Mitigation of Radiation Effects in SRAM-based FPGAs for Space
Applications

FELIX SIEGLE, University of Leicester

TANYA VLADIMIROVA, University of Leicester
JORGEN ILSTAD, European Space Agency
OMAR EMAM, Airbus Defence and Space

The usage of Static Random Access Memory (SRAM)-based Field Programmable Gate Arrays (FPGAs) in
harsh radiation environments has grown in recent years. These types of programmable devices require
special mitigation techniques targeting the configuration memory, the user logic as well as the embedded
RAM blocks. This article provides a comprehensive survey of the literature published in this rich research
field during the past ten years. Furthermore, it can also serve as a tutorial for space engineers, scientists
and decision makers who need to get introduced to this topic.

Categories and Subject Descriptors: B.8.1 [Reliability, Testing, and Fault-Tolerance]
General Terms: Design, Reliability

Additional Key Words and Phrases: Dynamic Partial Reconfiguration, Fault Injection, FPGA, Hot Redun-
dancy, Information Redundancy, Radiation Effects, Scrubbing, Single Event Upsets, Spatial Redundancy,
Triple Modular Redundancy

ACM Reference Format:
Felix Siegle, Tanya Vladimirova, Jgrgen Ilstad, and Omar Emam, 2014. Mitigation of Radiation Effects in

SRAM-based FPGAs for Space Applications. ACM Comput. Surv. || N NI

DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

Electronics on board modern spacecraft comprise a considerable number of Field Pro-
grammable Gate Array (FPGA) devices. While in the early days these devices were
mainly used to implement rudimentary glue logic, they enable far more complex oper-
ations today. Regardless of the application, e.g. science, Earth observation or military
surveillance, a trend to ever increasing payload data volumes can be observed. Thus,
data processing in space can be essential for some missions as payload data downlinks
can be too slow to transmit these growing data volumes, even if data compression tech-
niques are applied.

Many payload data processing applications benefit from an efficient implementa-
tion in hardware using programmable logic devices. Modern SRAM-based FPGAs offer
huge amounts of logic resources, allow fast clocking and can be quickly reconfigured
which makes them ideal platforms for the implementation of such algorithms. They
are, however, prone to radiation effects in space because the state of their memory cells

This work is supported by the European Space Agency under the NPI Programme, Airbus Defence and
Space UK, and University of Leicester.

Author’s addresses: F. Siegle, and T. Vladimirova, Embedded Systems Group, University of Leicester, UK; J.
Ilstad, ESA-ESTEC, Noordwijk, The Netherlands; O. Emam, Airbus Defence and Space, Stevenage, UK.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2014 ACM 0360-0300/2014/03-ART39 $15.00

DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Computing Surveys, I

Tanya Vladimirova
Text Box

Tanya Vladimirova
Text Box

- F. Siegle et al.

Table I. FPGA Usage Example: Sentinel-2 mission [Gardenyes 2012].

IC TYPE QUANTITY PLATFORM QUANTITY PAYLOAD
FPGA 118 37

Custom ASIC 72 6

Microcontrollers 23 0

Standard ASIC 10 0

can be flipped due to single and multiple event upsets caused by radiation. Hence, de-
sign techniques to mitigate radiation effects must be applied to these devices. In the
past ten years, research on such mitigation methodologies established its own rich
field, which we thoroughly survey in this article.

The article is structured as follows. Section 2 answers the question as to why SRAM-
based FPGAs are so popular in space engineering and discusses radiation effects in
space as well as their effects on SRAM-based FPGAs. Then, in Section 3, terminology,
failure modes and mitigation techniques are outlined.

In Section 4, mitigation techniques applied during run-time operation are reviewed
dividing this huge field into three areas: techniques aimed at the (i) configuration
memory, (ii) user logic and (iii) embedded RAM blocks. A brief survey of methodolo-
gies that can be applied during design-time is then given in Section 5. Section 6 covers
the simulation and emulation of radiation effects, including accelerated radiation test-
ing and fault injection. Section 7 is dedicated to purpose-built hardware platforms,
which have been used in research projects on SRAM-based FPGAs for space appli-
cations. Section 8 provides a summary of the reviewed techniques as well as design
recommendations. Finally, Section 9 concludes the paper.

2. BACKGROUND
2.1. Why SRAM-based FPGAs in Space?

Nowadays, FPGAs are commonly used on board spacecraft. The importance of these
devices for space applications is illustrated by the figures given in Table I, which show
that the vast majority of Integrated Circuits (ICs) on board the Sentinel-2 spacecraft,
a current mission of the European Space Agency, are FPGAs. As evidenced by Ta-
ble I, while Application-Specific Integrated Circuits (ASICs) and microcontrollers still
play an important role for platform applications, payload processing applications are
mainly implemented with FPGAs.

