
  

 
Abstract—In this paper, we present an iris-based access 

control protocol that is resistant to iris-based replay attacks. 

This new style of biometric-based access control protocol is 

similar to the so called, ‘one time password’ approach used by 
some conventional username/password access protocols. Our 

results show that not only is this new type of iris-based access 

protocol effective, it can also distinguish between when a user 

attempting to gain access has supplied a poor sample of their iris 

and when the access control system is experiencing an iris-based 

replay attack. 

 
Index Terms—Biometrics, cyber security, genetic and 

evolutionary computation, iris recognition.  

 

I. INTRODUCTION 

September 20, 2013 will be remembered as the day when 
biometric-based access control was introduced to the masses 
via the Apple iPhone 5s [1]-[3]. The iPhone 5s comes 
complete with two forms of user authentication: traditional 
and biometric-based [1]-[3]. For the traditional form of 
authentication, the user is asked to supply a password in order 
to unlock the phone. For the biometric-based form of 
authentication, the user is asked to supply a fingerprint [4], 
[5].    

Within 48 hours of the release of the iPhone 5s, a number of 
techniques were envisaged that would be able to defeat the 
fingerprint sensor and the fingerprint identification algorithm 
[6]-[8]. The Electronic Frontier Foundation lists a number of 
additional techniques that claim to be able to defeat 
fingerprint sensors and the algorithms used for fingerprint 
identification [9], [10].  

The common characteristic of many of the attacks on 
fingerprint authentication is that the underlying mechanism 
used to extract the salient features of ones fingerprint is 
deterministic [11], [12]. This means that if your biometric 
information is further being used to gain access to confidential 
information across the internet then you can fall victim to a 
biometric-based replay attack [13], [14]. In a biometric-based 
replay attack, a hacker may intercept packets sent across the 
internet that contain the biometric information belonging to 
someone else. The hacker can then resend these same packets 
at a later time to gain access to a confidential information 
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disguised as the individual associated with the stolen 
biometric information [13], [14]. This is because most feature 
extractors used for biometric recognition are deterministic -- 
they always extract exactly the same features from a given 
image every time. The net effect of this is that once someone 
steals your biometric information you cannot change it 
without changing the physical you.  

Non-deterministic feature extractor generators [13]-[15], 
on the other hand, can develop a number of different feature 
extractors that all have relatively the same recognition 
accuracy. A set of feature extractors can then be used to 
develop a biometric-based version of the so called 'One Time 
Password' Approach [14]-[16]. In this paper, we show how a 
system referred to as GEFE (Genetic & Evolutionary Feature 
Extraction) can be used to develop a number of different 
feature extractors in an effort to develop iris-based access 
control protocols. This technique can be extended to all forms 
of biometrics including fingerprint, face, ocular, etc.  

The remainder of the paper is as follows. Section II 
provides a background of Genetic and Evolutionary Feature 
Extraction and its application towards mitigating replay 
attacks. In Section III we explain our experiments, in Section 
IV, we show our results and in Section V, we provide 
conclusions and future work. 
 

II. DISPOSABLE LOCAL BINARY PATTERN FEATURE 

EXTRACTION 

A. Local Binary Patterns 

The Local Binary Pattern (LBP) feature extraction method 
is a technique proposed by Ojala et al. [17], [18].  This 
technique can be used to classify textures patterns in images 
and uses these textures to create feature vectors (FVs) with 
images. For facial recognition, the LBP technique works by 
segmenting the image into uniform sized, non-overlapping 
regions, as shown in Fig. 1. Each region has a histogram 
associated with it, where the bins in the histogram correspond 
to the texture patterns found in each region. A FV is created 
by concatenating the histograms from all regions of a 
segmented image. 
 

 Fig. 1. Image partitioned into patches. 
 

Texture patterns are created by comparing center pixels, a 
pixel that is surrounded by i number of neighboring pixels on 
all sides, with the i neighboring pixels. A texture pattern can 
be represented as a binary string, and that string can be 
decoded into a decimal value, denoted as LBP(Ni, c), where c 
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is the pixel intensity value of a center pixel, N is a set of 
neighboring pixel intensity values and i is the ith neighboring 
pixel of c. LBP(Ni, c) is computed in (1) and (2), where the 
difference is taken between each neighboring pixel and a 
center pixel.  
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Fig. 2 shows an example of a binary string being formed to 

be converted into an LBP texture pattern. The first matrix, 
Pixel Values, shows the intensity values of a center pixel and 
its neighboring pixels. The second matrix, Differences, shows 
the differences of neighboring pixels and the center pixel, and 
the third matrix shows the resulting binary string. The order in 
which the binary string starts to be decoded is user specified, 
so for Fig. 2, the pattern can start from the top-left corner, 
resulting in a texture pattern of 10011111, or a LBP value or 
159. 

