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Abstract 

Distributed Denial of Service (DDoS) attacks exploit the 
acute imbalance between client and server workloads to 
cause devastation to the service providers. We propose a 
distributed gateway architecture and a payment 
protocol that imposes dynamically changing prices on 
both network, server, and information resources in 
order to push some cost of initiating service requests — 
in terms of monetary payments and/or computational 
burdens — back onto the requesting clients. By 
employing different price and purchase functions, the 
architecture can provide service quality differentiation 
and furthermore, select good client behavior and 
discriminate against adversarial behavior. If confirmed 
by additional experiments, judicious partitioning of 
resources using different pricing functions can improve 
overall service survivability.1 

1. Introduction 

Denial of Service continues to be a pervasive 
problem for Internet services, as evidenced by the recent 
denial of service at CERT[BBC01]. Such attacks require 
each attacking machine to perform only a small amount of 
work, relying on the cumulative efforts many machines to 
overload the victim machine.  Attacks range from simple 
ICMP ping requests to sophisticated attacks that are 
difficult to distinguish from a sudden spike in legitimate 
use (a.k.a. “flash crowd” [Niv73] or “the Slashdot 
Effect”). 

In a DDoS attack, the perpetrator(s) may spend weeks 
or months subverting hundreds or thousands of machines 
by exploiting well-known security flaws. Once the 
machines are subverted, the perpetrator installs tools to 
execute an attack. On command, the prepared machines 
(known as “zombies”) collectively target a specified victim 
with a packet storm consisting of repeated datagram 
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packet requests. These packets may take many forms, 
such as an ICMP ping request, a UDP packet (such as a 
DNS request), or TCP SYN floods. The packets may also 
have forged return addresses, allowing one machine to 
generate requests that appear to be coming from hundreds 
of machines, and making the sources of the attack difficult 
to trace. This problem may intensify since newer operating 
systems that are being introduced may make it easier to 
spoof IP addresses [Gib01]. Halting these attacks is 
difficult and typically relies on filtering at the router (or 
just waiting out the “packet storm”).  

Packet-flood attacks, such as these, are the most 
widely diagnosed today [CAIDA01].  As measures to 
counteract them are put in place, future attacks will most 
likely include resource depletion attacks that are more 
difficult to distinguish from legitimate requests.  The 
effectiveness of an attack will be driven by the resource 
most tightly constrained relative to the attack parameters. 
The attack could focus on a single server within an 
enclave (or on the pipes themselves). 

In this paper, we explore the use of dynamic resource 
pricing strategies to mitigate various DDoS attacks and to 
improve service survivability. We propose an experimental 
architecture and protocol for a Market-based Service 
Quality Differentiation (MbSQD) system. We have proto-
typed the MbSQD system using the ns-2 simulator [NS2], 
and have experimented with various price-based controls 
for DDoS mitigation. These include both proof-of-work 
based approaches that exact a price in terms of a computa-
tional burden or monetary-like micropayments. The 
MbSQD system is designed to work as an overlay on 
existing network security infrastructure, but similar con-
cepts could also be applied at the lower networking layers 
(e.g. in conjunction with Diffserv/ RSVP). 

1.1 Existing DDoS mitigation strategies  

Various methods have been used to mitigate the 
effects of DDoS attacks − each has its drawbacks and 
advantages.  Some of these methods are: 

• Detecting and eliminating subverted nodes on 
local subnets 



 

• Choking off the flow of attack packets 
• Using resource mirrors to amplify server capacity 
• Reducing the amount of resources consumed 
• Monitoring traffic volume 
• Tracing attack packets though the Internet 

 Detecting subverted nodes has become increasingly 
difficult as many of the newer attacks encrypt commands 
to hide them from security scanning processes.  
 Stopping the flow of attack packets at a choke point 
relies on ingress or egress filtering. The effectiveness of 
these techniques is dependent on good practices by the 
ISPs and may require active maintenance by administrators 
at the leaf routers of a customer site. Additionally, these 
methods may discard legitimate packets during asymmetric 
or changing routing conditions.  
 Establishing resource mirrors, so that the attacks 
affect only a fraction of the users of the service, can lessen 
the impact of attacks (e.g. Akamai’s method of caching 
content in “edge proxies” scattered around the edges of 
the net), however this solution is relatively expensive and 
may be reasonable only for larger content providers. 
 There are various methods that attempt to reduce the 
amount of resources consumed during a DDoS attack. 
NetBSD will accelerate its timeouts of partially opened 
TCP connections at times of contention. Linux 
implementations save no state when receiving a TCP SYN 
− instead, the initial sequence number is derived from 
information that will be available in the return packet from 
the connecting machine (SYN Cookies).  The effectiveness 
and availability of these techniques is highly 
implementation dependent.  