Today, three main types of space qualified FPGA technologies are employed in com-
mercial products. The most common technology is antifuse, which is used by one-
time programmable FPGAs. One advantage of these devices is their natural toler-
ance against radiation effects because the hardware configuration is fixed. In princi-
ple, these devices can still suffer from Single Event Upsets (SEUs) in user logic and
embedded RAM cells. However, radiation tolerant versions are available, which offer
hardened user flip-flops by design, e.g. the RTAX and RTSX devices by Microsemi.

The second technology is based on SRAM memory, i.e. the configuration of the FPGA
is stored in volatile memory cells. An obvious benefit of these devices is the possibil-
ity to reconfigure the hardware in later design or even mission stages. Furthermore,
some of these devices like the newer Virtex-4 and Virtex-5 FPGAs by Xilinx offer high
performance and a large amount of logic and embedded memory resources as well as
dedicated Digital Signal Processing (DSP) blocks. In contrast to their antifuse coun-
terparts, SRAM-based FPGAs are in principle more susceptible to SEUs because the
hardware configuration can be altered by radiation effects (e.g. Virtex-4QV and ear-
lier devices by Xilinx). FPGAs with radiation hardened configuration memory are also
available, however, e.g. Virtex-5QV devices by Xilinx or ATF280 devices by Atmel.

ACM Computing Surveys, [N

Tanya Vladimirova
Text Box

Tanya Vladimirova
Text Box

Mitigation of Radiation Effects in SRAM-based FPGAs for Space Applications -3

Recently, flash memory based FPGAs are also being considered for use in space
projects, e.g. the ProASIC3 device by Microsemi. Similar to SRAM-based FPGAs they
can be reconfigured and offer good performance. The usage of such devices on long
space missions is, however, problematic due to their rather low immunity to the Total
Ionising Dose (TID) effect and Single Event Latchups (SELs) [Microsemi 2012].

Internal studies at the Jet Propulsion Laboratory (JPL) estimate that the raw, un-
compressed data captured from spectroscopy instruments on board recently proposed
U.S. missions could reach 1 to 5 Terabytes per day [Norton et al. 2009].

It is therefore recommended to drastically reduce the data volume which must be
stored on board and later transmitted to Earth by transforming the raw measurements
of payload instruments into intermediate results performing on-board processing. In a
technology assessment NASA scientists also found that Xilinx FPGAs are best suited
for such high-performance tasks due to their flexibility and their embedded DSP blocks
compared to single board computers and DSP processors. Apart from the increase in
performance, SRAM-based FPGAs offer the capability of being reconfigured - a feature
not to be underestimated for space projects. Pingree describes the typical problem of
one-time programmable FPGAs in [Pingree 2010]. For one of the instruments on the
NASA Juno spacecraft to Jupiter the engineers had to design and program the FPGA
design two years before launch. Since the FPGA was one-time programmable, it could
not be changed or improved without an high impact to the project cost and schedule.
Furthermore, as the spacecraft travels for five years to Jupiter, instrument calibra-
tion activities may be required during that time, in which the FPGA design cannot
be changed too. With SRAM-based FPGAs, however, hardware updates could be easily
applied in later design stages or even in-flight.

Most recent publications are concerned with the SRAM-based Xilinx Virtex-4QV and
Virtex-5QV FPGAs, as they are currently the only fast SRAM-based FPGAs, which are
available in space-qualified versions. Therefore, in the following the focus is on these
devices.

2.2. Radiation Effects in SRAM-based FPGAs for Space

2.2.1. Sources of Radiation Effects. The space radiation environment comprises a large
range of energetic particles with energies from several keV up to GeV and beyond. The
main elements are [Holmes-Siedle and Adams 1993; ECSS 2008b]:

— Trapped radiation: Energetic electrons and ions are magnetically trapped in the so-
called Van Allen radiation belts which extend from 100 km to 65,000 km and consist
mainly of electrons up to a few MeV and protons of up to several hundred MeV en-
ergy. The Earth’s magnetic field is not symmetrical, leading to local distortions. One
important distortion is known as the South Atlantic anomaly. Spacecraft passing this
area are exposed to an increased level of radiation.

— Galactic cosmic rays: High-energy charged particles which enter the solar system
from outside and which are composed of protons, electrons and fully ionized nuclei.

— Solar energetic particles during solar flares: High-energy particles which are encoun-
tered in interplanetary space and close to Earth and which are seen in short bursts
associated with other solar activity. The duration of such bursts can be a few hours
up to several days. They consist of protons, electrons and heavy ions in the energy
range of a few tens of keV to GeV and beyond.

In addition, secondary radiation is generated by the interaction of energetic parti-
cles with materials. One example is bremsstrahlung, a high-energy electromagnetic
radiation that is caused by the deceleration of a charged particle in materials.

ACM Computing Surveys, [N

Tanya Vladimirova
Text Box

Tanya Vladimirova
Text Box

[F. Siegle et al.

Radiation
/ e \

Single Event Total Ionisation

Effects (SEE) Effects
Destructive Non-Destructive

SEE SEE
Single Event Single Event Single Event Functional — Single Event
Latchup (SEL) Upset (SEU) Interrupt (SEFI) Transient (SET)

Fig. 1. Common radiation effects that must be mitigated in SRAM-based FPGAs.

