
Mitigating the Compiler Optimization

Phase-Ordering Problem using Machine Learning

Sameer Kulkarni John Cavazos

University of Delaware

{skulkarn,cavazos}@cis.udel.edu

Abstract

Today’s compilers have a plethora of optimizations to choose

from, and the correct choice of optimizations can have a sig-

nificant impact on the performance of the code being opti-

mized. Furthermore, choosing the correct order in which to

apply those optimizations has been a long standing problem

in compilation research. Each of these optimizations inter-

acts with the code and in turn with all other optimizations in

complicated ways. Traditional compilers typically apply the

same set of optimization in a fixed order to all functions in a

program, without regard the code being optimized.

Understanding the interactions of optimizations is very

important in determining a good solution to the phase-

ordering problem. This paper develops a new approach that

automatically selects good optimization orderings on a per

method basis within a dynamic compiler. Our approach for-

mulates the phase-ordering problem as a Markov process

and uses a characterization of the current state of the code

being optimized to creating a better solution to the phase

ordering problem. Our technique uses neuro-evolution to

construct an artificial neural network that is capable of pre-

dicting beneficial optimization ordering for a piece of code

that is being optimized. We implemented our technique in

Jikes RVM and achieved significant improvements on a set

of standard Java benchmarks over a well-engineered fixed

order.

General Terms Performance, Compilation, Compiler Op-

timization

Keywords Phase Ordering, Compiler optimization, Ma-

chine learning, Neural Networks, Java, Jikes RVM, Code

Feature Generation

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction

Selecting the best ordering of compiler optimizations for a

program has been an open problem in compilation research

for decades. Compiler writers typically use a combination of

experience and insight to construct the sequence of optimiza-

tions found in compilers. In this approach, compromises

must be made, e.g., should optimizations be included in a

default fixed sequence if those optimizations improve per-

formance of some benchmarks, while degrading the perfor-

mance of others. For example, GCC has around 250 “passes”

that can be used, and most of these are turned off by default.

The developers of GCC have given up in trying to include all

optimizations and hope that a programmer will know which

optimizations will benefit their code.

In optimizing compilers, it is standard practice to apply

the same set of optimizations phases in a fixed order on

each method of a program. However, several researchers [2,

3, 15], have shown that the best ordering of optimizations

varies within a program, i.e., it is function-specific. Thus,

we would like a technique that selects the best ordering of

optimizations for individual portions of the program, rather

than applying the same fixed set of optimizations for the

whole program.

This paper develops a new method-specific technique that

automatically selects the predicted best ordering of opti-

mizations for different methods of a program. We develop

this technique within the Jikes RVM Java JIT compiler and

automatically determine good phase-orderings of optimiza-

tions on a per method basis. Rather than developing a hand-

crafted technique to achieve this, we make use of an artifi-

cial neural network (ANN) to predict the optimization order

likely to be most beneficial for a method. Our ANNs were

automatically induced using Neuro-Evolution for Augment-

ing Topologies (NEAT) [23].

A trained ANN uses input properties (i.e., features) of

each method to represent the current optimized state of the

method and given this input, the ANN outputs the opti-

mization predicted to be most beneficial to the method at

that state. Each time an optimization is applied, it poten-

tially changes the properties of the method. Therefore, af-

ter each optimization is applied, we generate new features of

1 2012/4/14

0.95	

1	

1.05	

1.1	

1.15	

1.2	

1.25	

S
p
e
e
d
u
p
	 n
o
rm

a
li
ze
d
	 t
o
	 O
3
	 Op2miza2on	 Level	 O3	

Best	 overall	 Sequence	 Best	 Sequence	 per	 benchmark	

SPECjvm	 98	 Grande	

Figure 1. We used genetic algorithms to find “tuned” optimization sequence for benchmarks in the SPECjvm98 and Java

Grande benchmark suites. In a first experiment, we obtained an optimization ordering that performed well over all the

benchmarks by using the running time of all the benchmarks as a fitness function. In a second experiment, we used running

time of each individual benchmark to “evolve” the best optimization ordering for each benchmark.

the method to use as input to the ANN. The ANN then pre-

dicts the next optimization to apply based on the current op-

timized state of the method. This technique solves the phase-

ordering problem by taking advantage of the Markov prop-

erty of the optimization problem. That is, the current state of

the method represents all the information required to choose

an optimization to be most beneficial at that decision point.

We discuss the Markov property and our approach in more

detail in Section 3.

The application of machine learning to compilation has

received a lot of attention. However, there has been little ef-

fort to “learn” the effect that each optimization has on the

code and to use that knowledge to choose the most appro-

priate optimization to apply. To the best of our knowledge,

the technique described in this paper is the first to automati-

cally induce a heuristic that can predict an overall optimiza-

tion ordering to individual portions of a program. Our tech-

nique learns what order to apply optimizations rather than

tuning local heuristics, and it does this in a dynamic compila-

tion setting.1 Furthermore, we show significant performance

improvement over an existing well-engineered compilation

system. We make the following contributions:

• We present a method of evolving an ANN to be used

for phase-ordering, which, to the best of our knowledge,

is the first technique that “learns” from characteristics

of code being optimized what is the best ordering of

optimizations to apply.

• We show that our phase-ordering technique can achieve

significant speedup over the traditional approach of ap-

plying a fixed optimization sequence.

1 The same technique can be applied in a static compilation setting in a

straight-forward manner.

• We compare our ANN-based phase-ordering technique to

the current state-of-the-art phase-ordering technique, i.e.,

using genetic algorithms (GAs). Moreover, we show that

our technique is much more practical for phase-ordering

than using GAs.

• We present results optimizing several Java benchmark

programs to illustrate that optimization order is impor-

tant.

• We show that our trained ANN generates a customized

phase-ordering for a variety of different methods in var-

ious SPECjvm2008 and DaCapo benchmarks to create a

truly method-specific phase-ordering compiler.

2. Overview

Compiler optimizations transform the code being optimized,

thus the application of each optimization potentially affects

the benefit of downstream optimizations. One of the most

prominent examples of this is the phase-ordering problem

between register allocation and instruction scheduling. How-

ever, any set of optimizations can potentially interact with

each other and can therefore participate in a phase-ordering

problem. These code interactions are an integral part of com-

piler optimizations, so it is important to understand the ef-

fects of the optimizations in order to arrange them in a way

that can deliver the most benefit.

2.1 Phase-Ordering with Genetic Algorithms

Most compilers apply optimizations based on a fixed order

that was determined to be best when the compiler was being

developed and tuned. However, programs require a specific

ordering of optimizations to obtain the best performance. To

demonstrate our point, we use genetic algorithms (GAs), the

current state-of-the-art in phase-ordering optimizations [3,

2 2012/4/14

6–9, 14, 16, 16, 17], to show that selecting the best ordering

of optimizations has the potential to significantly improve

the running time of dynamically-compiled programs.

We used GAs to construct a custom ordering of optimiza-

tions for each of the Java Grande [22] and SPEC JVM 98

benchmarks.2 In this GA approach, we create a population

of strings (called chromosomes), where each chromosome

corresponds to an optimization sequence. Each position (or

gene) in the chromosome corresponds to a specific optimiza-

tion from Table 2, and each optimization can appear multi-

ple times in a chromosome. For each of the experiments be-

low, we configured our GAs to create 50 chromosomes (i.e.,

50 optimization sequences) per generation and to run for 20

generations.

We ran two different experiments using GAs. The first

experiment consisted of finding the best optimization se-

quence across our benchmarks. Thus, we evaluated each op-

timization sequence (i.e., chromosome) by compiling all our

benchmarks with each sequence. We recorded their execu-

tion times and calculated their speedup by normalizing their

running times with the running time observed by compiling

the benchmarks at the O3 level. That is, we used average

speedup of our benchmarks (normalized to opt level O3) as

our fitness function for each chromosome. This result corre-

sponds to the “Best Overall Sequence” bars in Figure 1. The

purpose of this experiment was to discover the optimization

ordering that worked best on average for all our benchmarks.

