
Chapter

Mitigating State-Drift in
Memristor Crossbar Arrays for
Vector Matrix Multiplication
Amirali Amirsoleimani,Tony Liu, Fabien Alibart,

Serge Eccofey, Yao-Feng Chang, Dominique Drouin

and Roman Genov

Abstract

In this Chapter, we review the recent progress on resistance drift mitigation
techniques for resistive switching memory devices (specifically memristors) and its
impact on the accuracy in deep neural network applications. In the first section of the
chapter, we investigate the importance of soft errors and their detrimental impact on
memristor-based vector–matrix multiplication (VMM) platforms performance spe-
cially the memristance state-drift induced by long-term recurring inference opera-
tions with sub-threshold stress voltage. Also, we briefly review some currently
developed state-drift mitigation methods. In the next section of the chapter, we will
discuss an adaptive inference technique with low hardware overhead to mitigate the
memristance drift in memristive VMM platform by using optimization techniques to
adjust the inference voltage characteristic associated with different network layers.
Also, we present simulation results and performance improvements achieved by
applying the proposed inference technique by considering non-idealities for various
deep network applications on memristor crossbar arrays. This chapter suggests that a
simple low overhead inference technique can revive the functionality, enhance the
performance of memristor-based VMM arrays and significantly increases their life-
time which can be a very important factor toward making this technology as a main
stream player in future in-memory computing platforms.

Keywords: Memristor Crossbar, State-drift, Vector–matrix Multiplication,
Inference

1. Introduction

Designing specialized hardware accelerators has been a topic of interest recently
due to rapid growth of machine learning and artificial intelligence [1–5]. Despite the
recent advancements in developing machine learning complementary-metal-oxide
(CMOS) based chips to efficiently implement vector–matrix multiplication (VMM)
operations, these systems are limited by the off-chip memory bottleneck [6]. To this
end, co-locating memory and processing has been considered as a solution by using
non-volatile resistive switching memory technologies [7–14]. One such device
technology is memristor and it has risen as a promising high speed, low power

1



computational alternative to traditional CMOS hardware [15–18]. Memristor can be
placed in a crossbar structure to perform highly parallel multiply-accumulate
(MAC) operations efficiently using Ohm’s Law [19–22]. Through heavy
parallelization using Kirchoff’s laws, a memristor crossbar is able to do MAC oper-
ations at O(1) speed [23]. Crossbars are most commonly used to perform VMM by
mapping a n by m matrix the memristors’ conductance range, applying an input
voltage vector to the rows, and then reading the current from the appropriate
columns [24]. In addition to neuromorphic applications [25–28] of memristor
crossbar, through VMM memristor crossbar has shown to be capable of performing
a number of tasks ranging from image processing [29], physical unclonable func-
tions (PUFs) [30–32], optimization problems [33–35], sparse coding [36], and solv-
ing partial differential equations [37]. Also, there have been many researches
focusing on implementation of deep neural network (DNN) accelerators using
memristor crossbars which focuses on different device, algorithm and system level
contributions [18–20, 38]. While there has been significant progress in memristor
crossbar-based computational devices, there are still many major challenges in
robustness and computational accuracy that hinder the technology [20, 39, 40].
There have been several researches focus on mitigating the impact of non-idealities
on memristor crossbar systems performance and these reliability improvement
techniques are mainly proposed for process variations [41, 42], hard faults [43, 44],
signal distortion issue [45], and memristance drift [46–48]. These techniques can be
mainly categorized into (i) retraining to compensate the error (ii) mapping tech-
niques (iii) closed-loop training (iv) error-correction coding.

Here, we focus on the memristance drift effect and the mitigation techniques to
avoid the impact of this issue over the memrisitive DNN systems. Typically, in
memristor crossbars, there are two major operations to perform: write and read
operations. In the write operation, a voltage above the switching voltage of the
memristor [49] is applied to a memristor repeatedly until the resistance of the
memristor is sufficiently close to the target resistance. During the read operation, a
voltage lower than the switching voltage is applied to the memristor and the current
from the memristor is measured. The read operation is used extensively in the
inference operation of many Ex-situ and In-situ algorithms including artificial
neural networks (ANN). Ideally, the resistance of the memristor should not change
at all, but in practice, there is often a very small change in the memristor state after
a read operation. This phenomenon is known as memristance drift [50, 51]. Over
many read operations, these small changes in resistance of the memristors in a
crossbar will add up to have a significant impact on computational accuracy.
Memristance drift occurs in different resistive switching memory technologies and
it is not similar in terms of the behavior. In phase change memory (PCM) devices,
the memristance drift occurs even when there is no voltage applied over the mem-
ory cell and the amorphous state (high resistance state) of the device is changing
over time [52]. Subsequently, this issue will be more severe a the high-resistive
amorphous state increases and this will impact dramatically the PCM-based sys-
tem’s performance in presence of high cycle-to-cycle and device-to-device varia-
tions. In memristor technology, as discussed before, the repetitive VMM operations
result a memristance drift phenomenon and it becomes worse as the number of
inference operations increases. Existing solutions to this problem include periodical
weight reprogramming and feedback designs have limitations with high computa-
tional overhead and limited long-term effectiveness. For instance, HfOx RRAM
testing results using a dynamic BL-bias circuit for preventing memristor state dis-
turbance during read operations [53]. Error correction code (ECC) is used in [51] to
reduce write latency by up to 70%. However, these techniques are not sufficient in
themselves to enhances the performance of computational memristor crossbars in

2

Memristor - An Emerging Device for Post-Moore’s Computing and Applications



which 2–3 bits of memristance drift can cause significant decreases in performance.
Recently, a few more effective memristance-drift mitigation techniques have been
proposed [54–56]. This chapter will summarize the approach and results of a closed-
loop feedback system technique [54] and an inline calibration approach [55] before
taking a more in-depth look into an adaptive inference technique (AIDX) [56] that
optimizes the inference voltage pulse amplitude and width. In addition, the power
and chip area overhead of these three techniques are briefly compared.