2.2.2. Radiation Effects. An overview of common radiation effects that must be miti-
gated in SRAM-based FPGAs is given in Figure 1. The main effects are:

— TID Effect: Ionisation of electronic components is caused by electrons, protons and
bremsstrahlung and leads to a degradation due to increasing leakage currents and
other effects [ECSS 2008a]. Processes that cause ionisation are based on photon in-
teraction and include the photoelectric effect, compton effect and pair production,
all leading to the production of free electrons and hole-electron pairs [Messenger and
Ash 1992]. The accumulation of these effects is called TID and is usually measured in
krad with 1rad = 1072 Gy = 6.24 - 107% [Dierker 2007]. For space-qualified Virtex-

4QV and Virtex-5QV devices, the TID is of no concern since the dose is guaranteed to
be 300 krad for Virtex-4QV devices [Xilinx 2010], respectively 1 Mrad for Virtex-5QV
devices [Xilinx 2012a].

— SEL: A potentially destructive Single Event Effect (SEE) that can trigger parasitic
PNPN thyristor structures in a device [ECSS 2008a]. Similar to the TID effect, SELs
are of no concern for Virtex-4QV and Virtex-5QV devices since both devices have a
guaranteed latchup immunity to LET > 100 MeV - cm? - mg~! [Xilinx 2010; 2012a].

— SEU: This class of SEE is a soft error that changes the state of a bistable element. It
is triggered by heavy ions and protons and results from ionisation by a single ener-
getic particle or the nuclear reaction products of an energetic proton. The ionisation
induces a current pulse in a p-n junction whose charge may exceed the critical charge
which is required to change the logic state of the element. As a result, the value of a
memory bit can be flipped [Holmes-Siedle and Adams 1993]. SEU is the most com-
mon effect for SRAM-based FPGAs as it may affect the configuration memory as well
as memory cells that are used as part of the user logic (flip-flops, embedded RAM).

— Single Event Functional Interrupt (SEFI): This class of SEE interferes with the nor-
mal operation of the FPGA and is thus typically used to classify failures that affect
the circuits needed to operate the FPGA. So far, six types of SEFIs have been identi-
fied for Virtex-4QV devices [Allen et al. 2008]:

— Power-On-Reset (POR) SEFI: results in a global reset of all internal storage cells
and the loss of all program and state data.

— SelectMAP (SMAP) SEFT: results in loss of either read or write capability through
the SelectMAP interface.

— Frame Address Register (FAR) SEFI: results in the frame address register contin-
uously incrementing.

ACM Computing Surveys, [N

Tanya Vladimirova
Text Box

Tanya Vladimirova
Text Box

Mitigation of Radiation Effects in SRAM-based FPGAs for Space Applications -

Table Il. Example SEFI and SEU rates for a Virtex-4QV SX55 [Allen et al. 2008].

COMPONENT UNIT LEO GEO
All SEFIs Device- Years/ Events 36 103
User flip-flops Upsets/ Device: Day 0.0702 0.0387
Block RAM Memory Upsets/ Device: Day 4.05 4.49
Configuration Memory Upsets/ Device: Day 7.56 4.28

— Global Signal SEFI: results in disruption of global signals like Global Write En-
able, Global Drive High etc.

— Readback SEFI: occurs when a portion of readback data has been upset and can
lead to a false-positive detection of a SMAP SEFI.

— Scrub SEFTI: causes corruption of the data stream being downloaded to the device.

— Single Event Transient (SET): This class of SEE is a momentary voltage or current
disturbance which may propagate through subsequent circuitry and eventually man-
ifests as SEU once it reaches a latch or other memory elements [Dodd et al. 2004].

2.2.3. Single Event Effects Rates. SEU rates in FPGAs depend on the particular device
component, in which they occur (see Section 3.2 below). The mitigation strategy for
Virtex-4QV FPGAs must mainly take into account single event effects, as these devices
are tolerant to accumulated ionisation and SELs. In contrast, Virtex-5QV devices are
radiation hardened by design. This was achieved by replacing the configuration mem-
ory and flip-flop cells by dual-node counterparts that require charge collection in at
least two active nodes before an upset can occur. Furthermore, all flip-flop inputs are
now protected by SET filters and TMR is applied to control circuitry and registers
[Swift and Allen 2012].

Static and dynamic cross-sections for most FPGA blocks with regards to the Virtex-
4QV family, can be found in [Allen et al. 2008; Allen 2009]. Using these cross-sections,
SEU and SEFI rates can be calculated for a particular design and orbit. For European
space projects the necessary calculation methods are standardised in [ECSS 2008b]
and [ECSS 2008a]. A tool that greatly simplifies the SEU prediction according to these
standards is OMERE which was developed by the French company TRAD with support
from the French space agency CNES [TRAD 2014].

