z
N−z v≥ 1, f > 0,

(19)
where P(CF |F = f ) is the probability that the set of visited
nodes is initialized with cF attacker nodes, given that it is
initialized with f nodes by the sender. Due to the rules
of initialization in Minstels, cF ∈ {max(0, f −1− (N−2−
C)),min( f −1,C)}. For F = 0 and F = 1 there cannot be
any initialized attackers, hence P(CF = 0|F ∈ {0,1}) = 1
and P(CF > 0|F ∈ {0,1}) = 0. For f > 1 we have

P(CF |F = f ) =(
f −1
cF

)
∏

f−cF
k=2 (N−C− k)∏

cF−1
k=0 (C− k)

∏
f
k=2(N− k)

. (20)

Visited nodes and the Predecessor: We
now turn to the calculation of the probability
P(ωr,ωs,v,cF ,H1+|S(s),R(r)), i.e., the probability
that the attacker would receive a particular message
sent by s to r. If the sender is the predecessor
(s = p) the receiver cannot be the predecessor, hence
P(r = p,s = p,v,cF ,H1+|S(s),R(r)) = 0. For the rest of
the cases we show the probabilities in a tabular form to
improve readability.

For ||V || = 0 and ||V || = 1 there can be no attackers
in the set of visited nodes (when received by the first
attacker), because if the sender initializes the set of visited
nodes with f > 0 nodes, it has to include itself in the set.
Hence, for ||V || = 0 and ||V || = 1 we have CF > 0 with
probability 0. Furthermore, for ||V || = 0 the sender must
be the predecessor (s = p) and the receiver cannot be in
the set of visited nodes (r ∈ V ∪{p}). Every other tuple
in {(ωs,ωr) : ωs ∈ Ωs,ωr ∈ Ωr} has probability 0. The
first row of Table I shows the corresponding probability,
i.e., the probability that the sender initializes the message
with an empty set, and chooses the attacker as next hop.
For ||V || = 1 the sender and the receiver cannot both be
in the set of visited nodes. Furthermore, if the sender
or the receiver is in the set of visited nodes, it must be
the predecessor, hence s ∈ V \ {p} and r ∈ V \ {p} have
probability 0. The probabilities for the remaining cases for
||V || = 1 are shown in Table I. As an example, the third

TABLE I
P(Ωr,Ωs, ||V || ∈ {0,1},CF = 0,H1+|S(s),R(r))

Ωs,Ωr ||V ||

s = p, r ∈ V ∪{p} 0 P(F = 0)P(H(0,0|F = 0))

s = p, r ∈ V ∪{p} 1 P(F = 1)P(H(1,0|F = 1))

s ∈ V ∪{p}, r = p 1 P(F = 0)P(H(1,0|F = 0)) 1
N−C−1

s ∈ V ∪{p}, r ∈ V ∪{p} 1 P(F = 0)P(H(1,0|F = 0))N−C−2
N−C−1

row in the table is the probability that the sender initializes
the set empty, forwards the message to the receiver, which
then forwards the message to the attacker.

For ||V || > 1 there may or may not be attackers in the
set of initialized nodes. When there are attackers in the
set of initialized nodes (CF > 0), the sender has to be in
the set of visited nodes. Furthermore, if the sender is the
predecessor (s = p) then the receiver cannot be in the set of
visited nodes (r ∈ V \{p}), because this could only happen
if the sender had initialized the set of visited nodes with
the receiver, but then the receiver would never receive the
message. The corresponding probabilities for ||V ||> 1 are
shown in Table II and Table III in the Appendix.

We already calculated the numerator of (18), so in
order to finish our calculations we only have to express
P(ωr,ωs,v,cF ,H1+|S(a),R(b)) and only for the cases when
the numerator of (18) is non-zero, and when a 6= s or b 6= r.

The attacker can receive a message with an empty
set of visited nodes (||V || = 0,CF = 0) only if the
sender is the predecessor, hence, P(ωr,ωs, ||V ||= 0,CF =
0,H1+|S(a),R(b)) > 0 only for a = s. Nevertheless, the
receiver of the message can be any trusted node b 6= s
(we use ∀b as a shorthand notation). The corresponding
probability P(Ωr,Ωs, ||V || = 0,CF = 0,H1+|S(a),R(b)) is
given in Table IV in the Appendix.

The attacker can receive a message with only one node
in the set of visited nodes (||V || = 1), in which case the
node in the set is the predecessor. The set could have been
sent by the predecessor (a = p) or by a node not in the
set (a ∈ V ∪{p}), but in either case there cannot be any
attacker node initialized in the set (CF = 0). The receiver
could be any other node (∀b). The probability of receiving
such a message P(Ωr,Ωs, ||V ||= 1,CF = 0,H1+|S(a),R(b))
is given in Table V in the Appendix.

The probabilities for ||V ||> 1 can be obtained following
a similar reasoning. In order to maintain the readability of
the paper we describe the probabilities in the Appendix.

