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ABSTRACT 

The charge transfer efficiency of a CCD is based on the average level of signal lost per pixel over a number of transfers.  

This value can be used to directly compare the relative performances of different structures, increases in radiation 

damage or to quantify improvements in operating parameters.  This number does not however give sufficient detail to 

mitigate for the actual signal loss/deference in either of the transfer directions that may be critical to measuring shapes to 

high accuracy, such as those required in astronomy applications (e.g. for Gaia’s astrometry or the galaxy distortion 

measurements for Euclid) based in the radiation environment of space. 

Pocket-pumping is an established technique for finding the location and activation levels of traps; however, a number of 

parameters in the process can also be explored to identify the trap species and location to sub-pixel accuracy. 

This information can be used in two ways to increase the sensitivity of a camera.  Firstly, the clocking process can be 

optimised for the time constant of the majority of traps in each of the transfer directions, reducing deferred charge during 

read out.  Secondly, a correction algorithm can be developed and employed during the post-processing of individual 

frames to move most of any deferred signal back into the charge packet it originated from. 

Here we present the trap-pumping techniques used to optimise the charge transfer efficiency of p- and n-channel e2v 

CCD204s and describe the use of trap-pumped images for on-orbit calibration and ground based image correction 

algorithms. 
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1. INTRODUCTION  

This paper describes recent work undertaken at the e2v centre for electronic imaging in support of the visible imager 

(VIS) for the ESA Euclid space mission in their Cosmic Vision programme. 

The primary objective of Euclid VIS is to provide data for Weak Lensing measurements of distant galaxies over a 5-6 

year mission [1].  The instrument will detect more than a billion galaxies with a signal-noise ratio >10 and the statistical 

precision afforded by such a large sample is a prerequisite to constraining the nature of dark energy and dark matter 

within the Universe through weak gravitational lensing measurements [2].  Given the precision of such a survey, 

exceptionally tight requirements are placed on the on the knowledge of the shape of the instrument’s PSF and its 

evolution during the mission due to radiation damage mechanisms within the Charge-Coupled Devices (CCDs). 

VIS comprises an array of thirty six CCD273s manufactured by e2v technologies, with a broad red bandpass (550 nm to 

900 nm) and arranged in a 6x6 matrix on the front of the focal plane array [2][3][4].  The impact on charge transfer 

efficiency (CTE) due to proton irradiation on the CCD273 and similar e2v devices (CCD204) has been subject to 

detailed investigations [5][6] and has concluded that under normal operating conditions, the CCD273 satisfies mission 

requirements within the tolerances placed on the specification.  However any further improvement in CTE could allow a 

relaxation of constraints placed on other VIS sub-systems or yield additional science beyond those of the baseline 

mission requirements. 
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1.1 Charge Transfer Inefficiency in CCDs 

Figure 1 demonstrates one of the mechanisms by which an electron can be trapped during charge transfer and released 

into the following potential well, or charge packet, leading to charge transfer inefficiency (CTI).  Each step of the single 

row transfer is represented by a line in the style of the potential well model, where the well (and pixel) is defined by bias 

applied to combinations of image electrodes labeled one to four.   

 

Figure 1.  Example of deferred charge caused by a 

barrier phase trap under an image electrode.  

In Step 1 charge is generated and collected in the wells 

defined by bias applied to image electrodes two and 

three.  Image electrodes one and four are biased to a 

lower level during this time, typically zero Volts, 

forming barrier phases in the electrostatic potential 

along the vertical transfer channel.  A single electron 

trap is represented by the smaller well under image 

phase four in the central pixel. 

In Step 2, the first stage of the transfer, each well 

structure shifts forward towards the readout register 

(right) by 1 image electrode.  At this point an electron is 

captured by the trap under electrode four in the central 

pixel.  If the trap releases the electron during Step 3 it 

will most likely be recaptured immediately and if the 

electron is released during Step 4 it will have a high 

probability of re-joining its original charge packet.  