In [Allen et al. 2008], SEU and SEFI rates for several orbits in quiet solar maximum
conditions were calculated using the CREME96 model. For illustration, rates for two
orbits are given in Table II. The first one is a Low Earth Orbit (LEO) at 800 km altitude
with an inclination of 22.0°, the second one is a Geostationary Earth Orbit (GEO) at
36,000 km. The FPGA type is a XQR4VSX55 and it is assumed that all memory cells
are used, i.e. the upset rates per bit-day are scaled to the whole device. It can be seen
that the likelihood of SEFIs is low, with approximately one SEFI every 36 years in
LEO and every 103 years in GEO.

Assuming that all flip-flop cells are used, the chance of an upset in these elements
is far below 0.1 upsets per device-day. In contrast, if a design heavily utilises Block
RAM (BRAM) blocks (in this example all blocks are used), the probability of an upset
is more than 400 times higher than for a flip-flop upset due to the high ratio of BRAM
cells to flip-flop cells. For the configuration memory cells the ratio is even larger: In
LEO more than 7.5 upsets can occur per device-day. It is, however, assumed that all
configuration memory cells are utilised which is unrealistic for a real design.

The results above show that mitigation techniques must mainly focus on configu-
ration memory and Block RAM upsets. Although SEFIs occur only rarely, they can
necessitate an undesired full reconfiguration and must be therefore mitigated as good

ACM Computing Surveys, I

Tanya Vladimirova
Text Box

Tanya Vladimirova
Text Box

B F. Siegle et al.

as possible. In contrast, a mitigation strategy for flip-flops may not be necessary for
some applications.

In 2012, Quinn et al. presented first on-orbit results for Virtex-4QV FPGAs [Quinn
et al. 2012], collected from an experimental payload launched by Los Alamos National
Laboratory. The system comprises two Virtex-4 FPGAs running the same digital sig-
nal processing application. The mitigation strategy is based on Triple Modular Redun-
dancy (TMR) in combination with scrubbing. Using fault injection experiments and
the CREME96 model, an observable output error rate of approximately one in 15 to
25 days was predicted before launch. This rate is based on a calculated configuration
memory upset rate of 68 to 89 SEU/dcvice- day.

The on-orbit results are surprising: First, the measured upset rate per unit is much
lower than predicted (19 SEU/unit. day). Secondly, the only two measurable output errors
were triggered by SEUs in bit locations which could not be predicted by fault injection
before. Thirdly, a Select MAP SEFI was observed, although such a failure should only
occur very rarely according to worst case predictions. Finally, the authors were able to
observe atypical events where many bits in one single frame were corrupted all at the
same time.

The authors assume that the measured upset rate is artificially low due to the shield-
ing of the spacecraft and the duty cycle of the device. It was further found that 8.42% of
SEU events are actually Multiple Bit Upsets (MBUs), although the vast majority has
a size of only two bits. 78% of the SEUs occurred in Configurable Logic Blocks (CLBs),
followed by ca. 15% in BRAM interconnect and ca. 6% in Input Output Blocks (I0Bs).

3. OVERVIEW OF RADIATION MITIGATION TECHNIQUES FOR SRAM-BASED FPGAS
3.1. Terminology

Several techniques can be applied during the design process to mitigate soft errors
in digital circuits. A classification of these techniques is presented in Section 3.3 be-
low, which makes use of the terminology introduced in the NASA Fault Management
Handbook [NASA 2012]. Although targeting flight systems in general, this terminol-
ogy proves to be well suited to describing soft error mitigation techniques for FPGAs
too.

A common terminology to describe an abnormal state of a system includes the three
terms: fault, error and failure. Although several standards define these terms slightly
differently, a fault is usually understood as the cause of an error and an error as the
cause of a failure. For instance, in functional safety standard ISO 26262, a fault is
defined as an “abnormal condition that can cause an element or an item to fail”. The
error is defined as the “discrepancy between a computed, observed or measured value
or condition, and the true, specified, or theoretically correct value or condition”. Finally,
the failure is defined as the “termination of the ability of an element, to perform a
function as required”.

According to the Fault Management Handbook, failures can be either prevented or
tolerated. In the first case, actions are taken to avoid failures either at design time or
run time. The Design-Time Fault Avoidance includes “design function and FM [fault
management] capabilities to minimize the risk of a fault and resulting failure” while
Operational Failure Avoidance “predicts that a failure will occur in the future and
takes action to prevent it from happening”. With failure tolerance, failures are either
accepted or mitigated. Failure Masking techniques “allow a lower level failure to occur,
but mask its effects so that it does not affect the higher level system function”. Failure
Recovery techniques “allow a failure to temporarily compromise the system function,
but respond and recover before the failure compromises a mission goal”. Finally, Goal

ACM Computing Surveys, |

Tanya Vladimirova
Text Box

Tanya Vladimirova
Text Box

Mitigation of Radiation Effects in SRAM-based FPGAs for Space Applications Y

User Logic Layer \

¥

Ion Strike

\\ Configuration Memory Layer

Fig. 2. Model of an SRAM-based FPGA.