D. Bounds for the Relationship Anonymity

In order to have a better understanding of the rela-
tionship anonymity provided by the described anonymity
networks, we define upper and lower bounds for the
relationship anonymity. To obtain the upper bound, we
consider that whenever the attacker intercepts a mes-
sage, it knows the sender-receiver pair with probabil-
ity P(Ŝ(s), R̂(r)|H1+,S(s),R(r)) = 1. Hence, the bound
is equivalent to the probability of having an attacker
node on the path P(H1+|S(s),R(r)). To obtain the lower
bound, we consider that whenever the attacker intercepts
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Fig. 2. Relationship anonymity vs. overhead for MCrowds, N = 10,
C = 1
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Fig. 3. Relationship anonymity vs. overhead for Minstrels, N = 10,
C = 1

a message, it assumes that any trusted pair of nodes is
equally likely to be the sender-receiver pair with probability
P(Ŝ(s), R̂(r)|H1+,S(s),R(r)) = 1

(N−C)(N−C−1) .

VI. NUMERICAL RESULTS

In the following, we first use the analytical results to
investigate the relationship anonymity-overhead trade-off
provided by MCrowds and by Minstrels. We then show
simulation results that confirm the analytical results.

A. Relationship anonymity-overhead trade off

We use the analytical results developed in Section V to
explore the trade-off between relationship anonymity and
overhead for MCrowds and for Minstrels. For MCrowds we
use a relaying probability p f ∈ (0,1) and M ∈ {1, . . . ,N−
2}, and for Minstrels we use various uniform, binomial,
and triangular distributions to choose the number F of
initialized nodes. The attacker’s a-priory belief is that the
traffic matrix is homogeneous.

Fig. 2 and Fig. 3 show the relationship anonymity under
the BI method (ABI(s,r)) and the relationship anonymity
under the MP method (AMP(s,r)) as a function of the
expected overhead for C = 1 attacker node in a system
of N = 10 nodes. An expected overhead of E[K] = 2
corresponds to one relay on average, while E[K] = N is the
maximum expected overhead for Minstrels. Fig. 2 shows
results for MCrowds, and Fig. 3 shows results for Min-
strels. Higher values of the assigned probabilities ABI(s,r)
and AMP(s,r) mean that the sender-receiver pair is more
exposed, i.e., has worse relationship anonymity. The upper
bound and the lower bound are obtained by finding the
distribution of F for Minstrels, and the receiver set size M
for MCrowds, that results in the lowest P(H1+|S(s),R(r))
for a given overhead.

One would expect that higher overhead always provides
better relationship anonymity (i.e., low assigned proba-
bility), but surprisingly this is not the case. Above a
certain level of overhead a further increase of the over-
head (more relaying) has a negative effect on the rela-
tionship anonymity under the considered traffic analysis
methods for both anonymity networks. The reason is that

as the expected number of relays increases, the probability
P(H1+|S(s),R(r)) of having an attacker node on the path
increases faster than the certainty of the attacker about the
identity of the sender-receiver pair decreases. Interestingly,
for MCrowds and the MP method increased overhead
always results in worse relationship anonymity. We also
observe that both Minstrels and MCrowds provide worse
relationship anonymity under the MP method than under
the BI method.

For high overhead, the anonymity provided by both
anonymity networks approaches its lower bound. Despite
the fact that for Minstrels the probability P(H1+|S(s),R(r))
of having an attacker node on the path is higher
than for MCrowds, Minstrels provides better relationship
anonymity. The reason is that Minstrels hides the sender
and the receiver among a bigger subset of nodes.

Fig. 2 suggests that MCrowds performs better for larger
values of the receiver set size M. This is not true in general.
For a larger M the receiver is better hidden but, at the
same time, the sender is more exposed because there are
fewer potential relays. Hence there should be an optimal
receiver set size M. Fig. 4 shows the optimal value of M
as a function of the number N of nodes in the system. The
optimal receiver set size M increases both with the number
of nodes in the system (almost linearly) and with the ratio C

N
of attacker nodes. The value of M used in Fig. 2 (M = 5 for
both the BI method and the MP method) is in fact optimal
for N = 10 and C = 1.

Fig. 5 shows the optimal receiver set size M as a function
of the ratio C

N of attacker nodes in the system. We can see
that the optimal value of M is a non-decreasing function
of the ratio of attacker nodes. For a given ratio of attacker
nodes the optimal receiver set size M for the MP method is
always greater or equal than the optimal M for BI method.
The optimal M for the MP method and the optimal M
for the BI method have the same maximum value. As the
system gets larger, the highest optimal value of M for the
MP method and for the BI method is reached at higher
values of the ratio of attacker nodes. Hence, with more
attacker nodes in the system it is better to increase the
receiver set size M if it is lower than the highest optimal
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value.
Fig. 6 and Fig. 7 show the optimal overhead (where

the probabilities AMP(s,r) or ABI(s,r) are the lowest) as
a function of the ratio of attacker nodes (C

N ) for MCrowds
and for Minstrels, respectively. For MCrowds, the optimal
overhead for both the BI method and the MP method
increases with the system size N. For a given ratio of
attacker nodes C

N the optimal overhead for the BI method
is greater than or equal to the optimal overhead for the
MP method. It is interesting to note that for the considered
system sizes N the optimal overhead is in the interval
{2..N}. For Minstrels, the optimal overhead for the BI
method increases with the system size N and it is lower
than the optimal overhead for the MP method. The optimal
overhead for MP method is equal to the maximum overhead
for Minstrels (E[K] = N) except for N = 10 and C

N = 0.1.
Fig. 8 shows the probabilities AMP(s,r) and ABI(s,r)

at the optimal overhead as a function of the ratio of
attacker nodes (C

N ). As the ratio of attacker nodes increases,
the probabilities AMP(s,r) and ABI(s,r) increase almost
linearly. However, for larger systems the probabilities are
lower for the same ratio of attacker nodes. Consequently,
with an increase in the system size the attacker needs to
corrupt more than proportional number of nodes in order to
achieve the same values of AMP(s,r) and ABI(s,r). Hence,
both for Minstrels and for MCrowds, it is always beneficial
to have more nodes in the network for the same ratio of

attacker nodes C
N .