2. Memristance drift and its modeling

In general, there are memristor models can be separated into physics-based and
behavior-based simulations depending on the characteristics of their modeling and
their general purpose. Physics-based models typically attempt to simulate
memristors at a molecular-level by considering the material characteristics of the
active memristor layers and mathematical modeling of the ion drifting between
these materials. While physical models accurately model memristance drift, they
are generally computationally expensive and limited in scope to the detailed analy-
sis of singular memristor behavior. As such, memristor crossbar arrays are modeled
using behavior-based models. Behavior-based memristor models are much simpler
than physics-based models and use experimental fitting parameters to match the
behavior of different types of memristors. Current–voltage plots are one of the most
common methods of quickly visualizing memristor short-term behavior and many
behavior-based models like VTEAM [57] are built to agree with these plots. Over
the course of a voltage sweep, there is not enough time for the memristor’s state to
change noticeably under the threshold voltage and as such, the long term conse-
quences of memristance drift aren’t captured in these models. Many popular
behavior-based models, such as VTEAM [57] and TEAM [58], utilize current and
voltage thresholds to partition memristor behavior under high and low voltage/
current scenarios. Generally, these threshold models approximate the subthreshold
state change as zero and thus do not consider the long-term effects of memristance
drift. Other behavior-models, such as the nonlinear ion drift [59] and Simmons
Tunnel Barrier model [60], do not utilize a threshold and instead model memristor
high and low voltage memristor behavior using the same equations and fitting
parameters. Without a threshold, these models lack the flexibility to accurately
model the minute changes of memristance drift without sacrificing the accuracy of
its higher-voltage switching modeling. Recently, there have been attempts to
extend popular behavior-based models to more accurately simulate memristance
drift. For instance, [56] added subthreshold modeling equation and fitting parameters
to extend the VTEAMmodel. However, the modeling of memristance drift in
behavior-based models is still currently in its infancy due to the lack of experimental
data on long-term memristor behavior when exposed to low voltage pulses.

2.1 Impact of state-drift on crossbar VMM

Memristance drift in crossbar arrays can be summarized as the buildup of small
unintended changes in memristor state over many low-voltage read operations [56].
During a crossbar VMM operation, the ideal output current I j of the j-th column can
be modeled simply as:

I j ¼
X

i

GijVi (1)

3

Mitigating State-Drift in Memristor Crossbar Arrays for Vector Matrix Multiplication
DOI: http://dx.doi.org/10.5772/intechopen.100246



Here V i represents the voltage applied to the i-th row of the crossbar and Gij is
the conductance of the memristors in the i-th row and j-th column. For a given
VMM operation, state drift can be represented as a small change in conductance δG.
The non-ideal output current I0j is then given as:

I0j ¼
X

i

Gij þ ΔGij

� �

Vi (2)

ΔGij represents the accumulation of memristance drift caused by all previous
VMM operations and skews the distribution of weights within the crossbar
(Figure 1a). It can be shown from Eqs. (1) and (2) that the difference between I0j
and I j scales with the read voltage of each row V and the number of rows N. Over a
long period, the buildup of drift in the crossbar weights caused by memristance
drift will lead to significant error (Figure 1b). The speed of memristance drift will
vary depending on application and memristor characteristics. Even after a short
period of 1 second, a 0.1 V signal could cause a memristor to deviate around 2%
from its initial state [61]. A thorough analysis of memristance drift speed with
respect to initial state and drift direction is done in [54]. In the SET direction, [54]
found that memristors’ resistance decreased by 77.07%, 62.07%, 56.28% and 8.81%
after 100 read operations with initial resistances of 200kΩ, 100kΩ, 80kΩ, and 15kΩ,
respectively. The speed of drift in the RESET direction was much slower at only
�0%, 1.17 � 10–4%, 0.018% and 16.43% increase in resistance for the same initial
states. From the analysis in [54], memristance drift speed is shown to be greatly
impacted by initial state and the direction of switching. A heatmap of conductance
highlights the impact of initial state on the buildup of memristance drift over time

Figure 1.
(a) Neural network (NN) weight matrix mapped onto crossbar with conductance matrix G. Each subsequent
VMM operation will cause a slight skew in the distribution of the memristors’ conductance. (b) Initially, the
error due to memristance drift is negligible. Over many inference operations, the skew in the conductance
distribution builds up resulting in significant error in the NN output. Figure reprinted by [56].

4

Memristor - An Emerging Device for Post-Moore’s Computing and Applications



(Figure 2a). Here, the bottom row represents the bias of a neural network and are
initialized near the high conductance state while the rest of the memristors
representing the weights are initialized close to the low conductance state. Due to
this conductance initialization, all memristors except the bottom row in the above
figure experience an aggregate memristance drift in the positive direction while the
bottom row experiences memristance drift in the negative direction. There have
been multiple studies that show that memristance drift causes significant perfor-
mance degradation on various applications after long term use. In [56], the negative
impact across ten baseline ML tasks in the Proben1 [63] datasets, memristance drift
caused an average classification accuracy decrease of 26%, 42%, and 51% after 500,
2000, and 10000 inference operations, respectively. [56] also analyzed the effects
of memristance drift on convolutional neural networks with the CIFAR10 image
classification dataset [64]. Ten different CNN architectures were tested with a
relatively consistent accuracy degradation of 29%, 59%, and 72% after 500, 2000,
and 10000 inference operations respectively. Memristor drift ranges from upwards
of 10% deviatation from its programmed value to upwards of 30% deviation at
10000 inference steps as shown in (Figure 2a). To clarify, the memristance drift
speed remains the same for each network in (Figure 2b) regardless of the number
of hidden layers. However, each additional hidden layer accumulates memristance
increasing amounts of memristance drift-related error from the previous layer
causing deeper neural network’s accuracy to degrade more quickly than networks
with less hidden layers (Figure 2b). In [55], the classification accuracy on the

Figure 2.
(a) Impact of varying number of hidden layers on memristance drift induced accuracy degradation on the MNIST
dataset [62]. (b) Heatmap of typical memristor crossbar weight mapping with the bottom row as the bias and the
rest of the heatmap representing the weight matrix. Over time, the memristance drift direction between the bias
and weights diverges due to differences in bias and weight initialization. Figure reprinted by [56].