The second experiment consisted of finding the best op-

timization ordering for each benchmark. Here, the fitness

function for each chromosome was the speedup of that opti-

mization sequence over O3 for one specific benchmark. This

result corresponds to the “Best Sequence per Benchmark”

bars in Figure 1. This represents the performance that we

can get by customizing an optimization ordering for each

benchmark individually.

The results of these experiments confirm two hypothe-

ses. First, significant performance improvements can be ob-

tained by finding good optimization orders versus the well-

engineered fixed order in Jikes RVM. The best order of op-

timizations per benchmark gave us up to a 20% speedup

(FFT) and on average 8% speedup over optimization level

O3. Second, as shown in previous work, each of our bench-

marks requires a different optimization sequence to obtain

the best performance. One ordering of optimizations for the

entire set of programs achieves decent performance speedup

compared to O3. However, the “Best Overall Sequence”

degrades the performance of three benchmarks (LUFact,

Series, and Crypt) compared to O3. In contrast, search-

ing for the best custom optimization sequence for each

benchmark, “Best Sequence for Benchmark”, allows us to

outperform both O3 and the best overall sequence.

2 We choose these benchmarks because they run for a short time. This

allowed us to evaluate thousands of different optimization sequences using

GAs.

2.2 Issues with Current State-of-the-Art

Using genetic algorithms is the current state-of-the-art in

obtaining good optimization orderings, and they can bring

significant performance improvements for some programs.

However, using GAs has several issues that impede their

widespread adoption in traditional compilers.

Expensive Search: GAs and other search techniques are

inherently expensive because they need to evaluate a variety

(typically hundreds) of different optimization orders for each

program and are therefore only applicable when compilation

time is not an issue, e.g., in an iterative compilation scenario.

And, because there is no transfer of knowledge, the search

space corresponding to the potential optimization orders has

to be explored anew for each new benchmark or benchmark

suite. We show empirical results in Section 7 describing the

time it took to for GAs to construct optimization orderings.

Method-specific difficulty: Using GAs to find custom or-

derings of optimizations for specific code segments within

a program (e.g., for each method) is non-trivial. An or-

der of optimization specific to each piece of code requires

a separate exploration of the optimization ordering space

for that code. This requires obtaining fine-grained execu-

tion times for each piece of code after it is optimized with a

specific phase-ordering. Fine-grained timers produce notori-

ously noisy information and can be difficult to implement. 3

Note that exhaustive exploration to find the optimal order

of optimizations is not practical. For example, if we consider

15 optimizations and an optimization sequence length of

20, the number of unique sequences exhaustive exploration

that would have to be evaluated is enormous (1520). Thus,

the current state-of-the-art is to intelligently explore a small

fraction of this space using genetic algorithms or some other

search algorithm.

2.3 Proposed Solution

Instead of using expensive search techniques to solve the

phase-ordering problem, we propose to use a machine-

learning based approach which automatically learns a good

heuristic for phase-ordering. This approach incurs a “one-

time” expensive training process, but is inexpensive to use

when being applied to new programs. There are two poten-

tial techniques we could use to predict good optimization

orders for code being optimized.

1. Predict the complete sequence: This technique requires a

model to predict the complete sequence of optimizations

that needs to be applied to the code just by looking at

characteristics of the initial code to be optimized. This

is a difficult learning task as the model would need to

3 Evaluating optimization orders for a method outside of an application con-

text [19] can simplify fine-grained timing, but has the potential to identify

optimization sequences that do not perform well when the method is used

in its original context.

3 2012/4/14

JikesRVM

Op+mizer

Back	 end

Front	 end

Generate	

Features

Run	 Benchmarks

&

Calculate	 Speedup

Apply

Op+miza+ons

NEAT

R
e
g
e
n
e
ra
te
	 F
e
a
tu
re
s

Feedback

Figure 2. The figure above represents the framework used

to evolve a neural network using NEAT to guide the compi-

lation of a given method. The Figure 4 describes the way the

neural network was used to guide the compilation process.

understand the complex interactions of each optimization

in the sequence.

2. Predict the current best optimization: This method would

use a model to predict the best single optimization (from

a given set of optimizations) that should be applied based

on the characteristics of code in its present state. Once an

optimization is applied, we would reevaluate characteris-

tics of the code and again predict the best optimization to

apply given this new state of the code.

In this paper we choose the second approach, which we

believe is an easier learning problem to solve.

We used a technique called Neuro-Evolution for Aug-

menting Topologies to automatically construct a heuristic

that can generate customized optimization orderings for each

method in a program. The process of developing this heuris-

tic is depicted in Figure 2 and described in detail in Sec-

tion 3. This approach involves continually interrogating a

neural network to predict which optimization would produce

the best results as a method is being optimized. Our network

uses as input features characterizing the current state of the

code being optimized and correlates those features with the

best optimization to use at particular point in the optimiza-

tion process. As we are considering dynamic JIT compila-

tion, the neural network and feature generator must incur a

small overhead, otherwise the cost of applying the network

to perform phase-ordering might outweigh any benefits of

the improved optimization orders.

1. NEAT constructs an ANN

(a) Integrate the ANN into Jikes RVM’s optimization driver

2. Evaluate ANN at the task of phase-ordering optimizations

(a) For each method dynamically compiled, repeat the follow-

ing two steps

i. Generate a feature vector of current method’s state

ii. Use ANN to predict the best optimization to apply

3. Run benchmarks and obtain feedback for NEAT

(a) Record execution time for each benchmark optimized using

the ANN

(b) Obtain speedup by normalizing each benchmark’s running

time to running time using default optimization heuristic

(e.g., opt level O3)

Figure 3. NEAT performs neuro-evolution to construct a

neural network to be used for phase-ordering. The above

steps describe the process of evaluating an ANN as part of

neuro-evolution.

Another approach would be to handcraft a heuristic based

on experimentation and analysis. This is undesirable because

it is an arduous task and specific to a compiler, and if the

platform were to change, the entire tuning process of the

heuristic would have to be repeated.

3. Approach

This section gives a detailed overview of how neuro-

evolution based machine learning is used to construct a

good optimization phase-ordering heuristic for the optimizer

within Jikes RVM. The first section outlines the different ac-

tivities that take place when training and deploying a phase-

ordering heuristic. This is followed by sections describing

how we use NEAT to construct an ANN, how we extract

features from methods, and how these features and ANNs

allow us to learn a heuristic that determines the order of

optimizations to apply. Figure 3 outlines our technique.

3.1 Overview of Training and Deployment

There are two distinct phases, training and deployment.

Training occurs once, off-line, “at the factory” and is equiv-

alent to the time spent by compiler writers designing and

implementing their optimization heuristics. Deployment is

the act of applying the heuristic at dynamic compilation time

to new “unseen” programs.

As part of the training phase, NEAT generates an ANN

that is used to control the order of optimizations within Jikes

RVM. The ANN is evaluated by applying different optimiza-

tion orderings to each method within each training program

and recording the performance of the optimized program.

The ANN takes as input a characterization (called a feature

vector) of current state of the method being optimized and

outputs a set of probabilities corresponding to the benefit of

applying each optimization. The optimization with the high-

4 2012/4/14

est probability is applied to the method. After an optimiza-

tion is applied, the feature vector of the method is updated

and fed into the network for another round of optimization.

One output of the network corresponds to “stop optimizing,”

and the optimization process continues until this output has

the highest probability.

Once the best ANN is evolved, it is installed into the

Jikes RVM compiler and used at runtime as an optimization

heuristic. The next sections describe these stages in more

detail.