     

120 90 111  7 -23 -2  1 0 0 

119 113 113  6 -- 0  1 -- 1 

224 198 201  111 85 88  1 1 1 

      Pixel Values                Differences                Pattern 
Fig. 2. Center pixel resulting in 10111000. 

 
The total number of texture patterns that can exist depend 

on the number of neighboring pixels, i, where the number of 
possible patterns are 2i. However, the common way to create 
FVs with the LBP technique is to use mostly uniform patterns 
for bins in the histograms. A uniform pattern is one where the 
bit transitions in a texture pattern changes two or fewer times 
when traversing the texture pattern circularly. For example, 
the bit string 10111000 has a total of four changes and is 
considered a non-uniform pattern. The changes are from the 
first to second bit; second to third; fifth to sixth; and eight 
back to the first. An example of a uniform bit pattern would be 
10011111 with two changes from the first to second bit and 
the third to fourth bit. The number of uniform patterns would 
be ( 1) 2i i   , or 58 patterns if i = 8. In addition to the 

uniform patterns, one pattern is designated as a bin for all the 
non-uniform patterns found within a patch, giving a total of 59 
bins for a histogram. In this case, the length of a FV would 

be ( ( 1) 3) )i i n    , where n is the number of regions an 

image has been segmented into. 

B. Local Binary Pattern Variations 

The common variation of the LBP technique as presented 
above is popular; however, there are three types of 
modifications that can be applied to create different 
variations. 

The first modification is to simply consider all of the 
possible patterns as opposed to just uniform patterns. In this 
case, histograms would be 2i.  

The second type of modification is to compare each 

neighboring pixel to the average of the neighboring intensity 
values as opposed to the center pixel. In this case, the LBP 
value would be computed using (3) and (4). 
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Using these two modifications and looking at neighboring 

areas of size 8, we construct four LBP variations denoted 
below: 
 LBP-59: This is the traditional LBP technique with 59 

bins per region. 

 LBP-a59: This is the traditional LBP technique that uses 
the second modifier of comparing neighboring pixels to 
the average of the neighborhood, represented by ‘a’. 

 LBP-256: This is the LBP technique using the first 
modifier, or all 256 possible patterns/256 bins per 
histogram. 

 LBP-a256: Similar to iii, with the second modifier. 

We also consider the so called Modified Local Binary 
Pattern (mLBP) algorithm [19]. This algorithm is similar to 
LBP, except there is an addition. Not only is there a single bit 
being assigned after comparing a neighboring pixel to a center 
pixel, but an additional bit is assigned depending on whether 
the difference of the two pixels is less than or greater 
than/equal to the average of the difference of the 
neighborhood pixels and the center pixel. A ‘0’ bit is assigned 
if it’s less than, or a ‘1’ bit otherwise. So if there are i pixels in 
a neighborhood, the resulting bit string would have 2i bits. 
The resulting pattern is split evenly, and the two patterns are 
used to build two histograms for each patch. All histograms 
are ten concatenated together. 

C. GEFEML 

The Genetic and Evolutionary Feature Extraction (GEFE) 
technique is an instance of a Genetic and Evolutionary 
Computation (GEC) [20]-[22]. GEFE evolves a set of feature 
extractors (FEs) in an effort to increase recognition accuracy 
and reduce the number of required features. Initially, a 
population of randomly generated FEs is created. Each FE is 
then evaluated and assigned a fitness based on its accuracy on 
the training set. Next, parents are chosen from the population 
based on their fitness and are allowed to create offspring FEs. 
The offspring are each assigned a fitness and typically replace 
weaker members of the previous population. This 
evolutionary process of selecting parents, allowing them to 
procreate, and replacing weaker members of the population 
with the newly formed offspring is repeated until a 
user-specified stopping condition is reached. 

An FE, fei, can be represented as a six-tuple, 
<Xi,Yi,Wi,Hi,Mi,fi>, where Xi = {xi,0, xi,1,…, xi,p-1} and Yi = {yi,0, 
yi,1, … , yi,p-1} represents the x-coordinates and the 
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y-coordinates of the center of the n possible patches. The 
widths and heights of the n patches are represented by Wi and 
Hi. Each patch could have its own dimensions, Wi and Hi, but 
previous experimental results have shown that uniform sized 
patches are superior to non-uniform patches [23], [24]. Each 
patch has a masking value, Mi = {mi,0, mi,1,…, mi,n-1}, that 
determines whether the features extracted from a patch will be 
used in matching. The variable fi represents the fitness of fei, 
which is determined by the number of incorrect matches that 
an FE obtained on a dataset as well as the percentage of 
patches that are not masked out. 