5

Mitigating State-Drift in Memristor Crossbar Arrays for Vector Matrix Multiplication
DOI: http://dx.doi.org/10.5772/intechopen.100246



MNIST handwritten digits dataset [62] decreases by approximately 2.5–4% across
four independent trials due to the cycle-to-cycle variation of memristance drift. In
[54], the classification accuracy degradation on MNIST was tested with
memristance drift in the SET and RESET directions separately. In the SET direction,
the classification accuracy dropped from 91.91–60% after only 100 inference oper-
ations. In the RESET direction, accuracy degradation was slower where accuracy
dropped to 60% after approximately 300 inference operations.

3. Memristance drift mitigation overview

3.1 ICE: inline calibration

Given the significant negative impact of memristance drift on crossbar perfor-
mance, there has been a few works that have proposed meaningful solutions to the
memristance drift problem. When a memristor crossbar’s performance drops below
acceptable levels due to memristance drift, the memristors will be rewritten to their
intended states. For a given application, this recalibration is usually done at period-
ically ensure high crossbar accuracy over long time intervals. Since rewriting a
memristor to a specific state can be up to 100 times slower than the speed of an
inference operation [65], frequent crossbar calibrations could significantly bottle-
neck crossbar throughput. In [55], the authors propose an inline calibration method
that utilizes “interrupt-and-benchmark (I&B)” operations to track the crossbar
computational error in order to predict the time period before the next calibration
operation. In addition, the time period between two I&B operations is dynamically
optimized as to minimize the time overhead of the inline calibration method on
crossbar performance. As defined in the paper, I&B operations interrupt regular
crossbar operation in order to evaluate crossbar computational error on a set of
benchmark data [55]. Between each recalibration of the memristor crossbar, there
exists a theoretical maximum number of inference operations sup nr before the next
recalibration must be done due to performance degradation. The optimization goal
of ICE is to make the actual number of inference operations nr between two cali-
bration operations approach sup nr. This is not a trivial task because sup nr can vary
significantly between many calibration operations due to changes in memristance
drift speed from cycle-to-cycle variations and other factors. ICE approximates sup
nr by applying polynomial fitting to the crossbar error data during I&B operations.

To reduce the time overhead of the inline calibration method, ICE seeks to
minimize the number of I&B operations k between each recalibration of the cross-
bar. ICE uses its polynomial fitting function to guess the benchmark computation
error of the next I&B operation. If the absolute difference between the guessed
crossbar error and the actual I&B error is below some threshold, the time until the
next I&B operation will be doubled up to some maximum time interval. Otherwise,
ICE will reset the time interval between successive I&B operations to its default
value. For testing, ICE adopts a TiOx-based memristor device model from [61]. This
model extends the bulk model TiO2 with a focus on behavior-based process varia-
tion analysis of memristors. The results presented in [55] are measured in terms of
efficiency with computational efficiency defined as:

γ ¼
nr

sup nr
(3)

To quantify the time overhead caused by I&B operations, the parameter Δ is
defined as:

6

Memristor - An Emerging Device for Post-Moore’s Computing and Applications



Δ ¼
knIB
nr

(4)

Here, k is the average number of I&B operations between crossbar recalibrations
and nIB is the number of inference operations required per I&B operation. These
criteria were evaluated across four baseline tasks (HMAX, KMeans, Sobel, and
MNIST [62]) and compared to a baseline of constant time period crossbar
recalibrations. With second degree polynomial fitting, ICE achieves an average
calibration efficiency γ of 91.18% which is a 21.77% improvement over the baseline.
This improvement in calibration efficiency only came at the cost of a time overhead
Δ of 0.439%. No information on the voltage range or power consumption of ICE is
presented in [55]. However, the author’s mentioned that future works could include
a detailed power analysis of ICE using a SPICE-based memristor model.

3.2 Closed-loop feedback circuit

Traditionally, the data flow of a memristor crossbar-based neural network fol-
lows a linear pipeline in a conventional open-loop system. While these open-loop
systems serve as a simple and efficient pipeline for VMM operations, they are not
able to effectively manage the effects of memristance drift. In [54], a closed-loop
circuit is proposed to mitigate memristance drift by adaptively adjusting the direc-
tion of current in each memristor using a feedback controller. Mean square error
(MSE) is used to measure the degradation caused by memristance drift. Specifi-
cally, the difference in MSE (ΔMSE) between the ideal crossbar and the current
state is used as a metric to inform the feedback controller. For each inference
operation, a weight compensation algorithm is run to minimize memristance drift
speed. The second feature of the closed-loop design introduced in [54] is the usage
of an “arrogant principle” which assumes that the prediction made by the crossbar
system is always correct. This principle allows the system to use its output as the
label to determine the direction of compensation in the weight compensation algo-
rithm. The effectiveness of this assumption hinges on the ideal accuracy of the
crossbar-mapped neural network. With a high initial accuracy, the “expectation of
recognition accuracy probability with respect to time” will be close to its upper
bound, thus keeping the rate of degradation of the feedback controller low. Naively,
this closed-loop design requires an additional compensation pulse for each inference
operation which would halve the throughput of the crossbar system. To address this
issue, [54] combines the compensation pulse with regular inference operations by
manipulating the k-th inference operation into compensating for the memristance
drift caused by the (k-1)-th inference. The feedback controller is used to determine
the recall direction of the (k-1)-th and then adjusts the direction of the k-th infer-
ence pulse accordingly. By integrating the k-th compensation pulse into the (k + 1)-
th inference pulse, there is no need to sacrifice crossbar throughput to implement
this proposed system. For testing, [54] adopts the dynamic model of the TaOx
memristor from [66] with a low resistive state and high resistive state of 1 kΩ and
1MΩ, respectively. The performance of single and two-layer neural networks were
tested on the MNIST dataset. The effectiveness of the closed loop design was
measured as the number of inference operations before the crossbar accuracy drops
below 70%. As compared to a baseline crossbar system, the proposed closed-loop
design is shown to increase the number of recall operations by 1897 operations for
the single-layer network and 1590 operations for the two-layer network. This
increase corresponds to a 13.84� lifetime extension for the single layer network and
a 13.95� lifetime extension for the two-layer network. For power estimation, [54]
uses a square recall voltage pulse of 0.3 V for 100 ns. Boban had an estimated power

7

Mitigating State-Drift in Memristor Crossbar Arrays for Vector Matrix Multiplication
DOI: http://dx.doi.org/10.5772/intechopen.100246



consumption of 1.1196 mW for a single layer neural network which increases to
6.7367 mW for a two-layer neural network implementation.

