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ABSTRACT: 

 
Systematic errors may result from the adoption of an incomplete functional model that is not able to properly incorporate all the effects 
involved in the image formation process. These errors very likely appear as systematic residual patterns in image observations and 
produce deformations of the photogrammetric model in object space. The Brown/Beyer model of self-calibration is often adopted in 
underwater photogrammetry, although it does not take into account the refraction introduced by the passage of the optical ray through 
different media, i.e. air and water. This reduces the potential accuracy of photogrammetry underwater. In this work, we investigate 
through simulations the depth-dependent systematic errors introduced by unmodelled refraction effects when both flat and dome ports 
are used. The importance of camera geometry to reduce the deformation in the object space is analyzed and mitigation measures to 
reduce the systematic patterns in image observations are investigated. It is shown how, for flat ports, the use of a stochastic approach, 
consisting in radial weighting of image observations, improves the accuracy in object space up to 50%. Iterative look-up table 
corrections are instead adopted to reduce the evident systematic residual patterns in the case of dome ports.  
 
 

1. INTRODUCTION 

Image residuals from bundle adjustment not only result from 
errors in the observations (random errors and gross errors), but 
also from errors in the functional or stochastical model 
(systematic errors) (Vlcek, 1969). When recognizable and 
repeatable residual patterns are identifiable in the image plane, 
this bias can be ascribed to residual systematic errors not properly 
modelled by the adopted mathematical model. The standard 
systematic errors that go beyond the collinearity conditions are 
well understood. The Brown/Beyer (Gruen & Beyer, 2001) 
model of self-calibration compensates those errors of amateur 
cameras and the Gruen model (Gruen, 1980) for professional 
photogrammetric cameras in in-air applications quite well. 
However, in underwater applications, because of the multi-media 
situation and additional optical system components, the 
systematic pattern has additional elements which are not covered 
by the conventional self-calibration parameters. The residual 
systematic errors are due to the incomplete functional model 
adopted, which alone is not sufficient to model the different 
refractive effects originating at the interface between water and 
the glass from  a number of different sources such as, for 
example, a non-centered dome port, the use of a Ivanoff-Rebikoff 
corrector, a wet lens converter, or a flat port. This calls either for 
(a) additional self-calibration parameters or (b) a technique which 
was used in photogrammetry before self-calibration became a 
standard, called “Masson d’Autume method” (d’Autume, 1972) 
of post-adjustment systematic error treatment (see also Schilcher, 
1980). Because of its simplicity in basic concept and ease of 
software implementation the method (b) was used here. 
Systematic image residuals are of concern since they may cause 
systematic errors in object space, often in the form of 3D 
polynomial deformations (Grün, 1978, James & Robson, 2014; 
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Nocerino et al., 2014). A compensation of these errors is only 
possible if they show up as residuals in either image space or at 
GCP residuals in object space. Otherwise they will deform the 
object space in a way that is non-detectable. For the mathematical 
proof see Grün (1986). 
When the standard self-calibration model is not sufficient, other 
approaches, such as collocation (Rampal, 1976) or finite 
elements (Lichti & Chapman, 1997; Tecklenburg et al., 2001) 
may be implemented. These approaches are computationally 
expensive and only little experience is available.  
On the other hand, an incomplete functional model can lead to 
systematic residuals in the image plane that are not only 
dependent on the position of the image observations within the 
sensor but are also a function of the 3D positions of the points in 
the object space. This is for example the case of image residuals 
for images acquired using a moving camera equipped with a 
rolling shutter sensor (Vautherin et al., 2016; Geyer et al., 2005) 
or submerged points in multimedia photogrammetry (Kotowski, 
1988). In these cases, the residual patterns on the image sensor 
after bundle adjustment do not show clear systematic effects 
across all the images, and the residual function itself is dependent 
on the distance between the object point and the camera’s 
perspective center (Maas, 1992; Li et al., 1997; Telem and Filin, 
2010, Mulsow, 2010). 
In a previous study (Menna et al., 2018), the authors presented a 
stochastic approach that improves the accuracy of 3D 
reconstruction when using standard photogrammetric 
formulation underwater. A weighting function that penalizes the 
image observations more affected by optical aberrations and 
departure from the pinhole camera model has been used in a 
standard bundle adjustment computation, providing accuracy 
improvements up to 50% in real cases. 
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a) 

 

b) 

 
Figure 1. Schematic representation of refractive effects in the image formation for a flat port (a) and a misaligned dome port (b). 

