
Mitigating Distributed Denial of Service Attacks
with Dynamic Resource Pricing

David Mankins, Rajesh Krishnan, Ceilyn Boyd, John Zao, Michael Frentz
BBN Technologies

dm@bbn.com, krash@bbn.com, boydz@mindspring.com, jzao@bbn.com, mfrentz@bbn.com

Abstract

Distributed Denial of Service (DDoS) attacks exploit the
acute imbalance between client and server workloads to
cause devastation to the service providers. We propose a
distributed gateway architecture and a payment
protocol that imposes dynamically changing prices on
both network, server, and information resources in
order to push some cost of initiating service requests —
in terms of monetary payments and/or computational
burdens — back onto the requesting clients. By
employing different price and purchase functions, the
architecture can provide service quality differentiation
and furthermore, select good client behavior and
discriminate against adversarial behavior. If confirmed
by additional experiments, judicious partitioning of
resources using different pricing functions can improve
overall service survivability.1

1. Introduction

Denial of Service continues to be a pervasive
problem for Internet services, as evidenced by the recent
denial of service at CERT[BBC01]. Such attacks require
each attacking machine to perform only a small amount of
work, relying on the cumulative efforts many machines to
overload the victim machine. Attacks range from simple
ICMP ping requests to sophisticated attacks that are
difficult to distinguish from a sudden spike in legitimate
use (a.k.a. “flash crowd” [Niv73] or “the Slashdot
Effect”).

In a DDoS attack, the perpetrator(s) may spend weeks
or months subverting hundreds or thousands of machines
by exploiting well-known security flaws. Once the
machines are subverted, the perpetrator installs tools to
execute an attack. On command, the prepared machines
(known as “zombies”) collectively target a specified victim
with a packet storm consisting of repeated datagram

1 This research is supported by DARPA contract F30602-
00-C-0088

packet requests. These packets may take many forms,
such as an ICMP ping request, a UDP packet (such as a
DNS request), or TCP SYN floods. The packets may also
have forged return addresses, allowing one machine to
generate requests that appear to be coming from hundreds
of machines, and making the sources of the attack difficult
to trace. This problem may intensify since newer operating
systems that are being introduced may make it easier to
spoof IP addresses [Gib01]. Halting these attacks is
difficult and typically relies on filtering at the router (or
just waiting out the “packet storm”).

Packet-flood attacks, such as these, are the most
widely diagnosed today [CAIDA01]. As measures to
counteract them are put in place, future attacks will most
likely include resource depletion attacks that are more
difficult to distinguish from legitimate requests. The
effectiveness of an attack will be driven by the resource
most tightly constrained relative to the attack parameters.
The attack could focus on a single server within an
enclave (or on the pipes themselves).

In this paper, we explore the use of dynamic resource
pricing strategies to mitigate various DDoS attacks and to
improve service survivability. We propose an experimental
architecture and protocol for a Market-based Service
Quality Differentiation (MbSQD) system. We have proto-
typed the MbSQD system using the ns-2 simulator [NS2],
and have experimented with various price-based controls
for DDoS mitigation. These include both proof-of-work
based approaches that exact a price in terms of a computa-
tional burden or monetary-like micropayments. The
MbSQD system is designed to work as an overlay on
existing network security infrastructure, but similar con-
cepts could also be applied at the lower networking layers
(e.g. in conjunction with Diffserv/ RSVP).

1.1 Existing DDoS mitigation strategies

Various methods have been used to mitigate the
effects of DDoS attacks − each has its drawbacks and
advantages. Some of these methods are:

• Detecting and eliminating subverted nodes on
local subnets

• Choking off the flow of attack packets
• Using resource mirrors to amplify server capacity
• Reducing the amount of resources consumed
• Monitoring traffic volume
• Tracing attack packets though the Internet

 Detecting subverted nodes has become increasingly
difficult as many of the newer attacks encrypt commands
to hide them from security scanning processes.
 Stopping the flow of attack packets at a choke point
relies on ingress or egress filtering. The effectiveness of
these techniques is dependent on good practices by the
ISPs and may require active maintenance by administrators
at the leaf routers of a customer site. Additionally, these
methods may discard legitimate packets during asymmetric
or changing routing conditions.
 Establishing resource mirrors, so that the attacks
affect only a fraction of the users of the service, can lessen
the impact of attacks (e.g. Akamai’s method of caching
content in “edge proxies” scattered around the edges of
the net), however this solution is relatively expensive and
may be reasonable only for larger content providers.
 There are various methods that attempt to reduce the
amount of resources consumed during a DDoS attack.
NetBSD will accelerate its timeouts of partially opened
TCP connections at times of contention. Linux
implementations save no state when receiving a TCP SYN
− instead, the initial sequence number is derived from
information that will be available in the return packet from
the connecting machine (SYN Cookies). The effectiveness
and availability of these techniques is highly
implementation dependent.