Originally, GEFE was designed to optimize FEs on a 
training set. However, Genetic and Evolutionary Feature 
Extraction – Machine Learning (GEFEML) is designed to 
evolve FEs that generalize to unseen subjects: subjects not 
contained in the training set. To prevent overfitting FEs on a 
training set during the evolutionary process, cross-validation 
is used.  While offspring are applied to the training set to be 
evaluated, they were also applied to a mutually exclusive 
validation set which does not affect the evolutionary process. 
The offspring with the best performance on the validation 
dataset is recorded regardless of its performance on the 
training set. 

D. Mitigating Replay Attacks 

GEFEML is used to create a set of FEs to be used in an 
access control system, in place of a deterministic feature 
extractor [14]-[16]. When a user wants to gain access to a 
system, the user will provide their biometric sample and the 
system will select a FE to extract from the information to 
create a feature vector (FV). The FV is then transmitted across 
a network and is compared with the user’s previous enrolled 
FVs. After the FV comparisons, the FE used by the system is 
disposed, which is why we refer to the set of FEs as disposable 
FEs.  

There are two protocols that we are focused on: Protocol II 
assumes that a disposable FE will create a unique FV so only a 
FV needs to be passed along a network [14]. Protocol III 
permutes the order of histograms in a FV, allowing for a 
disposable FE can have a set of unique FVs associated with it 
by permuting the order of histograms [15]. Protocol III can be 
described as follows. If a FV consists of m histograms, then 
there are m! possible permutations of the histograms, thus the 
set of FVs that can be created has a cardinality of m!. In order 
for the FVs in the set to be unique, all histograms within a FV 
must be significantly different from each other.  

 

III. EXPERIMENT 

For our experiment, we took images from the CASIA 
Version 3 interval dataset [25]. We applied a Variational 
Level Set (VLS)-based localization algorithm, 
reported in [26], to find inner/outer boundary of the iris. We 
first evolved FEs using GEFEML and performed cross 
validation during the evolutionary process to record FEs that 
generalized well on the validation set. At the end of each run 
of GEFEML, the FE with the best performance on the training 
set, and the FE with the best performance on the validation set 
are recorded. From the CASIA dataset, a total of 249 subjects 
were used to create three datasets: the training set, consisting 

149 subjects, the validation set, consisting of 50 subjects, and 
the test set, which consists of 50 subjects. All subjects had at 
least three images.  

To measure the effectiveness of Protocol II, we recorded 
the similarity distances of FVs using Equation (5). The 
Normalized Manhattan Distance (NMD) is calculated by 
taking two FVs, fi and fj, and calculating the Manhattan 
distance of both. The Manhattan distance is then divided by 
the sum of the l max values of the features of each position, z. 
We record both the NMDs of FVs created by matching FEs 
and non-matching FEs. To measure the effectiveness of 
Protocol III, we measure the uniqueness of different 
permutated FVs created by FEs. We do this by measuring the 
collision of permuted FVs; a collision occurs when the NMD 
of two permuted FVs is greater than a user specified threshold 
value, γ.  

     
 

(5) 
 
 

 

IV. RESULTS 

GEFEML was run 30 times, resulting in 30 optimized FEs 
on the training set and 30 best performing FEs on the 
validation set. GEFEML was an instance of an Estimation of 
Distribution Algorithm (EDA) [27], with a population of 20 
and the single best performing FE from a previous generation 
always survives to the subsequent generation. Table I shows 
the performance of the traditional LBP variations as well as 
the hybridized FEs to the test set. The column ‘Method’ 
denotes the LBP variation used and the GEFE variation used. 
For the GEFE variations, those with <trn> represent FEs 
optimized on the training set whereas those with <val> 
represent FEs that had the best performance on the validation 
set. The Test Set column has two sub-columns, ‘Accuracy’ 
and ‘P’ (Patches).  Both of these columns denote the accuracy 
and number of patches for a LBP and GEFEML variation for 
their respective dataset. The ‘Accuracy’ column shows the 
recognition accuracy of the best FE from 30 runs (shown 
outside the parenthesis) and the average accuracy of all 30 
runs (shown inside the parenthesis). 