Change strategies “allow a failure to compromise the system function, and respond by
changing the system’s goals to new, usually degraded goals that can be achieved”.

In the following, erroneous FPGA output is seen as a failure. Although the failure
is always caused by a fault, a fault does not necessarily lead to a failure. In an FPGA
circuit design, such a fault could be for example a flipped bit in a flip-flop or a re-
programmed logical operation due to a falsified look-up table. In any case, only if the
faulty resource is actually used in the design the associated fault will finally lead to a
failure.

3.2. Failure Modes in SRAM-based FPGAs

An FPGA model, commonly found in literature [Padovani 2005], which is suitable for
illustration of different fault and failure modes of SRAM-based FPGAs is shown in
Figure 2. SRAM-based FPGAs comprise a configuration memory layer that stores the
configuration of the FPGA in SRAM memory cells and a user logic layer on which the
actual circuit is implemented. A typical circuit utilises sequential and combinational
logic elements and often accesses embedded BRAM and/or DSP blocks. While the user
flip-flops and other user memory resources as well as the DSP blocks are physically
present, combinational logic gates are realised with Look-Up Tables (LUTs) within
CLBs.

The configuration bits on the configuration memory layer control the resources on
the user logic layer, including the wiring between the resources, the content of the
LUTSs and the configuration of the CLB, BRAM, DSP and I0B blocks.

If an ion hits the FPGA, it can affect memory resources (i) on the configuration
memory or (ii) on the user logic layer. In both cases, upsets can be seen as faults which
may lead to a failure. And in both cases, the system can fortunately recover from such
failures because affected memory cells can be updated with correct values. Since the
configuration bits control “really everything” [Padovani 2005], the configuration mem-
ory is the main concern of most mitigation strategies. However, although more than
60 percent of the configuration bits are used to control routing resources, only 10 to
20 percent of routing resources are used in a typical design [Carmichael and Tseng
2009]. The ratio between used configuration bits and user flip-flops bits is, however,
usually still so high that flip-flop upsets account for only a few percent of all upsets.
And obviously, configuration bit upsets can lead to much more unpredictable behavior
than flip-flop upsets. In contrast to user flip-flops, Block RAM upsets can be as much
of a concern as configuration memory upsets if large amounts of these resources are
utilised in a design.

A fault in the configuration memory may lead to a failure in case the affected config-
uration bit controls a resource which is utilised by the design. In Xilinx terminology,

ACM Computing Surveys, [

Tanya Vladimirova
Text Box

Tanya Vladimirova
Text Box

[Kl F. Siegle et al.

Fault Management

Strategies
Failure Failure
Prevention Tolerance \
Design Time Operational Failure Failure Goal
Fault Avoidance Failure Avoidance Masking Recovery Change
o . ~ TMR - Config. Mem. Scrubbing
- Susceptibility Analysis _ Netlist _ Blind vs. Readback
- Reliability-oriented _ Modular - Device vs. Frame-based
Place & Route - Periodic vs. - é
ace oute - Partial TMR Peno‘dl(‘ vs. On:]?ernand
- External vs. Internal
- DWC I an -
- Netlist - BRAM Scrubbing
- Modular
- RPR
- EDAC Codes
- ABFT
- BRAM TMR

Fig. 3. Classification of fault management strategies and corresponding mitigation techniques.

configuration bits can be classified as Essential and Critical Bits [Xilinx 2012b]. Es-
sential Bits are the subset of configuration bits which are responsible for resources of
the design. Thus, a fault affecting an Essential Bit may lead to a failure. Because not
every resource of a design is used by the application non-stop, only faults in a subset
of the Essential Bits, also referred to as Critical Bits, are guaranteed to manifest as
failure.

A fault in a user flip-flop can lead to a failure if its value is used by subsequent cir-
cuitry. Although the failure can propagate through the system until it becomes mea-
surable at the output, it is often only of transient nature. If the flip-flop is used in
state-dependent logic, however, a failure can be ’trapped’ in a feedback loop until the
logic is reset to a known (initial) state. For instance, if a bit of a counter register is
flipped, the counter jumps’ and the output is permanently falsified.

A fault in a Block RAM cell can lead to a failure with the next read access. Often, the
memory is not immediately accessed and the manifestation of the failure is delayed.

3.3. Classification of Mitigation Techniques for Spaceborne SRAM-based FPGAs

Figure 3 shows an overview of fault management strategies, classified according to the
aforementioned terminology, together with the corresponding mitigation techniques
surveyed in this article.

During run-time, failure masking techniques can be used to tolerate failures. Failure
masking is usually achieved by redundancy. Most commonly, spatial redundancy is
applied, for instance TMR, Partial TMR, Duplication with Compare (DWC) or Reduced
Precision Redundancy (RPR). Alternatively, information redundancy techniques can
be used to detect and mask failures in certain types of circuits, for example Error
Detection and Correction (EDAC) codes or Algorithm Based Fault Tolerance (ABFT).

Aside from failure masking, failure recovery techniques can be used during run-time
too. Failure recovery is usually done by refreshing the memory, which is often referred
to as scrubbing.