 
In Nocerino et al. (2019) the authors showed that in the context 
of monitoring coral reefs through underwater photogrammetry 
performed by SCUBA divers, digital cameras mounted in dome 
ports display residual systematic patterns after bundle 
adjustment, which could not be compensated by standard self-
calibration functions. The residual patterns are ascribed to 
potential dome port misalignments. Through a redundant and 
geometrically strong camera network including nadir and oblique 
images, sub-centimetric accuracy results were verified against 
geodetic underwater measurements. On the other hand, in Piazza 
et al. (2018), in the context of photogrammetric monitoring of 
benthic species in Antarctica by SCUBA divers, the authors show 
how systematic errors remain uncompensated when using 
simplified protocols of image acquisition, by significantly 
bending the photogrammetric strip acquired along a simple 
transect. In this paper a novel analysis is presented aimed at 
quantifying and mitigating the effect of uncompensated 
systematic errors caused by flat ports and misaligned dome ports. 
In underwater photogrammetry, in particular by SCUBA divers, 
understanding, quantifying and controlling the errors within a 
limited budget, according to project tolerances, is fundamental, 
especially considering the complexity of the operations 
underwater where ground control is rarely available (limited 
time, high costs of operations, low accuracy). This can be 
accomplished only by an investigation where all the possible 
error sources are isolated and their contribution to the total budget 
assessed. With different camera housings, port types, size and 
adapters available on the market, it can be puzzling for non-
experts to understand whether a specific equipment combination 
is suited for photogrammetric analyses. Moreover, in long term 
ecological research projects, spanning over a period of several 
years, different photographic equipment can be utilized and 
interchanged (i.e. new cameras and housings or equipment 
failure); thus, knowing the potential systematic effects caused by 
possible misalignments of the dome port or use of a port with 
respect to another has very practical importance. 
With respect to the previous studies (Menna et al., 2018), where 
the combined effect of image quality degradation underwater and 
geometric errors caused by refraction were investigated in real 
cases, hereafter the two error sources are split and we focus only 
on the refractive effects through simulations. Simulations have 
the advantage that reference data is available for accuracy 
checking, which is otherwise very hard to generate underwater 
and that individual error components can be separated easily. The 
simulations are built upon a real underwater photogrammetry 
dataset collected within the Moorea Island Digital Ecosystem 

Avatar (IDEA) project (https://mooreaidea.ethz.ch/). A Nikon 
D750 full frame camera equipped with a 24 mm is used to run 
simulations with the same camera in a flat and misaligned dome 
ports where the entrance pupil of the lens does not coincide with 
the dome center. Errors in object space are then analyzed and 
mitigation strategies are proposed. These comprise different 
camera network image acquisitions and two photogrammetric 
processing strategies implemented by the authors in DBAT 
software (Börlin & Grussenmeyer, 2013) based respectively on 
radial weighting (Menna et al., 2018) and the use of an implicit 
method (d’Autume, 1972) integrated in an iterative self-
calibration approach for the correction of systematic image 
residuals. Experiments are reported in the case of self-calibration 
using standard underwater photogrammetry collinearity model 
with additional parameters. 

 

2. MODELLING THE WATER EFFECT 

Underwater, refractive effects can introduce systematic errors 
that are not considered by the standard pinhole model due to a 
number of factors that may include, to cite a few 1) the use of a 
flat port; 2) the non-perpendicularity of the flat port with the 
optical axis of the camera; 3) the non-concentricity of the 
entrance pupil of the lens with the center of the dome port; 4) the 
non-sphericity of the dome port. 
In this section the effects of systematic errors introduced using 
the simple Brown/Beyer functional model on accuracy potential 
underwater are investigated through simulations both in the case 
of flat and dome ports. A pinhole camera with principal distance 𝑐 and no distortions is placed in a pressure housing mounting, 
alternatively a flat and a dome port. 
 