3.2 Markov Property

Most compilers apply optimizations in a fixed order, and this

order is tuned for a particular set of benchmarks. This tuning

process is performed manually and is tedious and relatively

brittle. Also, the tuning procedure needs to be repeated each

time the compiler is modified for a new platform or when

a new optimization is added to the compiler. Most impor-

tantly, we have empirical evidence that each method within

a program requires the application of a specific order of op-

timizations to achieve the best performance. In this paper,

we propose to use machine learning to mitigate the compiler

optimization phase-ordering problem.

Determining the correct phase ordering of optimizations

in a compiler is a difficult problem to solve. In the absence of

an oracle to determine the correct ordering of optimizations,

we must use a heuristic to predict the best optimization to

use. We formulate the phase-ordering problem as a Markov

Process. In a Markov Process, the heuristic makes a decision

on what action to perform (i.e., optimization to apply) based

on the current state of the environment (i.e., the method

being optimized). In order to perform learning, the state must

conform to the Markov Property, which means that the state

must represent all the information needed to make a decision

of what action to perform at that decision point. In our

framework, the current state of the method being optimized

serves as our Markov state because it succinctly summarizes

the important information about the complete sequence of

optimizations that led to it.

3.3 Neuro-Evolution Overview

In the this paper, we use Neuro-Evolution of Augmenting

Topologies (NEAT) to construct our neural networks to be

used for phase-ordering. NEAT uses a process of natural

selection to construct an effective neural network to solve

a particular task. This process starts by randomly generating

an initial population (or generation) of neural networks and

evaluating the performance of each network at solving the

specific task at hand.

The number of neural networks present in each genera-

tion is set to 60 for our experiments. Each of these 60 neural

networks is evaluated by using them to optimize the bench-

marks in the training set. A fitness is associated with each

network as described in Section 3.5.3. Once the initial set of

generated neural networks are evaluated, the 10 best neural

Feature generation

Apply neural
network

One of the possible
optimizations that
can be applied

Optimization
predicted to be the
best by the neural
network

Multiple iterations of
feature generation,
neural network
prediction, and
optimizations

Stop applying any
more optimazations

Figure 4. This figure represents the phase-ordering process.

The process starts when the Jikes RVM optimizer receives

a method to optimize. We iterate over the instructions of

the method to generate the features, and then provide these

features to the neural network. The neural network then

provides a set of outputs, which represent the probabilities

of each optimization being beneficial. The optimization with

the highest probability is applied to the code. One of the

outputs of the network corresponds to “stop optimizing.”

When the probability of this output is highest, the optimizer

stops applying optimizations to the method.

networks from this set are propagated to the next generation

and are also used to produce new neural networks in this

generation.

This process continues and each successive generation

of neural networks produces networks that performs better

than the networks from the previous generation. New net-

works are created using mutation and crossover of the best

networks from the previous generation. During the process

of constructing new networks, we mutate the topology of a

progenitor network. Mutation can involve adding a neuron

to an existing edge in a network’s hidden layer. We set the

probability of adding a neuron to a low value (.1%) to keep

our networks small and efficient. Mutation can also involve

adding a new edge (probability .5%) or deleting an exist-

ing edge (probability .9%). These probabilties are within the

ranges suggested by the authors of NEAT. Neurons are re-

5 2012/4/14

Feature Meaning

bytecodes Number of bytecodes in the

method

locals space Number of words allocated

for locals

synch Method is synchronized

exceptions Method has exception han-

dling code

leaf Method is a leaf (contains no

calls)

final Method is declared final

private Method is declared private

static Method is declared static

Category Fraction of bytecodes that ...

aload, astore are Array Loads and Stores

primitive, long are Primitive or Long compu-

tations (e.g., iadd, fadd)

compare are Compares (e.g., lcmp,

dcmpl)

branch are Branches (forward/back-

ward/cond/uncond)

jsr are a JSR

switch are a SWITCH

put/get are a PUT or GET

invoke are an INVOKE

new are a NEW

arraylength are an ArrayLength

athrow,checkcast,monitor are an Athrow, checkcast, or

monitor

multi newarray are a Multi Newarray

simple, long, real are a Simple,Long, or Real

Conversions

Table 1. Method features being collected. To reduce the

length of the table several (different) features have been

placed in logical groups.

moved when the last edge to or from that neuron is removed.

The mutation probabilities were manually-tuned for our spe-

cific task. For our present experiments, we stopped after 300

generations, which was when the performance of the net-

works no longer improved at the task of phase-ordering for

our training benchmarks. Figure 2 depicts the process of

constructing a neural network using NEAT to replace the op-

timization heuristic in Jikes RVM.

3.4 Feature Extraction

Determining the properties of a method that predict an opti-

mization improvement is a difficult task. As we are operating

in a dynamic compilation environment, we chose features

that are efficient to calculate and which we thought were rel-

evant. Computing these features requires a single pass over

the instructions of the method. Table 1 shows the 26 features

used to describe the current state of each method being op-

timized. The values of each feature will be an entry in the

26−element feature vector x associated with each method.

The first 2 entries are integer values defining the size of the

code and data of the method. The next 6 are simple boolean

properties (represented using 0 or 1) of the method. The re-

maining features are simply the percentage of bytecodes be-

longing to a particular category (e.g., 30% loads, 22% float-

ing point, 5% yield points, etc.).

3.5 Applying NEAT

There are many characteristics (i.e., features) that can influ-

ence the phase-ordering decision, and these factors may have

complex interdependencies between them. In order to effec-

tively model the non-linear behavior of these features, our

neural networks are multilayer perceptrons.

3.5.1 Why NEAT?

NEAT can be used to solve challenging tasks because it can

evolve networks of unbounded complexity from a minimal

starting point. This method has been shown to outperform

the best fixed-topology method on challenging reinforce-

ment learning tasks [23] The reason that NEAT is faster and

better than typical reinforcement learning is three-fold: 1) it

incrementally grows networks from a minimal structure, 2)

it protects structural innovation using natural selection, and

3) it employs a principled method of crossover of different

topologies.

Neural networks are traditionally trained using super-

vised learning algorithms, which require a labeled training

set. The labeled training set consists of a feature vector that is

used as input, which characterizes a particular decision point

and the correct label or desired output the network should

produce when given this input. In the case of the phase order-

ing problem, we would need a feature vector corresponding

to the code being optimized and the desired output would be

the sequence of optimizations to apply to that code. Generat-

ing this labeled dataset requires knowing the right sequence

of optimizations to apply to a method is difficult as discussed

in Section 2.3.

3.5.2 Structure of the network

In our neural networks, each feature or characteristic of the

method is fed to an input node, and the layers of the network

can represent complex ”nonlinear” interaction between the

features. Each output node of the network controls a particu-

lar optimization that could be applied. The outputs are num-

bers between 0 or 1 depending on whether the optimization

is predicted to be beneficial to the state of the code currently

being optimized. We apply the optimization pertaining to the

output that is closest to 1 indicating the optimization that the

network predicts will be most beneficial. One of the outputs

of the ANN tells the optimizer to stop optimizing. When the

probability of this output is highest, the optimizer stops ap-

plying optimizations to the method. Figure 4 shows the pro-

cess of phase-ordering.

6 2012/4/14

3.5.3 Fitness Functions

The fitness value we used for the NEAT algorithm is the

arithmetic mean of the performance of the benchmarks in

the training set. That is, the fitness value for a particular

performance metric is:

Fitness(S) =
∑s∈S Speedup(s)

|S|

where S is the benchmark training suite and Speedup(s) is

the metric to minimize for a particular benchmark s, which in

our case is the run time (i.e., running time of the benchmark

without compile time).

Speedup(s) = Runtime(sde f)/Runtime(s)

where sde f is a run of benchmark s using the default

optimization order of optimization level O3. The goal of the

learning process is to create a heuristic that determines the

correct order of optimizations to apply to a particular method

thereby reducing the running time of the suite of benchmarks

in the training set.

