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Mitigating DoS Attacks against Broadcast
Authentication in Wireless Sensor Networks

Peng Ning, An Liu
North Carolina State University
and
Wenliang Du
Syracuse University

Broadcast authentication is a critical security service in wireless sensor networks. There are two
general approaches for broadcast authentication in wireless sensor networks: digital signatures
and µTESLA-based techniques. However, both signature-based and µTESLA-based broadcast
authentication are vulnerable to Denial of Services (DoS) attacks: An attacker can inject bogus
broadcast packets to force sensor nodes to perform expensive signature verifications (in case of
signature-based broadcast authentication) or packet forwarding (in case of µTESLA-based broad-
cast authentication), thus exhausting their limited battery power. This paper presents an efficient
mechanism called message specific puzzle to mitigate such DoS attacks. In addition to signature-
based or µTESLA-based broadcast authentication, this approach adds a weak authenticator in
each broadcast packet, which can be efficiently verified by a regular sensor node, but takes a com-
putationally powerful attacker a substantial amount of time to forge. Upon receiving a broadcast
packet, each sensor node first verifies the weak authenticator, and performs the expensive signature
verification (in signature-based broadcast authentication) or packet forwarding (in µTESLA-based
broadcast authentication) only when the weak authenticator is valid. A weak authenticator cannot
be pre-computed without a non-reusable (or short-lived) key disclosed only in a valid packet. Even
if an attacker has intensive computational resources to forge one or more weak authenticators, it
is difficult to reuse these forged weak authenticators. Thus, this weak authentication mechanism
substantially increases the difficulty of launching successful DoS attacks against signature-based
or µTESLA-based broadcast authentication. A limitation of this approach is that it requires a
powerful sender and introduces sender-side delay. This paper also reports an implementation of
the proposed techniques on TinyOS, as well as initial experimental evaluation in a network of
MICAz motes.

Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: General—Security and pro-
tection; C.2.1 [Computer-Communication Networks]: Network Architecture and Design—Wireless communi-
cation

General Terms: Security, Design, Algorithms

Additional Key Words and Phrases: Sensor Networks, Security, Broadcast Authentication, DoS
Attacks
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1. INTRODUCTION

Recent technological advances have made it possible to deploy large scale sensor networks
consisting of a large number of low-cost, low-power, and multi-functional sensor nodes that
communicate in short distances through wireless links [Akyildiz et al. 2002]. These sensor
nodes are typically battery-powered, and are expected to run in an unattended fashion for a
long period of time. Such sensor networks have a wide range ofapplications in civilian and
military operations such as monitoring of critical infrastructure and battlefield surveillance.
Many attempts have been made to develop protocols that can fulfill the requirements of
these applications (e.g., [Perrig et al. 2001; Hill et al. 2000; Niculescu and Nath 2001; Gay
et al. 2003; Newsome and Song 2003; Akyildiz et al. 2002]).

Broadcast is an important communication primitive in wireless sensor networks. It is
highly desirable to broadcast commands (e.g., queries usedto collect sensor data) and data
(e.g., global clock value distributed for time synchronization) to the sensor nodes due to the
large number of sensor nodes and the broadcast nature of wireless communication. Due
to the limited signal range, it is usually necessary to have some receivers of a broadcast
packet forward it in order to propagate the packet throughout the network (e.g., through
flooding, or probabilistic broadcasting [Ni et al. 1999; Stojmenovic et al. 2002; Levis et al.
2004]). As illustrated in Figure 1, nodeSfirst broadcasts a packet (locally within the signal
range), andsomenodes that receive this packet for the first time (e.g., nodeA) forward it
(through a local re-broadcast) to propagate this packet to more nodes (e.g., nodeB). This
process continues until all the reachable nodes receive thebroadcast packet.

S

A

B

Fig. 1. Broadcast in wireless sensor networks. A broadcast packet is usually forwarded multiple times before all
reachable nodes receive it.

For clarify, we refer to the node that originally generates the broadcast packet as the
sender, and a node that receives a broadcast packet as areceiver. As discussed earlier, a
receiver may forward the received packet.
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1.1 Broadcast Authentication in Sensor Networks

In hostile environments, broadcast authentication (i.e.,authentication of broadcast packets)
is a critical security service to ensure the trustworthiness of sensor network applications.
Due to the resource constraints on sensor nodes (especiallythe limited battery power) and
possible node compromises, broadcast authentication in wireless sensor networks is by no
means a trivial problem.

There are two general approaches for broadcast authentication in sensor networks:dig-
ital signaturesandµTESLA-based approaches. Public key based digital signatures were
initially considered impractical for resource constrained sensor networks. However, it was
recently demonstrated that it is feasible to perform publickey cryptographic operations
on low-end sensor nodes [Gura et al. 2004]. For example, it takes about 0.81 seconds to
perform a point multiplication on a 160-bit elliptic curve on Atmega128, the processor
used in many sensor nodes such as MICA2 and MICAz motes [Gura et al. 2004]. This
implies that it would take about 1.62 seconds to verify an ECDSA signature on the same
elliptic curve (or less if optimization for signature verification is used), since the domi-
nant operations in signature verification are two point multiplications. More powerful and
energy-efficient sensor platforms (e.g., Intel iMotes [Intel Research ]) are being developed,
which are expected to perform public key cryptographic operations more quickly. Mean-
while, the recent advances in sensor wireless communication allow relatively large packets
to be transmitted. In particular, IEEE 802.15.4, the standard for low-power sensor net-
works, allows a variable payload of up to 102 bytes [IEEE Computer Society 2003]. Such
a packet provides enough space to include a digital signature for broadcast authentication,
such as a 40-byte ECDSA signature on the above 160-bit elliptic curve. Thus, it is possible
to achieve broadcast authentication with digital signatures in wireless sensor networks.

µTESLA and several of its variations [Perrig et al. 2001; Liu and Ning 2003; 2004; Liu
et al. 2005] have been developed in the past several years forscalable broadcast authenti-
cation in wireless sensor networks. All of these approachesare based on TESLA [Perrig
et al. 2000; 2001], which provides broadcast authentication based on symmetric cryptog-
raphy by delayed disclosure of authentication keys. (A brief overview of µTESLA can
be found in Appendix A.) Compared with digital signatures,µTESLA-based approaches
are much more efficient and less resource consuming, but cannot provide authentication
immediately after broadcast packets are received.

Both digital signatures andµTESLA-based approaches are vulnerable to Denial of Ser-
vice (DoS) attacks. This is a fatal threat to sensor networksbecause of the limited and
depletable battery power on sensor nodes.

1.1.1 DoS Attacks against Signature-Based Broadcast Authentication. Although it is
possible to perform digital signature operations on sensornodes, the cost of such oper-
ations is still substantially higher than that of symmetriccryptographic operations, and
will substantially consume the battery power if frequentlyperformed. This leads to a fatal
threat to signature-based broadcast authentication: An attacker may simply forge a large
number of broadcast messages with digital signatures, force sensor nodes to verify these
signatures, and eventually deplete their battery power. Benign sensor nodes may certainly
decide not to forward broadcast messages before their signatures are verified. However,
a single malicious node can still overload and disable many benign nodes in its local re-
gion with forged messages. Moreover, an attacker may generate much higher impact by
increasing the signal strength or deploying multiple malicious nodes in different locations.
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To see more clearly the impact of forged signature packets onsensor energy consump-
tion, let us take a closer look at the energy consumption for receiving a bogus packet, using
MICAz, a typical sensor platform, as an example. A bogus packet sent by the DoS attacker
can consume the receiver’s energy in at least two steps (assuming bogus packets are not re-
broadcast): (1) Receiving the packet; (2) Processing the packet and verifying the signature.
Assume the maximum payload of 102 bytes, as defined in IEEE 802.15.4 [IEEE Computer
Society 2003]. According to [CC2 2006], for a packet of 102 byte payload, a MICAz mote
needs to transmit up to 133 bytes in the physical layer, including preamble sequence, physi-
cal layer header, MAC layer header, frame check sequence, and the payload data. Based on
the MICAz data sheet [MIC ], which gives the receiving current draw 19.7mA, the 250kbps
transmit data rate and the 3.0V power level, we can estimate that the receiving energy cost
of such a packet at the radio module is at most3.0 × 19.7 × 133 × 8/250, 000 = 0.25mJ.
Now let us see the energy cost of verifying an ECDSA signature. Assume the verification
of an ECDSA signature takes 1.62 seconds. In active mode, thecurrent draw of MICAz
is 8 mA [MIC ]. Thus, the energy cost for a signature verification can be estimated as
3.0×8×1.62 = 38.88mJ. These numbers show that signature verification consumesmuch
more energy than receiving the same packet. Thus, it is necessary to develop techniques to
reduce the number of false signature verifications.

1.1.2 DoS Attacks againstµTESLA-Based Broadcast Authentication.A major limita-
tion of µTESLA [Perrig et al. 2001] and its variations [Liu and Ning 2003; 2004] is the
authentication delay. In other words, a receiver cannot authenticate a broadcast packet im-
mediately after receiving it. Note that a broadcast packet typically has to be forwarded (via
local re-broadcast) multiple times before it reaches all the nodes. This means that a sensor
node has to forward a broadcast packet before properly authenticating it. The key disclosed
in a broadcast packet can provide some weak authentication.However, once an attacker
receives a broadcast packet, he/she can reuse this key to forge many packets that can pass
this weak authentication. As a result, similar to the DoS attacks against signature-based
broadcast authentication, an attacker can force regular nodes to forward a large number of
bogus packets to eventually exhaust their battery power.

An immediate authentication mechanism was developed in [Perrig et al. 2001] to par-
tially address this problem. Specifically, a hash image of thecontentof each packet is also
included in an earlier packet [Perrig et al. 2001]. Thus, as long as the earlier packet is au-
thenticated, the content of the later packet can be immediately authenticated upon receipt.
However, this immediate authentication does not cover the hash image of the later packet
content, nor the message authentication code (MAC) in the packet just received. Thus,
an attacker can still forge a large number of packets by modifying these uncovered parts
without being immediately detected, resulting in the same DoS attack.