ACM Computing Surveys, NG

Tanya Vladimirova
Text Box

Tanya Vladimirova
Text Box

Mitigation of Radiation Effects in SRAM-based FPGAs for Space Applications .9

During design-time, several techniques can help to avoid faults in advance, including
tools for the susceptibility analysis (e.g. for the quantification of sensitive configuration
bits) and tools which place and route a circuit design in a reliability-oriented way.

4. MITIGATION DESIGN TECHNIQUES AIMED AT RUN-TIME FAILURE TOLERANCE

In this section a review of the rich field of failure tolerance techniques that can be ap-
plied during run-time, targeting both the configuration memory and the user logic is
presented. Different scrubbing approaches are outlined with regards to the configura-
tion memory. Besides implementation specific differences (Blind vs. Readback Scrub-
bing, Device vs. Frame-Oriented Scrubbing, External vs. Internal Scrubbing), two fun-
damentally different concepts, commonly found in literature, are discussed too. The
first concept combines periodic scrubbing with a low-level redundancy approach while
the second concept implements an FDIR approach in which the configuration memory
is only repaired once a failure has been detected in user logic. For the user logic, differ-
ent redundancy concepts are surveyed. Again, it turns out that the concepts presented
in literature can be roughly divided into two categories. The first type of spatial redun-
dancy is applied to the netlist of the circuit and is thus a quite low-level approach. The
second type is a modular redundancy approach in which whole hardware blocks are
operated in hot redundancy.

4.1. Configuration Memory

Single and multiple bit upsets in the configuration memory of SRAM-based FPGAs
can be mitigated by periodically writing a known to be correct bitstream to the device.
This technique is often referred to as scrubbing and several types of implementations
can be found in research literature and application notes. In the following, the dif-
ferent methodologies and architectures are classified using a similar terminology as
introduced in [Heiner et al. 2009; Herrera-Alzu and Lopez-Vallejo 2013] including:

— Blind vs. Readback Scrubbing.

— Device vs. Frame-Oriented Scrubbing.
— Periodic vs. On-Demand Scrubbing.
— External vs. Internal Scrubbing.

4.1.1. Blind vs. Readback Scrubbing. The most basic methodology is blind scrubbing
where the configuration memory is periodically updated with a known to be good copy
of the original bitstream. This copy which is sometimes referred to as the ’golden copy’,
is stored in an external, radiation hardened memory. An external or internal config-
uration controller controls the download of the bitstream via one of the configuration
interfaces of the FPGA. Using the classification shown in Figure 3, blind scrubbing
can be described as an operational failure avoidance methodology because faults are
handled in a preventive manner without any knowledge about the current health state
of the system.

One concern that is sometimes raised in connection with blind scrubbing is the fact
that the configuration controller gains write access to the configuration memory even
if there is no need for scrubbing. Since the configuration interface is prone to SE-
FIs, a bitstream download can be affected by radiation effects, potentially leading to
a corrupted design. Therefore, Xilinx recommends a SEFI detection before each write
access that includes a FAR check and a status and control register check [Carmichael
and Tseng 2009].

To further minimise the risk of a corrupted bitstream download, the readback fea-
ture of SRAM-based FPGAs can be utilised for scrubbing. Using one of the configu-
ration interfaces, bitstreams cannot be only written to the device but also read back
during operation. With this capability, unnecessary write accesses to the configuration

ACM Computing Surveys, NG

Tanya Vladimirova
Text Box

Tanya Vladimirova
Text Box

o F. Siegle et al.

memory can be avoided during scrubbing: Before writing a correct bitstream to the
device, the current bitstream is read and checked for upsets. Only if upsets are de-
tected, the correct bitstream is eventually written. Such a scrubbing methodology can
be identified as a failure recovery technique. Two possible detection mechanisms are
commonly used: The first one is based on comparison and relies on golden bitstream
copies. The current bitstream is read back from the FPGA and compared to the golden
copy, either by bit-wise comparison or simpler, by calculating a Cyclic Redundancy
Check (CRC) checksum during readback which can then be compared with the CRC
value of the golden copy (later referred to as CRC readback scrubbing). If a mismatch
is detected, the golden copy is used to overwrite the current bitstream.

The second detection mechanism is based on information redundancy and uses the
Error-Correcting Code (ECC) bits which are embedded into each configuration frame.
This Single Error Correction and Double Error Detection (SECDED) code allows the
detection of single and double bit upsets and the correction of single bit upsets. For
multiple bit upsets with more than two wrong bits, the syndrome value is indetermi-
nate [Xilinx 2009]. During readback, a syndrome value is calculated by an ECC logic
that must be initiated as a user primitive called FRAME_ECC_VIRTEX4 for Virtex-4 de-
vices, and respectively FRAME_ECC_VIRTEX5 for Virtex-5 devices [Xilinx 2012¢c]. The syn-
drome value does not only identify upsets but can also localise single upsets. Hence,
two possible failure recovery methodologies can be combined with the ECC logic: Ei-
ther the erroneous bit is flipped and the corrected bitstream is written back to the
device (later referred to as ECC readback scrubbing) or the whole bitstream is over-
written with a golden copy from memory.