4. Adaptive inference scheme for memristance drift mitigation

In [56], the authors proposed an adaptive inference scheme called AIDX that
optimizes the amplitude and duration of inference voltage pulses in order to mini-
mize the speed of memristance drift. AIDX formulates memristance drift as an
optimization problem and seeks to minimize the memristance drift error defined as
the increase in mean squared error (MSE) from the initial programmed crossbar
after a set number of inference operations. The initial MSE can be modeled as:

E0 ¼
X

j

y j �
X

i

GijVi

 !2

(5)

Similarly, the MSE after k inference operations is given as:

Ek ¼
X

j

y j �
X

i

Gij þ ΔGk
ij

� �

V i

 !2

(6)

where ΔGk
ij is the accumulated memristance drift in the memristor i-th row and

j-th column from k inference operations. The additional error due to memristance
drift after k operations is calculated as EDrift ¼ Ek � E0. The naive approach of

simply choosing the minimum allowable voltage amplitude and duration may seem
logical because speed of memristance drift scales with amplitude and duration.
However, this naïve approach would still result in significant memristance drift
because of the vast differences in state drift speed in the SET and RESET drift [54].
As such, AIDX focuses on balancing the aggregate drift in the SET and RESET
directions for a given application by optimizing the ratio of SET to RESET
voltage pulse amplitude A and duration D (Figure 3a). The minimization of
memristance drift with respect to voltage pulse amplitude and duration is
formalized as follows:

minA,DEDrift A,Dð Þ (7)

Here, EDrift is a function of A and D that are vectors which represent the ratio of

SET to RESET voltage pulse amplitude and duration of each row of the memristor
crossbar respectively. The Broyden-Fletcher-Goldfarb-Shannon (BFGS) algorithm
[67] is used to tackle this optimization problem. Since the gradient of the
memristance drift error cannot be evaluated directly, the gradients used in the
BFGS algorithm were numerically approximated using function evaluations. Under
some circumstances, it is possible for the optimized values of A and D to be too
large or small to be properly implemented on a crossbar. Extreme values of A andD
are often caused by skewed memristor characteristics where memristance drift
speed in one direction is much faster than the other direction or when the data
distribution is heavily skewed toward one recall direction. To address this issue,
AIDX randomly inverting the direction of inference for an input vector x with
probability a in order to compensate for imbalanced memristor characteristics and a
skewed data distribution (Figure 3b). The probability of input inversion is opti-
mized to minimize EDrift before the optimization of A and D vectors to ensure a

8

Memristor - An Emerging Device for Post-Moore’s Computing and Applications



relatively balanced memristance drift speed in the SET and RESET directions as to
prevent extreme final values of A and D.

The general usage of AIDX in both preprocessing and inference is described in
(Figure 3c). To ensure optimal performance, optimization is done in three scenarios:
Optimizing over pulse amplitude ratio, optimizing over pulse duration ration, and
optimization over both parameters simultaneously. The best set of parameters is then
chosen according to lowest evaluated EDrift. If the parameters A and D are too

extreme, the optimization of probability of input inversion a is performed. Applying
AIDX during inference is almost identical to a normal crossbar VMM operation
except that if the input was inverted, the output vector must be reinverted to recover
the intended output. When applying AIDX to deep neural networks, it can be ineffi-
cient to optimize over all layers simultaneously due to the large number of parame-
ters. Instead, AIDX applies the BFGS algorithm to each layer separately in forward
pass order in order to reduce optimization time (Figure 4a). AIDX used a simulated
extended VTEAMmodel to fit real TiOx-based memristor device data. The following
non-idealities were considered for testing: 15% memristor programming error, 15%
random gaussian noise added to the high/low conductance states and alpha/k param-
eters of the extended VTEAMmodel for device-to-device variation. In addition, 200
ohms of source resistance and 20 ohms of line resistance were considered as well as
sneak paths were also considered. AIDX was applied to a memristor system that

Figure 3.
(a) Visual representation on how AIDX’s parameters changes the relative amplitude and width of positive and
negative voltage pulses before and after optimization. (b) Illustration of skewed input distributions can cause an
imbalance of memristance drift error in a particular direction. By applying input inversion, the input
distribution is reflected such that the memristance drift error in each direction is balanced. (c) Flowchart
describing the AIDX procedure for preprocessing and inference. Figure reprinted by [56].

9

Mitigating State-Drift in Memristor Crossbar Arrays for Vector Matrix Multiplication
DOI: http://dx.doi.org/10.5772/intechopen.100246



operates with a voltage range of �0.2 V to 0.2 V. Depending on the pulse amplitude
optimization, AIDX’s inference pulse can vary within this range. On average, there is
2% reduction in passive power consumption within the crossbar compared to the
baseline system when using AIDX. A simple test of AIDX effectiveness is done by
applying random positive and negative voltage pulses to memristors with and with-
out AIDX. After 10000 inference operations, the baseline memristors deviated a max
of 1.9% from its initial value while AIDX had a max deviation of only 0.17%
(Figure 4b). When tested on the 10 benchmark tasks from the Proben1 dataset [63],
the average classification accuracy degradation with AIDX is approximately 4%, 7%,

Figure 4.
(a) AIDX optimizes and applies separate voltage amplitude and duration ratios for each layer separately. (b)
Basic test on memristance drift with all devices with and without AIDX. With all memristors initially set to
0.0052 S, half of the memristors receive pre-generated random sequences of positive and an identical sequence of
negative pulses are applied to the other half of the crossbar.