In practice the ratio of the attacker nodes is not known by
the system designer, hence the anonymity network must be
inevitably optimized for an unknown parameter. In Fig. 9
we investigate the sensitivity of the relationship anonymity
to misestimating the ratio of attacker nodes. Fig. 9 shows
the probability AMP(s,r) (MP method) as a function of the
actual ratio C

N of attacker nodes for MCrowds and N = 10
nodes. The expected overhead is selected to be optimal for
various ratios of attacker nodes, from C

N = 0.1 to C
N = 0.7.

Interestingly, AMP(s,r) is less sensitive to the actual ratio
of attacker nodes when the anonymity network is optimized
for a higher ratio of attacker nodes. The anonymity network
optimized for a lower ratio of attacker nodes performs
worse for higher C

N ratios than the anonymity network
optimized for a higher ratio of attacker nodes for lower
C
N ratios. Therefore, it is better to optimize the anonymity
network for a higher ratio of attacker nodes than the actual
ratio. We observed similar behavior for bigger system sizes
N and the BI method.

The presented results lead us to the following interesting
conclusions. First, best relationship anonymity might not
be achieved at the highest possible overhead. The opti-
mal overhead depends on the anonymity network, traffic
analysis method, system size, and the number of attacker
nodes. Second, for an attacker it is always better to use the
Maximum posteriori method than the Bayesian inference
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method for traffic analysis in case of the MCrowds and
the Minstrels anonymity networks. Third, MCrowds and
Minstrels can achieve better relationship anonymity in
bigger systems, but at the price of higher overhead. Fourth,
when the number of attacker nodes is unknown MCrowds
and Minstrels are less sensitive if they are optimized for a
high ratio of attacker nodes. Fifth, for MCrowds it always
beneficial to have more than one node specified as the
receiver of the message (M > 1). Finally, for the considered
system sizes N and ratios of attacker nodes (C

N ), Minstrels
achieves better relationship anonymity than MCrowds.

B. Trade off between Relationship Anonymity and Sender-
Receiver Anonymity

In the following, we explore the trade off between the re-
lationship anonymity and the sender or receiver anonymity
in order to justify our approach to consider the relationship
anonymity instead of the sender and the receiver anonymity
separately. We quantify the sender (receiver) anonymity
similarly to the relationship anonymity: the probability that
a message sent from s (sent to r) is dropped when s (r) is
the targeted sender (receiver), i.e., the expected true positive
rate.

Fig. 10 shows the trade-off between the sender or re-
ceiver anonymity and the relationship anonymity for a
system with N = 10 nodes that uses MCrowds with M ∈
{1,3,5} and p f ∈ (0.1,0.9). The attacker is in control of
one node (C = 1), and it uses the MP method assuming that
T (S(a),R(b)) is uniform. To calculate the sender (receiver)
anonymity, we used the analytical results developed in
Section V-B while assuming that the probability assigned to
the receiver (sender) equals to 1. Both sender and receiver
anonymity increase with the relationship anonymity as a
function of p f . However, the best relationship anonymity
is not achieved together with the best sender or receiver
anonymity. The best relationship anonymity is achieved
for M = 5, while the best sender anonymity and the best
receiver anonymity are achieved for M = 1 and M = 3,
respectively. Thus, the results show that it is better to
consider the relationship anonymity instead of the sender
and the receiver anonymity separately when optimizing an
anonymity network to protect pair-wise communication.

C. Attack Efficiency

As a validation of the model, we finish with simulation
results for a system with N = 10 nodes. The actual traffic
matrix of the system is: every pair of nodes exchanges 50
messages per time unit. To anonymize the communication,
we use MCrowds with M = 1. The attacker wants to drop
messages sent from node n1 to node n4. The attacker is
in control of node n3 (C = {n3}, C = 1), and it does not
have any a-priori knowledge of the system traffic matrix; it
assumes T (S(a),R(b)) is uniform. Recall that for MCrowds
M = 1, the attacker is always certain about the receiver r
but it is uncertain about the actual sender of the messages
it observes. Therefore, it may drop some messages that are
not actually sent from n1, but it does not drop messages
for which the receiver is not n4.

Fig. 11 shows the fraction of dropped messages sent from
node n1 to node n4 (true-positive) and the average of the
fractions of dropped messages sent from nodes in N \
({n1,n3,n4}) to node n4 (false-positive) as a function of
the relaying probability p f . The results are the averages of
1000 simulations. The 95% confidence intervals are within
3.25% of the results, and they are omitted in the figure since
they would be hardly visible. The scenario is the same as
that considered in Fig. 2, and the results show a perfect
match.