1.2 Proposed Approach

In this paper, we develop an approach to mitigate the DoS attacks against both signature-
based andµTESLA-based broadcast authentication. The basic idea is touse an efficiently
verifiable weak authenticator along with broadcast authentication, so that a sensor node
performs the expensive signature verification (in case of signature-based broadcast authen-
tication) or packet forwarding (in case ofµTESLA or its variations) only when the weak
authenticator can be verified.

We develop a weak authentication mechanism calledmessage specific puzzleto achieve
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this goal. This mechanism has a number of nice properties:

- The weak authentication mechanism is independent of the broadcast authentication mech-
anism; it works with both digital signatures andµTESLA (or its variations).

- A weak authenticator can be efficiently verified by a regularsensor node; however, it
takes a computationally powerful attacker a substantial amount of time to forge a valid
weak authenticator.

- A weak authenticator cannot be pre-computed without a non-reusable (or short-lived)
key disclosed only in a valid broadcast packet, and an attacker has very limited time to
forge (expensive) weak authenticators after seeing a validkey. Thus, it is difficult for
the attacker to forge usable weak authenticators.

- Even if an attacker has significant computational resources to forge one or more weak
authenticators, it is difficult to reuse these forged weak authenticators. Thus, this weak
authentication mechanism substantially increases the difficulty of launching successful
DoS attacks against broadcast authentication.

- The weak authentication mechanism has reasonable communication overhead. For ex-
ample, when 64-bit keys, message specific puzzles with strength l = 22 (which are
reasonably strong puzzles), 16-bit packet indexes are used, this approach introduces 14
bytes overhead per packet for signature-based broadcast authentication (compared with,
e.g., a 40-byte ECDSA signature), and 6 bytes overhead per packet forµTESLA-based
broadcast authentication (compared with an 8-byte key and an 8-byte MAC used by
µTESLA).

These desirable properties come with a cost. First, the proposed message specific puz-
zles require a computationally powerful sender with sufficient power supply. Second, the
generation of weak authenticators introduces a delay at thesender. The first issue is in
general not a problem; it is certainly acceptable to have oneor several laptop senders in
a typical sensor network deployment. The second issue is tolerable unless there is a real-
time requirement for the broadcast messages. For example, it is generally acceptable to
delay for a few minutes before disseminating a new task or a program image to all the
sensor nodes. Considering the benefits brought by message specific puzzles, we believe
the proposed techniques are useful and practical in wireless sensor networks.

We have implemented the proposed techniques on TinyOS, an operating system for net-
worked sensors, and evaluated them using a network of MICAz motes. Our results indicate
that the proposed techniques reasonably increase the program size on sensor nodes (e.g.,
1,317 bytes in ROM and 289 bytes in RAM for signature-based broadcast authentication).
We also confirm that the proposed weak authentication can be efficiently verified on reg-
ular sensor receivers (e.g., 14.6 ms to verify a weak authenticator on a MICAz mote). On
the sender side, the proposed techniques introduce tolerable delay (e.g., about 10 seconds
delay for reasonably strong message specific puzzles). In general, the experiments demon-
strate that the proposed techniques are useful on the current PC (as sender) and MICAz (as
receivers) platforms.

1.3 Organization

The remainder of this paper is organized as follows. The nextsection describes the as-
sumptions of the proposed techniques. Section 3 presents the proposed message specific
puzzle weak authentication mechanism, and discusses how tointegrate message specific
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puzzles with signature-based andµTESLA-based broadcast authentication, respectively.
Section 4 describes the implementation of the proposed techniques on TinyOS, an operat-
ing system for networked sensors [Hill et al. 2000], as well as experimental evaluation in a
network of one laptop and thirty MICAz motes. Section 5 discusses related work. Section
6 concludes this paper and points out some future research directions. The appendices give
more information related to the proposed techniques.

2. ASSUMPTIONS

2.1 Assumptions of Sensor Networks

We assume the senders of authenticated broadcast messages are computationally powerful
nodes (e.g., laptops), which also have sufficient power supply (e.g., charged in a vehi-
cle). There are certainly scenarios where the senders of broadcast messages are regular,
resource-constrained sensor nodes. Our techniques proposed in this paper do not apply to
such cases.

We assume signature-based and/orµTESLA-based broadcast authentication can be used
in sensor networks. This implies the following more specificassumptions. When signature-
based broadcast authentication is used, we assume regular sensor nodes can perform a
limited number of public key cryptographic operations, andcan finish each operation in
a reasonable amount of time. As discussed in the Introduction, this assumption has been
validated in [Gura et al. 2004]. For example, based on the results in [Gura et al. 2004], a
MICA2 mote can finish a 1024-bit RSA signature verification inabout 0.43 seconds, and
a 160-bit ECDSA signature verification in about1.62 seconds. However, such public key
cryptographic operations still consume substantially more resources (e.g., battery power)
than symmetric cryptographic operations, and can be exploited by attackers to launch DoS
attacks.

When signature-based broadcast authentication is used, wealso assume that a packet
transmitted in a sensor network is large enough to accommodate a public key signature.
As discussed earlier, using IEEE 802.15.4, ZigBee-compliant sensor nodes (e.g., MICAz
[Crossbow Technology Inc. ]) can support packet payload up to 102 bytes [IEEE Computer
Society 2003], despite the fact that the default payload size in TinyOS is only 29 bytes [Hill
et al. 2000]. Such a packet can certainly include, for example, a 160-bit ECDSA signature,
which requires40 bytes. To confirm this assumption, we performed experimentswith
MICAz motes to measure the packet delivery rate at differentdistances when the packet
payload size is 102 bytes. In our indoor experiments, the packet delivery rate for MICAz
is over 90% when the distance is 100 feet, compared with closeto 0% packet delivery rate
for MICA2. Appendix B shows more details.

When µTESLA or its variation is used for broadcast authentication, we assume the
clocks of all sensor nodes are loosely synchronized and maximum clock difference be-
tween any two nodes is known to all nodes. Moreover, we assumethe sender can distribute
the parameters required forµTESLA or its variation (e.g., key chain commitment, starting
time) to all the receivers.

We do not assume any specific broadcast protocol. The broadcast protocol can be simply
flooding, or probabilistic broadcast (e.g., [Ni et al. 1999;Stojmenovic et al. 2002; Levis
et al. 2004]). However, we do assume that in order to propagate a broadcast packet to
the entire network, it is necessary forsomereceivers to re-broadcast the packet. This is
certainly true for all existing broadcast protocols for wireless sensor networks due to the
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limited signal range.

2.2 Assumptions of Attackers

We assume the attacker can eavesdrop, inject, and modify packets transmitted in the net-
work. We assume the attacker has access to computationally resourceful nodes such as
laptops and workstations. In particular, the attacker may use multiple resource nodes in
parallel to speed up his attacks. We assume the attacker may use multiple colluding nodes
in different parts of the network (e.g., create wormholes between different parts of a net-
work). We assume the attacker may compromise some nodes and learn the cryptographic
secrets on them. However, the attacker cannot compromise the broadcast sender. Thus,
the attacker cannot forge valid signatures when signature-based broadcast authentication is
used, and nor can it forge valid MAC before the authentication key is disclosed in the case
of µTESLA-based broadcast authentication.

Our goal in this paper is to develop lightweight techniques to mitigate the DoS attacks
against broadcast authentication launched by such attackers. In other words, we would like
to enable regular sensor nodes to quickly identify most forged packets (if not all) without
performing the costly signature verifications or packet forwarding.

3. MESSAGE SPECIFIC PUZZLES

Our general approach is to use efficient cryptographic primitives to provide a weak au-
thenticator along with broadcast authentication in each broadcast packet. When digital
signatures are used for broadcast authentication, a sensornode does not have to verify the
digital signature if the weak authenticator cannot be verified. Similarly, whenµTESLA or
its variation is used, a sensor node can discard broadcast packets (instead of forwarding
them) when the weak authentication fails. In both cases, theweak authentication mecha-
nism can mitigate the DoS attacks.

As discussed in the Introduction, the proposed weak authentication mechanism has some
nice properties: The verification of a weak authenticator isvery efficient, but forging a
weak authenticator is time-consuming, though not infeasible. Moreover, it is computation-
ally infeasible to forge a weak authenticator before the broadcast sender discloses some
one-time (or short-lived) secret information. As a result,weak authenticators cannot be
pre-computed. Even if an attacker has sufficient computational resources to forge one or
more weak authenticators, it is difficult to reuse these forged weak authenticators. Thus,
this weak authentication mechanism substantially increases the difficulty of launching suc-
cessful DoS attacks against broadcast authentication.

We would like to emphasize that weak authenticators are not intended as a replacement
of digital signatures orµTESLA-based approaches. Instead, they are used as an additional
layer of protection to filter out forged broadcast packets soas to reduce the resource con-
sumption (especially the energy consumption) due to DoS attacks.

For the sake of presentation, we refer to the data item used ineach broadcast packet
for authenticating the packet as thebroadcast authenticator. It is a digital signature when
signature-based broadcast authentication is used, and thecombination of a MAC and a
disclosed key when aµTESLA-based approach is used. Moreover, we refer to the data
item for weak authentication as theweak authenticator.

In the following, we first present a strawman approach to illustrate the basic idea and
the potential threats. We then gradually enhance this approach to obtain the final solution.
For simplicity, we assume there is one broadcast sender and many receivers in the later
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presentation. But our techniques can certainly be used whenthere are multiple broadcast
senders.

3.1 Weak Authentication through One-Way Key Chains: A Strawman Approach

This strawman approach uses one-way key chains to provide weak authentication. One-
way key chains have been used in several scenarios to provideefficient authentication.
Examples include S/Key [Haller 1994], TESLA [Perrig et al. 2000], and its variations
[Perrig et al. 2001; Liu and Ning 2003; 2004].

To generate a one-way key chain, the sender first selects a random valueKn as the last
key in the key chain, and then repeatedly performs a (cryptographic) hash function, which
is a one-way function, to compute all the other keys. That is,Ki = F (Ki+1), whereF is
the hash function and0 ≤ i ≤ n−1. With the hash functionF , givenKj in the key chain, it
is easy to compute all the previous keysKi (0 ≤ i < j), but it is computationally infeasible
to compute any of the later keysKi (j < i ≤ n). Thus, with the knowledge of the initial
key K0, a receiver can authenticate any key in the key chain by merely performing hash
function operations. The initial keyK0 is often called thecommitmentof the key chain.
Figure 2 illustrates an example of one-way key chain.