2.1 Modelling the refraction for a flat port 

Referring to Figure 1-a, assuming that the flat port is at a distance 𝑂𝑆′̅̅ ̅̅̅ from the entrance pupil 𝑂 of the lens and that the optical axis 
is orthogonal to the flat port, the following equations hold: 
 𝜃 =  tan−1 (𝑟𝑖̅𝑐) 

 

(1) 

𝛾 =  𝜃 
 

(2) 

𝛾𝑟 =  sin−1 (𝑛1𝑛2 ∙  sin 𝛾) (3) 
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 𝑆𝑆′̅̅ ̅̅ =  𝑂𝑆′̅̅ ̅̅̅ ∙  tan 𝜃 
 

(4) 𝑃𝑄̅̅ ̅̅ = (𝑍̅ − 𝑂𝑆′̅̅ ̅̅ ̅) ∙  tan(𝛾𝑟) 
 

(5) 𝑅𝑟̅̅ ̅ = 𝑆𝑆′̅̅ ̅̅ + 𝑃𝑄̅̅ ̅̅  
 

(6) 

Due to the presence of water, the submerged point P is projected 
on the sensor at the distance 𝑟𝑖̅ from the principal point following 
the blue path in Figure 1-a according to Snell’s law (equation 3). 
If the camera were not immersed in water, the red collinearity 
line would instead directly link the object point 𝑃 with its image 
projection on the sensor, differing by the quantity ∆𝑟̅̅ ̅ with respect 
to the submersed case. The error ∆𝑟̅̅ ̅ changes depending on the 
position of point 𝑃 along the segment 𝑃𝑆̅̅̅̅ . The closer the point 𝑃 
to the camera, the larger the ∆𝑟̅̅ ̅ variations. On the other hand, for 

small 𝑂𝑆′̅̅ ̅̅̅ compared to 𝑍̅, the entrance pupil can be considered on 
the flat port, thus it may be assumed that the points 𝑂 and 𝑆′ 
coincide. In this case the ∆𝑟̅̅ ̅ is only function of the angle 𝛾 and it 
can be demonstrated that the error ∆𝑟̅̅ ̅ is very well modelled by a 
standard Brown/Beyer formulation (Menna et al., 2018). 
 
2.2 Modelling the refraction for a dome port 

As shown in previous works (She et al., 2019; Menna et al., 2016; 
Kotowsky, 1988), when the lens entrance pupil coincides with 
the center of the spherical dome, the refractive effect of water is 
negligible and collinearity is maintained. Contrarily, assuming 
that the center 𝐷 of the dome port with radius 𝑆𝐷̅̅ ̅̅   and the 
entrance pupil 𝑂 are misaligned by a distance 𝑂𝐷̅̅ ̅̅  along the 
optical axis, the following equations hold:  
 𝜃 =  tan−1 (𝑟𝑖̅𝑐) 

 

(7) 

𝛾 =  sin−1 (𝑂𝐷̅̅ ̅̅𝑆𝐷̅̅ ̅̅ ∙  sin 𝜃) 

 

(8) 

𝛾𝑟 =  sin−1 (𝑛1𝑛2 ∙  sin 𝛾) 

 

(9) 

𝑆𝑆′̅̅ ̅̅ =  𝑆𝐷̅̅ ̅̅ ∙  sin(𝛾 + 𝜃) 
 

(10) 𝐷𝑆′̅̅ ̅̅̅ =  𝑆𝐷̅̅ ̅̅ ∙  cos(𝛾 + 𝜃) 
 

(11) 𝑃𝑄̅̅ ̅̅ = (𝑍̅ − 𝑂𝐷̅̅ ̅̅ − 𝐷𝑆′̅̅ ̅̅ ̅) ∙  tan(𝜃 + 𝛾 − 𝛾𝑟) 
 

(12) 𝑅̅𝑟 = 𝑆𝑆′̅̅ ̅̅ + 𝑃𝑄̅̅ ̅̅  
 

(13) 

From Figure 1-b it is clear that an axial misalignment with the 
center of the dome shifted towards the object space increases the 
actual field of view of the camera. On the contrary, the field of 
view is reduced when the dome center is behind the entrance 
pupil towards the camera sensor. Similar to 2.1, collinear points 𝑃𝑖  on the line 𝑃𝑆̅̅̅̅  produce different errors ∆𝑟̅̅ ̅ on the image sensor. 
The closer the point 𝑃 to the camera, the larger the ∆𝑟̅̅ ̅ variations. 
 