Monitoring traffic volume to look for suspicious 
traffic destined for a particular destination can be limited 
by traffic flow confidentiality techniques.  

Attacking DDoS Packets may be traced backwards to 
their source by augmenting the capabilities of routers.   
Responsible ISPs or system administrators can be 
contacted to shut the attacks off at their sources (see for 
example, [Sno01]). Such mechanisms work after-the-fact; 
however, they may serve as deterrents.  

2. Technical Approach 

2.1 General Observations about DDoS Attacks 

Denial-of-service attacks create shortages of a 
resource such as bandwidth or computing cycles through 
the creation of an artificial demand. They work because the 
“cost” of the transaction falls overwhelmingly on the 
server. Sophisticated DDoS attacks also can be virtually 
indistinguishable from genuine overload (at least at the 
time of the attack) due to the limitations of the information 
available and the kinds of analysis possible in real-time.  A  

mechanism is necessary to transfer a corresponding 
burden to the requesting client and  to control the damage 
that any single client can cause. This characterization 
suggests that an economics-based approach to establish a 
“marketplace” for the services may provide a fairer 
allocation of resources, provided that the currency’s 
availability can be effectively allocated by the service 
provider to its customers (and kept away from its 
detractors). 

To make services more robust against a DDoS attack, 
we propose the following combination of strategies:  
1. Increase the barrier to entry by using a pricing-based 

scheme in which the price of entry varies with the load 
level. This will throttle the machines used in the 
attack, thereby forcing the attacker to employ (or 
subvert) a larger number of machines. 

2. Use a differentiated model. Provide prioritized access 
to classes of users; though a DDoS attack will raise 
the price so high that lower priority classes get locked 
out, higher priority clients can still access the service.  
Allocating a priority mechanism to desirable clients is 
key.  

3. Use a dynamic, differential pricing mechanism to 
penalize clients that are responsible for a load on the 
server. This typically requires flow monitoring and 
isolation capabilities in line with those of Diffserv 
[Ful00][Arq] [Bla98]. 
None of these strategies are sufficient in isolation — 

situations can be defined where each may contribute to 
increasing the availability of the network services.  

2.2 Types of Micro-payments 

Micro-payments can provide a useful side benefit by 
providing a uniform means of resource accounting, 
pricing, and arbitration. Micro-payment mechanisms must 
not impose an undue performance penalty − in the 
absence of an attack, the performance should be nearly 
comparable to a system that does not use the payment 
mechanisms.  There is prior work on how pricing can be 
used to influence consumer behavior, how to integrate 
pricing mechanisms with OS and network resource 
management mechanisms. In this paper, we instead focus 
on how pricing strategies can be used to mitigate DDoS, 
and improve overall service survivability.  

2.2.1 Fungible vs. Non-fungible Micro-payments 

There have been a number of digital payment and 
micro-payment schemes proposed to support digital 
exchanges [Riv97]. These have been primarily proposed to 
support digital commerce, but some researchers have also 
looked at the use of payment schemes as a means of 
mitigating denials of service.  



 

Fungible (or transferable) digital payment schemes 
range from anonymous cash schemes such as David 
Chaum's Digicash [Digi] [Cha83], to electronic checks and 
payments [Pay], postage [Hash], to bartering services (as 
in Mojo Nation [Mojo]).  

Cash-like schemes do not require on-line verification − 
the server can validate the coin by examining it. They 
therefore have low latency with respect to coordination 
with external servers, however the validation process 
typically requires significant computation or memory 
usage overhead for the server itself. As a result, high 
integrity cash-like payment schemes may not be 
compatible with fielded servers.  

Many of the alternative fungible payment schemes are 
analogous to a check or credit card transaction and require 
some type of on-line verification of payment − a server 
must connect online with a bank and verify the 
creditworthiness of the requester. On-line verification is 
susceptible to high latency and provides an alternative 
critical path target for DoS.  

Scrip-based systems are an attempt to reduce the 
latency of verification by making the verification a purely 
local operation on the server. These systems, such as 
Compaq's Millicent [Milli], are intended for ultra-micro-
payments (on the order of thousandths of a penny). In 
Millicent, a server issues (or mints) its own scrip to be 
used by clients to pay for services. Since the server issues 
the scrip, it can verify it with very low latency (possibly 
requiring as little as a table lookup). Clients obtain a 
quantity of scrip from network scrip brokers using one of 
the high-overhead bulk-payment schemes geared for larger 
expenditures. Millicent allows a server to give a client 
change (which the client may later redeem with their 
broker). 