Monitoring traffic volume to look for suspicious
traffic destined for a particular destination can be limited
by traffic flow confidentiality techniques.

Attacking DDoS Packets may be traced backwards to
their source by augmenting the capabilities of routers.
Responsible ISPs or system administrators can be
contacted to shut the attacks off at their sources (see for
example, [Sno01]). Such mechanisms work after-the-fact;
however, they may serve as deterrents.

2. Technical Approach

2.1 General Observations about DDoS Attacks

Denial-of-service attacks create shortages of a
resource such as bandwidth or computing cycles through
the creation of an artificial demand. They work because the
“cost” of the transaction falls overwhelmingly on the
server. Sophisticated DDoS attacks also can be virtually
indistinguishable from genuine overload (at least at the
time of the attack) due to the limitations of the information
available and the kinds of analysis possible in real-time. A

mechanism is necessary to transfer a corresponding
burden to the requesting client and to control the damage
that any single client can cause. This characterization
suggests that an economics-based approach to establish a
“marketplace” for the services may provide a fairer
allocation of resources, provided that the currency’s
availability can be effectively allocated by the service
provider to its customers (and kept away from its
detractors).

To make services more robust against a DDoS attack,
we propose the following combination of strategies:
1. Increase the barrier to entry by using a pricing-based

scheme in which the price of entry varies with the load
level. This will throttle the machines used in the
attack, thereby forcing the attacker to employ (or
subvert) a larger number of machines.

2. Use a differentiated model. Provide prioritized access
to classes of users; though a DDoS attack will raise
the price so high that lower priority classes get locked
out, higher priority clients can still access the service.
Allocating a priority mechanism to desirable clients is
key.

3. Use a dynamic, differential pricing mechanism to
penalize clients that are responsible for a load on the
server. This typically requires flow monitoring and
isolation capabilities in line with those of Diffserv
[Ful00][Arq] [Bla98].
None of these strategies are sufficient in isolation —

situations can be defined where each may contribute to
increasing the availability of the network services.

2.2 Types of Micro-payments

Micro-payments can provide a useful side benefit by
providing a uniform means of resource accounting,
pricing, and arbitration. Micro-payment mechanisms must
not impose an undue performance penalty − in the
absence of an attack, the performance should be nearly
comparable to a system that does not use the payment
mechanisms. There is prior work on how pricing can be
used to influence consumer behavior, how to integrate
pricing mechanisms with OS and network resource
management mechanisms. In this paper, we instead focus
on how pricing strategies can be used to mitigate DDoS,
and improve overall service survivability.

2.2.1 Fungible vs. Non-fungible Micro-payments

There have been a number of digital payment and
micro-payment schemes proposed to support digital
exchanges [Riv97]. These have been primarily proposed to
support digital commerce, but some researchers have also
looked at the use of payment schemes as a means of
mitigating denials of service.

Fungible (or transferable) digital payment schemes
range from anonymous cash schemes such as David
Chaum's Digicash [Digi] [Cha83], to electronic checks and
payments [Pay], postage [Hash], to bartering services (as
in Mojo Nation [Mojo]).

Cash-like schemes do not require on-line verification −
the server can validate the coin by examining it. They
therefore have low latency with respect to coordination
with external servers, however the validation process
typically requires significant computation or memory
usage overhead for the server itself. As a result, high
integrity cash-like payment schemes may not be
compatible with fielded servers.

Many of the alternative fungible payment schemes are
analogous to a check or credit card transaction and require
some type of on-line verification of payment − a server
must connect online with a bank and verify the
creditworthiness of the requester. On-line verification is
susceptible to high latency and provides an alternative
critical path target for DoS.

Scrip-based systems are an attempt to reduce the
latency of verification by making the verification a purely
local operation on the server. These systems, such as
Compaq's Millicent [Milli], are intended for ultra-micro-
payments (on the order of thousandths of a penny). In
Millicent, a server issues (or mints) its own scrip to be
used by clients to pay for services. Since the server issues
the scrip, it can verify it with very low latency (possibly
requiring as little as a table lookup). Clients obtain a
quantity of scrip from network scrip brokers using one of
the high-overhead bulk-payment schemes geared for larger
expenditures. Millicent allows a server to give a client
change (which the client may later redeem with their
broker).

Another way of escaping the need of on-line
verification is to extract a payment in the form of “work” or
computation [Dwo92][Jue99][Jak99][Hash]. The server
sets a computational task to the client that must be solved
before server resources are expended on the client's task.
To be useful, the task must be computationally hard to
solve, but a solution must be simple to verify e.g.,
factoring a large number — the size of the number is
determined by the prices of the service, which in turn
reflects the load (demand) on the server.

2.2.2 Convertible vs. Non-convertible Currencies

A non-convertible currency scheme has a limited
scope where it can be used and cannot be exchanged for
other types of currency. A convertible currency on the
other hand can be exchanged for other types of currency.

The former is useful to permit priority access to
specific resources for a particular subset of known
potential users (e.g. a military squadron). The latter has

advantages in situations requiring high priority access for
a dynamically changing subset of potential users drawn
from a general population.