VII. CONCLUSIONS

In this paper we considered the problem of mitigating de-
nial of service attacks by providing relationship anonymity
among a fixed set of nodes. We described two anonymity
networks, MCrowds and Minstrels. MCrowds is an exten-
sion of Crowds, and provides unbounded path length, while
Minstrels provides bounded path length. We considered
two attack methods the Bayesian inference method and
the Maximum posteriori method. We found that MCrowds
provides better relationship anonymity than Crowds, but
in order to provide anonymity to the receiver the sender
is more exposed than in Crowds. Moreover, we found
that Minstrels provides better relationship anonymity than
MCrowds. We used the two anonymity systems to study
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is n4 (false-positive) vs. relaying probability p f . The targeted s-r pair is
(n1,n4), N = 10, C = 1, and MCrowds is used with M = 1.

the trade-off between relationship anonymity and commu-
nication overhead, and found that increased overhead does
not always lead to improved relationship anonymity. When
comparing the two traffic analysis methods, we found that
the Maximum posteriori method performs always better.
We studied the way relationship anonymity scales with the
number of nodes, and observed that relationship anonymity
improves with the number of nodes but at the price of
higher overhead. Our results also show that in practice
anonymity systems should be optimized for a higher num-
ber of attackers than expected.
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APPENDIX

In the following we show calculation of the prob-
abilities introduced in Section V-C in Table II, III,
IV, and V. Moreover, we describe the probabilities
P(Ωs,Ωr, ||V ||,CF ,H1+|S(a),R(b)) for ||V ||> 1.

TABLE II
P(Ωr,Ωs, ||V ||> 1,CF = 0,H1+|S(s),R(r))

Ωs,Ωr

s = p, r ∈ V \{p} P(F = 0)P(H(v,0|F = 0)) v−1
(N−C−1)2

s = p, P(F = 0)P(H(v,0|F = 0)) (N−C−v)
(N−C−1)2

r ∈ V ∪{p} +P(F = v)P(H(v,0|F = v))

s ∈ V \{p}, P(F = 0)P(H(v,0|F = 0)) v−2
(N−C−1)2

r = p + ∑
v−1
k=1 P(F = k)P(H(v,0|F = k)) 1

N−C−k

s ∈ V \{p}, P(F = 0)P(H(v,0|F = 0)) (v−2)2

(N−C−1)2

r ∈ V \{p} +∑
v−2
k=1 P(F = k)P(H(v,0|F = k)) v−k−1

N−C−k

s ∈ V \{p}, P(F = 0)P(H(v,0|F = 0)) (N−C−v)(v−2)
(N−C−1)2

r ∈ V ∪{p} +∑
v−1
k=1 P(F = k)P(H(v,0|F = k)) N−C−v

N−C−k

s ∈ V ∪{p}, r = p P(F = 0)P(H(v,0|F = 0)) (N−C−v)
(N−C−1)2

s ∈ V ∪{p}, r ∈ V \{p} P(F = 0)P(H(v,0|F = 0)) (v−1)(N−C−v)
(N−C−1)2

s ∈ V ∪{p}, r ∈ V ∪{p} P(F = 0)P(H(v,0|F = 0)) (N−C−v)(N−C−v−1)
(N−C−1)2

TABLE III
P(Ωr,Ωs, ||V ||> 1,CF > 0,H1+|S(s),R(r))

Ωs,Ωr

s = p, r ∈ V ∪{p} P(F = v)P(H(v,cF |F = v))

s ∈ V \{p}, r = p ∑
v−1
k=cF+1 P(F = k)P(H(v,cF |F = k)) 1

N−C+cF−k

s ∈ V \{p}, ∑
v−2
k=cF+1 P(F = k)P(H(v,cF |F = k)) v−k−1

N−C+cF−k

r ∈ V \{p}
s ∈ V \{p}, ∑

v−1
k=cF+1 P(F = k)P(H(v,cF |F = k)) N−C+cF−v

N−C+cF−k

r ∈ V ∪{p}

When there are no initialized attackers (CF = 0) the set
could have been initialized with F ∈ [0..||V ||] nodes. Let
us first consider the case when node s is the predecessor
(s = p) and node r is in the set (r ∈ V \ {p}). For any
sender-receiver pair (a,b), the prerequisite for this to hap-
pen is that node s has to be visited just before the attacker,
while node r has to be either initialized or be visited. The
corresponding probabilities P(s = p,r ∈ V \ {p}, ||V || =
v > 1,CF = 0,H1+|S(a),R(b)) are given in Table VI.

The case when node s is the predecessor (s = p) but
node r is not in the set (r ∈ V ∪{p}) is similar to the
previous case. The only difference is that node r has to be
neither initialized nor be visited. The probabilities P(s =
p,r ∈ V ∪{p}, ||V || = v > 1,CF = 0,H1+|S(a),R(b)) are
given in Table VII.

When we have s ∈ V \{p} and r = p, node s has to be
either initialized or be visited, while node r has to be visited
just before the attacker. The probabilities P(s∈V \{p},r =
p, ||V ||= v > 1,CF = 0,H1+|S(a),R(b)) are given in Table
VIII.

For s ∈ V \{p} and r ∈ V \{p}, both nodes (s, r) have
to be either initialized or be visited before the message
reaches the attacker. The probabilities P(s ∈ V \ {p},r ∈
V \{p}, ||V ||= v > 1,CF = 0,H1+|S(a),R(b)) are given in
Table IX.