4. Infrastructure + Methodology

In this section we describe the platform, the benchmarks, and

the methodology employed in our experiments.

4.1 Platform

For our experiments in this paper, we modified version 3.1.1

of the Jikes Research Virtual Machine [4]. The VM was

run on an Intel x86 based machine, supporting two AMD

Opteron 2216 dual core processors running at 2.6GHz with

an L1 and L2 cache and RAM of 128K, 1M and 8GB, re-

spectively. The operating system on the machine was Linux,

running kernel 2.6.32. We used the FastAdaptiveGenMS

configuration of Jikes RVM, indicating that the core vir-

tual machine was compiled by the optimizing compiler at

the most aggressive optimization level and the generational

mark-sweep garbage collector was used.

4.2 Benchmarks

For the present set of experiments we used four benchmark

suites. For our training set, we used seven benchmarks from

the Java Grande benchmark suite [29]. These benchmarks

were used for training primarily due to their short execution

times.

For the test set, we used the SPECjvm98 [28], the

SPECjvm2008 [27], and the DaCapo benchmark [1] suites.

We used all the benchmarks from SPECjvm98 and the sub-

set of benchmarks from SPECjvm2008 and DaCapo that

we could correctly compile with Jikes RVM. We used the

largest inputs for all benchmarks. 4 The SPEC JVM bench-

marks have been designed to measure the performance of

4 Note that for the benchmark FFT in SPECjvm2008, we used the small

input size because the large input size required more memory than was

available on our experimental platform.

OptKey Meaning

Optimization Level O0

CSE Local common sub expression elimination

CNST Local constant propagation

CPY Local copy propagation

SA CFG Structural Analysis

ET Escape Transformations

FA Field Analysis

BB Basic block frequency estimation

Optimization Level O1

BRO Branch optimizations

TRE Tail recursion elimination

SS Basic block static splitting

SO
Simple optimizations like Type prop,

Bounds check elim, dead-code elim, etc.

Optimization Level O2

LN Loop normalization

LU Loop unrolling

CM Coalesce Moves

Table 2. The set of optimizations that were used to perform

phase ordering in our experiments.

the Java Runtime Environment (JRE) and focus on core Java

functionality. The DaCapo benchmark suite is a collection

of programs that were designed for various different Java

performance studies. The results in Section 5 come from the

benchmarks in our test set.

4.3 Optimization Levels

We ran our experiments in two scenarios, first using only the

optimizing compiler in a non-adaptive scenario and second

using the adaptive compilation mode. In the optimizing com-

pilation scenario, we set the initial compiler to be the opti-

mizing compiler and disable any recompilation. This forces

the compiler to compile all the loaded methods at the high-

est optimization level. Under the adaptive scenario, all dy-

namically loaded methods are first compiled by the baseline

compiler that converts bytecodes straight to machine code

without performing any optimizations. The resultant code is

slow, but the compilation times are fast. The adaptive opti-

mization system then uses online profiling to discover the

subset of methods where a significant amount of the pro-

gram’s running time is being spent. These “hot” methods

are then recompiled using the optimizing compiler. During

this process these methods are first compiled at optimization

level O0, but if they continue to be important they are re-

compiled at level O1, and finally at level O2 if warranted.

Available optimizations are divided into different optimiza-

tion levels based on their complexity and aggressiveness.

When using the neural network in the adaptive scenario, we

disabled the optimizations that belonged to a higher level

than the present optimization level being used.

7 2012/4/14

4.4 Measurement

In a dynamic compiler like Jikes RVM, there are two types

of execution times that are of interest, total time and run-

ning time. The total time of a program is the time that the

dynamic compiler takes to compile the code from bytecodes

to machine code, and then to actually run the machine code.

The running time of a program is considered to be just the

time taken to run the machine code after it has been com-

piled by the dynamic compiler during a previous invocation.

For programs with short running times the total time is of

interest, as the compilation process itself is the larger chunk

of the execution time. However for programs that are likely

to run for longer durations, e.g. programs that perform heavy

computation or server programs that are initialized once and

remain running for a longer period of time, it is important to

highly optimize the machine code being generated. This is

true even at the expense of potentially greater compile time,

as the compilation time is likely to be overshadowed by the

execution of the machine code that has been generated by

the dynamic compiler. The time taken to execute the bench-

mark for the first invocation is taken as the total time. This

time includes the time taken by the compiler to compile the

bytecodes into machine code and the running of the machine

code itself. The running time is measured by running the

benchmark over five iterations and taking the average of the

last three execution times, this ensures that all the required

methods and classes had been preloaded and compiled. To

compare our performance we normalize our running times

and total times with the default optimization setting. This

default compilation scenario acts as our baseline, which is

the average of twenty running times and twenty total times

for each benchmark. The noise for all benchmarks in this

paper was less that 1.2% and the average noise was 0.7%.

4.5 Evaluation Methodology

As is standard practice, we evolve our neural network over

one suite of benchmarks, commonly referred to in the ma-

chine learning literature as the training set. We then test

the performance of our evolved neural network over another

“unseen” suite of benchmarks, that we have not trained on,

referred to as the test set.

5. Results

In this section, we present our results of using the neural net-

work that performed best on the training set. We used this

network to determine good optimization orders for methods

in programs from the SPECjvm98, SPECjvm2008, and Da-

Capo benchmark suites in both an adaptive and optimizing

compilation scenario.

5.1 Adaptive Compiler

In the adaptive compilation scenario, we allowed the adap-

tive compiler to decide the level of optimization to be used

to optimize methods as described in Section 4.3. However, at

each optimization level we used the induced neural network

to decide to order of optimizations to apply at that level. In

this scenario, we obtained an average speedup of 8% in run-

ning time and 4% improvement in the total execution time

over all the benchmarks versus the default adaptive mode in

Jikes RVM

SPECjvm98 Running time Using our neural network for

phase-ordering, we were able to obtain an average speedup

of 10% across the seven benchmarks of the SPECjvm98

benchmark suite on the running time. We got significant

improvements over default on mpegaudio (20%), compress

(14%), and javac (11%).

Total time We observed a modest increase in performance

of 3% on average on the SPECjvm98 benchmarks. However,

it is important to note that we achieved these speedups de-

spite of the overhead of feature extraction and the execution

of the neural network. The javac program gave us the best

total time speedup at around 7%.

5.1.1 SPECjvm2008

Running Time We achieved an average running time

speedup of 6.4% on the SPECjvm2008 benchmarks. The

fft benchmark did give us a slowdown of a little less

than 5%. Interestingly, we discovered that the neural net-

work used very short optimization sequences to optimize

that benchmark. This helps to explain the improvement in

the total time for this benchmark as described in the next

section.

Total Time Our average performance improvement over

all five SPECjvm2008 benchmarks was around 4%. We

achieved a performance improvement of up to 7% on the

benchmark sor with our ANNs.

5.1.2 DaCapo

The running time performance improvement of the programs

in the DaCapo benchmark suite (at 6.8%) was not as high as

the other two benchmark suites, but their performance on

the total time of 6% was much better than the average of the

other two SPECjvm benchmark suites.

5.2 Optimizing Compiler

When running Jikes RVM in a non-adaptive mode, all the

methods are compiled directly at the highest optimization

level. The average speedup when just measuring running

time was 8.2%, and we improved the total time by over 6%.

5.2.1 SPECjvm98

Running time In SPECjvm98, we achieve up to a speedup

of 24% on mpegaudio. On average, we improved the run-

ning time performance of this benchmark suite by 10%,

which is a significant improvement.