Another way of escaping the need of on-line 
verification is to extract a payment in the form of “work” or 
computation [Dwo92][Jue99][Jak99][Hash]. The server 
sets a computational task to the client that must be solved 
before server resources are expended on the client's task. 
To be useful, the task must be computationally hard to 
solve, but a solution must be simple to verify e.g., 
factoring a large number — the size of the number is 
determined by the prices of the service, which in turn 
reflects the load (demand) on the server. 

2.2.2 Convertible vs. Non-convertible Currencies 

A non-convertible currency scheme has a limited 
scope where it can be used and cannot be exchanged for 
other types of currency. A convertible currency on the 
other hand can be exchanged for other types of currency. 

The former is useful to permit priority access to 
specific resources for a particular subset of known 
potential users (e.g. a military squadron). The latter has 

advantages in situations requiring high priority access for 
a dynamically changing subset of potential users drawn 
from a general population.  

2.3 Dynamic Resource Pricing as Discriminants 

As the logical next step, we implement a dynamic 
pricing strategy that can favor good user behavior and 
discriminate against aggressive adversarial behavior.  

In our model, we have a time-varying price function 
for each service. The price function relates the price of the 
service to supply, demand and other factors. 

Each user has a utility function that determines how 
much they are willing to pay for a unit of a given service as 
well as how many units they will consume at a given price 
at any given time. The cumulative effect of the utility 
functions drives the overall demand for the service. 
Furthermore, the spending behavior can be monitored in a 
distributed fashion for anomalies.  

Selection of one particular user behavior over another 
occurs due to interplay of the price and utility curves. 
While the idea of using pricing to mold user behavior is 
known, our approach extends this idea to discriminate 
against adversarial behavior. 

Consider the following scenario of a web server. A 
number of different kinds of attacks can be launched 
against a web server. These include exploiting OS and 
protocol stack vulnerabilities such as SYN floods and 
buffer overflows, connection depletion attacks using idle 
connections, depleting server resources using requests 
that are expensive to process, inundating the request 
queue with bogus connections, and depleting network 
bandwidth by requesting large volumes of different pricing 
strategies are required to protect against each of these 
attacks,. 

A robust pricing function may monitor numerous user 
indicators. Even if individual users remain anonymous, 
control can be exercised at the granularity at which the 
flows can be isolated and monitored. For example, pricing 
controls can still be exerted at the level of the originating 
ISP. Resources can be partitioned between anonymous 
users and long-term subscribers. ISPs can protect 
themselves by using similar price controls and other 
monitoring within their administrative domains. Adoption 
of egress filtering and IP trace back can further aid in 
enforcing such controls.  

Pricing functions must be robust against any potential 
new attacks enabled due to the pricing strategy itself. For 
example, care must be taken that an adversary is not able 
to populate the system with fake requests when the price 
is low and increase the price for legitimate users. This 
means that a pricing function that is robust against 
connection depletion attacks must necessarily limit the 



 

connection duration and require that each connection be 
refreshed periodically to protect against zombies. 

2.4 Price-based Service Quality Differentiation 
and Survivability 

We have discussed how different pricing functions 
can be used to select different kinds of user behavior, 
thereby protecting against some classes of attacks. A 
single price function is unlikely to provide sufficient 
service quality differentiation necessary to satisfy a wide 
range of user requirements. Furthermore, a single pricing 
function is unlikely to protect the system against all forms 
of attack.  

Therefore we propose to partition and isolate the 
available resources among various service classes. For 
example, in the case of a network router, weighted fair 
queuing can be used to partition resources. Resources can 
also be isolated using VPNs. Server resources can similarly 
be partitioned and isolated among service classes by 
using OS prioritized scheduling techniques and by virtual 
OS techniques respectively. 

We hypothesize that the survivability of the system 
can be further enhanced by associating different partitions 
with different discriminants (pricing functions) that are 
robust against different classes of attacks. With this 
approach, a successful resource depletion attack will not 
only require more resources, but also the simultaneous 
launch of different forms of attack for each service class. 

Possible extensions of this strategy include dynamic 
policy iteration that progressively improves robustness 
against a larger class of attacks or a randomized policy 
iteration that makes it harder for the adversary to guess 
the pricing function and determine efficient attack 
strategies.  