KnKn-1K1K0 ...F F FFF
K2

Fig. 2. An example one-way key chain.Kn is randomly generated.Ki = F (Ki+1), whereF is a pseudo
random function and0 ≤ i ≤ n − 1. K0 is used as the commitment of the key chain.

The sender can use these keys as weak authenticators. Beforetransmitting the broadcast
packets, the sender distributes the commitmentK0 of the key chain to all the receivers.
This can be done through, for example, pre-distribution. Inthis paper, we assume the
commitment has been reliably distributed to all receivers.When the sender is ready to
broadcast thei-th packet with messageMi, where1 ≤ i ≤ n, it first generates the broad-
cast authenticatorBAi (e.g., a digital signature). It then broadcasts thei-th packet, which
includes the indexi, the messageMi, the broadcast authenticatorBAi, and thei-th weak
authenticatorKi.

Each receiver keeps the most recently authenticated weak authenticatorKj and the cor-
responding indexj. Initially, j = 0 andKj = K0. Upon receiving a packet with indexi,
each receiver first checks the weak authenticator by verifying that (1) thei-th packet has
not been been previously authenticated and (2)Kj = F i−j(Ki). The receiver discards the
packet and stops if this verification fails. When signature-based broadcast authentication is
used, it can further verify the broadcast authenticatorBAi (i.e., the signature). However,
whenµTESLA (or its variation) is used, the receiver cannot verifythe broadcast authen-
ticator immediately except for the disclosed key (for earlier packets) and the time-based
security condition, until it receives the corresponding key disclosed in a later packet. Fi-
nally, the receiver replacesj with i, andKj with Ki, and forwards the broadcast packet if
necessary.

The use of one-way key chains provides some nice properties:Each weak authenticator
Ki can be easily verified by regular sensor nodes. Moreover, before the broadcast of
the i-th packet, an attacker does not have access toKi, and thus cannot forge the weak
authenticator (due to the one-way property of hash functionF ).
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3.1.1 Weakness of the Strawman Approach.This strawman approach also has an ob-
vious weakness. A malicious node may exploit an observed weak authenticator and the
communication delay (or network partition) to forge broadcast packets, though it cannot
forge a weak authenticator directly. Specifically, once a malicious node receives a broad-
cast packet, it may repeatedly replace the actual message and re-broadcast the modified
packet. Moreover, it may use a fast channel (e.g., a wormhole[Hu et al. 2003]) to trans-
mit the weak authenticator to another malicious node in a region that has not received
the packet. The latter malicious node can then forge broadcast packets using this weak
authenticator.

The strawman approach has a further implication for signature-based broadcast authen-
tication. If the valid broadcast packet reaches the nodes being attacked within a reasonable
amount of time, the number of signature verifications can still be bounded, since a receiver
drops the packets whose index numbers belong to some previously verified packets. How-
ever, if the nodes being attacked are isolated from the sender due to network partition, the
attacker can consume their battery power by forcing these nodes to perform an unbounded
number of signature verifications. Note thatµTESLA and its variations are not affected
by such attacks, because broadcast packets are only valid for a limited period of time due
to the time-based security condition (i.e., a broadcast packet is invalid when it is received
after the corresponding authentication key may have been disclosed).

3.2 Message Specific Puzzles Based on One-Way Key Chains

In this subsection, we develop an initial version of messagespecific puzzles based on the
strawman approach. We will improve it for signature-based andµTESLA-based broadcast
authentication in the next subsections.

Our idea is to use cryptographic puzzles to reduce the possibility that an attacker may
exploit an observed weak authenticator to forge broadcast packets. Intuitively, a sender
(or an attacker) has to solve a cryptographic puzzle [Juels and Brainard 1999] in order to
generate a valid weak authenticator. The puzzle solution isthen used as the weak authen-
ticator. A receiver can efficiently verify a weak authenticator; however, it takes an attacker
a substantial amount of time to forge a weak authenticator.

Traditional cryptographic puzzles (e.g., client puzzles [Juels and Brainard 1999; Aura
et al. 2001; Waters et al. 2004], congestion puzzles [Wang and Reiter 2004]) require in-
teractions between a client and a server. However, broadcast in sensor networks, which
involves one sender and a large number of receivers, does notpermit such interactions.
Moreover, we have to prevent an attacker from pre-computingpuzzle solutions. Thus, we
have to develop additional techniques to make this idea feasible.

Our solution iskeyed message specific puzzles based on one-way key chains(or briefly,
message specific puzzles). Intuitively, we consider each broadcast message, along with the
message index and the broadcast authenticator, as a (message specific) puzzle. To prevent
an attacker from pre-computing puzzle solutions to forged messages, we add in such a
puzzle a previously undisclosed key in the one-way key chain. As a result, an attacker
cannot pre-compute a puzzle solution until such a key is released by the sender. Upon
receiving such a packet, any node can easily verify the puzzle solution. However, we
develop the puzzle system in such a way that it will take a substantial amount of time to
solve a puzzle. As a result, even if the keyKi is released in a broadcast packet, an attacker
cannot immediately solve the puzzle for a forged packet, andthus cannot immediately
launch DoS attacks.
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Fp

(2) i | Mi | BAi | Ki | Pi

 0 0 … 0 x … x
l bits

(1) Kj = F(i-j)(Ki)

Fig. 3. Message specific puzzles

3.2.1 Basic Construction.Now let us describe the
details of message specific puzzles. As in the strawman
approach, we assume the sender has generated a one-
way key chain consisting ofK0, K1, ..., Kn, and dis-
tributedK0 to all potential receivers. Thei-th keyKi

(1 ≤ i ≤ n) in the one-way key chain is used for the
weak authentication of thei-th broadcast packet. We
also assume there is a hash functionFp known to the
sender and all the receivers.

Given thei-th messageMi, the sender first generates
the broadcast authenticatorBAi. The indexi, the mes-
sageMi, the broadcast authenticatorBAi, andKi then
constitute the puzzle, which we call thei-th message
specific puzzle. For the sake of presentation, we callKi the (i-th) puzzle key, and denote
the solution to this puzzle asPi. As shown in Figure 3, a valid solutionPi to the i-th
message specific puzzle, where1 ≤ i ≤ n, must satisfy the following two conditions:

(1) The puzzle keyKi is thei-th key in the one-way key chain, and

(2) After applying the hash functionFp to thei-th message specific puzzle and its solution,
we get an image where the firstl bits are all “0”. That is,

Fp(i|Mi|BAi|Ki|Pi) = 00...0
︸ ︷︷ ︸

l bits

xx...x,

where “xx...x” represents any bit pattern. The parameterl is called thestrengthof the
puzzle.

Because of the one-way property of the hash functionFp, one has to search through the
space of possible solutions to solve the puzzle. In other words, giveni, Mi, BAi, andKi,
for each candidate solutionP ′

i , the sender (or an attacker) has to verify if the firstl bits of
Fp(i|Mi|BAi|Ki|P

′

i ) are all “0”. The sender is expected to try2l possible solutions before
finding the right one, as we will show later in our analysis.

To take advantage of message specific puzzles, we use the puzzle keyKi (i.e., thei-th
key in the one-way key chain) and the puzzle solutionPi together as theweak authenticator
for thei-th broadcast packet. Given thei-th broadcast messageMi, the sender first gener-
ates the broadcast authenticatorBAi, retrieves the puzzle keyKi, and computes the puzzle
solutionPi. The sender then broadcasts the packet with the payloadi|Mi|BAi|Ki|Pi.

Upon receiving a broadcast packet, each receiver first verifies the puzzle key usingF and
K0 (or a previously verified puzzle key). Only when this verification is successful does the
node verify the puzzle solution. If the puzzle solution is invalid, the receiver will simply
drop this packet. Thus, without first solving some message specific puzzles, an attacker
cannot force the nodes to verify digital signatures in forged packets (when signature-based
broadcast authentication is used), nor can it force the nodes to forward forged packets
(whenµTESLA or its variation is used).

The requirement that the firstl bits of the hash image are all “0” is an arbitrary decision.
Indeed, the firstl bits can be any fixed bit pattern. Another option is to have dynamic bit
patterns that are changed periodically. However, this would require the synchronization
of the sender and the receivers. Moreover, having dynamic bit patterns does not make
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the puzzle solutions harder to find, since each puzzle solution is already protected with a
(dynamic) puzzle key. Thus, we do not consider this option inour scheme.

Note that the use of puzzle keys is different fromµTESLA. In µTESLA, the authenti-
cation key is disclosed after the sender is certain that all reachable receivers have received
the corresponding broadcast packets. Thus, before the release of aµTESLA authentica-
tion key, the receivers cannot properly authenticate the received packets. This is the place
where an attacker may exploit to launch DoS attacks. In contrast, message specific puzzles
disclose a puzzle key in the same packet that uses this key. Asa result, a receiver can
immediately authenticate the puzzle solution.

Since the sender needs to solve a message specific puzzle before sending a broadcast
packet, the computation involved in finding the puzzle solution should finish in a reason-
able amount of time, though it should not be trivial to solve such a puzzle. Thus, an
attacker may commit significant computational resources (e.g., multiple powerful comput-
ers) to compute puzzle solutions (and thus the weak authenticators) for forged packets once
it obtains the puzzle key in a valid broadcast packet. When signature-based broadcast au-
thentication is used, if the attacker is able to use a fast channel (e.g., a wormhole [Hu et al.
2003]) to send forged packets to nodes that have not receivedthe valid broadcast packet,
it may force these nodes to perform unnecessary signature verifications. WhenµTESLA-
based approaches are used, the attacker may force the nodes to forward forged packets,
which are indistinguishable from the valid one before the authentication key is disclosed.
In both cases, the attacker can still consume sensor nodes’ resources at the cost of solving
puzzles.