Figure 5.
(a) Classification accuracy of AIDX and baseline neural network on ten tasks from the Proben1 dataset after 500,
2000, and 10000 inference operations. (b) Classification accuracy of AIDX and baseline on CIFAR10 dataset
with various CNN architectures after 500, 2000, and 10000 inference operations. Figure reprinted by [56].

10

Memristor - An Emerging Device for Post-Moore’s Computing and Applications



and 8% after 500, 2000, and 10000 inference operations (Figure 5a). On average,
AIDX reduced accuracy degradation by 42% as compared to the baseline test after
10000 inference operations. When testing AIDX on 10 CNN architectures using the
CIFAR10 dataset [18], the classification accuracy decrease by an average of 4%, 7%,
and 8% after 500, 2000, and 10000 inference operations (Figure 5b). This accuracy
degradation corresponds to a 22%, 35%, and 43% improvement over the baseline
respectively. In addition, AIDX was also applied to image reconstruction by training a
simple 3-layer autoencoder on the MNIST dataset [62]. The average mean squared
error of the baseline auto-encoder was 0.033, 0.068, and 0.129 after 500, 2000, and
10000 inference operations respectively. With AIDX, the average mean squared
error drops to 0.015, 0.021, and 0.028 after 500, 2000, and 10000 inference
operations which is an improvement of 53.0%, 69.0%, and 78.6% over the baseline
(Figure 6).

5. Overhead analysis

The three methods for mitigating memristance drift discussed in this chapter all
induce small overheads in terms of power consumption and chip area. Time

Figure 6.
(a) Reconstruction of sample images from MNIST dataset after 1, 500, 2000, and 10000 inference operations.
(b) The average mean squared error in image reconstruction between AIDX and baseline autoencoder after set
time steps. The percentage error improvement of AIDX over the baseline is also shown. Figure reprinted by [56].

11

Mitigating State-Drift in Memristor Crossbar Arrays for Vector Matrix Multiplication
DOI: http://dx.doi.org/10.5772/intechopen.100246



overhead is not discussed in this section because there is negligible change in
crossbar throughput by all three mitigation methods. Power overhead is defined in
this section as the additional power consumption induced in the memristor crossbar
and peripheral circuits due to proposed memristance drift solutions. For the sake of
consistency, the estimates of peripheral power consumption of [54] are used for
comparison. While power consumption is not disclosed in [55], the power overhead
of [56] is 1.19% while [54] has a power overhead of 1.61%. Area overhead is defined
consistently with [56] as the additional on-chip area required for memristance drift
mitigation method because of peripherals, external circuit, and other items. Since
both [55, 56] do not include any additional on-chip circuitry, these two methods do
not have any chip area overhead while the closed loop circuits proposed in [54]
require an additional 2.34% chip area. On the other hand, both [55, 56] require
solving an optimization problem before implementing their mitigation technique.
However, considering that the optimization procedure would only needed to be
performed once for an application, these solutions still promise great scalability for
long-term memristor crossbar usage.

6. Conclusions

In summary, this chapter first discusses memristor crossbar modeling and how
there is a current lack of attention in modeling subthreshold memristor behavior.
The next section overviews how the speed of memristance drift is impacted by
recall voltage and amplitude, memristor characteristics, crossbar size, and number
of inference operations since the last write operation. In addition, memristance drift
is shown to cause severe accuracy degradation across multiple datasets and tasks
such as MNIST and CIFAR10. The second half of this chapter is dedicated to
overviewing three different approaches for memristance drift mitigation. First, an
inline calibration approach [55] and a closed-loop feedback system is summarized.
Then, there is a more in-depth look into an adaptive inference scheme that opti-
mized the ratio of SET to RESET voltage pulse amplitude and width to minimize
memristance drift speed. The final section of the chapter briefly compared the
power and chip area overhead of these three memristance drift mitigation tech-
niques. Hopefully, this chapter can bring more much-needed attention to the study
of memristance drift and the development of drift mitigation techniques.

12

Memristor - An Emerging Device for Post-Moore’s Computing and Applications



Author details

Amirali Amirsoleimani1*, Tony Liu2, Fabien Alibart3, Serge Eccofey3,
Yao-Feng Chang4, Dominique Drouin3 and Roman Genov2

1 Department of Electrical Engineering and Computer Science, Lassonde School of
Engineering, York University, Toronto, Ontario, Canada

2 Intelligent Sensory Microsystem Laboratory, University of Toronto, Toronto,
Ontario, Canada

3 Interdisciplinary Institute for Technological Innovation – 3IT, University of
Sherbrooke, Sherbrooke, Quebec, Canada

4 Microelectronics Research Center, The University of Texas at Austin, Austin, TX,
USA

*Address all correspondence to: amirsol@yorku.ca

© 2021 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

13

Mitigating State-Drift in Memristor Crossbar Arrays for Vector Matrix Multiplication
DOI: http://dx.doi.org/10.5772/intechopen.100246



References

[1] Jouppi NP, Young C, Patil N,
Patterson D, Agrawal G, Bajwa R,
Bates S, Bhatia S, Boden N, Borchers A,
Boyle R. In-datacenter performance
analysis of a tensor processing unit. In
Proceedings of the 44th annual
international symposium on computer
architecture 2017 Jun 24 (pp. 1-12).

[2] Chung E, Fowers J, Ovtcharov K,
Papamichael M, Caulfield A,
Massengill T, Liu M, Lo D, Alkalay S,
Haselman M, Abeydeera M. Serving
dnns in real time at datacenter scale
with project brainwave. IEEE Micro.
2018 Apr 20;38(2):8-20.

[3] Chen YH, Krishna T, Emer JS, Sze V.
Eyeriss: An energy-efficient
reconfigurable accelerator for deep
convolutional neural networks. IEEE
journal of solid-state circuits. 2016 Nov
8;52(1):127-138.

[4] Lee J, Kim C, Kang S, Shin D, Kim S,
Yoo HJ. UNPU: A 50.6 TOPS/W unified
deep neural network accelerator with
1b-to-16b fully-variable weight bit-
precision. In2018 IEEE International
Solid-State Circuits Conference-
(ISSCC) 2018 Feb 11 (pp. 218-220).
IEEE.