TABLE IV
P(Ωr,Ωs, ||V ||= 0,CF = 0,H1+|S(a),R(b))

Ωs,Ωr,a,b

s = p, r ∈ V ∪{p}, a = s, ∀b P(F = 0)P(H(0,0|F = 0))

TABLE V
P(Ωr,Ωs, ||V ||= 1,CF = 0,H1+|S(a),R(b))

Ωs,Ωr,a,b

s = p, r ∈ V ∪{p}, a = s, ∀b P(F = 1)P(H(1,0|F = 1))

s = p, r ∈ V ∪{p}, a 6= s, ∀b P(F = 0)P(H(1,0|F = 0)) 1
N−C−1

s ∈ V ∪{p}, r = p, a = r, ∀b P(F = 1)P(H(1,0|F = 1))

s ∈ V ∪{p}, r = p, a 6= r, ∀b P(F = 0)P(H(1,0|F = 0)) 1
N−C−1

s ∈ V ∪{p}, r ∈ V ∪{p}, P(F = 0)P(H(1,0|F = 0))N−C−2
N−C−1

a ∈ {s,r}, ∀b
s ∈ V ∪{p}, r ∈ V ∪{p}, P(F = 0)P(H(1,0|F = 0))N−C−3

N−C−1
a /∈ {s,r}, ∀b +P(F = 1)P(H(1,0|F = 1))

TABLE VI
P(s = p,r ∈ V \{p}, ||V ||= v > 1,CF = 0,H1+|S(a),R(b))

a,b

a = s, P(F = 0)P(H(v,0|F = 0)) v−1
(N−C−1)2

b 6= r +P(F = v)P(H(v,0|F = v)) v−1
N−C−2

a = r, P(F = 0)P(H(v,0|F = 0)) v−2
(N−C−1)2

∀b +∑
v−1
k=1 P(F = k)P(H(v,0|F = k)) 1

N−C−1

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0))
(

1
(N−C−1)2 +

(N−C−3)(v−2)
(N−C−1)2(N−C−2)

)
b = s +∑

v−1
k=1 P(F = k)P(H(v,0|F = k)) v−2

(N−C−2)(N−C−k)

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0))
(

1
(N−C−1)2 +

(N−C−3)(v−2)
(N−C−1)2(N−C−2)

)
b = r +P(F = 1)P(H(v,0|F = 1)) v−2

(N−C−1)(N−C−2)

+∑
v−1
k=2 P(F = k)P(H(v,0|F = k)) v−k−1

(N−C−2)2

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0))
(

1
(N−C−1)2 +

(N−C−3)(v−2)
(N−C−1)2(N−C−2)

)
b /∈ {s,r} +∑

v−1
k=1 P(F = k)P(H(v,0|F = k))·(

(k−1)(N−C−k−1)
(N−C−2)(N−C−3)(N−C−k) +

(v−k−1)(N−C−k−2)
(N−C−2)(N−C−3)(N−C−k)

)

TABLE VII
P(s = p,r ∈ V ∪{p}, ||V ||= v > 1,CF = 0,H1+|S(a),R(b))

a,b

a = s, P(F = 0)P(H(v,0|F = 0)) N−C−v
(N−C−1)2

b 6= r +P(F = v)P(H(v,0|F = v))N−C−v−1
N−C−2

a = r,∀b P(F = 0)P(H(v,0|F = 0)) N−C−v
(N−C−1)2

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0)) (N−C−3)(N−C−v)
(N−C−1)2(N−C−2)

b ∈ {s,r} +∑
v−1
k=1 P(F = k)P(H(v,0|F = k)) N−C−v

(N−C−2)(N−C−k)

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0)) (N−C−3)(N−C−v)
(N−C−1)2(N−C−2)

b /∈ {s,r} +∑
v−1
k=1 P(F = k)P(H(v,0|F = k)) (N−C−k−2)(N−C−v)

(N−C−2)(N−C−3)(N−C−k)

For the case when we have s∈ V \{p} and r ∈ V ∪{p},
the only difference from the case above is that node r must
not have been initialized or visited. The probabilities P(s ∈
V \{p},r ∈V ∪{p}, ||V ||= v> 1,CF = 0,H1+|S(a),R(b))
are given in Table X.

When we have the opposite case of the above, s ∈
V ∪{p} and r ∈ V \{p}, the same reasoning applies but in
this case node s must not have been initialized or visited,
and node r has to be either initialized or visited before
the message reaches the attacker. The probabilities P(s ∈



TABLE VIII
P(s ∈ V \{p},r = p, ||V ||= v > 1,CF = 0,H1+|S(a),R(b))

a,b

a = s,∀b P(F = 0)P(H(v,0|F = 0)) v−2
(N−C−1)2

+∑
v−1
k=1 P(F = k)P(H(v,0|F = k))N−C−k−1

N−C−2
1

N−C−k

a = r,b = s P(F = 0)P(H(v,0|F = 0)) v−1
(N−C−1)2

a = r, P(F = 0)P(H(v,0|F = 0)) v−1
(N−C−1)2

b 6= s +P(F = v)P(H(v,0|F = v)) v−1
N−C−2

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0))
(

1
(N−C−1)2 +

(N−C−3)(v−2)
(N−C−1)2(N−C−2)

)
b = r +∑

v−1
k=1 P(F = k)P(H(v,0|F = k)) v−2

(N−C−2)(N−C−k)

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0))
(

1
(N−C−1)2 +

(N−C−3)(v−2)
(N−C−1)2(N−C−2)

)
b = s +P(F = 1)P(H(v,0|F = 1)) v−2

(N−C−1)(N−C−2)