A methodology that allows the detection and correction of multiple bit upsets using
a custom-built EDAC core is presented in [Lanuzza et al. 2010]. The authors divide a
configuration frame into several data segments and interleave the bits of these data
segments. Then, an EDAC check code is calculated for each segment. Since adjacent
memory cells are distributed over several data segments, multiple bit upsets can be
detected and corrected. A recent work that advances this concept is proposed in [Rao
et al. 2014]. Here, the process of detecting multiple bit upsets and correcting them is
separated. The detection is done using a novel lightweight error detection coding tech-
nique called Interleaved Two Dimensional Parity while the correction utilises so-called
erasure codes as can be found in reliable storage devices and similar applications.

Starting with the Virtex-5 architecture, an internal readback CRC logic allows a con-
tinuous and automatic readback in the background [Xilinx 2012c]. In the first readback
round, a golden CRC checksum is calculated which is later used to compare the CRC
values of the subsequent rounds to. Once a mismatch has been detected, dedicated
user logic can initiate a reconfiguration of the device or a bitstream repair using the
ECC logic [Chapman 2010]. A summary of Blind and Readback Scrubbing approaches
is given in Table III.

4.1.2. Device vs. Frame-based Scrubbing. All scrubbing methodologies mentioned in the
last paragraph can use different bitstream sizes. However, the configuration memory
is typically scrubbed with a full bitstream or on a frame by frame basis. The first case,
sometimes also referred to as device-based scrubbing, requires a rather simple imple-
mentation. Except of the modified header information, the bitstream can be directly
downloaded from a memory to the configuration interface. One drawback of this so-
lution is the susceptibility of the configuration interface to SEFIs. If such an upset
occurs during download, the whole design is likely to become corrupted. Frame-based
scrubbing requires a more complex configuration controller implementation because
each frame must be prepared before download. But, the benefit of this approach is
the possibility to isolate the effects of a SEFI to a single frame. Aside from the in-

ACM Computing Survey, I

Tanya Vladimirova
Text Box

Tanya Vladimirova
Text Box

Mitigation of Radiation Effects in SRAM-based FPGAs for Space Applications -11

Table 11l. Summary: Blind Scrubbing vs. Readback Scrubbing.

METHODOLOGY ATTRIBUTES

Blind Scrubbing

— Simple implementation.
— Robust for MBU mitigation.
— Unnecessary write accesses.

Readback & Comparison
— Comparator necessary.
— Robust for MBU mitigation.
— Reduced risk of corrupted download.

Readback & EDAC
— Rather complex implementation.
— Cannot cope with more than two upsets per frame.
— Reduced risk of corrupted download.

Table IV. Summary: Device-based vs. Frame-based Scrubbing.

METHODOLOGY ATTRIBUTES

Device-based
— Simple implementation.
— Scrubbing SEFIs may affect the whole design.

Frame-based
— Increased implementation complexity.
— Decreased scrubbing speed.
— Scrubbing SEFIs can only affect one frame.

creased complexity of implementation, the scrubbing speed is decreased too. First, a
SEFI check must be done before downloading each frame. Secondly, each frame bit-
stream comes with an overhead due to its header. Finally, after each frame a dummy
frame must be written to flush the pipeline [Carmichael and Tseng 2009].

In some applications increased scrubbing speed is desired. This is especially true
for applications in which scrubbing is used as the only mitigation technique. In [Sari
and Psarakis 2011], such a ’low-cost’ strategy, based on an idea presented in [Asadi
and Tahoori 2005], is proposed. The authors point out that many configuration frames
are scrubbed although they contain no or only a small number of essential bits. As
a consequence, they propose to constrain the placement of the design in such a way
that the number of frames with essential bits is minimised. Then, the frame-based
scrubber must only take this subset of frames into account. A summary of Device and
Frame-based Scrubbing approaches is given in Table IV.

4.1.3. Periodic vs. On-Demand Scrubbing. In many designs, the scrubbing process is inde-
pendent of other mitigation techniques. Then the configuration memory is periodically
scrubbed, respectively scanned for upsets with a fixed scrubbing rate.

Alternatively, the scrubbing process can also be triggered by a failure detection
mechanism. Such a methodology can be advantageous in systems where continuous
scrubbing is unwanted. Eventually, the availability of a system depends on the time a
faulty component remains unrepaired. This time can be minimised by either increas-
ing the scrubbing frequency or by implementing a mechanism that can trigger a repair

ACM Computing Surveys, NG

Tanya Vladimirova
Text Box

Tanya Vladimirova
Text Box

| P F. Siegle et al.