3. System Architecture 

     Figure 3-1 illustrates the operational architecture for the 
MbSQD system. The MbSQD system employs a 
distributed architecture with three distinct features: 
1. Deployment of resource brokers at network 

boundaries: MbSQD will use stateful packet filters 
and/or application proxies to control resource 
utilization at the logical boundaries of user subnets 
(on either the provider’s or the client’s sites). This 
architecture has the following advantages: 
a) The operation of client and server applications 

will not be affected by the deployment of the 
traffic control system; in fact, both clients and 
servers may not be aware of its presence except 
due to apparent changes in network throughput 

and device performance. No modification of end-
node protocols and applications is necessary. 

b) The architecture may be used to control the 
utilization of both network and information 
resources including network throughput, server 
capacity, information access and device usage. 
The brokers may be installed at the border 
gateways of autonomous systems if they are 
intended to be used for inter-domain traffic 
control, or they can be placed at the “choke 
points” of server access if they are used to 
control information access and/or device usage. 

c) Price-based resource management can be made 
mandatory in order to obtain the highest priority 
access privileges. 

2. Employment of client-side defined price and 
purchase decision functions: MbSQD achieves rapid 
control of resource utilization by relying on the 
interactions between the dynamic pricing of resources 
and the autonomic purchase decisions made by 
individual clients. By employing different pricing 
functions, MbSQD can favor the clients that exhibit 
desired behaviors or use certain forms of purchase 
decision functions. This behavioral discrimination is a 
unique feature of the dynamic pricing scheme. 

3. Operation with TCP-integrated payment protocols: 
MbSQD uses a three-message handshake protocol to 
initiate service request and conduct payment 
transaction; it also uses two-message handshakes to 
pay for continuous resource use. The initial payment 
protocol can be readily integrated with the TCP 
connection establishment, and the renewal 
handshakes can be “piggy-backed” onto TCP data 
segments as options. The protocols are also designed 
to support different forms of payments including scrip 
and proof-of-work. A micro-payment infrastructure 
will be needed in order to use scrip. 

Figure 3-1. MbSQD Operational Architecture 
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In the remaining parts of this section, we will examine the 
three essential components of MbSQD: the resource 
brokers that are installed at the boundary gateways, the 
business logic that implements the price and the purchase 
decision functions, and the payment protocol that enables 
the business transactions. 

3.1 Resource Brokers  

The MbSQD resource brokers are to be installed in 
gateways at the boundary of Internet sub-networks, where 
they can function as application proxies or packet filters. 
The brokers determine whether datagrams going to and 
from certain IP addresses using specific transport 
protocols and port numbers should be passed or 
discarded. Functionally, the resource brokers may be the 
proxies of application clients or servers. The server and 
client brokers enable passage of datagrams based resource 
prices and budgetary considerations. Operationally, each 
broker consists of two sets of components that either 
operate on data or control flows. 

3.1.1 Server vs. Client Brokers 

The client brokers function as proxies of the client 
applications that run on the end hosts. The client brokers 
submit the requests for services — specified in terms of 
server IP addresses, transport protocols and port numbers 
— to the server broker on behalf of the client applications, 
make the purchase decision when the server brokers reveal 
the current prices of the services and conduct the 
transaction in order to establish passages for the traffic. 

The server brokers, on the other hand, function as 
proxies of the server applications that provide specific 
services. The brokers determine the dynamic prices of the 
services based on several traffic parameters that are 
monitored continuously. They also work with the client 
brokers to conduct the payment transactions and control 
the client-server traffic flows. 

3.1.2 Control vs. Data Flows  

Each client or server broker consists of four 
components: traffic classifier, traffic monitor, business 
logic and business executive as shown in Figure 3-2. 
• The traffic classifier redirects IP datagrams according 

to the nature of their payloads so as to separate 
control and data flows. It also determines whether to 
pass or discard datagrams in the data flows based on 
the outcome of payment transactions. 

• The traffic monitor provides the values of traffic para-
meters that are used to establish the current prices of 
specific services and/or serve as the indicators of 
anomalous traffic behaviors.  

• The business logic is the decision making component 
that computes the service prices in a server broker 
and make the purchase decisions in a client broker. 

• The business executive is the module that conducts 
the payment transactions using micro-payment 
protocols and controls the traffic classifier. 

3.2 Business Logic 

The business logic is a collection of rules and 
associated parameters that are used to control the traffic 
flow related to a service. It is designed to protect the 
resources such as network bandwidth or server capacity 
that a service deems important. Service providers must 
decide how to price and sell the services that they offer 
and then configure the business logics for each service. In 
MbSQD, services are distinguished by their server IP 
addresses, transport protocols and port numbers.  