+∑
v−1
k=2 P(F = k)P(H(v,0|F = k)) v−k−1

(N−C−2)2

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0))
(

1
(N−C−1)2 +

(N−C−3)(v−2)
(N−C−1)2(N−C−2)

)
b /∈ {s,r} +∑

v−1
k=1 P(F = k)P(H(v,0|F = k))·(

(k−1)(N−C−k−1)
(N−C−2)(N−C−3)(N−C−k) +

(v−k−1)(N−C−k−2)
(N−C−2)(N−C−3)(N−C−k)

)
TABLE IX

P(s ∈ V \{p},r ∈ V \{p}, ||V ||= v > 1,CF = 0,H1+|S(a),R(b))

a,b

a = s, b = r P(F = 0)P(H(v,0|F = 0)) (v−2)2

(N−C−1)2

a = r, b = s +∑
v−2
k=1 P(F = k)P(H(v,0|F = k)) v−k−1

N−C−k

a = s, b 6= r P(F = 0)P(H(v,0|F = 0)) (v−2)2

(N−C−1)2

a = r, b 6= s +∑
v−1
k=1 P(F = k)P(H(v,0|F = k))·(

k−1
N−C−2 +

(v−k−1)(N−C−k−1)
(N−C−2)(N−C−k)

)
a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0))·

b ∈ {s,r}
(

2(v−2)
(N−C−1)2 +

(v−2)(v−3)(N−C−3)
(N−C−1)2(N−C−2)

)
v > 2 +P(F = 1)P(H(v,0|F = 1)) (v−2)(v−3)

(N−C−1)(N−C−2)

+∑
v−3
k=2 P(F = k)P(H(v,0|F = k)) (v−k−1)2

(N−C−2)(N−C−k)

+P(F = v−2)P(H(v,0|F = v−2)) v−3
(N−C−2)(N−C−v+2)

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0))·

b /∈ {s,r}
(

2(v−2)
(N−C−1)2 +

(v−2)(v−3)(N−C−3)
(N−C−1)2(N−C−2)

)
v > 2 ∑

v−1
k=1 P(F = k)P(H(v,0|F = k))

(
(k−1)(k−2)

(N−C−2)(N−C−3)

(v−k−1)(v−k−2)(N−C−k−2)
(N−C−k)(N−C−k−1)(N−C−3) +

2(N−C−k−1)(k−1)(v−k−1)
(N−C−2)(N−C−3)(N−C−k)

)
+P(F = v)P(H(v,0|F = v)) (v−1)(v−2)

(N−C−2)(N−C−3)

V ∪{p},r ∈ V \{p}, ||V ||= v > 1,CF = 0,H1+|S(a),R(b)
are given in Table XI.

For s ∈ V ∪{p} and r = p, node s must not have been
initialized or visited, while node r has to be visited just
before the attacker. The corresponding probabilities P(s ∈
V ∪{p},r = p, ||V || = v > 1,CF = 0,H1+|S(a),R(b)) are
given in Table XII.

Finally, for the case when neither s nor r are in the
set (s ∈ V ∪{p}, r ∈ V ∪{p}), they must not have been
initialized or visited. The probabilities P(s ∈ V ∪{p},r ∈
V ∪{p}, ||V ||= v> 1,CF = 0,H1+|S(a),R(b)) are given in
Table XIII.

Until now we considered the cases when there are no
initialized attackers in the set of visited nodes (CF = 0).
However, the attacker can receive a message with ||V ||=

TABLE X
P(s ∈ V \{p},r ∈ V ∪{p}, ||V ||= v > 1,CF = 0,H1+|S(a),R(b))

a,b

a = s, P(F = 0)P(H(v,0|F = 0)) (v−2)(N−C−v)
(N−C−1)2

b 6= r +∑
v−1
k=1 P(F = k)P(H(v,0|F = k)) (N−C−k−1)(N−C−v)

(N−C−2)(N−C−k)

a = r, ∀b P(F = 0)P(H(v,0|F = 0)) (v−1)(N−C−v)
(N−C−1)2

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0))·

b = s
(

N−C−v
(N−C−1)2 +

(N−C−v)(N−C−3)(v−2)
(N−C−1)2(N−C−2)

)
+∑

v−2
k=1 P(F = k)P(H(v,0|F = k)) (v−k−1)(N−C−v)

(N−C−2)(N−C−k)

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0))·

b = r
(

N−C−v
(N−C−1)2 +

(N−C−v)(N−C−3)(v−2)
(N−C−1)2(N−C−2)

)
+∑

v−1
k=1 P(F = k)P(H(v,0|F = k)) (v−k−1)(N−C−v)

(N−C−2)(N−C−k)

+P(F = v)P(H(v,0|F = v)) v−1
N−C−2

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0))·

b /∈ {s,r}
(

N−C−v
(N−C−1)2 +

(N−C−v)(N−C−3)(v−2)
(N−C−1)2(N−C−2)

)
+∑

v−1
k=1 P(F = k)P(H(v,0|F = k))·(
(k−1)(N−C−k−1)(N−C−v)
(N−C−2)(N−C−3)(N−C−k) +

(v−k−1)(N−C−k−2)(N−C−v)
(N−C−2)(N−C−3)(N−C−k)

)
+P(F = v)P(H(v,0|F = v)) (v−1)(N−C−v−1)