2.3 Dynamic Resource Pricing as Discriminants

As the logical next step, we implement a dynamic
pricing strategy that can favor good user behavior and
discriminate against aggressive adversarial behavior.

In our model, we have a time-varying price function
for each service. The price function relates the price of the
service to supply, demand and other factors.

Each user has a utility function that determines how
much they are willing to pay for a unit of a given service as
well as how many units they will consume at a given price
at any given time. The cumulative effect of the utility
functions drives the overall demand for the service.
Furthermore, the spending behavior can be monitored in a
distributed fashion for anomalies.

Selection of one particular user behavior over another
occurs due to interplay of the price and utility curves.
While the idea of using pricing to mold user behavior is
known, our approach extends this idea to discriminate
against adversarial behavior.

Consider the following scenario of a web server. A
number of different kinds of attacks can be launched
against a web server. These include exploiting OS and
protocol stack vulnerabilities such as SYN floods and
buffer overflows, connection depletion attacks using idle
connections, depleting server resources using requests
that are expensive to process, inundating the request
queue with bogus connections, and depleting network
bandwidth by requesting large volumes of different pricing
strategies are required to protect against each of these
attacks,.

A robust pricing function may monitor numerous user
indicators. Even if individual users remain anonymous,
control can be exercised at the granularity at which the
flows can be isolated and monitored. For example, pricing
controls can still be exerted at the level of the originating
ISP. Resources can be partitioned between anonymous
users and long-term subscribers. ISPs can protect
themselves by using similar price controls and other
monitoring within their administrative domains. Adoption
of egress filtering and IP trace back can further aid in
enforcing such controls.

Pricing functions must be robust against any potential
new attacks enabled due to the pricing strategy itself. For
example, care must be taken that an adversary is not able
to populate the system with fake requests when the price
is low and increase the price for legitimate users. This
means that a pricing function that is robust against
connection depletion attacks must necessarily limit the

connection duration and require that each connection be
refreshed periodically to protect against zombies.

2.4 Price-based Service Quality Differentiation
and Survivability

We have discussed how different pricing functions
can be used to select different kinds of user behavior,
thereby protecting against some classes of attacks. A
single price function is unlikely to provide sufficient
service quality differentiation necessary to satisfy a wide
range of user requirements. Furthermore, a single pricing
function is unlikely to protect the system against all forms
of attack.

Therefore we propose to partition and isolate the
available resources among various service classes. For
example, in the case of a network router, weighted fair
queuing can be used to partition resources. Resources can
also be isolated using VPNs. Server resources can similarly
be partitioned and isolated among service classes by
using OS prioritized scheduling techniques and by virtual
OS techniques respectively.

We hypothesize that the survivability of the system
can be further enhanced by associating different partitions
with different discriminants (pricing functions) that are
robust against different classes of attacks. With this
approach, a successful resource depletion attack will not
only require more resources, but also the simultaneous
launch of different forms of attack for each service class.

Possible extensions of this strategy include dynamic
policy iteration that progressively improves robustness
against a larger class of attacks or a randomized policy
iteration that makes it harder for the adversary to guess
the pricing function and determine efficient attack
strategies.

3. System Architecture

 Figure 3-1 illustrates the operational architecture for the
MbSQD system. The MbSQD system employs a
distributed architecture with three distinct features:
1. Deployment of resource brokers at network

boundaries: MbSQD will use stateful packet filters
and/or application proxies to control resource
utilization at the logical boundaries of user subnets
(on either the provider’s or the client’s sites). This
architecture has the following advantages:
a) The operation of client and server applications

will not be affected by the deployment of the
traffic control system; in fact, both clients and
servers may not be aware of its presence except
due to apparent changes in network throughput

and device performance. No modification of end-
node protocols and applications is necessary.

b) The architecture may be used to control the
utilization of both network and information
resources including network throughput, server
capacity, information access and device usage.
The brokers may be installed at the border
gateways of autonomous systems if they are
intended to be used for inter-domain traffic
control, or they can be placed at the “choke
points” of server access if they are used to
control information access and/or device usage.

c) Price-based resource management can be made
mandatory in order to obtain the highest priority
access privileges.

2. Employment of client-side defined price and
purchase decision functions: MbSQD achieves rapid
control of resource utilization by relying on the
interactions between the dynamic pricing of resources
and the autonomic purchase decisions made by
individual clients. By employing different pricing
functions, MbSQD can favor the clients that exhibit
desired behaviors or use certain forms of purchase
decision functions. This behavioral discrimination is a
unique feature of the dynamic pricing scheme.

3. Operation with TCP-integrated payment protocols:
MbSQD uses a three-message handshake protocol to
initiate service request and conduct payment
transaction; it also uses two-message handshakes to
pay for continuous resource use. The initial payment
protocol can be readily integrated with the TCP
connection establishment, and the renewal
handshakes can be “piggy-backed” onto TCP data
segments as options. The protocols are also designed
to support different forms of payments including scrip
and proof-of-work. A micro-payment infrastructure
will be needed in order to use scrip.