A client gains access to a service running on a 
specific server by purchasing a subscription to that 
service. Service providers are free to decide how to price 
the service — in packets, seconds or by connections. By 
carefully choosing the pricing algorithm and the units in 
which the subscription is sold, a service provider can 
manage the utilization of its service so that “good” client 
behavior is rewarded and “bad” client behavior is 

Figure 3-2. Functional Architecture of Resource Brokers 
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penalized based on some a priori definition of “good” and 
“bad”. Note that the design of the business logic is 
independent of that of the payment mechanism. The 
current design of MbSQD can use scrip and proof-of-work 
computation as payment tokens. 

The rest of this section discusses briefly the 
subscription types — i.e. how the resources are quantified 
and sold — as well as the price and purchase decision 
functions.  

3.2.1 Subscription Types 

Currently, four general subscription types are 
implemented in MbSQD.  
a) Subscriptions in Packets: subscriptions are offered to 

customers on a per packet basis. The service provider 
defines a maximum number of packets the client can 
send or receive; once the quota has been met, the 
subscription expires and the client must pay for 
additional service.  

b) Subscriptions in Seconds: subscriptions are sold in 
seconds of connection time. When the connection 
duration has elapsed, the subscription expires and 
customers must purchase a new subscription. A time-
based subscription may be used in conjunction with 
another subscription type to create a hybrid sub-
scription type. For instance the subscriptions may be 
sold in terms of number of packets, but a client must 
send or receive the packets within a certain period of 
time. Such a hybrid type may be useful discourage 
clients from “squatting” on a connection.  

c) Subscriptions in Connections: a client pays for a 
connection that lasts for an indeterminate duration. 
This subscription type may be combined with a time-
based subscription to simulate leasing of a resource.  

d) Subscriptions in Bytes: a client may also purchase a 
subscription based on the number of bytes sent to or 
from a server. 

3.2.2 Pricing Functions 

The pricing strategy is the mechanism that the server 
broker uses to control resource consumption. Whenever a 
new subscription request for a service arrives at the 
broker, it invokes the business logic of the service to cal-
culate a price for the new subscription based on the 
current values of the market observable defined for the 
service. 

In our experiments, we tested the following four 
different forms of pricing functions: 
Constant Function (p = k): the price p of the resource is 
set to constant k regardless of its level of consumption. 
Linear Function (p = kc): the resource price p is propor-
tional to the value of a chosen market observable c such 
as the number of current connections. 

Asymptotic Function (p = kB/(B-c)): this function raises 
the resource price p to infinity as the market observable c 
approaches its limiting value B; such a pricing strategy is 
useful in safeguarding a resource with a hard limit in 
capacity. 
Exponential Function (p = k 1e

k
2
c): this function produces 

the fastest increase of resource price with respect to the 
increasing value of the market observable c; such a pricing 
strategy is useful in controlling consumption of a critical 
resource. 

Each of these pricing functions produces a floating 
point number that can translated into appropriate proof-of-
work computation or scrip values. 

3.2.3 Purchase Decision Functions 

At the client brokers, interacting with the resource 
prices are the purchase decision functions, which 
determine whether to purchase the subscriptions by 
making required payments. The decision functions can 
employ sophisticated strategies based on the market 
observables and other parameters supplied by the clients. 
The simplest decision function might only specify a price 
ceiling for each client. 

3.3 Micro-payment Protocols 

 MbSQD employs a three-message handshake to 
perform the payment transactions. The handshakes 
provide a framework protocol that can be used to support 
different forms of micro-payment including scrip and 
computational proof-of-work. It can also be made 
compatible with various micro-payment infrastructures.  
     Figure 3-3 shows the message sequence of the payment 
protocol. It uses three messages (solid lines) to submit the 
service/subscription request and exchange the payment 

TCP Connection

Subscription Request

Payment Request

POW Response

Payment ResponseTCP Connection

TCP Connection

T
C

P
 C

onnection F
orw

arded

Client Agent Client Brocker Server Brocker Server Agent

POW Request

TCP Connection Dropped

Figure 3-3. Message sequence of payment protocol 



 

request and response. These messages can be readily inte-
grated with the TCP connection-establishing messages as 
options in the respective SYN messages. The payment 
response message may also be integrated as an option 
into the ACK message of the initiator. 

In order to support proof-of-work, two more messages 
(dotted lines) are added between the client broker and the 
clients. These messages complete a handshake that will be 
completed if and only if the proof-of-work computation is 
carried out successfully. 