[5]Moons B, Uytterhoeven R,
Dehaene W, Verhelst M. 14.5 envision:
A 0.26-to-10tops/w subword-parallel
dynamic-voltage-accuracy-frequency-
scalable convolutional neural network
processor in 28nm fdsoi. In2017 IEEE
International Solid-State Circuits
Conference (ISSCC) 2017 Feb 5
(pp. 246-247). IEEE.

[6]Wulf WA, McKee SA. Hitting the
memory wall: Implications of the
obvious. ACM SIGARCH computer
architecture news. 1995 Mar 1;23(1):
20-24.

[7] Yu S. Neuro-inspired computing
with emerging nonvolatile memorys.

Proceedings of the IEEE. 2018 Feb;106
(2):260-285.

[8] Chakraborty I, Jaiswal A, Saha AK,
Gupta SK, Roy K. Pathways to efficient
neuromorphic computing with non-
volatile memory technologies. Applied
Physics Reviews. 2020 Jun 3;7(2):021308.

[9] Ambrogio S, Narayanan P, Tsai H,
Shelby RM, Boybat I, Di Nolfo C,
Sidler S, Giordano M, Bodini M,
Farinha NC, Killeen B. Equivalent-
accuracy accelerated neural-network
training using analogue memory.
Nature. 2018 Jun;558(7708):60-67.

[10]Hu M, Graves CE, Li C, Li Y, Ge N,
Montgomery E, Davila N, Jiang H,
Williams RS, Yang JJ, Xia Q. Memristor-
based analog computation and neural
network classification with a dot
product engine. Advanced Materials.
2018 Mar;30(9):1705914.

[11] Cai F, Correll JM, Lee SH, Lim Y,
Bothra V, Zhang Z, Flynn MP, Lu WD.
A fully integrated reprogrammable
memristor–CMOS system for efficient
multiply–accumulate operations. Nature
Electronics. 2019 Jul;2(7):290-299.

[12] Li C, Belkin D, Li Y, Yan P, Hu M,
Ge N, Jiang H, Montgomery E, Lin P,
Wang Z, Song W. Efficient and self-
adaptive in-situ learning in multilayer
memristor neural networks. Nature
communications. 2018 Jun 19;9(1):1-8.

[13] Ramasubramanian SG,
Venkatesan R, Sharad M, Roy K,
Raghunathan A. SPINDLE: SPINtronic
deep learning engine for large-scale
neuromorphic computing. In2014 IEEE/
ACM International Symposium on Low
Power Electronics and Design (ISLPED)
2014 Aug 11 (pp. 15-20). IEEE.

[14] Ankit A, Hajj IE, Chalamalasetti SR,
Ndu G, Foltin M, Williams RS,
Faraboschi P, HwuWM, Strachan JP,

14

Memristor - An Emerging Device for Post-Moore’s Computing and Applications



Roy K, Milojicic DS. PUMA: A
programmable ultra-efficient memristor-
based accelerator for machine learning
inference. In Proceedings of the Twenty-
Fourth International Conference on
Architectural Support for Programming
Languages and Operating Systems 2019
Apr 4 (pp. 715-731).

[15]Hu M, Graves CE, Li C, Li Y, Ge N,
Montgomery E, Davila N, Jiang H,
Williams RS, Yang JJ, Xia Q. Memristor-
based analog computation and neural
network classification with a dot
product engine. Advanced Materials.
2018 Mar;30(9):1705914.

[16] Ielmini D, Wong HS. In-memory
computing with resistive switching
devices. Nature Electronics. 2018 Jun;1
(6):333-343.

[17] Zidan MA, Strachan JP, LuWD. The
future of electronics based on
memristive systems. Nature electronics.
2018 Jan;1(1):22-29.

[18] Sebastian A, Le Gallo M, Khaddam-
Aljameh R, Eleftheriou E. Memory
devices and applications for in-memory
computing. Nature nanotechnology.
2020 Jul;15(7):529-544.

[19] Tsai H, Ambrogio S, Narayanan P,
Shelby RM, Burr GW. Recent progress
in analog memory-based accelerators
for deep learning. Journal of Physics D:
Applied Physics. 2018 Jun 21;51(28):
283001.

[20] Amirsoleimani A, Alibart F, Yon V,
Xu J, Pazhouhandeh MR, Ecoffey S,
Beilliard Y, Genov R, Drouin D. In-
Memory Vector-Matrix Multiplication
in Monolithic Complementary Metal–
Oxide–Semiconductor-Memristor
Integrated Circuits: Design Choices,
Challenges, and Perspectives. Advanced
Intelligent Systems. 2020 Nov;2(11):
2000115.

[21] Shafiee A, Nag A,
Muralimanohar N, Balasubramonian R,

Strachan JP, Hu M, Williams RS,
Srikumar V. ISAAC: A convolutional
neural network accelerator with in-situ
analog arithmetic in crossbars. ACM
SIGARCH Computer Architecture
News. 2016 Jun 18;44(3):14-26.

[22] Chi P, Li S, Xu C, Zhang T, Zhao J,
Liu Y, Wang Y, Xie Y. Prime: A novel
processing-in-memory architecture for
neural network computation in reram-
based main memory. ACM SIGARCH
Computer Architecture News. 2016 Jun
18;44(3):27-39.

[23] Yao P, Wu H, Gao B, Tang J,
Zhang Q, Zhang W, Yang JJ, Qian H.
Fully hardware-implemented memristor
convolutional neural network. Nature.
2020 Jan;577(7792):641-646.

[24] Yakopcic C, Alom MZ, Taha TM.
Extremely parallel memristor crossbar
architecture for convolutional neural
network implementation. In2017
International Joint Conference on
Neural Networks (IJCNN) 2017 May 14
(pp. 1696-1703). IEEE.