3.2.2 Minimizing Reuse of Forged Puzzle Solutions.To mitigate the impact of forged
packets, we have to reduce attacker’s chances to reuse forged puzzle solutions. Otherwise,
the attacker may compute only a few forged puzzle solutions,but force receivers to perform
signature verifications or packet forwarding many times. Inother words, we would like to
ensure that an attacker has to pay more effort to generate higher impact.

We consider a puzzle solution in a received broadcast packetas aforgedone if the puzzle
solution is valid but the broadcast authenticator in the same packet is not. When signature-
based broadcast authentication is used, a receiver can identify a forged puzzle solution after
verifying the signature in the packet. However, whenµTESLA-based approach is used, no
receiver can detect forged puzzle solutions before the authentication key is disclosed. In
this case, we consider each puzzle solution as a candidate offorged puzzle solution.

To minimize the impact of attacker reusing forged puzzle solutions, we may keep a
buffer at each node for broadcast packets with potentially forged puzzle solutions. Specif-
ically, we save the hash image of each broadcast packet in this buffer if the packet has a
(potentially) forged puzzle solution. For brevity, we callthis buffer thepacket hash buffer.
If an attacker reuses a previously forged packet, each receiver may identify the repeated
transmission by searching in this buffer before verifying the digital signature or forwarding
the broadcast packet.

Note that the above hash function does not have to have strongcryptographic properties
(i.e., weak and strong collision free properties), given that a packet being hashed has to
have a valid puzzle solution. The purpose of this hash is to derive a packet summary to
identify a previously received packet. Such retransmittedpackets will certainly result in
the same hash images. However, givenm hash images of previously received packets and
ah-bit hash function, the probability of mistaking a fresh packet for one of them previous
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packets (i.e., rejecting an authentic broadcast packet as aforged one) ism
2h . Thus, having,

for example, a 40-bit hash function would provide sufficiently low probability of rejecting
an authentic broadcast packet with a reasonable number of buffer entries (e.g.,m = 50).

We use themulti-buffer random selectionstrategy in [Liu and Ning 2003; 2004] to
manage the packet hash buffer. (Note that in signature-based broadcast authentication, this
is no longer necessary for a given broadcast packet once the authentic one is received.)
Specifically, assume each node hasm entries in the packet hash buffer. For each incoming
broadcast packet with a valid puzzle solution, each node first checks if the packet hash
already exists in the buffer, and drops the packet if yes. Otherwise, for the packet with the
k-th forged puzzle solution, ifk ≤ m, the node simply saves the packet hash in an empty
buffer entry. Ifk > m, the node does not have enough buffer to save all forged packet
hashes. In this case, the node saves it with probabilitym

k
. If the packet hash is to be saved,

the node randomly picks a buffer entry and replaces the old entry with the new one.
It is easy to see that when the attacker has more thanm forged puzzle solutions, the

more frequently the attacker uses one particular forged puzzle solution, the more possible
the corresponding packet hash is in the buffer when it reaches a sensor node (and is then
discarded). Thus, a good strategy for the attacker is to use these forged puzzle solutions
at the same frequency. In this case, it is also easy to verify that givenk′ (m < k′ ≤ k)
distinct forged puzzle solutions, each solution has the same probablym

k′
to have an entry

in the buffer.
The sending procedure for both signature-based andµTESLA-based approaches are the

same except for the generation of broadcast authenticators. However, the receiving pro-
cedure with which each node processes incoming broadcast packets varies slightly for
signature-based andµTESLA-based broadcast authentication due to their difference in
providing immediate authentication. In signature-based broadcast authentication, each re-
ceiver can verify the signature immediately after the weak authenticator. Thus, once the
i-th broadcast packet is received and authenticated, each receiver can discard all the later
packets claimed as thei-th packet. However,µTESLA-based broadcast authentication
does not provide immediate authentication. As a result, allpackets that pass weak au-
thentication are potentially the “correct” packets, and have to be buffered and forwarded if
necessary. In the latter case, it is critical to have an appropriate puzzle strength to reduce
the number of packets forgeable by an attacker.

3.3 Analysis

In the following, we provide analysis for various aspects ofthe proposed scheme, includ-
ing the cost of finding a puzzle solution, expected sender-side delay, choice of puzzle pa-
rameters, collision of valid puzzle solution and buffered forged puzzle solutions, security
analysis, and performance overhead.

3.3.1 Cost of Finding a Puzzle Solution.Assume the hash functionFp is a pseudo
random function. Given a puzzle strengthl, the probability of finding a puzzle solution
within x trials isPx,l = 1 − (1 − 2−l)x. Thus, the expected number of trials of finding a
puzzle solution is

E{x} =

∞∑

x=1

Px,l · x =

∞∑

x=1

(1 − 2−l)x−1 · 2−1 · x = 2−l ·

∞∑

x=1

(1 − 2−l)x−1 · x.
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It is easy to compute that
∑

∞

x=1 ax−1 · x = 1
(1−a)2 when0 ≤ a ≤ 1. Thus, we have

E{x} = 2l. In other words, on average it takes2l trials to find a solution to a puzzle with
strengthl. Figure 4 shows the relationship betweenPx,l and x

2l for several different values
of l.

Figure 4 reveals an important issue: It may take more than2l trials to find a solution for
a message specific puzzle with strengthl. Indeed, there is no specific bound on the number
of trials before a puzzle solution can be found. However, when the number of trialsx
grows large enough, a puzzle solution can be found with a veryhigh probability. Assume
the sender performs up tox = 2l+c trials, wherec is a constant. In particular, consider
l = 128, which represents a substantially strong puzzle. Whenc = 6, we can compute
Px=2128+6,l=128 = 1 − 1.6 × 10−28. Moreover, we can prove thatPx=2l+c,l decreases
whenl increases. (Detailed proof can be found in Appendix C.) Thisimplies that when
l ≤ 128, the probability to find a solution to a puzzle with strengthl ≤ 128 within 2l+6

trials is at least1 − 1.6 × 10−28.
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Fig. 4. Probability of finding a puzzle so-
lution (Note that these lines almost over-
lap with each other)

3.3.2 Sender-Side Delay.The variable
cost of finding a puzzle solution has different
implications in signature-based andµTESLA-
based broadcast authentication. With signature-
based broadcast authentication, the sender al-
ways uses the same private key to generate
signatures. Given a broadcast message, the
sender can simply sign the message, compute
the puzzle solution, and broadcast the packet
once a solution is found. The time used to gen-
erate a signature on a regular computer (e.g.,
around 20 ms in our experiments) is negligi-
ble compared with the time needed to solve a
puzzle. Thus, the sender-side delay introduced
by message specific puzzles is approximately
proportional to the cost of finding a puzzle so-
lution.

However, µTESLA-based broadcast au-
thentication uses different keys in different time intervals; the sender needs to use a key
that will not be obsolete when the sender finds a puzzle solution. To address this issue,
we propose to take a multi-round approach. When a broadcast message is to be sent, the
sender first estimates the remaining time in the currentµTESLA time interval. Because
the cost of trying one puzzle solution is constant, the sender can then estimate the number
X of possible puzzle solutions that can be tested before it is too late to authenticate it in
the current time interval. (Note that we have to consider thetime required to process and
transmit the packet.) The sender can then determine the appropriate authentication key
and generate the broadcast authenticator, assuming the puzzle can be solved in time. The
sender then searches for up toX possible puzzle solutions. If a solution is found, the sender
can then broadcast the packet. Otherwise, the sender can estimate the maximum number of
puzzle solutions that can be tested for the nextµTESLA time interval, and repeat the above
process again with the nextµTESLA key. (Due to the change in theµTESLA broadcast
authenticator, the sender will have a different message specific puzzle.) This process may
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continue until the right puzzle solution is found.
It is easy to see that the sender-side delay is still determined by the number of possible

puzzle solutions the sender has tried before finding the right one. Thus, the sender-side
delay forµTESLA-based broadcast authentication is approximately the same as that for
signature-based broadcast authentication, though the sending procedure is different.

3.3.3 Choice of Parameters.We need to decide several parameters before we can use
the message specific puzzles: the hash functions, the puzzlestrengthl, and the buffer size
m for forged puzzle solutions.

Similar to the existing cryptographic puzzles (e.g., client puzzles [Juels and Brainard
1999; Aura et al. 2001; Waters et al. 2004], congestion puzzles [Wang and Reiter 2004]),
we only use the one-way property (i.e., pre-image resistance) of cryptographic hash func-
tions in message specific puzzles. Thus, as indicated in [Juels and Brainard 1999], we may
use a fast hash function such as MD4 [Rivest 1992], or a fast block cipher such as RC6
[Rivest et al. 1998] as the hash functionFp.

Puzzle strengthl is an important parameter for message specific puzzles. The decision
of this parameter should follow two principles: First, the sender should be able to solve the
puzzle within a reasonable amount of time. An overly large value for l will result in a long
delay before transmitting broadcast packets on the sender’s side. Second, the parameter
should not be too small. In other words, the attacker should not be able to solve a large
number of puzzles before the valid broadcast packet is propagated throughout the network.
Based on these two principles, the network designer should determine the valuel through
balancing the maximum delay the sender can tolerate before sending the broadcast packet
and the risk of DoS attacks against signature verifications.

The larger packet hash buffer a node has, the better it can minimize the reuse of forged
puzzle solutions. In practice, parameterm should be determined based on the available
storage on sensor nodes and the threat model. For example, when l = 22, we may use
a 40-bit hash function to process potentially forged packets with valid puzzle solutions
before saving the packet hashes. If there are more than 250 bytes available on each node,
we may setm = 50. Based on the benchmark result for Crypto++ 5.2.1 [Dai 2004], it takes
about 3.766 seconds on average for a 2.1 GHz Pentium 4 processor to solve one puzzle if
SHA-1 is used. Thus, this setting can force an attacker with such a machine to spend about
196 seconds on average (after finding 52 solutions) in order to have a chance to reuse a
previously forged puzzle solution.