4. Simulation Experiments 

We investigated the behaviors of MbSQD broker 
architecture and traffic management mechanisms by 
conducting a series of simulation experiments using 
public-domain discrete-event network simulator, ns-2. The 
experiment configuration is shown in Figure 4-1. 

In the experiments, a fixed set of legitimate clients was 
programmed to request the service offered by a single 
server. Their requests were mingled with much larger 
number of requests initiated by the rogue clients that were 
subverted to instigate DDoS attacks. Client and server 
brokers, deployed at the boundaries of the sub-networks 
that contain the clients and the servers, relayed the service 
requests of both “good” and “bad” clients. Both client 
and server brokers could operate in an active or an 
inactive mode. In the inactive mode, the brokers behaved 
like ordinary firewalls or routers. When activated, client 
and server brokers could control the traffic flowing 
through them by matching the IP datagrams with the 
connections established between the brokers. The 
datagrams were passed if they could be matched with one 
or more of the established connections and dis carded 
otherwise. In each run, we observed the progress of two 
DDoS attacks − one with and the other without the use of 
MbSQD. Control parameters, such numbers of rogue 
clients and traffic characteristics, were changed between 
experimental runs. 

The goal of the experiments was to investigate the 
effectiveness of MbSQD architecture in mitigating the 
DDoS attacks. The degree of effectiveness was inferred 
from the following two sets of observations: 
1. A comparison between the number of subverted 

clients required to launch two similar DDoS attacks 
that cause compatible levels of performance degrada-
tion with and without the activation of MbSQD 
brokers; 

2. A comparison of the residual level of services 
available to the fixed set of legitimate clients in the 
two similar DDoS attacks with and without MbSQD 
brokers. 

A secondary goal was to investigate the usefulness of 
price or other market parameters employed in MbSQD as 
indicators of presence or absence of possible attacks and 
the severity level of the attacks. 

4.1 Metrics 

In order to establish a quantitative description of 
DDoS attacks, and an economic model for client-server 
traffic, we introduced three sets of parameters into 
MbSQD, known as attack quantifiers, market observables 
and market controllables. 

4.1.1 Attack Quantifiers 

The effect of a DDoS attack may be quantified by two 
sets of measurements: 
Service Quality: as its name indicated, this measurement 
reflects the quality of a specific service received by a 
specific client or group of clients. Assuming web 
browsing is the service of interest and the DDoS attack 
aims at exhausting the number of active HTTP sessions 
maintained by the server, a suitable measurement for the 
service quality would be a pair of values consisting of the 
average latency for establishing a new HTTP session and 
the average data rate sustainable by a legitimate client 
under no-load condition. 
Attack Duration: currently, a DDoS attack may last as 
long as the attackers intended. By introducing a payment 
scheme and providing each client with limited amount of 
credits, MbSQD established an inherent limit to the 
amount of service any one client may obtain before 
spending all its credits, and thus created a natural end to 
an attack. In the experiments, we monitored the progress of 
an attack by collecting measurements periodically 
throughout its course. 

Figure 4-1. Configuration of simulation experiments 
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4.1.2 Market Controllables 

In MbSQD, the trading of resources is controlled by 
the server broker through setting of three control para-
meters. 
Connection Granularity: the connections established by 
the server brokers may cover a group of clients and a 
range of protocols. Selectors such as source/destination 
IP addresses, transport protocol identifiers and TCP/UDP 
port numbers serve to specify the granularity of the 
connections.  
Connection Duration: the connections established 
between client and server brokers could only last for a 
finite duration. This parameter specifies the duration of the 
connections established at the current moment. Note that 
the duration may be specified in real time or data size 
(either in number of bytes or packets). 
Connection Price: this parameter refers to the time-
varying price for a connection that is set by the pricing 
function maintained in the server broker.  

4.1.3 Market Observables 

The price of a resource was computed based on the 
current values of a selected set of parameters that reflect 
resource consumption. The choices of these parameters 
are determined largely by the nature of the resources and 
the strategy employed to manage those resources. 
Following three parameters were used in our experiments 
to determine the price of HTTP connections. 
Connection Request Count, which records the total 
number of HTTP requests received by the server broker 
within a measurement period.  
Connection Establishment Count, which records the total 
number of HTTP connections established by the brokers 
within a measurement period. 
Data Throughput, which records the total number of data 
bytes passed to the server within the past second; the 
measurement is also computed as a percentage of the 
maximum data rate sustainable by the server and the data 
link between it and the server broker. 