However if the trap does not release the electron until 

Step 5, it will have a high probability of being collected 

in the subsequent charge packet. 

1.2 Pocket/trap pumping 

Pocket pumping is an established method for locating the presence of charge trapping sites within a CCD array structure 

[7][8][9].  A flat-field of signal (dark current, photo-generated or electrically injected) is collected and then transferred 

forwards and backwards by 1 (or more) array elements for a number of cycles.  During this time, signal can become 

trapped from one charge packet during transfer and then later released into another.  This results in increased signal in 

one element and a corresponding reduction of signal from the donor(s).  These manifest as the characteristic bright and 

dark pixel dipoles observed in ‘pumped’ images and examples are shown in Figure 2. 

           

Figure 2.  Pumped trap examples for forwards and backwards by 1 image row (left) and 4 image rows (right). 

The efficiency of transfer between charge packets is dependent on the number of traps encountered over the transfer 

range, the location of those traps within the structure (electrode phase and volume) and ultimately the emission time 

constant of the trap species.  This allows the transfer rate, dwell time and operating temperature for ‘simple’, single-

electron per-pixel traps to be explored to provide an understanding of the trap species present. 



 

1.3 Experimental setup 

Three types of CCD were used in this work and are summarised in Table 1 and two are shown in Figure 3.  Devices were 

manufactured by e2v technologies and procured by ESA for Euclid VIS pre-development and phase A studies.  Inner 

regions of each device were subject to proton irradiation at room temperature at the expected Euclid end-of-life dose to 

assess the impacts of space radiation environment at the second Lagrange point (L2) [10].  All devices were cooled by 

CryoTiger® and nominally stabilised by additional heating to the baseline Euclid VIS operating temperature of 153 K.  

Both 55Fe and electric X-ray tube sources were used to provide 5,898 eV photons for gain calibration and X-ray CTE 

measurements.  LEDs were used to provide roughly flat field illuminations. 

Table 1.  Euclid VIS pre-development CCD formats and features 

 n-channel CCD204 p-channel CCD204 n-channel CCD273 

Architecture Full-frame Full-frame Full-frame 

Pixel size 12 μm, square 12 μm, square 12 μm square 

Rows 1,064 1,064 4,132 

Columns 4,096 4,096 4,096 

Image electrodes 4 4 4 

Register electrodes 3 3 3 

Outputs 2 real, 2 dummy 2 real, 2 dummy 4 real, 4 dummy 

Responsivity 4.5 μV/electron 4.5 μV/hole 7 μV/electron 

Charge injection Single gate, upper Single gate, upper Two-gate, notched, central 

Illumination Back-face Back-face Front-face 

Register width 50 μm 50 μm 20 μm 

 

               

Figure 3.  Back illuminated p-channel CCD204 (left) and front-illuminated Euclid VIS CCD273 (right). 

2. INCREASED PARALLEL TRANSFER TIMINGS FOR REDUCED CTI 

The density of traps observed within a trap-pumped image is a function of the CTE.  By ‘pumping’ under conditions 

constrained by those of the readout regime it is possible to quickly explore the effects on any free parameter.  For Euclid 

VIS the only free parameter is the transfer rate as the operating temperature is fixed at 153 K and the dwell time is 

governed by the register read time.  The baseline pixel rate for VIS was originally 200 kHz and therefore a dwell time of 

10 ms was used in this work.  The pixel rate has since been reduced to 70 kHz, moving the dwell time closer to that of 

the emission time constant of the P-Ci (E~0.30eV) trap species; however this has negligible impact on the data.  Traps 

will be more efficiently pumped and show with greater contrast in the trap pumped image when the transfer rate is 

similar to the trap’s release time constant.  The transfer rate is governed by the number of parallel clocking states, each 

of which have a finite duration commonly referred to as toi in e2v literature and is typically ~10 μs.  Figure 4 shows an 

example line transfer scheme for a 4-phase device such as the CCD273 (delay times tdrt and tdtr are typically equal to toi). 