(N−C−2)(N−C−3)

TABLE XI
P(s ∈ V ∪{p},r ∈ V \{p}, ||V ||= v > 1,CF = 0,H1+|S(a),R(b))

a,b

a = s, ∀b P(F = 0)P(H(v,0|F = 0)) (v−1)(N−C−v)
(N−C−1)2

a = r, P(F = 0)P(H(v,0|F = 0)) (v−2)(N−C−v)
(N−C−1)2

b = s +∑
v−1
k=1 P(F = k)P(H(v,0|F = k)) N−C−v

N−C−k

a = r, P(F = 0)P(H(v,0|F = 0)) (v−2)(N−C−v)
(N−C−1)2

b 6= s +∑
v−1
k=1 P(F = k)P(H(v,0|F = k)) (N−C−k−1)(N−C−v)

(N−C−2)(N−C−k)

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0))·

b = s
(

N−C−v
(N−C−1)2 +

(N−C−v)(N−C−3)(v−2)
(N−C−1)2(N−C−2)

)
+∑

v−1
k=1 P(F = k)P(H(v,0|F = k)) (v−k−1)(N−C−v)

(N−C−2)(N−C−k)

+P(F = v)P(H(v,0|F = v)) v−1
N−C−2

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0))·

b = r
(

N−C−v
(N−C−1)2 +

(N−C−v)(N−C−3)(v−2)
(N−C−1)2(N−C−2)

)
+∑

v−2
k=1 P(F = k)P(H(v,0|F = k)) (v−k−1)(N−C−v)

(N−C−2)(N−C−k)

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0))·

b /∈ {s,r}
(

N−C−v
(N−C−1)2 +

(N−C−v)(N−C−3)(v−2)
(N−C−1)2(N−C−2)

)
+∑

v−1
k=1 P(F = k)P(H(v,0|F = k))·(
(k−1)(N−C−k−1)(N−C−v)
(N−C−2)(N−C−3)(N−C−k) +

(v−k−1)(N−C−k−2)(N−C−v)
(N−C−2)(N−C−3)(N−C−k)

)
+P(F = v)P(H(v,0|F = v)) (v−1)(N−C−v−1)

(N−C−2)(N−C−3)

v > 1 visited nodes and with CF = cF > 0 initialized
attackers. In this case the sender node must have initialized
the set with cF attackers. Hence F ∈ [cF + 1..v]. Let us
now consider different values of Ωs and Ωr. For s = p
and r ∈ V ∪{p}, node s has to be visited just before the
attacker. At the same time, node r must not have been
initialized or visited. The corresponding probabilities P(s=
p,r ∈ V ∪{p}, ||V ||= v > 1,CF = cF > 0,H1+|S(a),R(b))
are given in Table XIV.

A similar reasoning applies when we have s ∈ V \ {p}
and r = p. Node s has to be either initialized or visited,
while node r has to appear as the predecessor. The prob-
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TABLE XII
P(s ∈ V ∪{p},r = p, ||V ||= v > 1,CF = 0,H1+|S(a),R(b))

a,b

a = s,∀b P(F = 0)P(H(v,0|F = 0)) N−C−v
(N−C−1)2

a = r, P(F = 0)P(H(v,0|F = 0)) N−C−v
(N−C−1)2

b = s +P(F = v)P(H(v,0|F = v))

a = r, P(F = 0)P(H(v,0|F = 0)) N−C−v
(N−C−1)2

b 6= s +P(F = v)P(H(v,0|F = v))N−C−v−1
N−C−2

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0)) (N−C−3)(N−C−v)
(N−C−1)2(N−C−2)

b ∈ {s,r} +∑
v−1
k=1 P(F = k)P(H(v,0|F = k)) N−C−v

(N−C−2)(N−C−k)

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0)) (N−C−3)(N−C−v)
(N−C−1)2(N−C−2)

b /∈ {s,r} +∑
v−1
k=1 P(F = k)P(H(v,0|F = k)) (N−C−k−2)(N−C−v)

(N−C−2)(N−C−3)(N−C−k)

TABLE XIII
P(s ∈ V ∪{p},r ∈ V ∪{p}, ||V ||= v > 1,CF = 0,H1+|S(a),R(b))

a,b

a ∈ {s,r}, ∀b P(F = 0)P(H(v,0|F = 0)) (N−C−v)(N−C−v−1)
(N−C−1)2

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0)) (N−C−3)(N−C−v)(N−C−v−1)
(N−C−1)2(N−C−2)

b ∈ {s,r} +∑
v
k=1 P(F = k)P(H(v,0|F = k)) (N−C−v)(N−C−v−1)

(N−C−2)(N−C−k)

a /∈ {s,r}, P(F = 0)P(H(v,0|F = 0)) (N−C−3)(N−C−v)(N−C−v−1)
(N−C−1)2(N−C−2)

b /∈ {s,r} +∑
v
k=1 P(F = k)P(H(v,0|F = k))·

(N−C−v)(N−C−v−1)(N−C−k−2)
(N−C−2)(N−C−3)(N−C−k)

TABLE XIV
P(s = p,r ∈ V ∪{p}, ||V ||= v > 1,CF = cF > 0,H1+|S(a),R(b))

a,b

a = s, b 6= r P(F = v)P(H(v,cF |F = v))N−C−v−1+cF
N−C−2

a /∈ {s,r}, ∑
v−1
k=cF+1 P(F = k)P(H(v,cF |F = k))·

b ∈ {s,r} N−C−v+cF
(N−C−k+cF )(N−C−2)

a /∈ {s,r}, ∑
v−1
k=cF+1 P(F = k)P(H(v,cF |F = k))·

b /∈ {s,r} (N−C−v+cF )(N−C−k−2+cF )
(N−C−k+cF )(N−C−2)(N−C−3)

abilities P(s ∈ V \ {p},r = p, ||V || = v > 1,CF = cF >
0,H1+|S(a),R(b)) are given in Table XV.