4.2 Results 

We performed three sets of experiments that were 
designed to study the behaviors of MbSQD system in res-
ponse to three different kinds of DDoS attacks: 
1. TCP-SYN Attacks: in these experiments, the rogue 

clients flood the server with SYN packets with forged 
source IP addresses in order to overwhelm the server 
with half-opened TCP connections; 

2. Server Flooding Attacks: in these experiments, the 
rogue clients flood the server with frequent and long 
TCP connections uploading large amount of data to 
the server; this set of experiments were also designed 

to examine the effects of using computational proof-
of-work as a method of payments offered by the 
clients; 

3. Server Draining Attack: in these experiments, the 
rogue clients initiate frequent TCP connections 
downloading large amount of data from the server 
(e.g. an HTTP server).  This set of experiments also 
examines the effects of using fungible payments as a 
means of payments. 

Experiments of type (1) and (2) were run with 25 legitimate 
clients requesting TCP connections of random 
exponentially distributed durations (average 0.5 seconds) 
separated by random exponentially distributed intervals 
(average 0.1 seconds). Each of the legitimate clients would 
establish a connection with the server and upload a 
relatively small amount of data.  Experiments were run with 
from 0 to 4000 rogue clients. The rogue clients were 
identical to the legitimate clients except that they were 
more aggressive: their average interval was shorter (0.1 
seconds) and the average duration of their data uploads 
was also larger (0.7 seconds). 

Experiments of type (3) were run with 128 legitimate 
clients opening TCP connections and sending requests 
requiring a response of a random, exponentially distributed 
size (average 17,000 bytes) at exponentially dis tributed 
intervals (average 0.1 seconds).  Experiments were run with 
from 0 to 512 rogue clients.  The rogue clients loop 
continuously sending requests requiring random, 
exponentially distributed sizes of a larger average (average 
100,000 bytes). 
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Figure 4-2. MbSQD mitigation against TCP-SYN 
attacks 



 

4.2.1 Mitigation against TCP-SYN Attacks 

In these experiments, the rogue clients were 
programmed as constant bit sources, generating SYN 
packets as fast as they can without completing the 
connection establishment. The attack did not start until 0.5 
seconds into the experiment, and stopped 1.5 seconds 
before the end of the test. Figure 4-2 displays the result of 
the experiment. The graph plots two traces: the number of 
packets from the legitimate clients that were delivered to 
the server agent while MbSQD was running verses the 
same measurement without MbSQD. The vertical axis 
shows the total packet count (over the course of the entire 
experiment). The horizontal axis is the ratio of Good Clients 
to DDoS attacking agents. As the graph shows, the 
intensity of the attack has little impact on the throughput 
of the legitimate clients when MbSQD is active; on the 
other hand, the service is effectively denied in the absence 
of MbSQD. 

These drastically different results have a simple 
explanation. By requiring a proof-of-work response from 
the clients before the brokers would forward packets, the 
impact of the SYN attacks is shifted from the server to the 
gateways that host the brokers. A naive SYN packet flood 
has no impact on the server because the server broker 
discards all the attacker packets without burdening the 
server with them.  

4.2.2 Mitigation against Server Flooding 

In these experiments, the rogue clients had similar but 
more aggressive behaviors than the legitimate clients: their 
average connection interval was set to be 0.01 second and 
their average duration was 0.7 second; in other words, the 
rogue clients requested connections much more frequently 

than the legitimate clients, and held onto them for a little 
longer. The resource protected by the server broker 
includes the server node, the server broker, and the link 
between them. In these experiments, the price was linearly 
proportional to the number of open connections at the 
server broker (and at the server). The token of payment 
was proof-of-work computation that the clients must 
perform in response to the challenges from the client 
broker. 

We ran three sets of simulations: a control case 
without MbSQD action, one with the server broker 
charging a price for the establishment of each connection 
and the other one with the server broker charging a price 
for every pass of 32 packets. As a measure of service 
quality, we counted the number of legitimate-client 
requests delivered to the server during ten seconds of 
simulation time. (We also verified that the total number of 
requests delivered to the server remained at 10000, no 
matter how many rogue clients were present.) Figure 4-3 
displays the results of the experiment. 

The graph shows that all attacks were ultimately 
effective even with the use of MbSQD. However, it 
required eight times as many rogue clients in order to 
achieve the same level of service degradation when the 
brokers were active.  Since our pricing strategy throttled 
both legitimate and rogue clients, the effects were not 
quite as dramatic as those of the first set of experiments, 
but it remains the case that an attacker must infect two to 
three times as many hosts in order to achieve and sustain 
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a significant level of service degradation. 