3.3.4 Security Analysis.The one-way property of the hash functionFp brings a nice
feature to message specific puzzles: An attacker has to search in a solution space in order
to find a weak authenticator for a forged packet. As discussedearlier, given the puzzle
strengthl, an attacker needs to try2l hash function operations on average in order to find
a puzzle solution. Moreover, the use of one-way key chains prevents an attacker from pre-
computing puzzle solutions. In other words, it is computationally infeasible for an attacker
to compute a puzzle key that has not been disclosed by the sender. Thus, the attacker cannot
solve the message specific puzzle to forge thei-th broadcast packet until it has received a
valid puzzle keyKi in the (real)i-th broadcast packet.

We temporarily assume that there is no network partition so that all broadcast packets
can reach all the nodes in a finite amount of time. (We will discuss the case where there are
network partitions later.) Due to the difficulty of solving message specific puzzles, given
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an appropriate puzzle strength, an attacker may not have enough time to forge a weak
authenticator before the broadcast packet reaches all sensor nodes if the attacker does not
have substantial computational resources.

An attacker can certainly commit a lot of computational resources to forging weak au-
thenticators. For each forged packet, the attacker has to solve a message specific puzzle,
which involves on average2l hash function operations. Since each receiver hasm entries
in the packet hash buffer, the attacker cannot reuse any forged packet before he/she solves
more thanm puzzles. Consider the earlier example with puzzle strengthl = 22 and 40-bit
buffer entry. A 250 byte buffer for forged puzzle solutions will force an attacker with one
2.1 GHz Pentium 4 processor to compute for at least about 196 seconds on average before
the attacker has a chance to reuse a forged puzzle solution.

Suppose the attacker has finished computingk′ (k′ > m) puzzle solutions, and is send-
ing thek-th (k > k′) forged packet. In the best case, the attacker can succeed inreusing a
previous puzzle solution with probability1 − m

k−1 . This happens when the attacker sends
a newly forged puzzle solution (i.e., thek′-th one) as the(k − 1)-th packet and attempts
to reuse it in thek-th packet. This probability will drop quickly as the attacker attempts to
reuse the same forged puzzle solution.

Compared with the simple signature-based orµTESLA-based broadcast authentication,
where an attacker can claim an arbitrary message as a broadcast packet and force many
sensor nodes to verify signatures or forward packets, message specific puzzles have sub-
stantially increased the cost of DoS attacks. Moreover, as discussed earlier, even if the
attacker has enough resources to launch such attacks, the forged weak authenticators are
valid only for a limited period of time. In particular, when signature-based broadcast au-
thentication is used, a forged broadcast packet has to arrive at a sensor node before the real
packet to generate an impact.

Since each broadcast packet includes a message index for thesender, each message
specific puzzle is unique. Moreover, the puzzle keys also change from packet to packet.
Thus, puzzle solutions will also change with a high probability (approximately1 − 2−l),
and cannot be reused for later messages.

3.3.5 Performance Overheads.Message specific puzzles introduce light computational
overhead on regular sensor nodes. For each broadcast packet, a receiver needs to perform a
few hash function operations to verify the weak authenticator. When there are DoS attacks
against signature verifications, the proposed approach canreduce the computational cost
significantly by reducing the number of expensive signatureverifications. However, the
broadcast sender has to solve a message specific puzzle with strengthl in order to gener-
ate a valid weak authenticator, which involves2l hash function operations on average per
broadcast packet. Moreover, the sender needs to pre-compute a one-way key chain before
the deployment of the network. This includes, for example, 10,240 hash function oper-
ations for a chain of 10,240 puzzle keys. As discussed earlier, we assume the broadcast
sender is a powerful computer with external power supply, and can perform such opera-
tions.

Message specific puzzles require some space in each broadcast packet. Besides the
message content and the digital signature, each packet has to include a message index,
a puzzle key, and a puzzle solution. In general, a 16-bit index is enough for broadcast
messages, and a 64-bit puzzle key is sufficient to prevent attacks against the one-way key
chain. As discussed earlier, the solution to a message specific puzzle with strengthl (l ≤
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128) requires up tol + 6 bits space in the packet with at least probability1− 1.6× 10−28.
They together require2 + 8 + ⌈ l+6

8 ⌉ bytes space in the packet (e.g., 14 bytes whenl =
24). Considering the importance of broadcast authenticationand the maximum payload
size of 102 bytes in ZigBee-compliant sensor nodes (e.g., MICAz), such an overhead is
acceptable. This overhead can be further reduced by 10 bytesfor µTESLA, as we will
show later.

The storage overhead on regular sensor nodes is reasonable.For both signature-based
andµTESLA-based broadcast authentication, besides the data structure for signature or
µTESLA, each node has to maintain the index of the most recently verified broadcast
packet, the corresponding puzzle key, and the buffer for thehash images ofm forged
puzzle solutions. When 16-bit indexes, 64-bit puzzle keys,and a 40-bit hash function (for
saving forged packets) are used, these require10 + 5 · m bytes space for each sender. For
example, these require 260 bytes whenm = 50. However, the storage requirement on the
broadcast sender is much heavier. The sender has to keep at least the unused part of the
one-way key chain, unless it computes the puzzle key every time it is needed. This requires,
for example, 80,960 bytes for a chain of 10,240 64-bit keys. Given the assumption that the
sender is a powerful node (e.g., a laptop), this is not a problem at all.

3.3.6 A Remaining Threat.A threat still remains for signature-based broadcast au-
thentication when there are network partitions, even if we use message specific puzzles
as weak authenticators. Consider the following scenario: Acomputationally resourceful
attacker observes thei-th broadcast packet transmitted by the sender, and learns the puzzle
keyKi. Thus, the attacker can forge thei-th broadcast packet with an invalid signature but
valid weak authenticator. This is generally not a big threatto a connected network, because
a node will discard the forged packets after receiving the valid broadcast packet. However,
when some nodes are isolated from the sender (i.e., they cannot receive the packet from the
sender), the attacker can repeatedly forge packets and sendto these nodes, and thus force
them to verify the (invalid) signatures.

It is easy to see that the above problem caused by network partition is not a threat to
µTESLA-based approaches, because receivers can easily filter out forged packets when
they do not satisfy the time-based security condition. Thatis, all nodes discard packets
that are received after the corresponding keys are possiblydisclosed.

3.4 Optimization for Signature-Based Broadcast Authentication

In the following we discuss two techniques to optimize the integration of message specific
puzzles and signature-based broadcast authentication. Wefirst enhance message specific
puzzles to mitigate the aforementioned attacks against nodes isolated from the sender. For
brevity, we call a node unreachable by the sender anisolated node.

3.4.1 Time Limited Message Specific Puzzles.The essential reason for the above attack
is that a puzzle key remains valid for a node as long as this node has not authenticated a
broadcast packet that uses this or a later key in the key chain. Our solution is thus to
invalidate this condition.

Our solution is inspired by TESLA [Perrig et al. 2000]. As shown in Figure 5, we divide
the time period for broadcasting into multiple time intervals, labeled asI1, I2, ...,In. Each
puzzle keyKi in the one-way key chain is associated with the time intervalIi, where
1 ≤ i ≤ n. The sender usesKi for weak authentication only during the time intervalIi.
For convenience, we denote the starting point and the end point of intervalIi (1 ≤ i ≤ n)
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Time...I1 In-1 In

T1T0 T2 Tn-2 Tn-1 Tn
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KnKn-1K1K0 ...F F FFF
K2

Fig. 5. One-way key chain in time-limited message specific puzzles. EachKi is only valid betweenTi−1 − δc

andTi + δc + δp, whereδc is the maximum clock difference between the sender and any receiver, andδp is the
maximum propagation delay.

asTi−1 andTi, respectively.
We assume the clocks of the sender and all receivers are loosely synchronized. More pre-

cisely, we assume the clock difference between any two nodesis bounded byδc. Moreover,
we assume the propagation delay of any broadcast packet in a network without partition
is bounded byδp. This delay may also include the time required by signature verification
at intermediate forwarding nodes. At each receiver, each key Ki is only valid between
Ti−1 − δc andTi + δc + δp (in the local clock). When a node receives a broadcast packet
at local timet with a weak authenticator, which is composed of the puzzle key Ki and
the puzzle solutionPi, it first verifies the conditionTi−1 − δc < t < Ti + δc + δp, and
continues to verify the packet only when this condition is satisfied. As a result, even if a
node is isolated from the sender, an attacker can only use a cracked weak authenticator for
a limited period of time.

Note that if the sender and the receivers are loosely synchronized, they can simply use
TESLA orµTESLA instead of signature for broadcast authentication. However, when re-
sources on the sensor nodes permit, it is desirable to use signatures (rather than TESLA or
µTESLA) for broadcast authentication, because using signatures offers immediate authen-
tication of received packets. Though the immediate authentication mechanism in [Perrig
et al. 2001] provides receiver immediate authentication, it can be easily disrupted if there
are packet losses. Therefore, using signatures along with message specific puzzles has
some unique properties that cannot be offered by TESLA orµTESLA alone.

The reader may have noticed that when the sender has not broadcast for a relatively
long period of time, all the receivers have to perform a potentially large number of hash
function operations to verify the key in a new broadcast packet. A simple solution to this
problem is to have the sender periodically (e.g., for every 100 time intervals) broadcast
the most recently expired key to the network. (Note that suchkeys are self-authenticated
because of the one-way key chain.) After receiving and authenticating such a key, each
receiver replaces the most recently authenticated puzzle key with the new one. As a result,
the receiving nodes can spread the verification of the puzzlekeys in the one-way key chain
over time.

Time limited message specific puzzles retain the security and performance properties of
message specific puzzles discussed earlier. Moreover, it can prevent attackers from launch-
ing unlimited DoS attacks against isolated nodes, as discussed earlier. This extension does
bring a restriction along with the benefit: The sender cannotsend more than one broadcast
packet per time interval, since each time interval has only one puzzle key. This can be
addressed by having short time intervals, or having multiple puzzle keys per interval. The
sender may need a potentially large number of puzzle keys, many of which are not used.
Such a problem can be potentially addressed by using sandwich chains [Hu et al. 2005] or

ACM Journal Name, Vol. , No. , 20.