2.3 Simulations 

A real underwater photogrammetric image dataset was selected 
among those acquired in the context of coral reef monitoring 
long-term ecological research in Moorea, French Polynesia. This 
dataset is selected to build simulations with a camera network 
geometry that exemplifies real case acquisition, allowing to 
analyze the systematic errors introduced by refractive effects of 
both flat and dome ports. The images were acquired by a SCUBA 

diver at a depth of about 12 m with a Nikon D750 24Mpx full 
frame DSLR camera (pixel size ca 6 µm) mounting a 24 mm 
prime lens in a NiMAR pressure housing (Figure 2-a). The 
surveyed seabed area consists of three adjacent coral reef plots 
measuring 5x5m2 each for a total area at the seabed of about 
20x10m2, including a slightly larger buffer area around them. The 
surface characteristic is rough and hilly, with depth variation 
within the surveyed area of about 1.6 m (Figure 2-b). The relative 
camera to seabed distance 𝑍  was about 1.5 m with an average 
GSD of 0.4 mm. The dataset consists of approximately 600 
images, of which 495 are nadir images, taken along 8 strips and 
one perimetral loop strip of oblique images pointing inside the 
plots (Figure 2-c). The dataset was processed using standard 
photogrammetric procedures, providing sub-centimetric 
accuracy, validated by using underwater geodetic surveying 
reference measurements (Nocerino et al., 2019). From the 
photogrammetric processed data, a subsampled 3D point cloud 
(1 point/20cm) was extracted and used as input to run the 
simulations. 
Three image networks were analyzed: 
 

1. Complete network (nadir + oblique, 600 images). 
2. Nadir network (500 images). 
3. Single round-trip nadir strip (130 images). 

 
Using a standard pinhole camera model, a first dataset was 
simulated. The interior orientation parameters were respectively 
24mm for the principal distance and the principal point was fixed 
at the center of the sensor. The image observations were 
perturbed using white noise with standard deviation of 0.25 
pixels.  
 

a) 
 

 

b) 
 

 

c)  
 

 

Figure 2. Underwater dataset used for the simulation. SCUBA 
diver while acquiring the dataset (a); 3D point cloud color coded 
according to depth (b); camera network (c) with single round trip 
nadir strip (red), remaining nadir strips (green), oblique images 
(blue). 
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COMPLETE NETWORK (NADIR + OBLIQUE) NADIR NETWORK SINGLE ROUND-TRIP NADIR STRIP 
   

  
Mean σX|σY|σZ = 0.1|0.1|0.1 Mean σX|σY|σZ = 0.2|0.1|0.4  Mean σX|σY|σZ = 0.4|0.3|1.0 

Figure 3. Average Z precision (1 sigma) for the tie points after bundle adjustment with self-calibration (random noise 0.25 px, no 
distortion camera) in mm. 

 

 
COMPLETE NETWORK 

(NADIR + OBLIQUE) 
NADIR NETWORK 

SINGLE ROUND-TRIP 

NADIR STRIP 

A 

PINHOLE 

24 

c [mm] 23.9999 ± 9.9e-05 24.0005 ± 0.000534 24.0002 ± 0.00172 

PPAx [mm] 18 ± 4.24e-05 17.9999 ± 9.2e-05 17.9996 ± 0.00031 
PPAy [mm] 12.0001 ± 8.2e-05 12 ± 0.000108 12 ± 0.00027 

k1 [mm-2] -4.21776e-08 ± 3.63e-08 1.93547e-08 ± 5.21e-08 5.85099e-08 ± 1.17e-07 
k2 [mm-4] 2.35106e-10 ± 1.75e-10 -1.49809e-11 ± 2.43e-10 -6.23566e-10 ± 5.33e-10 
k3 [mm-6] -3.58171e-13 ± 2.54e-13 1.73977e-14 ± 3.52e-13 9.32939e-13 ± 7.81e-13 

max distortion pixels 0.0 0.0 0.1 
RMS residuals pixels 0.338 0.327 0.311 

Table 1. Results of the bundle adjustment with self-calibration for the simulated dataset A Pinhole 24 acquired with a pinhole 
camera.  