4.2.3 Mitigation against Server Draining 

In this experiment, the results of which are shown in 
Figure 4-4, the rogue clients are attempting to act as a 
drain on a server’s bandwidth.  They attempt to repeatedly 
download large files, exhausting the number of 
connections available for legitimate requests (the size of 
their download is large simply to let them sit on the 
connection once they have it). 

In this experiment, users leased connections. The 
lease period was set so that, in an unloaded system, 90% 
of all legitimate tasks would complete requiring only one 
payment.  
 That the effectiveness of this price function 
diminishes under heavy load comes as no surprise − as the 
load increases, a constant time lease covers less data. An 
experiment based on amount of data transmitted (as 
opposed to connection duration) should prove more 
robust at the higher attack rates. 

5. Conclusions 

In this paper, we have explored the application of 
dynamic pricing mechanisms in mitigating DDoS attacks.  
We have presented the MbSQD architecture and protocol 
which supports both proof-of-work and monetary-like 
micropayment schemes.  We have prototyped the MbSQD 
system using the ns-2 simulator.  We also presented 
simulation results on the effectiveness of different pricing 
strategies for some DDoS scenarios based on a 
monopolistic service model. 

5.1 Lessons learned 

We made the following observations from the simu -
lation experiments we have conducted: 
• Pushing costs back onto clients appears to be 

effective for mitigating server-based DDoS attacks. 
Specifically, MbSQD does show promise for 
maintaining control of client-server traffic flows over 
the Internet. Traffic parameters can be implicitly 
exploited to maintain control even under changing 
conditions 

• Proof-of-work methods are effective for elimination of 
spoofed requests or flooding via a limited numb er of 
machines. Scrip based payment methods can be 
effective if integrity can be maintained over the money 
supply. 

• Different client behaviors can be discriminated by 
different server pricing strategies. Service Brokers can 
work to favor certain traffic behaviors in the range of 
scenarios we have studied. 

• As to be expected, the choice of a pricing function will 
have a very strong effect on the effectiveness of 
MbSQD.  Pricing functions can favor either the 
defender or the attacker and care must be taken to 
choose pricing functions that elicit behavior 
conducive to the accomplishment of the mission of 
the server(s) being controlled. 

5.2 Suggested Directions for Future Research 

The investigation presented in this paper is 
preliminary in nature. We suggest the following two 
possible extensions of the current system. 

5.2.1 Dynamic Subscription Parameters 

Currently, subscription parameters types and limiting 
values are fixed throughout the process. However, a 
service provider might define a business logic in which 
lengthy subscriptions are offered when the service is not 
busy, but allowed length may shrink in response to service 
load. Alternately, a service might offer free service until its 
resources are depleted to a certain level, at which point the 
service becomes fee-for-use until utilization drops again. 
By the same token, a service might use a linear or constant 
pricing algorithm until some threshold of resource use was 
reached, using an exponential strategy thereafter. 

5.2.2 Service Differentiation 

Service providers may want clients to receive different 
levels of access to resources or pricing based on the 
service category to which they belong. Service category in 
this case is an abstract group defined by the service 
provider that might relate to factors such as the client's 
service use profile e.g., "well-behaved" clients vs. "poorly-
behaved" clients or some out-of-band, cached relationship 
e.g., "AOL customers" vs. education domain clients. 
Below are a few possible ways that a service might employ 
to differentiate between clients.  
Buyer's Clubs: the price that a client pays depends upon 
the last price category it was in. Hence, people who paid 
for premium service might get a price break the next time 
they renew their subscription, or might receive a price 
break if they purchase a large enough unit of service.  
Threshold-based Packet-Dropping: service categories 
such as gold, silver, and bronze correspond to certain 
price thresholds and packets for a particular subscription 
are dropped whenever the price rises above the level of 
service that the client paid. For example, if a client 
purchases “silver” service, packets are dropped at some 
fixed rate whenever the price is above a threshold.  
Queuing Manipulation: level of service corresponds to 
the delay that the client experiences in having its packets 
processed.  



 

Subscription Parameter Modification: the level of service 
corresponds to a certain set of values for subscription 
parameters. Example: Subscriptions are sold by packet. If a 
client purchases gold service, it is able to receive 50 packet 
blocks; silver = 30 packet blocks; bronze = 10 packet 
blocks. 

Further research is necessary to determine how to 
combine different dynamic pricing mechanisms  in order to 
enhance overall system survivability by discriminating 
against different kinds of adversarial behavior.  However, 
our preliminary results indicate that dynamic pricing 
strategies offer a promising new direction in countering 
server-directed DDoS attacks on the Internet. 
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