 

 

Figure 4.  Parallel clocking scheme for standard frame readout [CCD273 ICD]. 

Parallel clock timings (toi) were investigated in the region 2 μs to 2,000 μs.  Figure 5. highlights the effect on pumped 

trap density by increasing toi significantly. 

                

Figure 5.  Pumped image sections from proton irradiated CCD204 (4.8E9p.cm-2, 10MeV equivalent).  Left: toi = 10 μs.  

Right: toi = 1,000 μs.  Note, images shown are not from the same area of device. 

The mechanism by which trap pumping efficiency is being reduced and ultimately CTE increased by elongated parallel 

transfer clocks is described in the following Figures 6 and 7, accounting for both traps physically located under barrier 

phase and collecting phases during integration respectively. 

 

Figure 6.  Reducing probability of deferred charge 

caused by collecting phase traps by increasing toi. 

 

Figure 6 shows a simplified example for mitigating CTI 

for traps located under the collecting phase electrodes 

(two and three), i.e. those biased during integration in 

Step 1. 

In the first stage of charge transfer, the well structure is 

clocked forward as shown by Step 2, so that the well is 

now defined by the field created by electrodes three and 

four and a red electron remains captured somewhere 

under electrode two.  If this condition is then held for a 

period of time greater than then the emission time 

constant of the trap species, then the red electron will 

be released and have a high probability of being 

attracted back into the well structure that it originated 

from. 

This clocking and waiting sequence then continues for 

every other step of the complete charge transfer.  

 

 



 

 

Figure 7.  Reducing probability of deferred charge 

caused by a barrier phase traps by increasing toi. 

Similarly, Figure 7 shows the effect of increased 

parallel transfer timings for traps located underneath the 

barrier phase electrodes one and four. 

Again charge is collected during integration under 

electrodes two and three and clocked forward in Step 2.  

At this point a red electron encounters a trap, becomes 

trapped and is assumed to remain filled during Steps 2 

and 3 regardless of their duration as the capture time 

may be in the order of nanoseconds. 

It is not until Step 4 that the trap holding the red 

electron can release it without it immediately 

recapturing.  The red electron now has a high 

probability of being attracted back into its original 

charge packet (or well structure). 

 

 

Note that in these examples a coincident clocking scheme is shown whereby there are no overlaps and charge is moved 

from wells defined by two electrodes directly into the next pair.  However, the standard clocking scheme shown in 

Figure 4 has additional steps where the well structures increases to three electrodes wide in between each of the steps 

shown in Figures 6 and 7.  During these additional steps, trapped electrons in the barrier phase may have a higher 

probability of being released and captured in the subsequent well structure, as the structure is physically closer to the trap 

site.  Charge transfer inefficiency measurements comparing the effect of increased parallel clock timings for both 

clocking schemes are presented and discussed in Section 3.1. 

2.1 Pumping efficiency vs. line transfer 

The number of transfers for each pumped image was chosen to be 1,603 times, allowing an equivalent signal to an 55Fe 

photon sampled for traps pumped at 100% efficiency.  Figure 8 (Left) demonstrates numerically the effect of slowing 

down the parallel transfer that was shown in Figure 5.  The number of ‘pumped’ traps is the integral of the curve to the 

right of the background distribution.  In both the control and proton irradiated Regions Of Interest (ROI), the number is 

reduced significantly when increasing toi from 10 μs to 1,000 μs. 

 

Figure 8.  Left: Histograms of pumped signal vs. parallel clock overlap time and proton irradiation.  Right: Change in 

pumping efficiency vs. parallel clock overlap time for 40 example traps efficiently pumped at 2.5 μs. 