Total time When measuring total time, we observed a

modest increase in performance of around 3.4%. The best

8 2012/4/14

0.90	

0.95	

1.00	

1.05	

1.10	

1.15	

1.20	

1.25	

S
p
e
e
d
u
p
	 n
o
rm

a
li
ze
d
	 b
y
	 A
d
a
p
2
v
e
	

Adap2ve	

Total	 Time	 Running	 Time	

DaCapo	 SPECjvm2008	 SPECjvm	 98	

Figure 5. Adaptive: The graph above represents the speedup achieved by using NEAT when used by Jikes RVM in adaptive

mode to optimize each benchmark in the test set. We compare our result with the performance of each of the benchmarks when

using the default adaptive compilation scenario.

0.9	

0.95	

1	

1.05	

1.1	

1.15	

1.2	

1.25	

S
p
e
e
d
u
p
	 n
o
rm

a
li
ze
d
	 b
y
	 O
3
	

Op3miza3on	 Level	 O3	

Total	 Time	 Running	 Time	

DaCapo	 SPECjvm	 2008	 SPECjvm	 98	

Figure 6. Optimization Level O3: The graph above represents the speedup achieved by using NEAT when used in the non-

adaptive mode in Jikes RVM to optimize each benchmark in the test set. We compare our result with the performance of each

of the benchmarks when using the default non-adaptive compilation scenario.

performing benchmark was again mpegaudio at 11%

speedup.

5.2.2 SPECjvm2008

Running Time We achieved an average running time

speedup of 7% over all the five benchmarks of the SPECjvm2008

benchmark suite. The best performing benchmark from the

SPECjvm2008 suite was sorwith a speedup of almost 12%.

Total Time An interesting observation here is the perfor-

mance of the fft benchmark. In all other cases this bench-

mark had a minor slowdown. We realized that the average

optimization sequence length suggested by the neural net-

work was 11. This is very short compared to the default fixed

order sequence length of 23. This reduction in the sequence

9 2012/4/14

f a c t o r ()

{
f o r (. . .) {

a r i t h e m a t i c o p e r a t i o n ove r an a r r a y

f o r (. . .) {
a r i t h e m a t i c o p e r a t i o n ove r an a r r a y

}
}
. . .

i f (. . .) {
f o r (. . .) {

a r i t h e m a t i c o p e r a t i o n ove r an a r r a y

}
}
i f (. . .) {

f o r (. . .) {
f o r (. . .) {

a r i t h e m a t i c o p e r a t i o n ove r an a r r a y

}
}

}

}

Listing 1. Pseudo-code for scimark.lu.LU.factor, the hottest

method for the SPEC2008 lu benchmark

LABEL1

i n i f c m p <CONDITION> GOTO LABEL2

. . .

GOTO LABEL1

LABEL2

Listing 2. Slow Code (SA applied before BRO): The

following code corresponds to a while loop, where n

iterations of the loop require n conditional jumps and n

unconditional jumps. This is the code produced by using

optimization level O3.

i n i f c m p <!CONDITION> GOTO LABEL2

LABEL1

. . .

i n i f c m p <CONDITION> GOTO LABEL1

LABEL2

Listing 3. Fast Code (BRO applied before SA): The fol-

lowing code corresponds to a do-while loop, where n it-

erations of the loop would require n+1 conditional jumps

but no unconditional jumps, this improves the perfor-

mance. This is the code produced using the optimization

ordering produced using our neural network.

Figure 7. Listing 1 shows the pseudo code of the scimark.lu.LU.factor method that is compiled by the optimizing compiler.

The two HIRs generated for scimark.lu.LU.factor by the two different optimization orderings are shown in Listing 2 and

Listing 3. Changing the order that the transformations are applied changes the running time by almost 7%

length helped to reduce the amount of compilation required,

and thus improves total time performance.

5.2.3 DaCapo

Running Time Using the Jikes RVM in a non-adaptive

mode, we were able to get some significant speedups of 17%

for pmd and 10.6% for lusearch. There were no signif-

icant slowdowns and on average we observed a speedup of

7.3% on the DaCapo benchmark suite.

Total Time We saw significant speedups across DaCapo

with 14% speedups on xalan, luindex and lusearch,

and speedups of 5%, 8%, and 9% on the three other pro-

grams. On average, we had an improvement 11%.

6. Exploration of Phase ordering benefit

In this section, we tried to analyze the optimization orderings

that our neural network came up with. We ran the bench-

marks and collected the profiling runs, which gave us an

idea of which methods were most important. Looking at the

neural network does not typically give any intuition of the

phase-ordering heuristic, however it may help to understand

the rough complexity of the final solution.

The neural network found interesting combinations of

transformations that helped in improving the performance

of some of the benchmarks. For example, the code shown in

Figure 4 is the hottest method in the scimark.lu.small bench-

mark. The figure also shows code after applying Branch Op-

timization before CFG Structural Analysis (i.e., the ordering

obtained from the default optimization level) and the code

when applying these two optimizations in the reverse order

(i.e., the ordering obtained from our neural network). We

looked at the machine code being generated in both cases

and realized that when CFG Structural Analysis was applied

before Branch Optimization, the code that was generated had

more branch statements. A snippet of representative code is

shown in Figure 7. In the slower code, the loops are rep-

resented as while loops, and the code that worked best had

loops that are represented as do-while loops. This small dif-

ference in the machine code gave an improvement of ap-

proximately 8% in the running time of the scimark.lu

benchmark. Because the original code had a large fraction

of unconditional branch statements, it triggered the neural

network to apply CFG Structural Analysis. This kind of

fine-grained optimization can be achieved when using a our

method of phase ordering.

Analyzing another benchmark, scimark.sparse, which

performs sparse matrix multiplication, we see another simi-

lar phenomena. We looked at the sparse.SparseCompRow.matmul

method, which is the hottest method in the benchmark and

has multiple nested loops as represented in Figure 8. Consid-

ering the number of nested loops in this method,Loop Un-

rolling could potentially be an optimization to this method.

Howere we realized that our neural network applied CFG

10 2012/4/14

matmul ()

{
f o r (. . .) {

a r i t h e m a t i c o p e r a t i o n ove r an a r r a y

f o r (. . .) {
f o r (. . .) {

a r i t h e m a t i c o p e r a t i o n ove r an a r r a y

}
}

}
. . .

i f (. . .) {
f o r (. . .) {

a r i t h e m a t i c o p e r a t i o n ove r an a r r a y

}
}

}

Listing 4. Pseudo-code for matmult, the hottest

method for the SPEC2008 sparse benchmark.

LABEL1

. . .

i n t i f c m p <CONDITION> GOTO LABEL3

go to LABEL2

LABEL2

go to LABEL4

LABEL3

go to LABEL1

LABEL4

Listing 5. Slow Code (LU applied before SA): Here the num-

ber. of unconditional statements are unnecessary, and hampers

the performance of the code. This is the code produced by using

optimization level O3.

LABEL1

. . .

i n t i f c m p <CONDITION> GOTO LABEL1

Listing 6. Fast Code (SA applied before LU): During compi-

lation, CFG Structural Analysis was applied before Loop Un-

rolling, which gave the compiler a chance to clean up the code

before the loop unrolling was applied. This is the code produced

using the optimization ordering produced using our neural net-

work.

Figure 8. The final HIR generated for sparse.SparseCompRow.matmult by the two different optimization orderings. The code

generated by applying CFG Structural Analysis before Loop Unrolling shown in Listing 6 performs better in terms of running

time and achieved a speedup of almost 14%.. When looking at the other characteristics, the number of unconditional jumps

were reduced by 33% and there was a 10% reduction in the number of basic blocks.