Figure 3-1. MbSQD Operational Architecture

CISC OSY STEM S

CIS COS YSTEM S

CISC OSY STEM S

MbSQD Client
Broker/FW

Internet

Client
Organization

#1

Client
Organization

#2

Clients w/
Personal FW

& MbSQD
Brokers)

MbSQD Client
Broker/FW

MbSQD Server
Broker/FW

In the remaining parts of this section, we will examine the
three essential components of MbSQD: the resource
brokers that are installed at the boundary gateways, the
business logic that implements the price and the purchase
decision functions, and the payment protocol that enables
the business transactions.

3.1 Resource Brokers

The MbSQD resource brokers are to be installed in
gateways at the boundary of Internet sub-networks, where
they can function as application proxies or packet filters.
The brokers determine whether datagrams going to and
from certain IP addresses using specific transport
protocols and port numbers should be passed or
discarded. Functionally, the resource brokers may be the
proxies of application clients or servers. The server and
client brokers enable passage of datagrams based resource
prices and budgetary considerations. Operationally, each
broker consists of two sets of components that either
operate on data or control flows.

3.1.1 Server vs. Client Brokers

The client brokers function as proxies of the client
applications that run on the end hosts. The client brokers
submit the requests for services — specified in terms of
server IP addresses, transport protocols and port numbers
— to the server broker on behalf of the client applications,
make the purchase decision when the server brokers reveal
the current prices of the services and conduct the
transaction in order to establish passages for the traffic.

The server brokers, on the other hand, function as
proxies of the server applications that provide specific
services. The brokers determine the dynamic prices of the
services based on several traffic parameters that are
monitored continuously. They also work with the client
brokers to conduct the payment transactions and control
the client-server traffic flows.

3.1.2 Control vs. Data Flows

Each client or server broker consists of four
components: traffic classifier, traffic monitor, business
logic and business executive as shown in Figure 3-2.
• The traffic classifier redirects IP datagrams according

to the nature of their payloads so as to separate
control and data flows. It also determines whether to
pass or discard datagrams in the data flows based on
the outcome of payment transactions.

• The traffic monitor provides the values of traffic para-
meters that are used to establish the current prices of
specific services and/or serve as the indicators of
anomalous traffic behaviors.

• The business logic is the decision making component
that computes the service prices in a server broker
and make the purchase decisions in a client broker.

• The business executive is the module that conducts
the payment transactions using micro-payment
protocols and controls the traffic classifier.

3.2 Business Logic

The business logic is a collection of rules and
associated parameters that are used to control the traffic
flow related to a service. It is designed to protect the
resources such as network bandwidth or server capacity
that a service deems important. Service providers must
decide how to price and sell the services that they offer
and then configure the business logics for each service. In
MbSQD, services are distinguished by their server IP
addresses, transport protocols and port numbers.

A client gains access to a service running on a
specific server by purchasing a subscription to that
service. Service providers are free to decide how to price
the service — in packets, seconds or by connections. By
carefully choosing the pricing algorithm and the units in
which the subscription is sold, a service provider can
manage the utilization of its service so that “good” client
behavior is rewarded and “bad” client behavior is

Figure 3-2. Functional Architecture of Resource Brokers

Client Node

Client Node

Server Node

Business
Logic

Server Broker

Traffic
Monitor

Business
Exec

Traffic Classifier

Business
Logic

Client Broker

Traffic
Monitor

Business
Exec

Traffic Classifier

Control Traffic
Data Traffic

penalized based on some a priori definition of “good” and
“bad”. Note that the design of the business logic is
independent of that of the payment mechanism. The
current design of MbSQD can use scrip and proof-of-work
computation as payment tokens.

The rest of this section discusses briefly the
subscription types — i.e. how the resources are quantified
and sold — as well as the price and purchase decision
functions.

3.2.1 Subscription Types

Currently, four general subscription types are
implemented in MbSQD.
a) Subscriptions in Packets: subscriptions are offered to

customers on a per packet basis. The service provider
defines a maximum number of packets the client can
send or receive; once the quota has been met, the
subscription expires and the client must pay for
additional service.

b) Subscriptions in Seconds: subscriptions are sold in
seconds of connection time. When the connection
duration has elapsed, the subscription expires and
customers must purchase a new subscription. A time-
based subscription may be used in conjunction with
another subscription type to create a hybrid sub-
scription type. For instance the subscriptions may be
sold in terms of number of packets, but a client must
send or receive the packets within a certain period of
time. Such a hybrid type may be useful discourage
clients from “squatting” on a connection.

c) Subscriptions in Connections: a client pays for a
connection that lasts for an indeterminate duration.
This subscription type may be combined with a time-
based subscription to simulate leasing of a resource.

d) Subscriptions in Bytes: a client may also purchase a
subscription based on the number of bytes sent to or
from a server.