 

Figure 8 (Right) shows the effect on forty individual pumped traps of the same species that were most efficiently 

pumped in the irradiated ROI at toi = 2.5 μs.  When toi is increased towards the release time constant of this particular trap 

species the probability of charge releasing and becoming attracted and collected by the potential well is increased and the 

pumped signal reduces to zero. 

2.2 Trap density vs. line time 

Figure 9 shows the trap density in the irradiated ROI after proton irradiation to the expected end of life fluence for Euclid 

that is 4.8E9 p.cm-2 (10 MeV equivalent).  This is the number of pixels in the ROI divided by the integral of the curve 

above a 3-sigma threshold from the background distribution. 

 

Figure 9.  Plot of measured CTI by X-ray and trap density through trap-pumping in region irradiated to 4.8E9 p.cm-2, 

expected Euclid VIS end of life (EOL). T=153K.  The phosphorous divacancy is shown at ~930 μs. 

Also plotted in Figure 9 are measurements of CTI taken from the gradient of charge loss in 55Fe events over the number 

of parallel transfers using the standard clocking scheme.  In both plots we see a change in behaviour for toi > 100 μs and 

assume that for these times the majority of trap species have been allowed sufficient time to re-emit any trapped 

electrons back into their original charge packet or well structure as described by Figures 6 and 7.  

It is not currently understood why CTI begins to increase again for toi > 1,000 μs, but may be due to the single barrier 

phase during the periods where the well structures are defined by three electrodes or moving into the regime of longer 

time constant trap species. 

It should also be noted that the trap density was calculated from the total number of traps identified from trap pumping, 

but this in itself only accounts for approximately half the number of traps present in the device as collecting phase traps 

are not pumped by the scheme described earlier.  However this density includes both forward and backwards traps 

(bright-dark and dark-bright dipoles) as barrier phase traps are pumped in both directions during the process and only 

dark-bright pairs will give rise to CTI during readout of the device under normal operating conditions. 

2.3  Pumping efficiency and CTI vs. operating temperature 

In agreement with earlier work at Lawrence Berkeley National Laboratory [9], the temperature dependence of the 

emission time constant of a trap species (hole or electron) close to that of the transfer rate can also alter the ‘pumping’ 

efficiency and ultimately CTI.  In Figure 10 we see a significant reduction in the number of traps efficiently pumped at a 

transfer rate of 10 μs per clocking sequence, when raising the operating temperature by 40 K.  This is due to reduced 

emission time constants for those traps from increased thermal energy and therefore reducing the probability of being 

efficiently pumped during the fixed timing of the sequence. 



 

 

Figure 10.  Temperature dependence of pumped signal efficiency in region irradiated to 4.8E9 p.cm-2 (toi = 10 μs). 

By calculating CTI from deferred charge measurements of 55Fe events throughout the irradiated ROI, we see a similar 

trend in that the improvement gained in CTI arising from increased toi requires a larger value as the operating  

temperature is reduced.  This is observed as the shift to the right of the trough in the curves in Figure 11. 

 

Figure 11.  Change in CTI as function of temperature and parallel clock overlap time in region irradiated to 4.8E9 p.cm-2. 

3. OPTIMISED PARALLEL TRANSFER CLOCKING SCHEME 

3.1 Coincident mode clocking 

In Section 2 it was suggested that the standard parallel clocking scheme may not yield the full benefits of increased 

overlap times, as during the steps where three electrodes are held at high amplitude an electron escaping from a trap in 

the single barrier phase had an equal probability of finding its original charge packet or the subsequent charge packet or 

well structure.  Both standard and coincident clocking schemes are shown in Figure 12. 

X-ray CTI measurements for both schemes are plotted in Figure 13 as a function of the parallel overlap time, toi.  We see 

a similar trend for both schemes up until 200 μs where the standard scheme begins to increase in CTI, whereas the 

coincident mode continues to show improvement for significantly longer values of toi. 