Structural Analysis before it applied Loop Unrolling. This

ordering helped in improving the quality of the code, im-

proving the total running time by almost 14%. Again, this

particular ordering is not present in the default ordering

present in the JikesRVM compiler. There were some dif-

ferences in the machine code that were generated. The exact

change in the machine that caused this huge speedup cannot

be pinpointed, however we found a few instances of ma-

chine code that were less than optimum. Figure 8 shows a

piece of machine code that is less than otimal. When looking

at this particular instance we quickly relaized that the code

placement was needlessly complex. For example, if only

the target of the first conditional jump was set to LABEL1,

we would not need the last three unconditional jumps. In-

tuitively, a compiler writer would try to fix the problem by

applying another optimization like Branch Optimization or

applying CFG Structural Analysis once more. But, in this

particular case repeating CFG Structural Analysis or apply-

ing another instance of Branch optimization did not improve

the performance of the code.

7. Training Time

Training our machine learning heuristic requires us to pro-

vide fitness values to each of the heuristics being tested. In

our neuro-evolution scenario, the fitness of the heuristic can

only be measured in terms of the performance of the bench-

mark when this heuristic is applied.

This makes the execution time of the benchmark the bot-

tleneck in our experiments. In order to give a clearer picture

we calculated the rough training time that was required to

train a phase-ordering sequence for each benchmark indi-

vidually when using genetic algorithm. This is shown in the

Table 5. Given the number of days that it can take to train

each benchmark we feel that is is impractical to use GA’s

for phase-ordering, especially within a dynamic compilation

scenario.

8. Discussion

In this section, we briefly describe the neural network that

we used for the experiments and discuss some observations

(e.g., the reduction in the optimization sequence length, a

case of repeated optimizations, and handling of relatively flat

profiles.)

Neural Network We used one neural network for all the

results shown in Table 4 and Figures 5 and 6. This network

had 30 inputs, 14 outputs, 24 hidden nodes, and 503 total

connections.

Reduction of optimization sequence length From our ex-

periments, we were able to demonstrate two achievements.

11 2012/4/14

Program
Avg. Seq.

length

SPECjvm98

javac 18

mpegaudio 19

jess 16

compress 19

raytrace 18

jack 17

SPECjvm2008

fft 11

lu 18

monte carlo 17

Program
Avg. Seq.

length

SPECjvm2008 contd.

sparse 20

sor 16

DaCapo

avrora 19

luindex 16

lusearch 16

pmd 18

sunflow 16

xalan 17

Average 17

Default 23

Table 3. The average number of optimizations that were

applied by the neural network.

Intelligent ordering of the sequences provided us with sig-

nificant speedups. We also show that intelligently applying

the right optimizations helps in improving the compile time

by not having to apply optimizations that have little impact

on a method’s performance. This would reduce the compila-

tion burden on the system, and directly improve the system

performance in terms of total execution time.

A detailed analysis of the phase orderings suggested by

the ANN is shown in the Table 4. We typically applied 16-20

optimizations while the default optimizing compiler applied

23. We believe that this is significant. That is, we were able

to apply the right optimizations and thus more effectively

utilize the optimization resources available to us.

Repeating optimizations In some cases the optimizations

get repeated back to back. For example, the sequence shown

in the fourth row of Table 4, the network predicted to ap-

ply Static Splitting twice in succession. This situation arises

when applying a particular optimization does not change the

feature vector. We could potentially be stuck in an infinite

loop where the feature vector remains the same, thus inad-

vertently causing the neural network to apply the same opti-

mization, which causes an infinite loop. In order to overcome

this situation, if the network predicts that applying the same

optimization again would be beneficial, we allow for a maxi-

mum of 5 such repetitions, and then instead apply the second

best optimization.

Improvements from present state of art At present the best

way to tune phase ordering is to use GA to optimize in the

search. There are a few problems with this approach, each

benchmark has to be tuned individually, if we use a training

set and a test set, the results are not as good as shown in

Figure 9. Figure 9 compares the present state of the part in

phase ordering with our approach. The first bar is by training

GA on a training set and testing it on the test set, similar to

the second bar where we used NEAT. The last bar is when

0.9	

1	

1.1	

1.2	

1.3	

1.4	

1.5	

0	 1	 2	 3	 4	 5	 6	

S
p
e
e
d
u
p
	

No.	 of	 methods	 covering	 60%	 of	 running	 8me	

Speedups	 vs	 Method	 importance	

GA	 Speedup	

NEAT	 Speedup	

Figure 10. Speedup based on method importance: The

plot above represents the speedup achieved by evolving an

optimization sequence using genetic algorithm per bench-

mark and NEAT. Each data point in the plot corresponds to a

benchmark, and the plot depicts the number of methods that

constitute 60% of the running time for a particular bench-

mark versus the speedup obtained for that benchmark.

we individually searched for the best phase ordering using

GA for each benchmark. Even with the advantage of being

trained on each benchmark individually, the performance

GA per benchmark is not much better than using NEAT,

which does not require individual training runs.

Flat-profiled benchmarks For some benchmarks, the run-

ning time of the benchmark is equally divided among mul-

tiple methods (i.e., a flat profile), while other benchmarks

have the majority of the execution time is spent in just one

or a few methods. Finding a good phase ordering in case

of benchmarks with one single “hot” method is relatively

straight-forward. We would simply be searching for an op-

timization sequence that was beneficial for the one impor-

tant method of the benchmark. Since the execution time is

dominated by a single method, we would see an overall im-

provement in the performance of the benchmark even if the

method-specific phase ordering negatively affects the perfor-

mance of the other methods.

In order to demonstrate our point, we conducted an exper-

iment where we allowed the genetic algorithm to search for

the best optimization sequence to be applied to each bench-

mark. This was the method proposed by Cooper et al. [6] and

was shown to find good optimization sequences for a pro-

gram. Figure 10 shows the speedup achieved by both GAs

and neural networks on each benchmark as it relates to the

12 2012/4/14

1
.4
5
	

0.90	

0.95	

1.00	

1.05	

1.10	

1.15	

1.20	

1.25	

S
p
e
e
d
u
p
	 n
o
rm

a
li
ze
d
	 b
y
	 O
3
	

Gene4c	 Algorithm	 vs	 Neural	 Network	

Gene,c	 Algorithm	 Neural	 Network	 Gene,c	 Algorithm	 per	 benchmark	

DaCapo	 SPECjvm2008	 SPECjvm	 98	

Figure 9. Genetic Algorithm versus Neural Network: The graph above represents the speedup achieved by the best

optimization sequence found by the genetic algorithm for all the benchmarks in the training set, when applied to the test

set (JikesRVM in non-adaptive mode). We compare our result with the performance of each of the benchmarks when using the

default non-adaptive compilation scenario.

Benchmark
Hot Percent of

Size
Optimization

method Total Calls Sequence

SPECjvm 2008

fft(small) FFT.transform internal() 86.93% 390 CNST,CPY,CPY,LU,BB,SS,BB,CSE,LN,CNST,LN

lu LU.factor() 72.59% 277
TRE,CNST,CPY,SS,SS,BRO,SA,ET,SO,

ET,LU,SS,LU,TRE,SS,SS,SO,CNST,FA,FA

monte carlo MonteCarlo.integrate() 25.31% 68
BB,CPY,BB,TRE,CNST,BB,CSE,

CSE,LU,CSE,SS,SA,LU,FA

sparse
SparseCompRow.

80.79% 161
SO,BB,LU,CNST,TRE,LN,CPY,TRE,SS,CPY,

matmult() SO,SO,SS,FA,BB,CNST,CPY,TRE,CNST

sor SOR.execute() 86.51% 184
SO,SO,BB,SO,SS,CPY,ET,TRE,CPY,LN,CSE,

CSE,SO,LN,SA,SA,SA,BB,TRE,CNST

Table 4. This table gives information about the hottest methods in SPECjvm2008 and the optimization sequences obtained

from our neural network for each of these methods. The abbreviations used to described the sequences are explained in Table 2.

number of “hot” methods that constitute 60% of the running

time for a particular benchmark. In this figure, we see that

the GA is better at finding good speedups when the 60% of

the execution time is concentrated in just one method. How-

ever, our NEAT-evolved networks are able to achieve good

speedup when the execution time is distributed over multiple

methods. Another set of results that reaffirm this conclusion

is in Figure 9, if you look at the results for javac and mpe-

gaudio, both benchmarks have relatively flat profiles, and in

both cases the individually training GA phase ordering did

not do as well as the Neural network.