3.2.2 Pricing Functions

The pricing strategy is the mechanism that the server
broker uses to control resource consumption. Whenever a
new subscription request for a service arrives at the
broker, it invokes the business logic of the service to cal-
culate a price for the new subscription based on the
current values of the market observable defined for the
service.

In our experiments, we tested the following four
different forms of pricing functions:
Constant Function (p = k): the price p of the resource is
set to constant k regardless of its level of consumption.
Linear Function (p = kc): the resource price p is propor-
tional to the value of a chosen market observable c such
as the number of current connections.

Asymptotic Function (p = kB/(B-c)): this function raises
the resource price p to infinity as the market observable c
approaches its limiting value B; such a pricing strategy is
useful in safeguarding a resource with a hard limit in
capacity.
Exponential Function (p = k 1e

k
2
c): this function produces

the fastest increase of resource price with respect to the
increasing value of the market observable c; such a pricing
strategy is useful in controlling consumption of a critical
resource.

Each of these pricing functions produces a floating
point number that can translated into appropriate proof-of-
work computation or scrip values.

3.2.3 Purchase Decision Functions

At the client brokers, interacting with the resource
prices are the purchase decision functions, which
determine whether to purchase the subscriptions by
making required payments. The decision functions can
employ sophisticated strategies based on the market
observables and other parameters supplied by the clients.
The simplest decision function might only specify a price
ceiling for each client.

3.3 Micro-payment Protocols

 MbSQD employs a three-message handshake to
perform the payment transactions. The handshakes
provide a framework protocol that can be used to support
different forms of micro-payment including scrip and
computational proof-of-work. It can also be made
compatible with various micro-payment infrastructures.
 Figure 3-3 shows the message sequence of the payment
protocol. It uses three messages (solid lines) to submit the
service/subscription request and exchange the payment

TCP Connection

Subscription Request

Payment Request

POW Response

Payment ResponseTCP Connection

TCP Connection

T
C

P
 C

onnection F
orw

arded

Client Agent Client Brocker Server Brocker Server Agent

POW Request

TCP Connection Dropped

Figure 3-3. Message sequence of payment protocol

request and response. These messages can be readily inte-
grated with the TCP connection-establishing messages as
options in the respective SYN messages. The payment
response message may also be integrated as an option
into the ACK message of the initiator.

In order to support proof-of-work, two more messages
(dotted lines) are added between the client broker and the
clients. These messages complete a handshake that will be
completed if and only if the proof-of-work computation is
carried out successfully.

4. Simulation Experiments

We investigated the behaviors of MbSQD broker
architecture and traffic management mechanisms by
conducting a series of simulation experiments using
public-domain discrete-event network simulator, ns-2. The
experiment configuration is shown in Figure 4-1.

In the experiments, a fixed set of legitimate clients was
programmed to request the service offered by a single
server. Their requests were mingled with much larger
number of requests initiated by the rogue clients that were
subverted to instigate DDoS attacks. Client and server
brokers, deployed at the boundaries of the sub-networks
that contain the clients and the servers, relayed the service
requests of both “good” and “bad” clients. Both client
and server brokers could operate in an active or an
inactive mode. In the inactive mode, the brokers behaved
like ordinary firewalls or routers. When activated, client
and server brokers could control the traffic flowing
through them by matching the IP datagrams with the
connections established between the brokers. The
datagrams were passed if they could be matched with one
or more of the established connections and dis carded
otherwise. In each run, we observed the progress of two
DDoS attacks − one with and the other without the use of
MbSQD. Control parameters, such numbers of rogue
clients and traffic characteristics, were changed between
experimental runs.

The goal of the experiments was to investigate the
effectiveness of MbSQD architecture in mitigating the
DDoS attacks. The degree of effectiveness was inferred
from the following two sets of observations:
1. A comparison between the number of subverted

clients required to launch two similar DDoS attacks
that cause compatible levels of performance degrada-
tion with and without the activation of MbSQD
brokers;

2. A comparison of the residual level of services
available to the fixed set of legitimate clients in the
two similar DDoS attacks with and without MbSQD
brokers.

A secondary goal was to investigate the usefulness of
price or other market parameters employed in MbSQD as
indicators of presence or absence of possible attacks and
the severity level of the attacks.

4.1 Metrics

In order to establish a quantitative description of
DDoS attacks, and an economic model for client-server
traffic, we introduced three sets of parameters into
MbSQD, known as attack quantifiers, market observables
and market controllables.