18 · Ning, Liu and Du

multi-level key chains [Liu and Ning 2003; 2004]. These approaches provide more com-
plex but efficient ways to organize key chains, and allow receivers to skip the computation
of intermediate keys when authenticating later keys. Sincethese are not the focus of this
paper, we do not discuss them in detail.

3.4.2 Adaptive Verification.As discussed earlier, broadcast in a wireless sensor net-
work typically requires that some nodes receiving an authenticated broadcast packet re-
broadcast it (locally) to propagate the packet across the network. In the proposed (time
limited) message specific puzzles, such a node verifies the puzzle solution and the digital
signature before forwarding the broadcast packet. Though the verification of solutions to
message specific puzzles is trivial, signature verificationtakes much longer time. This will
certainly introduce undesirable delays in large sensor networks.

An alternative approach is to have each node re-broadcast the packet right after veri-
fying the puzzle solution but before verifying the signature. However, message specific
puzzles areweakauthenticators intended for mitigating DoS attacks against broadcast au-
thentication. As discussed earlier, they can be forged if the attacker devotes significant
computational resources. If a node uses this alternative approach, it may forward forged
packets before realizing that they are forged.

It seems that both approaches are not satisfactory. To address this dilemma, we propose
an adaptive approach to determining the order of signature verification and forwarding of
broadcast packets. Intuitively, this approach tries to detect attempts of DoS attacks against
signature verifications. In normal situations where there are no such attacks, each node
re-broadcasts a broadcast packet once the weak authenticator is verified, and then verifies
the signature. However, when there are DoS attacks against signature verifications, each
node first verifies the digital signature, and then re-broadcasts the packet if the signature is
valid.

S1: Pessimistic ModeS0: Optimistic Mode

Nf > 0

Nf = 0

Fig. 6. Adaptive verification (Nf : # of failed sig-
nature verifications in the pastw time units)

Figure 6 illustrates this approach.
Each node works in two modes:op-
timistic modeandpessimistic mode.
In the optimistic mode, a node re-
broadcasts the packet locally once it
verifies the weak authenticator. In
contrast, in the pessimistic mode, a
node verifies both the weak authen-
ticator and the signature, and re-
broadcasts the packet only when both
verifications pass. The switch be-
tween these two modes is determined by a detection metricNf , the number of failed sig-
nature verifications in the pastw time units, wherew is a system parameter determined
by the security policy. Note that a node verifies a signature only when the weak authen-
ticator is valid. Thus,Nf represents the number of forged broadcast packets with valid
weak authenticators but invalid signatures. A node initially works in the optimistic mode.
It switches to pessimistic mode ifNf becomes greater than 0, and may switch back to the
optimistic mode whenNf drops to 0.

Adaptive verification can be used with either message specific puzzles or time limited
message specific puzzles, and retains the same security properties. When there are DoS
attacks, this approach is exactly the same as proposed earlier. However, in normal situ-
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ations where there are no such attacks, adaptive verification can substantially reduce the
broadcast delay.

3.5 Optimization for µTESLA-Based Broadcast Authentication

As discussed earlier, both message specific puzzles andµTESLA use one-way key chains.
In this subsection, we propose to reuse theµTESLA key chain for message specific puz-
zles. An immediate benefit is that only one key needs to be disclosed in a broadcast packet.
Consider the small packet size typically allowed in low-power wireless communication
(e.g., 102 bytes payload size in ZigBee standards). Such an approach provides space sav-
ings that could be important for the applications. For example, suppose we use message
specific puzzles with strengthl = 22 and reserve 4 bytes for a puzzle solution. Further
assume we use 64-bit keys. This approach reduces the space overhead introduced by mes-
sage specific puzzles from 14 bytes per packet to 4 bytes per packet (due to the reuse of
the index and the disclosed key), resulting in a 71% reduction in space requirement. More-
over, by using the same key chain for bothµTESLA and message specific puzzles, the
management of key chains becomes easier.

Note that we cannot use aµTESLA key that has not been disclosed as a puzzle key,
since the puzzle key has to be released in a broadcast packet.Moreover, we should try to
avoid using a key disclosed earlier, because an attacker mayuse such a key to forge weak
authenticators once he/she learns the key. Thus, the best choice is to use the most recently
disclosedµTESLA key as the puzzle key. Specifically, we propose to reusetheµTESLA
key disclosed in each packet as the puzzle key for this packet. Except for the choice of
puzzle keys, this approach works exactly the same as the basic construction presented in
Section 3.2.

It may appear that this approach also introduces some drawbacks due to the repeated
use of the same puzzle key. In other words, since the sameµTESLA key may be disclosed
in all packets broadcast in the same time interval, it is a valid puzzle key for an entire
time interval, and may be re-used as the puzzle key for multiple packets. An attacker may
exploit this fact to forge more weak authenticators once he/she learns the puzzle key.

However, we show this is indeed not the case. Consider the basic message specific puz-
zle construction forµTESLA-based broadcast authentication. It is known thatµTESLA-
based approaches do not provide immediate authentication.As a result, a receiver cannot
fully authenticate a broadcast packet until the corresponding µTESLA key is disclosed.
Thus, an attacker can use a puzzle key learned from a broadcast packet to forge as many
weakly authenticated packets (i.e., packets with valid weak authenticators) as permitted by
his/her computational resources. However, a receiver can still partially detect forged pack-
ets using the disclosedµTESLA keys. Specifically, if a weakly authenticated packet does
not have the most recently disclosedµTESLA key, it can be identified as a forged packet.
Moreover, if a puzzle key has been used in a previous time interval, the packets weakly
authenticated in a later time interval using the same puzzlekey must all be forged. This
is because in the basic message specific puzzle construction, puzzle keys are not reused.
Thus, in the basic message specific puzzle construction forµTESLA-based broadcast au-
thentication, the valid period during which an attacker canreuse a puzzle key to forge
packets is about one time interval inµTESLA. This is exactly the same as the proposed
optimization in this subsection.
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3.6 Limitations

Despite the useful properties, message specific puzzles also have some limitations. First,
the broadcast sender has to solve a puzzle before broadcasting a message. This requires that
the sender must be a computationally powerful node with sufficient power supply, and also
implies that there will be a delay before the transmission ofthe packet. However, in certain
applications (e.g., task dissemination without real-timerequirements), these problems are
tolerable in exchange of the mitigation of the DoS attacks.

One may be concerned that the sender-side delay may accumulate when the sender needs
to transmit a large number of packets to broadcast a large amount of data in a short period
of time. Because every broadcast packet may require a message specific puzzle and in-
troduce a delay, the aggregated delay could be substantial.A good example is network
based reprogramming, during which the sender needs to propagate a new program image
to all the sensor nodes. Fortunately, in such cases, we do nothave to digitally sign (or
authenticate withµTESLA) every single packet. For example, Deng et al. [2006] gives
an approach to only sign the first packet, which authenticates the hash images of the later
packets. As a result, only the first packet for the entire program image needs the protection
of message specific puzzles. Such techniques can certainly be used for other bulk data
broadcast besides remote network reprogramming.

Besides the requirement of resourceful senders and the sender-side delays, message spe-
cific puzzles add moderate communication overhead and storage overhead on regular sen-
sor nodes. As discussed earlier, these overheads are generally acceptable on the recent
sensor network platforms such as MICAz and TelosB, especially when they are not fre-
quently used.

4. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

We have implemented the proposed techniques on TinyOS [Hillet al. 2000], and performed
initial experimental evaluation. Our goal here is to understand performance issues that
cannot be obtained directly through theoretical analysis.In the following, we first describe
our implementation and then present the evaluation results.

4.1 Implementation

We use TinyECC [Liu and Ning ], a software package for Elliptic Curve Cryptogra-
phy (ECC) on TinyOS, for signature-based broadcast authentication. We implemented
µTESLA on TinyOS forµTESLA-based broadcast authentication, in which we used RC5
CBC-MAC in TinyOS as the message authentication code. To focus on the performance
issues, we pre-distribute all the key chain commitments andthe sender’s public key (in case
of signature-based broadcast authentication), and synchronize the sensors’ clocks before
the experiments. To allow the transmission of broadcast packets with ECDSA signatures,
we revised the maximum payload size in TinyOS from 29 bytes to102 bytes, which is the
maximum payload size in IEEE 802.15.4 standard specification [IEEE Computer Society
2003].

We reuse the SHA-1 implementation in the TinyECC package as the hash functions for
both message specific puzzles and one-way key chains. To reduce the size of the puzzle
keys included in broadcast packets, when generating the one-way key chain, we randomly
generate a 64-bit key as the last puzzle key (Kn), and truncate the output of SHA-1 function
to 64 bits. Thus, all puzzle keys in a one-way key chain have 64bits. Note that truncating
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each SHA-1 output to 64 bits does not necessarily provide theexpected security as in a
64-bit one-way function. This is simply an implementation decision, and can be replaced
if necessary.

We refer to our implementation of the message specific puzzlemechanisms asTinyB-
castGuard. Due to the slight differences and optimizations that message specific puzzles
have for signature-based andµTESLA-based broadcast authentication, we implemented
them in two separate software packages:TinySigGuardandTinyµTESLAGuard. TinySig-
Guard implements the message specific puzzles for signature-based broadcast authentica-
tion; it consists of two parts:TSGSenderandTSGReceiver. Similarly, TinyµTESLAGuard
implements the message specific puzzles forµTESLA-based broadcast authentication, and
also consists of two parts:TuGSenderandTuGReceiver.

TSGSender and TuGSender are Java programs running on a PC. They communicates
with the sensor network through a regular sensor node attached to the PC, which runs
TOSBase, an application (in the TinyOS distribution) that simply forwards packets be-
tween the sensor network and the PC. To broadcast an authenticated packet, both of them
generate the packet by first creating the broadcast authenticator based on the broadcast data
and solving the message specific puzzle. They then send the packet to the node running
TOSBase to broadcast the packet.