 
The bundle adjustment with self-calibration on this dataset 
provides reference figures for the expected potential accuracy 
using the three different networks (complete, nadir, round-trip 
nadir). Using equations (1-13), image observations were 
generated to simulate the three datasets with misaligned dome 
and flat ports. A refraction index of 1.34 was chosen for water. 
The port thickness was neglected and the lens distortions were 
fixed to zero. In order to analyze the sole effect of the systematic 
errors induced by the misaligned ports, white noise was not 
added. 
 
To summarize, four simulated datasets were created: 
 

A. Pinhole24, pinhole camera, no ports, no water. 
B. FP30, flat port at 30 mm from the entrance pupil. 
C. DP+30, misaligned dome port with dome center 𝐷 30 

mm ahead the entrance pupil 𝑂. 
D. DP-30, misaligned dome port with dome center 𝐷 30 

mm behind the entrance pupil 𝑂 (towards the sensor). 
 
The chosen offset values of 30 mm both for flat and dome ports 
are quite large. Although still possible, for example in the case of 
using wrong extension tubes, they are rarely seen in real 
underwater photographic equipment. In this simulation they were 
chosen as limit values to stress the related systematic errors. 
Starting from initial approximations and using the simulated 
image observations, minimal constraints bundle adjustments 
(BA) with self-calibration were performed in DBAT. As the 
systematic errors on the simulated dataset are expected to have 
only a radial component in image space, according to equations 
(1-13), bundle adjustment solutions were all computed only with 
radial distortion additional parameters. As accuracy assessment, 
errors were computed as the difference between the coordinates 
of triangulated image observations (sparse point cloud of tie 
points) and the input 3D point cloud through a similarity 
transformation. 
Table 1 reports the results of the self-calibration for the dataset 
A. From these results, it can be seen that, assuming a 0.25 pixel 
marking precision in image space, the focal length is estimated 
with a precision of respectively 0.25 µm (1/24 pixel) for the 
complete network, 1 µm for the nadir ones (1/6 pixel).  
Distortion coefficients are not statistically significant and the 
RMS of residuals on the image do not change across the three 
different networks. 

Figure 3 reports the result of precision in Z (the weakest 
measurement direction) for each tie point. 
The implemented image acquisition protocol with nadir and 
oblique images used for the coral reef monitoring in the Moorea 
IDEA project, is well suited for millimetric monitoring purposes 
with the entire plot, well below 0.5 mm. On the other hand, the 
single round-trip nadir strip results as the least accurate. 
Table 2 reports the results of the self-calibrations for the datasets 
B, C, D. In these cases, the RMS of image residuals are only due 
to the incomplete functional model, unable to properly take into 
account the refraction effects of water. The RMS of image 
residuals for the flat port are significantly larger (almost ten 
times). The nadir camera networks provide three times smaller 
RMS residuals in image space. Although the RMS of image 
residuals is often considered a parameter of internal precision, 
low values do not correspond to higher accuracy per se. Indeed, 
as it can be seen from Figure 4, weak camera network geometry 
tends to absorb systematic errors within the exterior orientation 
parameters due to projective couplings, with camera positions 
that move and rotate to reduce the image residuals (see also Grün, 
1986). Indeed, looking at Figure 4, although the single round trip 
strip records the best RMS for image residuals, it is also the one 
with worst accuracy in object space displaying the largest 
RMSEZ among the same dataset.  
Self-calibrations for the flat port are always less accurate of 
almost an order of magnitude with respect to dome ports. For the 
datasets flat port FP30 and dome port DP-30 (dome center 
between the entrance pupil and the sensor) the refraction 
introduces pincushion distortions with the maximum values for 
the flat port almost five times larger than for the dome port. 
Also, an increase of principal distance is recorded (field of view 
reduction); on the other hand, the DP+30 dataset shows a 
reduction of principal distance (larger field of view) and barrel 
distortion. A principal distance variation between calibrations 
inside and outside the water is thus a method that can be used to 
fine tune the dome port centering. 
Figure 4 shows the color-coded error maps reporting, for each tie 
point of datasets B, C, D, the error in Z, the largest among the 
three components. 
Dome shaped deformation is visible for all datasets, a clear sign 
of uncompensated systematic errors. Complete camera networks 
confirm the results from previous studies (James & Robson, 
2014; Nocerino et al., 2014) with significant mitigation measures 
and improvements of up to three times. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020 

XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 

https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-977-2020 | © Authors 2020. CC BY 4.0 License.