4.1.1 Attack Quantifiers

The effect of a DDoS attack may be quantified by two
sets of measurements:
Service Quality: as its name indicated, this measurement
reflects the quality of a specific service received by a
specific client or group of clients. Assuming web
browsing is the service of interest and the DDoS attack
aims at exhausting the number of active HTTP sessions
maintained by the server, a suitable measurement for the
service quality would be a pair of values consisting of the
average latency for establishing a new HTTP session and
the average data rate sustainable by a legitimate client
under no-load condition.
Attack Duration: currently, a DDoS attack may last as
long as the attackers intended. By introducing a payment
scheme and providing each client with limited amount of
credits, MbSQD established an inherent limit to the
amount of service any one client may obtain before
spending all its credits, and thus created a natural end to
an attack. In the experiments, we monitored the progress of
an attack by collecting measurements periodically
throughout its course.

Figure 4-1. Configuration of simulation experiments

G

C C C C

G

C C C

G

C C

G

C

G

S

Client Broker

Clients

Server Broker

Server

4.1.2 Market Controllables

In MbSQD, the trading of resources is controlled by
the server broker through setting of three control para-
meters.
Connection Granularity: the connections established by
the server brokers may cover a group of clients and a
range of protocols. Selectors such as source/destination
IP addresses, transport protocol identifiers and TCP/UDP
port numbers serve to specify the granularity of the
connections.
Connection Duration: the connections established
between client and server brokers could only last for a
finite duration. This parameter specifies the duration of the
connections established at the current moment. Note that
the duration may be specified in real time or data size
(either in number of bytes or packets).
Connection Price: this parameter refers to the time-
varying price for a connection that is set by the pricing
function maintained in the server broker.

4.1.3 Market Observables

The price of a resource was computed based on the
current values of a selected set of parameters that reflect
resource consumption. The choices of these parameters
are determined largely by the nature of the resources and
the strategy employed to manage those resources.
Following three parameters were used in our experiments
to determine the price of HTTP connections.
Connection Request Count, which records the total
number of HTTP requests received by the server broker
within a measurement period.
Connection Establishment Count, which records the total
number of HTTP connections established by the brokers
within a measurement period.
Data Throughput, which records the total number of data
bytes passed to the server within the past second; the
measurement is also computed as a percentage of the
maximum data rate sustainable by the server and the data
link between it and the server broker.

4.2 Results

We performed three sets of experiments that were
designed to study the behaviors of MbSQD system in res-
ponse to three different kinds of DDoS attacks:
1. TCP-SYN Attacks: in these experiments, the rogue

clients flood the server with SYN packets with forged
source IP addresses in order to overwhelm the server
with half-opened TCP connections;

2. Server Flooding Attacks: in these experiments, the
rogue clients flood the server with frequent and long
TCP connections uploading large amount of data to
the server; this set of experiments were also designed

to examine the effects of using computational proof-
of-work as a method of payments offered by the
clients;

3. Server Draining Attack: in these experiments, the
rogue clients initiate frequent TCP connections
downloading large amount of data from the server
(e.g. an HTTP server). This set of experiments also
examines the effects of using fungible payments as a
means of payments.

Experiments of type (1) and (2) were run with 25 legitimate
clients requesting TCP connections of random
exponentially distributed durations (average 0.5 seconds)
separated by random exponentially distributed intervals
(average 0.1 seconds). Each of the legitimate clients would
establish a connection with the server and upload a
relatively small amount of data. Experiments were run with
from 0 to 4000 rogue clients. The rogue clients were
identical to the legitimate clients except that they were
more aggressive: their average interval was shorter (0.1
seconds) and the average duration of their data uploads
was also larger (0.7 seconds).

Experiments of type (3) were run with 128 legitimate
clients opening TCP connections and sending requests
requiring a response of a random, exponentially distributed
size (average 17,000 bytes) at exponentially dis tributed
intervals (average 0.1 seconds). Experiments were run with
from 0 to 512 rogue clients. The rogue clients loop
continuously sending requests requiring random,
exponentially distributed sizes of a larger average (average
100,000 bytes).

0

2000

4000

6000

8000

10000

12000

14000

0.010.11
Good Client Ratio

G
oo

d
C

lie
nt

 P
ac

ke
t

D
el

iv
er

ed

No MbSQD MbSQD

Figure 4-2. MbSQD mitigation against TCP-SYN
attacks

4.2.1 Mitigation against TCP-SYN Attacks

In these experiments, the rogue clients were
programmed as constant bit sources, generating SYN
packets as fast as they can without completing the
connection establishment. The attack did not start until 0.5
seconds into the experiment, and stopped 1.5 seconds
before the end of the test. Figure 4-2 displays the result of
the experiment. The graph plots two traces: the number of
packets from the legitimate clients that were delivered to
the server agent while MbSQD was running verses the
same measurement without MbSQD. The vertical axis
shows the total packet count (over the course of the entire
experiment). The horizontal axis is the ratio of Good Clients
to DDoS attacking agents. As the graph shows, the
intensity of the attack has little impact on the throughput
of the legitimate clients when MbSQD is active; on the
other hand, the service is effectively denied in the absence
of MbSQD.

These drastically different results have a simple
explanation. By requiring a proof-of-work response from
the clients before the brokers would forward packets, the
impact of the SYN attacks is shifted from the server to the
gateways that host the brokers. A naive SYN packet flood
has no impact on the server because the server broker
discards all the attacker packets without burdening the
server with them.