9. Related Work

Auto-tuning: An area that is closely related to this paper

is the study of automatic code generation and optimization

for different computer architectures (auto-tuning), which has

been explored in many existing studies for many different

applications. A number of library generators automatically

produce high-performance kernel routines [21, 26, 30]. Re-

cent research efforts [12, 18] expand automatic code genera-

tion to routines whose performance depends not only on ar-

chitectural features, but also on input characteristics. These

systems are a significant step toward automatically opti-

mizing code for different computer architectures. Recently,

13 2012/4/14

Program
Training

time (Days)

SPECjvm98

javac 2.2

mpegaudio 0.8

jess 1.3

compress 1.1

raytrace .9

jack 1.6

SPECjvm2008

fft 10.4

lu 5

monte
8

carlo

Program
Training

time (Days)

SPECjvm2008 contd.

sparse 6

sor 5.1

DaCapo

avrora 7.3

luindex 3.1

lusearch 3.3

pmd 3.6

sunflow 3.1

xalan 5.6

Average 3.9

Total 70

Table 5. This table shows the average time that we have

taken if we evolved an optimization ordering using GA for

each benchmark individually.

Program GA NEAT

Java Grande 4.4 4.91

Jolden 7 8.3

Total 11.4 13.2

Table 6. Time taken in days to train the training set, to

provide the reults in Figure 9

Ganapathi [11] et al. presented some preliminary results on

the application of machine learning to auto-tuning for multi-

cores. They showed that auto-tuning of stencil codes, with

the assistance of machine learning, was able to surpass per-

formance of tuning by a domain expert. This research dis-

plays the great potential for machine learning and search

in an auto-tuning environment. However, these prior works

have all been largely focused on small domain-specific ker-

nels and still neglect exploring the benefits of learning from

a knowledge base of previously explored applications and

architectures.

Machine learning applied to Compilation: Machine learn-

ing and search techniques applied to compilation has been

studied in many recent projects [5, 8, 9, 14, 20, 24, 25, 31].

These previous studies have developed machine learning-

based algorithms to efficiently search for the optimal se-

lection of optimizing transformations, the best values for the

transformation parameters, or the optimal sequences of com-

piler optimizations. Generally, these studies customize op-

timizations for each program or local code segments, some

based on code characteristics. The proposed research in this

paper is motivated by these studies and makes a significant

step forward: the compiler will not only use program char-

acteristics, but will also learning to decide the right ordering

of optimizations.

Several researchers have looked at searching for the

best sequence of optimizations for a particular program [6–

8, 13, 16, 17], for example the work by Cooper et al. [6] used

genetic algorithms to solve the compilation phase ordering

problem. They were concerned with finding “good” com-

piler optimization sequences that reduced code size. Their

technique was successful at reducing code size by as much

as 40%. Unfortunately, their technique was application-

specific, i.e., a genetic algorithm had to be retrained to find

the best optimization sequence for each new program. Also,

Cooper et al. [8] propose a technique called virtual execu-

tion to reduce the cost of evaluating different optimization

orderings. Virtual execution consists of running the program

one time and predicting the performance of different opti-

mization sequences without running the code again. These

approaches give impressive performance improvements, but

has to be performed each time a new application is compiled.

While this is acceptable in embedded environments, it is not

suitable for typical compilation.

Kulkarni et al. [17] exhaustively enumerated all distinct

function instances for a set of programs that would be pro-

duced from different phase-orderings of 15 optimizations.

This exhaustive enumeration allowed them to construct

probabilities of enabling/disabling interactions between dif-

ferent optimization passes in general and not specific to any

program. In contrast, the techniques in this paper charac-

terized methods being optimized; therefore, the techniques

described here learn which optimizations are beneficial to

apply to “unseen” methods with similar characteristics.

Many researchers have also looked at using machine

learning to construct heuristics that control compiler op-

timizations. Cavazos et al. [5] used logistic regression to

control what optimizations to apply in JikesRVM. However,

they do not attempt to control the order of optimizations

and instead only turn on and off optimizations given the

hand-tuned fixed order of optimizations. For the SPECjvm98

benchmarks, they were not able to achieve significant im-

provements for running time under both non-adaptive and

adaptive scenarios likely because the fixed-order of opti-

mizations in Jikes RVM had been highly tuned and there

was little room for improvement on top of this ordering by

simply turning optimizations on and off. In contrast, we

achieve good improvements on SPECjvm98 benchmarks by

applying method-specific optimization orderings.

Stephenson et al. [25] used genetic programming to tune

heuristic priority functions for three compiler optimizations

within the Trimaran’s IMPACT compiler. For one of the opti-

mizations, register allocation, they were only able to achieve

on average a 2% increase over the manually tuned heuristic.

Monsifrot et al. [20] used a classifier based on decision tree

learning to determine which loops to unroll showing a few

percent improvement on two different machines. The results

in these papers highlight the diminishing results obtained

when only controlling a single optimization. In contrast, this

14 2012/4/14

research will control numerous optimizations available in

the compiler.

Agakov et al. [2] describe two models to improve the

search for good optimization orders to apply to programs.

The first model, called the independent identically dis-

tributed model, produces a probability vector correspond-

ing to probability that a transformation occurs in a good

sequence for a particular program. When optimizing a new

program, a nearest neighbor algorithm is used to choose the

probability vector of the program in the training set closest

to the program to be optimized. This probability vector is

then used to choose optimizations for the new program. The

second model, called the Markov model simply creates a

probability matrix where the probability of an optimization

being beneficial depends upon the optimizations that have

been previously applied. These models were developed to

focus the search for good optimization orderings during iter-

ative compilation. Therefore, these techniques suffers from

the same limitations as described in Section 2.1. Addition-

ally, these models use simple nearest neighbor algorithms

using the characteristics of the original unoptimized code.

Therefore, these models do not take advantage of important

characteristics of the code as it is being optimized.

Fursin et al. [10] (as part of the MILEPOST project) have

integrated machine learning algorithms in GCC to control

these optimizations applied. They show good results on three

different architectures, compared to random search of opti-

mizations sequences. However, the machine learning algo-

rithms in MILEPOST do not learn good optimization order-

ings because as the authors state “this requires detailed in-

formation about dependencies between passes to detect legal

orders”.

10. Conclusion

This paper has shown that method-specific optimization

orderings can give significant performance improvements

within the Jikes RVM JIT compiler. It has also demonstrated

that a technique of neuro-evolution can automatically de-

rive a neural network that gives significant performance

improvements over a well-engineered optimization order-

ing. We show total execution time improvements of up to

20%. To the best of our knowledge, this is the first paper to

demonstrate that machine-learning models can be success-

fully used to choose optimization orders for methods within

a compiler. The present study is promising as it provides a

fresh prospective to the problem of phase ordering which has

been studied for decades. The amount of improvement that

can be found from this method has not yet reached its full

potential, and we propose to improve the machine learning

algorithm to provide better improvements.

For future work, we would like to implement similar

phase-ordering techniques in a static compiler, in order to

understand the behavior of other environments on our setup.

There is nothing about the technique that makes it specific

to dynamic compilation. In addition, we would also like to

incorporate profile information into the feature set, which

allow us to improve our predictions.

References

[1] Dacapo benchmark suite. URL

http://dacapobench.org/benchmarks.html.