[25] Rahimi Azghadi M, Chen YC,
Eshraghian JK, Chen J, Lin CY,
Amirsoleimani A, Mehonic A,
Kenyon AJ, Fowler B, Lee JC, Chang YF.
Complementary Metal-Oxide
Semiconductor and Memristive
Hardware for Neuromorphic
Computing. Advanced Intelligent
Systems. 2020 May;2(5):1900189.

[26] Jo SH, Chang T, Ebong I,
Bhadviya BB, Mazumder P, Lu W.
Nanoscale memristor device as
synapse in neuromorphic systems.
Nano letters. 2010 Apr 14;10(4):
1297-1301.

[27] Kim KH, Gaba S, Wheeler D,
Cruz-Albrecht JM, Hussain T,
Srinivasa N, Lu W. A functional hybrid
memristor crossbar-array/CMOS system
for data storage and neuromorphic
applications. Nano letters. 2012 Jan 11;12
(1):389-395.

15

Mitigating State-Drift in Memristor Crossbar Arrays for Vector Matrix Multiplication
DOI: http://dx.doi.org/10.5772/intechopen.100246



[28] Prezioso M, Merrikh-Bayat F,
Hoskins BD, Adam GC, Likharev KK,
Strukov DB. Training and operation of
an integrated neuromorphic network
based on metal-oxide memristors.
Nature. 2015 May;521(7550):61-64.

[29] Li C, Hu M, Li Y, Jiang H, Ge N,
Montgomery E, Zhang J, Song W,
Dávila N, Graves CE, Li Z. Analogue
signal and image processing with large
memristor crossbars. Nature electronics.
2018 Jan;1(1):52-59.

[30] Gao L, Chen PY, Liu R, Yu S.
Physical unclonable function exploiting
sneak paths in resistive cross-point
array. IEEE Transactions on Electron
Devices. 2016 Jun 21;63(8):3109-3115.

[31]Nili H, Adam GC, Hoskins B,
Prezioso M, Kim J, Mahmoodi MR,
Bayat FM, Kavehei O, Strukov DB.
Hardware-intrinsic security primitives
enabled by analogue state and nonlinear
conductance variations in integrated
memristors. Nature Electronics. 2018
Mar;1(3):197-202.

[32] Jiang H, Li C, Zhang R, Yan P, Lin P,
Li Y, Yang JJ, Holcomb D, Xia Q. A
provable key destruction scheme based
on memristive crossbar arrays. Nature
Electronics. 2018 Oct;1(10):548-554.

[33]Cai F, Kumar S, Van Vaerenbergh T,
Liu R, Li C, Yu S, Xia Q, Yang JJ,
Beausoleil R, Lu W, Strachan JP.
Harnessing intrinsic noise in memristor
Hopfield neural networks for
combinatorial optimization. arXiv
preprint arXiv:1903.11194. 2019 Mar 26.

[34] Bojnordi MN, Ipek E. Memristive
boltzmann machine: A hardware
accelerator for combinatorial
optimization and deep learning. In2016
IEEE International Symposium on High
Performance Computer Architecture
(HPCA) 2016 Mar 12 (pp. 1-13). IEEE.

[35] Liu S, Wang Y, Fardad M,
Varshney PK. A memristor-based

optimization framework for artificial
intelligence applications. IEEE Circuits
and Systems Magazine. 2018 Feb 9;18
(1):29-44.

[36] Sheridan PM, Cai F, Du C, Ma W,
Zhang Z, Lu WD. Sparse coding with
memristor networks. Nature
nanotechnology. 2017 Aug;12(8):784.

[37] Zidan MA, Jeong Y, Lee J, Chen B,
Huang S, Kushner MJ, Lu WD. A
general memristor-based partial
differential equation solver. Nature
Electronics. 2018 Jul;1(7):411-420.

[38] Chen A, Datta S, Hu XS,
Niemier MT, Rosing TŠ, Yang JJ. A
survey on architecture advances enabled
by emerging beyond-CMOS
technologies. IEEE Design & Test. 2019
Feb 28;36(3):46-68.

[39] Jain S, Ankit A, Chakraborty I,
Gokmen T, Rasch M, Haensch W,
Roy K, Raghunathan A. Neural network
accelerator design with resistive
crossbars: Opportunities and challenges.
IBM Journal of Research and
Development. 2019 Oct 11;63(6):10-11.

[40]Mittal S. A survey of ReRAM-based
architectures for processing-in-memory
and neural networks. Machine learning
and knowledge extraction. 2019 Mar;1
(1):75-114.

[41] Cheng M, Xia L, Zhu Z, Cai Y,
Xie Y, Wang Y, Yang H. Time: A
training-in-memory architecture for
memristor-based deep neural networks.
In2017 54th ACM/EDAC/IEEE Design
Automation Conference (DAC) 2017
Jun 18 (pp. 1-6). IEEE.

[42] Chen L, Li J, Chen Y, Deng Q,
Shen J, Liang X, Jiang L. Accelerator-
friendly neural-network training:
Learning variations and defects in
RRAM crossbar. InDesign, Automation
& Test in Europe Conference &
Exhibition (DATE), 2017 2017 Mar 27
(pp. 19-24). IEEE.

16

Memristor - An Emerging Device for Post-Moore’s Computing and Applications



[43] Xia L, Liu M, Ning X,
Chakrabarty K, Wang Y. Fault-tolerant
training with on-line fault detection for
RRAM-based neural computing
systems. In Proceedings of the 54th
Annual Design Automation Conference
2017 2017 Jun 18 (pp. 1-6).

[44] Liu C, Hu M, Strachan JP, Li H.
Rescuing memristor-based
neuromorphic design with high defects.
In2017 54th ACM/EDAC/IEEE Design
Automation Conference (DAC) 2017
Jun 18 (pp. 1-6). IEEE.

[45] Liu X,MaoM, Liu B, Li H, Chen Y,
Li B,Wang Y, JiangH, Barnell M,WuQ,
Yang J. RENO: A high-efficient
reconfigurable neuromorphic computing
accelerator design. In Proceedings of the
52nd Annual Design Automation
Conference 2015 Jun 7 (pp. 1-6).

