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Parameter variation: roadblock to scaling
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[Shekhar Borkar, Intel Corp.]
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Technology scaling faces a major roadblock
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Process Variation Temperature Variation

Threshold Voltage (Vth)

Chip frequency Chip leakage power
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Body biasing
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• Well known technique for Vth control

• A voltage is applied between source/drain and 

substrate of a transistor

• Key knob to trade off frequency for leakage

• Forward body bias (FBB) 

• Reverse body bias (RBB)

DVFS
Frequency

Dynamic 

power

BB
Frequency

Leakage

power

Vth Freq Leak

Vth LeakFreq
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WID Vth Variation

 [Tschanz et al]
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WID Vth Variation

 [Tschanz et al]
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S-FGBB
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Outline

• Background on S-FGBB

• Dynamic fine-grain body biasing (D-FGBB)

• Environments

• Evaluation

• Conclusions
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Static fine-grain body biasing

8

• The chip is divided in BB cells

• The result is reduced WID variation (delay, power)

• Slow cells receive FBB - increase speed

• Leaky cells receive RBB - save leakage

Vth variation Fine Grain Body Bias

FBB RBB

RBB RBB

[Tschanz et al, ISSCC 2002]

• BB voltages determined at manufacturing 

• Fixed for the lifetime of the chip
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Calibration after manufacturing
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Calibration conditions (Tcal, Pmax) • Calibration takes place at 
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Calibration after manufacturing
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Fcal P ≈Pmax

Calibration after manufacturing
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Calibration conditions (Tcal, Pmax) • Calibration takes place at 

maximum temperature Tcal 

(burn-in oven)
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Outline

• Background on S-FGBB

• Dynamic fine-grain body biasing (D-FGBB)

• Environments

• Evaluation

• Conclusions

11



Radu Teodorescu, UIUC MICRO-40, Chicago, December 2007

• D-FGBB can exploit this temperature variation

• Adapt the body bias to changing conditions

Motivation for D-FGBB

• Significant temperature variation:

• Space: across different functional units, on chip

• Time: as the activity factor of the workload changes

• Between average and worst case conditions (Tcal)
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• Optimal body bias:

The body bias than minimizes leakage power at the 

target frequency   
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•  Circuit delay changes with temperature 

• Therefore optimal BB changes with temperature

The goal of D-FGBB is to keep the body 

bias optimal as T changes

Motivation for D-FGBB
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delay sampling circuit

Finding the optimal BB
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• Measure the delay of each BB domain (cell)

• Delay sampling circuit:

• Phase detector  - measures delay of critical path replica

• If slow - FBB signal raised

• If fast - RBB signal raised

Critical Path 
Replica

Phase 
Detector

FBB

RBB

CLK
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• The BB changes until optimal delay is reached

• BB stays constant, until T conditions change again

• BB is determined based on feedback from delay samples 
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D-FGBB environments
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D-FGBBOperating 

environments

Low Power Minimize leakage power at Forig

Standard Minimize leakage power at Fcal

High performance Maximize average frequency
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• Average power 

Pavg<<Pmax

21

Fcal

Power

limit

F
re

q
u
e
n
c
y

Leakage

High performance

Calibration conditions (Tcal, Pmax)

Original
chip

S-FGBB
at Tcal 



Radu Teodorescu, UIUC MICRO-40, Chicago, December 2007

• Average power 

Pavg<<Pmax

21

Fcal

Power

limit

F
re

q
u
e
n
c
y

S-FGBB
at Tavg 

Leakage

High performance

Average conditions (Tavg, Pavg)

Original
chip

S-FGBB
at Tcal 



Radu Teodorescu, UIUC MICRO-40, Chicago, December 2007

Favg
D-FGBB 

• Average power 

Pavg<<Pmax

21

Fcal

Power

limit

F
re

q
u
e
n
c
y

S-FGBB
at Tavg 

Leakage

High performance

Average conditions (Tavg, Pavg)

Original
chip

S-FGBB
at Tcal 



Radu Teodorescu, UIUC MICRO-40, Chicago, December 2007

Favg
D-FGBB 

• Average power 

Pavg<<Pmax

21

Fcal

Power

limit

F
re

q
u
e
n
c
y

S-FGBB
at Tavg 

Leakage

High performance

Average conditions (Tavg, Pavg)

D-FGBB improves 

average frequency

Original
chip

S-FGBB
at Tcal 



Radu Teodorescu, UIUC MICRO-40, Chicago, December 2007

D-FGBBOperating 
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D-FGBB environments
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Evaluation infrastructure

• Process variation model - VARIUS [ASGI’07]

• Generate Vth and Leff variation maps for 200 chips

• SESC - cycle accurate microarchitectural simulator - 

execution time, dynamic power

• Mix of SPECint and SPECfp benchmarks

• HotLeakage, SPICE model - leakage power

• Hotspot - temperature estimation
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Evaluation parameters

• 4-core CMP, based on Alpha 21364

• 45nm technology, 4GHz

• Vth variation: σVth/μVth=3-12%, σsys=σrand

• Leff variation σLeff= σVth/2

• Vdd=1V, Vth0=250mV, Vbb= ±500mV

26
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CMP architecture
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L2 Cache

DCache

Bpred

FPReg

FPAdd

FPMul

DTB

ITB

LdSTQ

IntExec

IntRegFPMap

IntMap IntQ
FPQ

ICache

CMP



Radu Teodorescu, UIUC MICRO-40, Chicago, December 2007

Body bias granularity
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• We evaluate FGBB at different granularities

• 1 - 144 BB cells per chip 

• Shapes and sizes follow functional units

FGBB16 FGBB64 FGBB144
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D-FGBB environments
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D-FGBB environments
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D-FGBBOperating 
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Standard Minimize leakage power at Fcal

High performance Maximize average frequency
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D-FGBB environments
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Conclusions

• D-FGBB is more effective than S-FGBB at reducing 

WID variation:

35

D-FGBB
Frequency

Leakage

power

• D-FGBB can give architects an additional knob to 

tradeoff frequency/power 

• because D-FGBB adapts to T variation 

• 50% lower leakage 

• 10% higher frequency
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More in the paper...

• Details about our variation model

• A solution for combining D-FGBB with DVFS

• Estimated overheads of D-FGBB

• More implementation details
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