 

     

Figure 12.  Standard and coincident mode parallel clocking timing diagrams.  In both schemes, charge is integrated under 

two phases, image electrodes IØ2 and IØ3.  The first step during charge transfer in the standard scheme initially elongates 

the well structure by including IØ4, before removing IØ2.  In the coincident scheme, the well structure is moves directly 

from IØ2+IØ3 to IØ3+IØ4. 

 

Figure 13.  Comparison of measured CTI for standard and coincident clocking schemes in region irradiated to 4.8E9 p.cm-2, 

expected Euclid VIS end of life (EOL). T=153K.  The phosphorous divacancy is shown at ~930 μs. 

The trough of the coincident scheme is now at a point where we expect to see it, if we have indeed suppressed the effect 

of the V-V traps. 

4. TRAP PUMPING FOR ON-ORBIT INSTRUMENT CALIBRATION 

Provided a suitable flat-field is achievable, a relatively simple trap pumping sequence could be employed on-orbit in 

some CCD applications, returning very useful data for calibration, ground-based correction algorithms and radiation 

damage monitoring.  In the case of Euclid VIS, sufficient resources are available to provide a single frame of trap-

pumped data from each of the thirty six devices on a daily basis, using the fixed level charge injection structure to input 

flat-fields of between 2,000 to 5,000 electrons.  The following sub-sections describe how such data would be particularly 

beneficial for Euclid VIS.  

4.1 Instrument gain calibration 

In most CCD applications it is necessary to know what 1 sampled unit returned from the camera is worth in terms of 

number of electrons.  Intrinsic traps present in each of the thirty six devices of VIS can be characterized prior to launch 

using the on-orbit scheme providing a pumped signal peak similar to that of the 1,603 electrons shown in Figure 8.  

Providing that the operating temperature and transfer timings are stable to a reasonable accuracy, the behavior of each 

trap will remain constant until such time that a local on-orbit radiation damage mechanism alters its behavior.  Assuming 

an intrinsic trap density of the order 1 trap in 1,000 pixels, the probability of this occurring remains low long into the 

mission. 



 

4.2 Post processing data 

With knowledge of the location of traps and their relative efficiencies within the CCD array, it may be possible to predict 

and correct with high accuracy the position of individually deferred electrons, rather than relying on traditional average 

across-the-array CTI based correction algorithms.  This information will be of most use for Euclid VIS and is the subject 

of on-going study that is discussed in Section 5. 

4.3 Radiation damage monitoring 

By analyzing frames provided by Euclid VIS on a daily basis, it will be possible to directly measure the radiation 

damage caused to CCDs at the second Lagrange point (L2) that can then be cross-referenced to the solar activity 

recorded by other instruments and missions.  Such knowledge could then feed back into the models used to predict and 

optimize the performance of future missions to L2, let alone providing a very interesting time-lapse sequence. 

5. CONCLUSIONS 

This paper describes some of the techniques developed and modifications to the normal operating modes of the full-

frame CCD273/CCD204 for improved charge transfer efficiency.  As a consequence of this work, three changes to the 

standard operating modes are recommended for the Euclid VIS CCDs: 

• Increasing the parallel transfer clock timings (toi) from 10 μs per step to 1,000 μs.  This gives a factor ~1.6 

improvement in CTE with negligible effect on other systems due to the increased read time. 

• Changing the parallel clocking scheme changed to the coincident scheme described in Section 3.1, giving a 

further 25% reduction in CTI. 

• Adopting an equal mode serial clocking scheme without overlapping clock edges.  

Given that the necessary resources are available, it would be highly beneficial to both the science of Euclid VIS and 

future CCD missions at L2 for trap pumping be included as part of the routine calibration images for ground correction 

algorithms and radiation damage monitoring. 

There is a clear relationship between the number of traps observed by trap-pumping and measured CTI.  Further study is 

planned on another CCD273 to be irradiated to fluence approximately one quarter of the expected Euclid end of life dose 

to investigate number of traps identified vs. signal loss on a column-by-column basis. 
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