 

980



 

 
COMPLETE NETWORK 

(NADIR + OBLIQUE) 
NADIR NETWORK 

SINGLE ROUND-TRIP 

NADIR STRIP 

B 

FP30 

c [mm] 32.2151 ± 2.21e-04 32.197 ± 5.89e-04 32.1828 ± 0.00193 

PPAx [mm] 17.9998 ± 5.61e-05 17.9995 ± 4.77e-05 18.0006 ± 0.00019 
PPAy [mm] 12.0014 ± 9.76e-05 11.9999 ± 5.44e-05 11.9990 ± 0.00014  

k1 [mm-2] -0.000373801 ± 5.4e-08 -0.00037349 ± 3.26e-08  -0.000372845 ± 7.5e-08 
k2 [mm-4] 1.92706e-07 ± 2.66e-10 2.01017e-07 ± 1.56e-10  2.01867e-07 ± 3.4e-10 
k3 [mm-6] -6.99915e-11 ± 3.87e-13 -8.06415e-11 ± 2.31e-13 -8.26016e-11 ± 5.04e-13 

max distortion pixels 702.2 697.9 696.5 
RMS residuals pixels 0.330 0.118 0.107 
Mean σX|σY|σZ [mm] 0.11|0.15|0.40 0.18|0.12|0.44 0.43|0.31|1.31 

C 

DP 

+30 

c [mm] 21.9175 ± 6.35e-06 21.917 ± 1.39e-05 21.9165 ± 3.91e-05 
PPAx [mm] 18 ± 2.95e-06 18 ± 2.67e-06 18 ± 7.5e-06 
PPAy [mm] 12.0002 ± 5.6e-06 12.0001 ± 3.08e-06 12 ± 6.88e-06 

k1 [mm-2] 9.89067e-05 ± 2.6e-09 9.89603e-05 ± 1.52e-09 9.9078e-05 ± 2.99e-09 
k2 [mm-4] -3.15199e-08 ± 1.25e-11 -3.04765e-08 ± 7.01e-12 -3.05642e-08 ± 1.36e-11 
k3 [mm-6] 1.56546e-11 ± 1.83e-14 1.39155e-11 ± 1.01e-14 1.40376e-11 ± 1.99e-14 

max distortion pixels -205.7 -206.1 -206.4 
RMS residuals pixels 0.027 0.011 0.009 
Mean σX|σY|σZ [mm] 0.00|0.00|0.01 0.00|0.00|0.01 0.01|0.01|0.02 

D 

DP 

-30 

c [mm] 26.5286 ± 1.12e-05 26.5274 ± 2.64e-05 26.5265 ± 8e-05 
PPAx [mm] 18 ± 4.39e-06 18 ± 3.94e-06 18 ± 1.32e-05 
PPAy [mm] 12.0001 ± 8.39e-06 12 ± 4.64e-06 11.9999 ± 1.09e-05 

k1 [mm-2] -8.26177e-05 ± 3.62e-09 -8.25722e-05 ± 2.21e-09 -8.24891e-05 ± 4.7e-09 
k2 [mm-4] 3.93701e-08 ± 1.73e-11 4.0283e-08 ± 1.04e-11 4.03567e-08 ± 2.14e-11 
k3 [mm-6] -1.74161e-11 ± 2.5e-14 -1.87851e-11 ± 1.5e-14 -1.89567e-11 ± 3.14e-14 

max distortion pixels 159.8 159.4 159.2 
RMS residuals pixels 0.030 0.012 0.010 
Mean σX|σY|σZ [mm] 0.01|0.01|0.02 0.01|0.01|0.02 0.02|0.01|0.05 

Table 2. Results of the bundle adjustment with self-calibration for the simulated dataset B,C,D. 
 
As already highlighted in (Menna et al, 2017), the flat port shows 
the worst accuracy with a slight improvement when more 
redundant and complete camera networks are used. Going from 
the single round-trip strip to complete network, an improvement 
of 25% is obtained for the RMSEZ (from 8 mm to 6 mm) and of 
36% for the maximum error span that reduces from 46 mm 
([-14.6 mm, +31.7 mm]) to 30 mm ([-10.3 mm, +19.6 mm]). For 
the datasets C, D, despite a large dome center – entrance pupil 
axial misalignment of 30 mm, the refraction effect is very well 
mitigated by a camera network with both nadir and oblique 
images, providing a RMSEZ well below the millimeter. 
 