Table I. Code size (bytes) on MICAz
ROM RAM

TSGReceiver 1,317 289
TuGReceiver 180 210

TSGReceiver and TuGReceiver run on reg-
ular sensor nodes, and are responsible for
verifying the weak authenticators and broad-
cast authenticators (i.e., digital signatures,
µTESLA disclosed keys and MACs) in broad-
cast packets and re-broadcasting the packets.
We take the simplest flooding approach as the broadcast protocol. That is, each receiver
re-broadcasts a packet once the packet is authenticated or weakly authenticated, depending
on the approach. It is certainly desirable to experiment with other more efficient broadcast
protocols; we will do so in our future research. Table I showsthe code sizes of TSGRe-
ceiver and TuGReceiver on MICAz, obtained using thecheck size.pl script in the
TinyOS CVS repository. The code size of TinyECC andµTESLA are not included.

Figure 7 gives the packet formats for signature-based andµTESLA-based broadcast
authentication. In case of signature-based broadcast authentication,i is the packet index,
Mi is the broadcast message,Sig is an ECDSA signature,Ki is the puzzle key, andPi is
the puzzle solution. In case ofµTESLA-based broadcast authentication, the packet further
hasj, the index of the disclosedµTESLA key, and a MAC (authenticated withKj+d) is
used instead of an ECDSA signature.

Signature-based: i(2) Mi(up to 48) Sig(40) Ki(8) Pi(4)

µTESLA-based: i(2) j(2) Mi(up to 78) MACj+d(8) Kj(8) Pi(4)

Fig. 7. Broadcast packet format (bytes)

4.2 Experimental Evaluation

4.2.1 Experiment Scenario.We evaluated our implementation in a testbed consisting
of one laptop sender (connected to a MICAz mote through a programming board) and
thirty regular sensor node receivers. The sender is a DELL Latitude D510 laptop with a
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1.6 GHz Pentium M 730 processor and 512 MB DDR SDRAM. Each sensor node is a MI-
CAz mote, which has an 8-bit Atmega128 processor and an IEEE 802.15.4 compliant RF
transceiver. (More details about MICAz can be found in [MIC ].) As mentioned earlier, our
implementation uses Java for the senders. To better understand the timing results in prac-
tice, we also used Crypto++ Library 5.2.1 (http://www.eskimo.com/∼weidai/
cryptlib.html) in some experiments to obtain the execution time.

Figure 8 shows the experiment scenario. The laptop sender communicates with the sen-
sor network through the MICAz mote on the programming board,which runsTOSBase.
The sender periodically broadcasts a 10-byte broadcast message. When the sender needs to
broadcast a message, it generates a broadcast packet by firstcreating the broadcast authen-
ticator and then solving the message specific puzzle. It thensends the packet to the node
running TOSBase to broadcast the packet. The receivers are responsible for verifying the
weak authenticator and broadcast authenticator (i.e., digital signatures,µTESLA disclosed
keys and MACs) in each broadcast packet and forwarding the packet. We take the simplest
flooding approach as the broadcast protocol. That is, each receiver re-broadcasts a packet
once the packet is authenticated or weakly authenticated, depending on which broadcast
authentication approach is used. It is certainly desirableto experiment with other more
efficient broadcast protocols; we will do so in our future research.

Sender TOSBase

Receiver

Receiver

Receiver

Receiver

Receiver

Receiver

Fig. 8. The experiment scenario

4.2.2 Computational Cost and Sender-Side Delay.We measure the execution time re-
quired at the sender and each receiver for the generation andverification of message spe-
cific puzzle solutions. The time required at the sender directly affects the sender-side delay.

Let us first consider signature-based broadcast authentication with message specific puz-
zles. Table II shows the expected time required to solve a message specific puzzle for
signature-based broadcast authentication (on the PC usingJava and Crypto++, respec-
tively) and verifying a puzzle solution (on a MICAz mote). Itis easy to see that verifying a
puzzle solution at a receiver is extremely efficient. The sender-side delay is simply the time
required to generate the broadcast authenticator plus the time required to search for a puz-
zle solution. Though signature generation is generally more expensive thanµTESLA MAC
generation, it is still very efficient compared with solvinga puzzle. For example, in the
aforementioned platform, the ECDSA implementation provided in J2SE 5.0 and Bouncy
Castle JCE provider (http://www.bouncycastle.org) can generate a 160-bit sig-
nature in about 30 ms. It is easy to see the delay introduced bysignature generation is
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Table II. Expected time (millisecond) required for solvingand verifying a message specific puzzle
Puzzle signature-based Verifying a

Strength (l) Java Crypto++ Solution (MICAz)
20 8,357 2,590 14.6
22 35,220 10,377 14.6
24 142,237 41,440 14.6
26 599,953 165,893 14.6

Table III. Average sender-side delay (millisecond) forµTESLA-based broadcast authentication
Puzzle Duration of eachµTESLA interval

Strength (l) 500 ms 1000 ms 2000 ms 4000 ms
20 7,976 7,337 7,265 6,033
22 26,115 26,073 25,929 25,390
24 105,231 105,219 104,922 104,842
26 431,359 431,031 430,438 429,688

negligible. Thus, the sender-side delay is approximately the time required for solving mes-
sage specific puzzles when signature-based broadcast authentication is used.

WhenµTESLA-based broadcast authentication with message specific puzzles is used,
the cost of verifying a puzzle solution at a mote remains the same as in Table II. However,
the computational cost at the sender and the expected sender-side delay are more com-
plicated, because the sender may have to generate MACs againwhen differentµTESLA
keys are used. We measured the aggregated computational cost experimentally using the
aforementioned laptop. Table III shows the sender-side delays obtained using TuGSender
with different puzzle strengths andµTESLA time intervals. (Note that TuGSender is writ-
ten in Java.) When puzzle strength is fixed, the average sender-side delay decreases as
µTESLA time interval increases. This is because the overheaddue to the switches to
differentµTESLA keys will decrease when the duration of each time interval increases.
The cost forµTESLA-based broadcast authentication is in general smaller than that for
signature-based approach in Table II, because the space overhead introduced byµTESLA
(10 bytes) is smaller than that by 160-bit ECDSA signatures (40 bytes), leading to smaller
input of the message specific puzzle.

The puzzle strength offers a tradeoff between the sender-side delay and the resilience
against DoS attacks. For critical applications that require high resilience against potential
DoS attacks launched by highly resourceful attackers, it isreasonable to use a high puzzle
strength. As a result, even if the attacking node has high computational resource, it cannot
force regular sensor nodes to perform a large number of unnecessary signature verifications
or message transmissions, despite the resulting long sender-side delay. However, it is
not always desirable to use a puzzle strength that introduces a long sender-side delay.
In non-critical applications, it usually does not justify the high cost for the attackers to
deploy resourceful attacking nodes such as a laptop computer. Thus, we may choose to
use short puzzle strengths, which can effectively defeat DoS attacks launched by regular
sensor nodes (e.g., MICAz motes) without introducing long sender-side delays.

4.2.3 Propagation Delay.We have performed experiments to measure the propaga-
tion delay for signature-based andµTESLA-based broadcast authentication with and with-
out weak authentication in the testbed. We used ECDSA on the 160-bit elliptic curve
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secp160k1 specified by SECG [Certicom Research 2000]. As discussed earlier, we
used a simple flooding protocol for broadcast. That is, each node re-broadcasts an authen-
ticated packet when it receives this packet for the first time. To reduce packet collisions,
each node randomly delays between 0 and 50 milliseconds before re-broadcasting.
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Fig. 9. Propagation delays

Figure 9 shows the broadcast delays at different hops from the sender for five cases:
(1) no broadcast authentication, (2) signature-based broadcast authentication in optimistic
mode, (3) signature-based broadcast authentication in pessimistic mode, (4) signature-
based broadcast authentication in pessimistic mode using the optimized ECC implementa-
tion in [Gura et al. 2004], and (5)µTESLA-based approach. The first three cases and the
fifth case were obtained in our experiments, while the fourthcase is estimated based on the
timing results in [Gura et al. 2004] (i.e., each ECDSA signature verification takes about
1.62 seconds).

It is easy to see that the signature-based broadcast authentication with message specific
puzzles introduces light delays when used in optimistic mode. However, in pessimistic
mode (i.e., when there are DoS attacks), this approach does add significant delays (e.g.,
about 8 seconds to reach 5 hops with the optimized ECC implementation in [Gura et al.
2004]). Though these results do not justify the immediate use of these techniques, they
are close to acceptable performances. We expect these techniques will be practical when
sensor nodes with better processing power are available.

We can see from Figure 9 that the propagation delay forµTESLA-based broadcast au-
thentication with message specific puzzles is very close to that for signature-based broad-
cast authentication in optimistic mode due to the light computation at the receivers. This
implies that message specific puzzles forµTESLA-based broadcast authentication can be
used efficiently for networks of MICAz motes.

We have performed initial experimental evaluation in normal situations. It is also de-
sirable to experiment with these techniques when there are attacks. We will perform such
experiments in our future research.

5. RELATED WORK

Broadcast authentication has been traditionally achievedwith digital signatures, where the
sender signs the messages and all the receivers can authenticate the messages by verifying
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the signatures. In the past few years, many researchers havebeen working on how to
reduce the number of signature operations in, for example, streaming applications over
lossy channels (e.g., graph-based broadcast authentication [Gennaro and Rohatgi 1997;
Song et al. 2002; Miner and Staddon 2001], forward error correction based approaches
[Park et al. 2003; Pannetrat and Molva 2003]). In addition, DoS protection in stream
broadcast authentication have been investigated [Karlof et al. 2004; Gunter et al. 2004].
Gunter et al. [2004] proposed aselective verificationtechnique to reduce the number of
unnecessary signature verifications and examinations of packet hashes, while Karlof et al.
[2004] developed distillation code to limit the number of packet combinations that have
to be verified together. In contrast, the DoS attacks in our paper is about the verification
of individual packets, and the proposed message specific puzzle technique is to reduce the
cost involved in the verification of individual packets. Themessage specific puzzles are
complementary with the previous DoS protection techniques.

Researchers have been working on broadcast authenticationpurely based on symmetric
cryptography, such as TESLA [Perrig et al. 2000] and its variations [Perrig et al. 2001;
Liu and Ning 2003; 2004; Liu et al. 2005], BiBa [Perrig 2001],and HORS [Reyzin and
Reyzin 2002]. In particular,µTESLA [Perrig et al. 2001] and the later variations have been
considered a good candidate for broadcast authentication in wireless sensor networks. As
discussed earlier, a major limitation ofµTESLA and its variations is the lack of immedi-
ate authentication, which could be exploited by an attackerto launch DoS attacks. The
techniques developed in this paper target at mitigating such DoS attacks againstµTESLA-
based (and signature-based) broadcast authentication, aiming at practical broadcast authen-
tication in sensor network applications.