4.2.2 Mitigation against Server Flooding

In these experiments, the rogue clients had similar but
more aggressive behaviors than the legitimate clients: their
average connection interval was set to be 0.01 second and
their average duration was 0.7 second; in other words, the
rogue clients requested connections much more frequently

than the legitimate clients, and held onto them for a little
longer. The resource protected by the server broker
includes the server node, the server broker, and the link
between them. In these experiments, the price was linearly
proportional to the number of open connections at the
server broker (and at the server). The token of payment
was proof-of-work computation that the clients must
perform in response to the challenges from the client
broker.

We ran three sets of simulations: a control case
without MbSQD action, one with the server broker
charging a price for the establishment of each connection
and the other one with the server broker charging a price
for every pass of 32 packets. As a measure of service
quality, we counted the number of legitimate-client
requests delivered to the server during ten seconds of
simulation time. (We also verified that the total number of
requests delivered to the server remained at 10000, no
matter how many rogue clients were present.) Figure 4-3
displays the results of the experiment.

The graph shows that all attacks were ultimately
effective even with the use of MbSQD. However, it
required eight times as many rogue clients in order to
achieve the same level of service degradation when the
brokers were active. Since our pricing strategy throttled
both legitimate and rogue clients, the effects were not
quite as dramatic as those of the first set of experiments,
but it remains the case that an attacker must infect two to
three times as many hosts in order to achieve and sustain

0

2000

4000

6000

8000

10000

12000

14000

0.010.11

No MbSQD Charged Per Connection Charged per 32 Packet

Figure 4-3. MbSQD mitigation against server
flooding

0

500

1000

1500

2000

2500

3000

3500

4000

0.11

Good Client Number vs. Total Client Number

N
u

m
b

er
 o

f
G

o
o

d
 C

lie
n

t
P

ac
ke

ts
 D

el
iv

er
ed

Non-MbSQD Exp Price & Scrip Exp Price & POW

Figure 4-4. MbSQD mitigation against server
draining

a significant level of service degradation.

4.2.3 Mitigation against Server Draining

In this experiment, the results of which are shown in
Figure 4-4, the rogue clients are attempting to act as a
drain on a server’s bandwidth. They attempt to repeatedly
download large files, exhausting the number of
connections available for legitimate requests (the size of
their download is large simply to let them sit on the
connection once they have it).

In this experiment, users leased connections. The
lease period was set so that, in an unloaded system, 90%
of all legitimate tasks would complete requiring only one
payment.
 That the effectiveness of this price function
diminishes under heavy load comes as no surprise − as the
load increases, a constant time lease covers less data. An
experiment based on amount of data transmitted (as
opposed to connection duration) should prove more
robust at the higher attack rates.

5. Conclusions

In this paper, we have explored the application of
dynamic pricing mechanisms in mitigating DDoS attacks.
We have presented the MbSQD architecture and protocol
which supports both proof-of-work and monetary-like
micropayment schemes. We have prototyped the MbSQD
system using the ns-2 simulator. We also presented
simulation results on the effectiveness of different pricing
strategies for some DDoS scenarios based on a
monopolistic service model.

5.1 Lessons learned

We made the following observations from the simu -
lation experiments we have conducted:
• Pushing costs back onto clients appears to be

effective for mitigating server-based DDoS attacks.
Specifically, MbSQD does show promise for
maintaining control of client-server traffic flows over
the Internet. Traffic parameters can be implicitly
exploited to maintain control even under changing
conditions

• Proof-of-work methods are effective for elimination of
spoofed requests or flooding via a limited numb er of
machines. Scrip based payment methods can be
effective if integrity can be maintained over the money
supply.

• Different client behaviors can be discriminated by
different server pricing strategies. Service Brokers can
work to favor certain traffic behaviors in the range of
scenarios we have studied.

• As to be expected, the choice of a pricing function will
have a very strong effect on the effectiveness of
MbSQD. Pricing functions can favor either the
defender or the attacker and care must be taken to
choose pricing functions that elicit behavior
conducive to the accomplishment of the mission of
the server(s) being controlled.

5.2 Suggested Directions for Future Research

The investigation presented in this paper is
preliminary in nature. We suggest the following two
possible extensions of the current system.

5.2.1 Dynamic Subscription Parameters

Currently, subscription parameters types and limiting
values are fixed throughout the process. However, a
service provider might define a business logic in which
lengthy subscriptions are offered when the service is not
busy, but allowed length may shrink in response to service
load. Alternately, a service might offer free service until its
resources are depleted to a certain level, at which point the
service becomes fee-for-use until utilization drops again.
By the same token, a service might use a linear or constant
pricing algorithm until some threshold of resource use was
reached, using an exponential strategy thereafter.