3. MITIGATION OF RESIDUAL SYSTEMATIC 

PATTERNS  

This section describes the implementation of computational 
methods for mitigating unmodeled systematic errors in a self-
calibrating bundle adjustment approach. Both methods have been 
implemented by the authors in MATLAB, currently in the form 
of a plugin for DBAT. 
The first method (Menna et al, 2018) uses radial weighting (RW) 
of image observations which proportionally penalizes those 
observations with larger radial distances.  
The second method estimates look up table corrections from 
systematic residual patterns iteratively. After the first self-
calibrating bundle adjustment solution, the image plane is 
subdivided into a grid, where for each cell the median image 
residual is computed for x and y image coordinates. The 
correction, equal to the computed median residual error, is 
applied to the x and y image observations and a new self-
calibrating bundle adjustment step is run. The procedure is 
iteratively repeated until the convergence criterium is reached 
(difference in the solution vector). 
 
3.1 Radial weighting 

The dataset B FP30 was processed using a radial penalty 
implemented through a weighting function in DBAT (Menna et 

al, 2018). A standard deviation of 0.01 pixel was given to image 
observations at the center of the image format growing up to 30 
pixels for the image corners following a third-degree polynomial. 
Table 3 shows significantly different calibration parameters and 
a slight improvement of their precisions. Figure 5 shows that the 
accuracy in the object space improves up to 50% despite an 
increase of the RMS of image residuals; this behavior confirms 
previous findings obtained in real case studies underwater. For 
the dome port datasets, improvements using radial weights were 
not significant as for the flat port and results are not reported in 
this contribution. 
 
3.2 Residual systematic pattern correction in simulations 

The technique we implement here uses two distinct look up table 
corrections using the median values computed within square cells 
whose size is typically chosen between 64x64 and 128x128 
pixels2 depending on the pattern behavior (spatial frequency). In 
the current implementation the cell size is chosen manually.  
To demonstrate the working principle of the implemented 
technique, we first show how it works for a case where the 
residual systematic pattern is very evident. The single strip dome 
port dataset is processed with only k1 as unique additional 
parameter to absorb the refractive effects of water. 
Figure 6-a shows the classical representation of residual vectors, 
here computed as average within a grid with cells of 64x64 
pixels2; on the right column the image residuals are plotted 
against their radial distance; positive residual magnitudes mean 
that the residual vectors point towards the corner and negative 
ones towards the center of the sensor. Although residuals of 
opposite directions exist at each radial distance, a systematic 
harmonic trend can be seen in both representations. Figure 6-b 
shows the results after applying the implemented procedure. The 
magnitude of residuals is reduced (RMS lowered from 0.372 to 
0.029 pixels) and a systematic component is removed with an 
improvement of RMSEZ from 0.025 m to 0.0011 m, obtaining 
values similar to when the complete set of additional parameters 
k1, k2, k3 are used. 
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C 
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RMSEX|Y|Z = 0.2|0.2|1.3 mm 

Figure 4. Color coded error maps for the tie points for the datasets B, C, D. The maps show the error in Z (the most affected) 
between the computed elevations derived from bundle adjustment and the correct ones (used as input for the simulations). 

 
 COMPLETE NETWORK (NADIR + 

OBLIQUE) 
NADIR NETWORK SINGLE ROUND-TRIP NADIR STRIP 

B 

 

FP30 

RW  
RMSEX|Y|Z = 0.4|0.6|2.5 mm 

 
RMSEX|Y|Z = 0.4|0.3|5.8 mm  

RMSEX|Y|Z = 0.4|0.6|4.3 mm 

Figure 5. Color coded error maps for the tie points for the datasets B, using radial weighting. The maps show the error in Z (the 
most affected) between the computed elevations derived from bundle adjustment and the correct ones (used as input for the 

simulations). 
 