The results suggest that the LBP-256 and GEFE-256 
variants have a better performance than the other GEFE 
variants. The results also show that all GEFE variants 
outperform all traditional LBP variants, in regards to accuracy 
and features. A statistical ANOVA test was run on the results 
of the GEFE variants and GEFEML-256, GEFEML-a256 and 
GEFEML-mLBP outperformed GEFEML-59 and GEFEML-a59 
in regards to recognition accuracy. In regards to patches 
activated, there was a statistical significance among 
GEFEML-256 GEFEML-a256 and GEFEML-mLBP. The 
<trn>variants used fewer patches than their <val>variants, 
however there was no statistical significance among the <trn> 
variants. It appears as though <val>GEFEML-256 had the 
highest average recognition rate but <trn>GEFEML-256 had 
the single best performing FE. Shown in Fig. 3 are the 
Cumulative Match Characteristic (CMC) curves and shown in 
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Fig. 4 are the Receiver Operator Characteristic (ROC) curves 
for LBP-256 and the best FE from <trn> GEFEML-256. The 
CMC curve plots the rank accuracies of the methods on 
CASIA, while the ROC curve plots the true accept rate of 
subjects and the false accept rate of subjects. The CMC 
curves show a superior performance of GEFEML-256 
compared to LBP-256. There is a distinction between 
performances when looking at the ROC curves, where 
GEFEML-256 is also superior.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Fig. 3. Cumulative match characteristic (CMC) curve. 

 

 
Fig. 4. Receiver operation characteristic (ROC) curve. 

 

The disposable FEs were created with <trn> GEFEML-256. 
We choose this GEFE variant because it had the best 
performance. For each set of FEs, two sets of NMDs were 
recorded; the NMDs of FVs created by the same FE (labeled 
Same FEs), and the NMDs of FVs by different FEs (labeled 
Different FEs). Fig. 5 shows the distances of FVs of subjects 
from CASIA. The x axis represents the distance while the y 

axis represents the frequency that a distance occurs. In Fig. 5, 
the NMDs grouped to the left are the distances of FVs using 
the same FEs while the NMDs grouped to the right are those 
from different FEs. The figure show a clear separation 
between distances, meaning that a replay attack can be easily 
detected if a system has a threshold that falls between the 
groups of NMDs.  

Fig. 6 shows the uniqueness of histograms within FVs of 
subjects from CASIA created by FEs from GEFEML-256 and 
LBP-256. The figure plots the collision rate of GEFEML along 
a threshold value. Results show that collisions for disposable 
FEs occur later than for LBP-256, meaning the permutations 
of histograms within FVs created by the FEs from 
GEFEML-256 are more unique than LBP-256. 

 

 
Fig. 5. Similarity scores of disposable FVs. 

 

 
Fig. 6. Collision rate of disposable FVs. 

 

V.
 

CONCLUSION AND FUTURE WORK
 

In this paper, we show not only that GEFEML can evolve 
feature extractors that have improved recognition accuracy, 
but that disposable FEs can also be used to mitigate replay 
attacks on an iris based access control system. Evolved FEs 
use far fewer patches than traditional LBP yet the collision 
rates for traditional LBP rises faster than the rate for 
disposable FEs.  

In the future, we seek to hybridize genetic and evolutionary 
computation with other forms of FEs traditionally used for iris 
recognition. We also seek to apply the concept of disposable 
FEs to other biometric modalities in an effort to make access 
control systems based on those modalities resistant to replay 
attacks. 

ACKNOWLEDGMENT
 

The authors would like to thank the ARL and the NSF for 
their support of this research. 

      TABLE I:  PERFORMANCE ON TEST SET 

METHOD PERFORMANCE ON THE TEST SET 

 
ACCURACY P 

LBP-59 94.57% 78 

LBP-a59 93.51% 78 

LBP-256 96.00% 78 

LBP-a256 95.21% 78 

mLBP 96.00% 78 

<trn>GEFEML-59 98.77% (95.42%) 32.29 

<trn>GEFEML-a59 98.77% (95.27%) 34.79 

<trn>GEFEML-256 99.64% (96.42%) 45.32 

<trn>GEFEML-a256 99.12% (95.34%) 46.71 

<trn>GEFEML-mLBP 99.64% (96.52%) 45.32 

<val>GEFEML-59 98.77% (95.74%) 41.3 

<val>GEFEML-a59 98.77% (95.64%) 41.3 

<val>GEFEML-256 99.56% (96.49%) 52.99 

<val>GEFEML-a256 99.56% (96.14%) 51.22 

<val>GEFEML-mLBP 99.56% (95.26%) 52.63 
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