Message specific puzzles are essentially an integration of client puzzles and one-way
hash chains. Client puzzles were proposed in [Juels and Brainard 1999] and later im-
proved in several application contexts, including defenseof DoS attacks against secure
web servers [Dean and Stubblefield 2001], DoS-resistant authentication protocols [Aura
et al. 2001], distributed puzzles for mitigating bandwidth-exhaustion attacks [Wang and
Reiter 2004], and delegated distribution of puzzles [Waters et al. 2004]. However, all
the previous cryptographic puzzle techniques require interactions between a client and a
server. Another technique closely related to the proposed approach as well as client puz-
zles is Hashcash [Back 2002], which uses the finding of partial hash collisions as a proof
of work. Hashcash has a non-interactive version; however, it allows pre-computation at-
tacks, and thus cannot be used for our purposes. Dwork and Naor [1992] proposed to use
client puzzles with shortcuts to control resource usage, particularly the generation of junk
mails. Similar to non-interactive hashcash, this approachallows pre-computation and is not
suitable for our purposes. Our innovation in this paper is tointegrate cryptographic puz-
zles, one-way key chains, and broadcast messages together to achieve weak authentication
without requiring interaction between the sender and many receivers.

Our research is also related to DoS attacks and defenses in wireless sensor networks.
In particular, Xu et al. [2005] studied the feasibility of launching and detecting jamming
attacks in wireless networks. Cagalj et al. [2006] proposedto exploit channel diversity
in order to create wormholes to defend against physical jamming attacks. Our techniques
proposed in this paper are complementary to these researches in defending against DoS
attacks.
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6. CONCLUSION

In this paper, we developed message specific puzzles, a weak authentication mechanism, to
mitigate DoS attacks against signature-based andµTESLA-based broadcast authentication
in wireless sensor networks. This approach has a number of nice properties: First, a weak
authenticator can be efficiently verified by a regular sensornode, but takes a computation-
ally powerful attacker a substantial amount of time to forge. Second, a weak authenticator
cannot be pre-computed without a non-reusable (or short-lived) key disclosed only in a
valid broadcast packet. Thus, an attacker cannot start the expensive computation to forge
a weak authenticator without seeing a valid broadcast packet. Third, even if an attacker
has sufficient computational resources to forge one or more weak authenticators, it is diffi-
cult to reuse these forged weak authenticators. Thus, this weak authentication mechanism
substantially increases the difficulty of launching successful DoS attacks against signature-
based andµTESLA-based broadcast authentication. A limitation of this approach is that it
requires a powerful sender and introduces sender-side delay due to the computation of puz-
zle solutions. We have implemented the proposed techniquesin on TinyOS, and performed
initial experimental evaluation in a network of MICAz motes.

In our future research, we will seek solutions that can provide weak authentication with-
out requiring significant computational power at the sender. Moreover, we will continue
the experimental evaluation in large-scale sensor networks, and investigate the integration
with efficient broadcast protocols for wireless sensor networks.
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A. A BRIEF OVERVIEW OF µTESLA

An asymmetric mechanism such as public key cryptography is generally required for
broadcast authentication [Perrig et al. 2000]. Otherwise,a malicious receiver can easily
forge any packet from the sender, as discussed earlier.µTESLA introduces asymmetry by
delaying the disclosure of symmetric keys [Perrig et al. 2001]. A sender broadcasts a mes-
sage with a Message Authentication Code (MAC) generated with a secret keyK, which
is disclosed after a certain period of time. When a receiver gets this message, if it can en-
sure that the packet was sent before the key was disclosed, the receiver buffers this packet
and authenticates the packet when it later receives the disclosed key. To continuously au-
thenticate broadcast packets,µTESLA divides the time period for broadcast into multiple
intervals, assigning different keys to different time intervals. All packets broadcast in a
particular time interval are authenticated with the same key assigned to that time interval.

To authenticate the broadcast messages, a receiver first authenticates the disclosed keys.
µTESLA uses a one-way key chain for this purpose. The sender selects a random valueKn

as the last key in the key chain and repeatedly performs a (cryptographic) hash functionF
to compute all the other keys:Ki = F (Ki+1), 0 ≤ i ≤ n − 1, where the secret keyKi
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(except forK0) is assigned to thei-th time interval. Because of the one-way property of
the hash function, givenKj in the key chain, anybody can compute all the previous keys
Ki, 0 ≤ i ≤ j, but nobody can compute any of the later onesKi, j + 1 ≤ i ≤ n. Thus,
with the knowledge of the initial keyK0, which is called thecommitmentof the key chain,
a receiver can authenticate any key in the key chain by merelyperforming hash function
operations. When a broadcast message is available in thei-th time interval, the sender
generates a MAC for this message with a key derived fromKi, broadcasts this message
along with its MAC, and discloses the keyKi−d for time intervalIi−d in the broadcast
message (whered is the disclosure lag of the authentication keys).

Each key in the key chain will be disclosed after some delay. As a result, the attacker
can forge a broadcast packet by using the disclosed key.µTESLA uses a security condition
to prevent such situations. When a receiver receives an incoming broadcast packet in time
intervalIi, it checks the security condition⌊(Tc +∆−T1)/Tint⌋ < i+ d− 1, whereTc is
the local time when the packet is received,T1 is the start time of the time interval1, Tint

is the duration of each time interval, and∆ is the maximum clock difference between the
sender and itself. If the security condition is satisfied, i.e., the sender has not disclosed the
keyKi yet, the receiver accepts this packet. Otherwise, the receiver simply drops it.

µTESLA is an extension to TESLA [Perrig et al. 2000]. The only difference between
TESLA andµTESLA is in their key chain commitment distribution schemes. TESLA
uses asymmetric cryptography to bootstrap new receivers, which is impractical for current
sensor networks due to its high computation and storage overheads.µTESLA depends
on symmetric cryptography (with the master key shared between the sender and each re-
ceiver) to bootstrap the new receivers individually. TESLAwas later extended to include
an immediate authentication mechanism [Perrig et al. 2001]. The basic idea is to include
an image under a hash function of a late message content in an earlier message so that
once the earlier message is authenticated, the later message content can be authenticated
immediately after being received. This extension can also be applied toµTESLA.

B. PACKET DELIVERY RATES FOR MICA2 AND MICAZ IN INDOOR ENVI-
RONMENTS

We performed some in-door experiments to confirm the packet loss rate for MICAz with
large packet sizes. We used both MICA2 and MICAz in our experiments for comparison
purposes. The Radio Frequency (RF) module of MICA2 runs at frequency 916.7MHz,
while that of MICAz runs at frequency 2.425GHz. We set the transmission power as
−10dbm on both MICA2 and MICAz. Figure 10 shows the comparison of packet de-
livery rates for MICA2 and MICAz when the packet payload sizeis 102 bytes (i.e., the
maximum payload size in IEEE 802.15.4). It is easy to see thatthe packet delivery rate
for MICAz remains above 95% in all test cases, when this rate quickly drops to 0 as the
distance between the sender and the receiver increases from50 feet to 90 feet. This re-
sults confirms our assumption that it is practical to have a large enough packet that can
accommodate a digital signature on IEEE 802.15.4 compliantsensor nodes.

C. PROBABILITY OF FINDING A PUZZLE SOLUTION WITHIN 2L+C TRIALS

The probability of finding a solution to a puzzle with strength l afterx trials is

Px,l = 1 − (1 − 2−l)x.
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Fig. 10. Packet delivery rates for MICA2 and MICAz in our indoor experiments (Payload
size: 102 bytes). Note that the proposed techniques are developed for ZigBee-compliant
sensor nodes such as MICAz, not MICA2.

Given a(l + c)-bit buffer entry, wherec is a constant positive integer, we can try at most
x = 2l+c times for a puzzle solution. Thus, afterx = 2l+c trials, the probability of finding
a solution that can fit in the buffer entry becomes

Pl = 1 − (1 − 2−l)2
l+c

.

In the following, we prove that the probabilityPl decreases asl (l ≥ 1) increases.

PROOF. We prove by showingP ′

l < 0 whenl ≥ 1.
Let fl = 1 − 2−l, andgl = 2l+c. Then we haveP ′

l = −(fgl

l )′. Since

(fgl

l )′ = fgl

l (f ′

l ·
gl

fl

+ g′l · ln(fl))

= (1 − 2−l)2
l+c

(2−l · ln 2 ·
2l+c

1 − 2−l
+ 2l+c · ln 2 · ln(1 − 2−l))

= (1 − 2−l)2
l+c

· ln 2 · 2l+c · (ln(1 − 2−l) +
1

2l − 1
),

we haveP ′

l = −(fgl

l )′ = −(1 − 2−l)2
l+c

· ln 2 · 2l+c · (ln(1 − 2−l) + 1
2l
−1

).

We need to showP ′

l < 0 whenl ≥ 1. Becausel ≥ 1, we can easily have(1− 2−l)2
l+c

·
ln 2 · 2l+c > 0. For convenience, lethl = ln(1 − 2−l) + 1

2l
−1

. We can determinehl > 0
whenl ≥ 1, because

h′

l = (ln(1 − 2−l) +
1

2l − 1
)′ =

2−l · ln 2
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−

2l · ln 2
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and
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Thus,P ′

l = −(fgl

l )′ = −(1 − 2−l)2
l+c

· ln 2 · 2l+c · (ln(1 − 2−l) + 1
2l−1

) < 0. In other
words,Pl decreases whenl (l ≥ 1) increases.

Note thatPl may still be very close to 1 whenc is a positive integer. For example, when
l = 128 and c = 6, Pl=128 = 1 − 1.6 × 10−28. This implies that whenc = 6, the
probability of finding a solution with up tol + 6 bits for a puzzle with strengthl < 128 is
at least1 − 1.6 × 10−28.
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