[46] Li B, Shan Y, Hu M, Wang Y,
Chen Y, Yang H. Memristor-based
approximated computation. In:
International Symposium on Low Power
Electronics and Design (ISLPED); 2013;
Beijing, China. p. 242-247. DOI:
10.1109/ISLPED.2013.6629302.

[47] Yan B, Yang J, Wu Q, Chen Y, Li H.
A closed-loop design to enhance weight
stability of memristor based neural
network chips. In: 2017 IEEE/ACM
International Conference on Computer-
Aided Design (ICCAD); 2017; Irvine,
CA, USA. p. 541-548. DOI: 10.1109/
ICCAD.2017.8203824.

[48] Li B, Shan Y, Hu M, Wang Y,
Chen Y, Yang H. Memristor-based
approximated computation. In:
International Symposium on Low Power
Electronics and Design (ISLPED); 2013;
Beijing, China. p. 242-247. DOI:
10.1109/ISLPED.2013.6629302.

[49] Alibart F, Zamanidoost E,
Strukov DB. Pattern classification by
memristive crossbar circuits using ex
situ and in situ training. Nature
communications. 2013 Jun 25;4(1):1-7.

[50]ChenY, LiH,WangX, ZhuW,XuW,
Zhang T. A nondestructive self-reference
scheme for spin-transfer torque random
accessmemory (STT-RAM). In 2010
Design, Automation& Test in Europe
Conference&Exhibition (DATE 2010)
2010Mar 8 (pp. 148-153). IEEE.

[51]Niu D, Xiao Y, Xie Y. Low power
memristor-based ReRAM design with
error correcting code. In 17th Asia and
South Pacific Design Automation
Conference 2012 Jan 12 (pp. 79-84).
IEEE.

[52]Oh S, Huang Z, Shi Y, Kuzum D.
The impact of resistance drift of phase
change memory (PCM) synaptic
devices on artificial neural network
performance. IEEE Electron Device
Letters. 2019 Jul 2;40(8):1325-1328.

[53]Hsieh CC, Chang YF, Jeon Y, Roy A,
Shahrjerdi D, Banerjee SK. Short-Term
Relaxation in HfOx/CeOx Resistive
Random Access Memory with Selector.
IEEE Electron Device Letters. 2017 Jun
1;38(7):871-874.

[54] Yan B, Yang J, Wu Q, Chen Y, Li H.
A closed-loop design to enhance weight
stability of memristor based neural
network chips. In2017 IEEE/ACM
International Conference on Computer-
Aided Design (ICCAD) 2017 Nov 13
(pp. 541-548). IEEE.

[55] Li B, Wang Y, Chen Y, Li H, Yang H.
ICE: Inline calibration for memristor
crossbar-based computing engine. In:
2014 Design, Automation & Test in
Europe Conference & Exhibition; 2014;
Dresden, Germany. p. 1-4. DOI:
10.7873/DATE.2014.197.

[56] Liu T, Amirsoleimani A, Alibart F,
Ecoffey S, Drouin D, Genov R. AIDX:
Adaptive Inference Scheme to Mitigate
State-Drift in Memristive VMM
Accelerators. IEEE Transactions on
Circuits and Systems II: Express Briefs.
2021;68:4:1128-1132. DOI: 10.1109/
TCSII.2020.3026642.

17

Mitigating State-Drift in Memristor Crossbar Arrays for Vector Matrix Multiplication
DOI: http://dx.doi.org/10.5772/intechopen.100246



[57] Kvatinsky S, Ramadan M,
Friedman EG, Kolodny A, Weiser UC.
TEAM: ThrEshold Adaptive Memristor
Model. IEEE Transactions on Circuits
and Systems I: Regular Papers. 2013;60:
1:211-221. DOI: 10.1109/
TCSI.2012.2215714.

[58] Kvatinsky S, Ramadan M,
Friedman EG, Kolodny A. VTEAM: A
General Model for Voltage-Controlled
Memristors. IEEE Transactions on
Circuits and Systems II: Express Briefs.
2015;62:8:786-790. DOI: 10.1109/
TCSII.2015.2433536.

[59] Biolek Z, Biolek D, Biolkova V.
SPICE Model of Memristor with
Nonlinear Dopant Drift.
Radioengineering. 2009.

[60] Pickett MD, Strukov DB,
Borghetti JL, Yang JJ, Snider GS,
Stewart DR, Williams RS. Switching
dynamics in titanium dioxide
memristive devices. Journal of Applied
Physics. 2009; 106:7:1–6. DOI: 10.1063/
1.3236506

[61] Pino RE, Li H, Chen Y, Hu M, Liu B.
Statistical memristor modeling and case
study in neuromorphic computing. In:
DAC Design Automation Conference
2012; 2012; San Francisco, CA, USA.
p. 585-590. DOI: 10.1145/
2228360.2228466.

[62] Lecun Y, Bottou L, Bengio Y,
Haffner P. Gradient-based learning
applied to document recognition.
Proceedings of the IEEE. 1998; 86:11:
2278-2324. DOI: 10.1109/5.726791.

[63] Prechelt L. PROBEN 1-a set of
benchmarks and benchmarking rules for
neural network training algorithms. 1994.

[64] Krizhevsky A, Hinton G. Learning
multiple layers of features from tiny
images. 2009.

[65] Li B, Shan Y, Hu M, Wang Y,
Chen Y, Yang H. Memristor-based

approximated computation. In:
International Symposium on Low Power
Electronics and Design (ISLPED); 2013;
Beijing, China. p. 242-247. DOI:
10.1109/ISLPED.2013.6629302.

[66] Strachan J, Torrezan A, Miao F,
Pickett M, Yang J, Yi W, Medeiros-
Ribeiro G, Williams S. State Dynamics
and Modeling of Tantalum Oxide
Memristors. IEEE Transactions on
Electron Devices. 2013; 60:7:2194-2202.
DOI: 10.1109/TED.2013.2264476

[67] Fletcher R. Practical methods of
optimization. John Wiley & Sons; 2013.
DOI: 10.1002/9781118723203.

18

Memristor - An Emerging Device for Post-Moore’s Computing and Applications