[2] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin,

M. F. P. O’Boyle, J. Thomson, M. Toussaint, and C. K. I.

Williams. Using machine learning to focus iterative optimiza-

tion. In CGO ’06: Proceedings of the International Sympo-

sium on Code Generation and Optimization, pages 295–305,

Washington, DC, USA, 2006. IEEE Computer Society.

[3] L. Almagor, K. D. Cooper, A. Grosul, T. J. Harvey, S. W.

Reeves, D. Subramanian, L. Torczon, and T. Waterman. Find-

ing effective compilation sequences. In Proceedings of the

2004 ACM SIGPLAN/SIGBED conference on Languages,

compilers, and tools for embedded systems, LCTES ’04, pages

231–239. ACM, 2004.

[4] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P.Cheng,

J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F.

Hummel, D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo, J. R.

Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E. Smith,

V. C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalapeño

virtual machine. IBM Systems Jounrnal, 39(1), 2000.

[5] J. Cavazos and M. F. P. O’Boyle. Method-specific Dynamic

Compilation Using Logistic Regression. In OOPSLA ’06:

Proceedings of the 21st annual ACM SIGPLAN conference

on Object-oriented programming systems, languages, and ap-

plications, pages 229–240, New York, NY, USA, 2006. ACM

Press.

[6] K. Cooper, P. Schielke, and D. Subramanian. Optimizing for

reduced code space using genetic algorithms. In Proceedings

of the ACM SIGPLAN 1999 workshop on Languages, compil-

ers, and tools for embedded systems, pages 1–9. ACM, 1999.

[7] K. Cooper, D. Subramanian, and L. Torczon. Adaptive opti-

mizing compilers for the 21st century. The Journal of Super-

computing, 23(1):7–22, 2001.

[8] K. Cooper, A. Grosul, T. Harvey, S. Reeves, D. Subramanian,

L. Torczon, and T. Waterman. ACME: adaptive compilation

made efficient. In LCTES ’05: Proceedings of the 2005 ACM

SIGPLAN/SIGBED conference on Languages, compilers, and

tools for embedded systems, volume 40, pages 69–77. ACM,

2005.

[9] K. D. Cooper, A. Grosul, T. J. Harvey, S. Reeves, D. Subrama-

nian, L. Torczon, and T. Waterman. Exploring the Structure

of the Space of Compilation Sequences Using Randomized

Search Algorithms. J. Supercomputing, 36(2):135–151, 2006.

[10] G. Fursin, C. Miranda, O. Temam, M. Namolaru, E. Yom-Tov,

A. Zaks, B. Mendelson, P. Barnard, E. Ashton, E. Courtois,

F. Bodin, E. Bonilla, J. Thomson, H. Leather, C. Williams, and

M. O’Boyle. Milepost gcc: machine learning based research

compiler. In Proceedings of the GCC Developers’ Summit,

June 2008.

[11] A. Ganapathi, K. Datta, A. Fox, and D. Patterson. A case for

machine learning to optimize multicore performance. First

15 2012/4/14

USENIX Workshop on Hot Topics in Parallelism (HotPar ’09),

2009.

[12] S.-C. Han, F. Franchetti, and M. Püschel. Program Genera-

tion for the All-pairs Shortest Path Problem. In PACT ’06:

Proceedings of the 15th international conference on Paral-

lel architectures and compilation techniques, pages 222–232,

New York, NY, USA, 2006. ACM Press.

[13] M. R. Jantz and P. A. Kulkarni. Eliminating false phase

interactions to reduce optimization phase order search space.

In CASES, pages 187–196. ACM, 2010.

[14] P. Kulkarni, S. Hines, J. Hiser, D. Whalley, J. Davidson, and

D. Jones. Fast Searches for Effective Optimization Phase Se-

quences. In PLDI ’04: Proceedings of the ACM SIGPLAN

2004 conference on Programming language design and im-

plementation, pages 171–182. ACM Press, 2004.

[15] P. A. Kulkarni, D. B. Whalley, G. S. Tyson, and J. W.

Davidson. Exhaustive optimization phase order space explo-

ration. In Fourth Annual IEEE/ACM Interational Conference

on Code Generation and Optimization, pages 306–318, New

York City, NY, March 2006.

[16] P. A. Kulkarni, D. B. Whalley, and G. S. Tyson. Evaluating

heuristic optimization phase order search algorithms. In CGO,

pages 157–169. IEEE Computer Society, 2007.

[17] P. A. Kulkarni, D. B. Whalley, G. S. Tyson, and J. W. David-

son. Practical exhaustive optimization phase order exploration

and evaluation. TACO, 6(1), 2009.

[18] X. Li, M. J. Garzarán, and D. Padua. Optimizing Sorting

with Genetic Algorithms. In In Proc. of the International

Symposium on Code Generation and Optimization (CGO),

pages 99–110, March 2005.

[19] C. Liao, D. J. Quinlan, R. W. Vuduc, and T. Panas. Effective

source-to-source outlining to support whole program empiri-

cal optimization. In LCPC’09, pages 308–322, 2009.

[20] A. Monsifrot, F. Bodin, and R. Quiniou. A machine learning

approach to automatic production of compiler heuristics. In

AIMSA ’02: Proceedings of the 10th International Conference

on Artificial Intelligence: Methodology, Systems, and Applica-

tions, pages 41–50, London, UK, 2002. Springer-Verlag.

[21] M. Püschel, J. Moura, J. Johnson, D. Padua, M. Veloso,

B. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko,

K. Chen, R. W. Johnson, and N. Rizzolo. SPIRAL: Code

Generation for DSP Transforms. In Proc. of the IEEE, spe-

cial issue on Program Generation, Optimization, and Plat-

form Adaptation, 93(2):232–275, February 2005.

[22] L. A. Smith, J. M. Bull, and J. Obdrzálek. A parallel Java

Grande benchmark suite. In ACM, editor, SC2001: High Per-

formance Networking and Computing. Denver, CO, November

10–16, 2001. ACM Press and IEEE Computer Society Press,

2001. ISBN 1-58113-293-X.

[23] K. O. Stanley and R. Miikkulainen. Efficient rein-

forcement learning through evolving neural network

topologies. In Proceedings of the Genetic and Evo-

lutionary Computation Conference (GECCO-2002),

page 9, San Francisco, 2002. Morgan Kaufmann. URL

http://nn.cs.utexas.edu/?stanley:gecco02b.

[24] M. Stephenson and S. Amarasinghe. Predicting Unroll Fac-

tors Using Supervised Classification. In CGO ’05: Proceed-

ings of the international symposium on Code generation and

optimization, pages 123–134, Washington, DC, USA, 2005.

IEEE Computer Society.

[25] M. Stephenson, S. Amarasinghe, M. Martin, and U.-M.

O’Reilly. Meta Optimization: Improving Compiler Heuristics

with Machine Learning. In Proc. of Programing Language

Design and Implementation, June 2003.

[26] R. Vuduc, J. W. Demmel, and K. A. Yelick. OSKI: A Library

of Automatically Tuned Sparse Matrix Kernels. Journal of

Physics Conference Series, 16:521–530, Jan. 2005.

[27] Website. Specjvm 2008, . URL

http://www.spec.org/jvm2008/.

[28] Website. Specjvm 98, . URL

http://www.spec.org/jvm98/.

[29] Website. Java grande benchmarks, . URL

http://www2.epcc.ed.ac.uk/computing/

research activities/java grande/sequential.html.

[30] R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated

Empirical Optimizations of Software and the ATLAS Project.

Parallel Computing, 27(1-2):3–35, 2001.

[31] K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong,

M. Garzaran, D. Padua, K. Pingali, P. Stodghill, and P. Wu. A

Comparison of Empirical and Model-driven Optimization. In

Proc. of Programing Language Design and Implementation,

pages 63–76, June 2003.

16 2012/4/14