B 

FP30 

RW 

c [mm] 32.1741 ± 1.41e-04 32.1613 ± 4.89e-04 32.1531 ± 0.00154 
PPAx [mm] 18.0001 ± 3.78e-05 17.9998 ± 2.96e-05 18.0005 ± 0.00014 
PPAy [mm] 12.0009 ± 4.72e-05 12.0001 ± 3.3e-05 11.9997 ± 9.91e-05 

k1 [mm-2] -0.000376765 ± 2.16e-08 -0.000375007 ± 1.67e-08 -0.000374 ± 2.1e-08 
k2 [mm-4] 2.07168e-07 ± 1.92e-10 2.09457e-07 ± 1.24e-10  -0.000374286 ± 2.69e-10 
k3 [mm-6] -9.15038e-11 ± 4.25e-13 -9.45843e-11 ± 2.66e-13 -9.30699e-11 ± 5.57e-13 

max dist pixels 704.4 699.3 698.0 
RMS residuals pixels 0.704 0.246 0.218 

Mean σX|σY|σZ [mm] 0.1|0.2|0.4 0.2|0.1|0.4 0.4|0.3|1.2 

Table 3. Results of the bundle adjustment with self-calibration for the simulated dataset B, using radial weighting (RW). 
 
 
After applying the proposed method, the systematic harmonic 
pattern (Figure 6-a) is flattened and reduced in magnitude (Figure 
6-b). 
Nevertheless, it is worth noticing that Figure 6-b left reports the 
average residuals computed within the grid cells: residual values 
equal to zero at specific points on the sensor do not necessarily 
indicate that the residuals have been completely corrected, but 
rather that their average has been zeroed. 
Indeed, from Figure 6-b right, for a specific radial distance, both 
positive and negative residuals are visible, although their average 
has become zero after the correction, which has effectively 
removed the systematic component. 
The method is also applied to the dome ports with the complete 
set of k1, k2, k3 radial distortion parameters (Figure 6-c). In this 
case, the systematic effects are removed as seen in Figure 6-d left 
after only one iteration, with a reduction of the RMS of image 
residuals from 0.009 to 0.008. Nevertheless, no significant 
accuracy improvements are found in object space. This behavior 
can be ascribed to the fact that the magnitude of systematic 
pattern residuals is very small (hundredths of a pixel) and has no 
practical effects on improving 3D point accuracy in object space 
for the analyzed dataset.  
 

4. DISCUSSION AND CONCLUSIONS 

The presented simulations showed the effects of systematic errors 
caused by unmodelled refraction and use of a standard 
photogrammetric functional model. 
With respect to theoretical expectations for the potential accuracy 
without modeling the refractive effects, a worsening of up to a 
factor 40 is observed for the flat port and a factor 2 for the dome 
port.  
The use of a redundant camera network with both nadir and 
oblique images significantly mitigates the systematic errors, with 
complete networks being always better than just nadir ones by a 
factor of at least two. 
For the flat port, the use of a stochastic approach, radial re-
weighting of image observations, confirms an improvement of 
accuracy up to 50% in object space. The refractive effects cause 
clear systematic residual patterns in the case of dome ports. 
For the dome port, the use of mitigation measures based on look-
up table corrections, iteratively computed within a bundle 
adjustment approach, did not significantly improve the accuracy 
in object space due to the low absolute values of the corrections. 
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d) 

  
 

Figure 6. Image residuals for the dataset DP+30 SINGLE ROUND TRIP STRIP before (a,c) and after (b,d) applying the 
developed method. In (a) only k1 is computed in the bundle adjustment; (b) shows the results after further applying 10 iterations 

to (a) with the proposed method. Full radial distortion parameters k1, k2, k3 are computed in the bundle adjustment (c); (d) shows 
the results after further applying 1 iteration to (c) with the proposed method. 

 

a) 

 

b) 

 
Figure 7. Radial component of image residuals versus relative depth for a cell grid of 64x64 pixels at radial distances respectively 
of 1184 pixels (a) and 2784 pixels (b). 

 
Further developments of the implemented approaches, currently 
under investigation, consist of the combination of the two 
methods and the use of a four dimensional look up table where 
the third input parameter is the relative depth of object points. 
Figures 7a and 7b show image residuals versus the relative depth 
for a grid cell of 64 pixels at two specified radial distances of 
1184 and 2784 pixels for the single round trip strip dataset 
DP+30. A clear depth dependent pattern is observed. 
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