TABLE XV
P(s ∈ V \{p},r = p, ||V ||= v > 1,CF = cF > 0,H1+|S(a),R(b))

a,b

a = s, b 6= r ∑
v−1
k=cF+1 P(F = k)P(H(v,cF |F = k))·

N−C−k+cF−1
(N−C−k+cF )(N−C−2)

a = r, b 6= s P(F = v)P(H(v,cF |F = v)) v−1−cF
N−C−2

a /∈ {s,r}, b = s ∑
v−2
k=cF+1 P(F = k)P(H(v,cF |F = k))·

v−1−k
(N−C−k+cF )(N−C−2)

a /∈ {s,r}, b = r ∑
v−1
k=cF+1 P(F = k)P(H(v,cF |F = k))·

v−cF−2
(N−C−k+cF )(N−C−2)

a /∈ {s,r}, ∑
v−1
k=cF+1 P(F = k)P(H(v,cF |F = k))·

b /∈ {s,r}
(

(N−C−k+cF−1)(k−cF−1)+(N−C−k+cF−2)(v−k−1)
(N−C−k+cF )(N−C−2)(N−C−3)

)
When nodes s and r are both in the set (s ∈ V \{p},r ∈

V \ {p}), the sender a must have initialized them or
the message must have visited them. The corresponding
probabilities P(s∈V \{p},r ∈V \{p}, ||V ||= v> 1,CF =
cF > 0,H1+|S(a),R(b)) are given in Table XVI.

For s∈ V \{p} and r ∈ V ∪{p}, the sender a must have
initialized node s or the message must have visited it before
the attacker received the message. At the same time, node r
must not have been initialized or visited. The correspond-

TABLE XVI
P(s ∈ V \{p},r ∈ V \{p}, ||V ||= v > 1,CF = cF > 0,H1+|S(a),R(b))

a,b

a = s, b 6= r ∑
v−1
k=cF+1 P(F = k)P(H(v,cF |F = k))·

a = r, b 6= s
(

(N−C−k+cF−1)(v−k−1)
(N−C−k+cF )(N−C−2) + k−cF−1

N−C−2

)
a = r, b = s ∑

v−1
k=cF+1 P(F = k)P(H(v,cF |F = k)) v−k−1

N−C−k+cF

a /∈ {s,r}, ∑
v−2
k=cF+1 P(F = k)P(H(v,cF |F = k)) v−k−1

N−C−k+cF
·

b ∈ {s,r}
(

(N−C−k+cF−1)(v−k−2)
(N−C−k+cF−1)(N−C−2) +

k−cF−1
N−C−2

)
a /∈ {s,r}, ∑

v
k=cF+1 P(F = k)P(H(v,cF |F = k))

b /∈ {s,r}
(

(k−cF−1)(k−cF−2)
(N−C−2)(N−C−3) + (N−C−k+cF−2)(v−k−1)

(N−C−k+cF )(N−C−2)(N−C−3)

+ (N−C−k+cF−1)(v−k−1)(k−cF−1)
(N−C−k+cF )(N−C−2)(N−C−3)

)

ing probabilities P(s ∈ V \ {p},r ∈ V ∪{p}, ||V || = v >
1,CF = cF > 0,H1+|S(a),R(b)) are given in Table XVII.

TABLE XVII
P(s ∈ V \{p},r ∈ V ∪{p}, ||V ||= v > 1,CF = cF > 0,H1+|S(a),R(b))

a,b

a = s, b 6= r ∑
v−1
k=cF+1 P(F = k)P(H(v,cF |F = k))·

(N−C−k+cF−1)(N−C+cF−v)
(N−C−k+cF )(N−C−2)

a /∈ {s,r},b = s ∑
v−2
k=cF+1 P(F = k)P(H(v,cF |F = k))

(N−C+cF−v)(v−k−1)
(N−C−k+cF )(N−C−2)

a /∈ {s,r},b = r ∑
v−1
k=cF+1 P(F = k)P(H(v,cF |F = k)) (N−C+cF−v)

(N−C−k+cF )
·(

k−cF−1
N−C−2 + (N−C−k+cF−1)(v−k−1)

(N−C−2)(N−C−k+cF )

)
+P(F = v)P(H(v,cF |F = v)) v−cF−1

N−C−2

a /∈ {s,r}, ∑
v−1
k=cF+1 P(F = k)P(H(v,cF |F = k))·

b /∈ {s,r} (N−C+cF−v)(N−C+cF−k−1)
(N−C−2)(N−C−k+cF )

·(
k−cF−1
N−C−3 + (N−C−k+cF−2)(v−k−1)

(N−C−3)(N−C−k+cF )

)
+P(F = v)P(H(v,cF |F = v)) (N−C−v+cF−1)(v−cF−1)

(N−C−2)(N−C−3)
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