5.2.2 Service Differentiation

Service providers may want clients to receive different
levels of access to resources or pricing based on the
service category to which they belong. Service category in
this case is an abstract group defined by the service
provider that might relate to factors such as the client's
service use profile e.g., "well-behaved" clients vs. "poorly-
behaved" clients or some out-of-band, cached relationship
e.g., "AOL customers" vs. education domain clients.
Below are a few possible ways that a service might employ
to differentiate between clients.
Buyer's Clubs: the price that a client pays depends upon
the last price category it was in. Hence, people who paid
for premium service might get a price break the next time
they renew their subscription, or might receive a price
break if they purchase a large enough unit of service.
Threshold-based Packet-Dropping: service categories
such as gold, silver, and bronze correspond to certain
price thresholds and packets for a particular subscription
are dropped whenever the price rises above the level of
service that the client paid. For example, if a client
purchases “silver” service, packets are dropped at some
fixed rate whenever the price is above a threshold.
Queuing Manipulation: level of service corresponds to
the delay that the client experiences in having its packets
processed.

Subscription Parameter Modification: the level of service
corresponds to a certain set of values for subscription
parameters. Example: Subscriptions are sold by packet. If a
client purchases gold service, it is able to receive 50 packet
blocks; silver = 30 packet blocks; bronze = 10 packet
blocks.

Further research is necessary to determine how to
combine different dynamic pricing mechanisms in order to
enhance overall system survivability by discriminating
against different kinds of adversarial behavior. However,
our preliminary results indicate that dynamic pricing
strategies offer a promising new direction in countering
server-directed DDoS attacks on the Internet.

6. Bibliography

[BBC01]http://news.bbc.co.uk/low/english/sci/tech/newsi
d 1348000/1348820.stm
[CAIDA01] www.caida.org/outreach/papers/backscatter/
[Jue99] A. Juels and J. Brainard, “Client Puzzles: A
Cryptographic Defense Against Connection Depletion
Attacks,” Network and Distributed System Security
Symposium '99, San Diego, CA, USA, February 1999.
[Ful00] E. Fulp and D. Reeves, “A Multi-Market Approach
to Resource Allocation,” Proc. of Networking 2000,
Lecture Notes in Computer Science, G. Pujolle, ed., No.
1815, pp. 945-956, May 2000.
[Bla98] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang,
and W. Weiss, “RFC 2475: An Architecture for
Differentiated Services,” December 1998.
[Gib01] S. Gibson, “The Strange Tale of the Denial of
Service Attacks against GRC.com”,
www.grc.com/grcdos.html”, June 2001.
[Fis99] P. C. Fishburn and A. M. Odlyzko, “Competitive
Pricing of Information Goods: Subscription Pricing Versus
Pay-Per-Use,” Economic Theory, Vol. 13, pp. 447-470, 1999.
[Niv73] L. Niven, “Flash Crowd,” The flight of the horse,
Ballantine Books, 1973.
[Bak99] Y. Bakos and E. Brynjolfsson, “Bundling
Information Goods: Pricing, Profits, and Efficiency,”
Management Science, December 1999.
[Dwo92] C. Dwork and M. Naor, “Pricing via Processing or
Combating Junk Mail,” in Ernest F. Brickell, ed., Crypto '92,
Vol. 740, Lecture Notes in Comp Science, pp. 139-147.
Springer-Verlag, 16-20 August 1992.
[Riv97] R. Rivest and A. Shamir, “PayWord and
MicroMint: Two Simple Micro-payment Schemes, ”
Lecture Notes in Comp. Science, vol. 1189, Proc. Security
Protocols Workshop, Springer-Verlag, pp. 69-87, 1997.
[Jak99] M. Jakobsson and A. Juels, “Proofs of Work and
Bread Pudding Protocols,” In B. Preneel, ed.,
Communications and Multimedia Security. Kluwer
Academic Publishers, pp. 258-272, 1999.

[Cha83] D. Chaum, “Blind Signatures for Untraceable
Payments,” Advances in Cryptology--Crypto '82, Springer-
Verlag, pp. 199-203, 1983.
 [Sno01] A.C. Snoeren, C. Partridge, L.A. Sanchez, C.E.
Jones, F. Tchakountio, S. T. Kent, and W. T. Strayer, Proc.
ACM SIGCOMM 2001, August 2001.
[MPAPI] W3C Micro-payments API and Markup WGs,
www.w3.org/ECommerce/Micro-payments/
[Milli] Compaq Millicent, www.millicent.digital.com
[Pay] PayPal, www.paypal.com
[NS2] NS-2 simulator, http://www.isi.edu/nsnam/ns
[Arq] The ARQoS Project, http://arqos.csc.ncsu.edu/
[Free] The FreeHaven Project, http://www.freehaven.net/
[Digi] DigiCash, http://www.digicash.com
[Hash] A. Back, “Hash Cash: A Partial Hash Collision
Based Postage Scheme,”
www.cypherspace.org/~adam/hashcash.
[Mojo] Mojo Nation, http://www.mojonation.net/