Reliable Memory

Error Signal

Detector

@ 1010

/[/
yav4
Va4
€ 10101110010101001110101

///////// Config. Controller

Fig. 4. On-Demand Scrubbing: A failure detection mechanism, e.g. a majority voter, flags an error code to
the configuration controller once a faulty component has been detected. As a consequence, the configuration
controller initiates a scrubbing process.

process immediately after failure detection. With the aid of stochastic models, Siegle
et al. showed in [Siegle et al. 2013] that in principle, on-demand scrubbing always
maximises the availability.

Depending on the implementation, on-demand scrubbing can be power saving be-
cause the scrubbing logic is only active if required. Becker et al. investigated in [Becker
et al. 2007] the power consumption of Virtex-II devices during reconfiguration. Al-
though the authors use a LZSS decompression core during reconfiguration, the power
consumption is increased by only 95 mW. Nevertheless, the avoidance of additional
resource overhead is always beneficial, especially for systems where failure detection
mechanisms are implemented anyway.

In literature, on-demand scrubbing is mainly mentioned in connection with systems
utilising dynamic partial reconfiguration. In many proposed systems, spatial redun-
dancy, e.g. TMR, is implemented by using redundant reconfigurable modules and a
majority voter within the static area. Due to the physical separation of the reconfig-
urable modules, on-demand scrubbing can be advantageous here. The majority voter
can be easily designed as a failure detection mechanism which is able to identify a
faulty module and which can trigger a scrubbing process on-demand, targeting only
the faulty component.

Paulsson et al. presented such a system in [Paulsson et al. 2006] for Virtex-II de-
vices. The authors use so-called Dynamic TMR or Hardware Test Benches as failure
detection mechanisms and reconfigure a partition only if a failure has been detected.
Researchers at University of Arizona proposed similar mechanisms for their SCARS
system that is based on Virtex-5 devices [Sreeramareddy et al. 2008]. Here, a faulty
reconfigurable module is only scrubbed after a failure has been detected by software
routines. Jacobs et al. propose a similar approach in [Jacobs et al. 2012b]. Again, fail-
ures in reconfigurable modules are detected by voters or comparators and scrubbing
is triggered only for the faulty module on-demand. Straka and his colleagues at Uni-
versity of Brno also work on a fault tolerant framework for SRAM-based FPGAs. Very
similar to the already mentioned approaches, a so-called Generic Partial Reconfigu-
ration Controller receives error signals from reconfigurable modules and triggers on-
demand scrubbing if required [Straka et al. 2010b]. Azambuja et al. also use majority
voters as failure detection mechanisms and scrub a faulty reconfigurable module only
after a failure has been detected [Azambuja et al. 2008; Azambuja et al. 2009]. The
authors emphasise the increased repair speed compared to a full reconfiguration. In
[Tturbe et al. 2009], Iturbe et al. propose a fault management strategy in which they
combine on-demand blind scrubbing, triggered by a majority voter as failure detection
mechanism, with ECC readback scrubbing.

A methodology that aims at speeding up the on-demand scrubbing process is pre-
sented in [Nazar et al. 2013]. The authors analyse the statistical distribution of sensi-
tive bits within a partial bitstream. Instead of starting the scrubbing process from the

ACM Computing Surveys, |

Tanya Vladimirova
Text Box

Tanya Vladimirova
Text Box

Mitigation of Radiation Effects in SRAM-based FPGAs for Space Applications -13

Table V. Summary: Periodic vs. On-demand Scrubbing.

METHODOLOGY ATTRIBUTES

Periodic
— Mean Time To Recover (MTTR) depends on scrubbing rate.
— No failure detection mechanisms on user logic layer necessary.
— Possibly increased power consumption.

On-Demand
— MTTR is minimised.
— Partial scrubbing is possible.
— Access to configuration memory is minimised.
— Failure detection mechanisms on user logic layer necessary.

first byte position of the bitstream, it is started from the one frame for which the au-
thors calculated that this start position minimises the Mean Time to Recover (MTTR).
For a set of benchmark circuits, an average MTTR reduction of 30% was achieved. A
methodology with a similar aim is presented in [Bolchini et al. 2011]. The authors par-
tition a circuit design and apply a specific redundancy scheme (like DWC or TMR) to
each partition. If one of these partitions is detected to be faulty, it is scrubbed by an
external reconfiguration controller on demand. The authors developed an algorithm
which optimises the floorplanning of the different partitions to find an optimal solu-
tion in terms of reconfiguration time, area and performance overhead. Results for a
set of example circuits suggest that the reconfiguration time can be heavily reduced
although this reduction is at the cost of an increased area and performance overhead.
A summary of Periodic and On-Demand Scrubbing approaches is given in Table V.

4.1.4. External vs. Internal Scrubbing. The scrubbing logic can be implemented internally
or externally. From the available configuration interfaces, the SelectMAP interface is
commonly used for external scrubbing due to its high throughput rates. ICAP, the
internal counterpart to SelectMAP, can be used if the scrubbing logic is implemented
on user logic layer. Internal scrubbing is sometimes seen as a ‘low-budget’ solution
because it does not necessitate an external configuration controller and a memory for
the golden bitstream copies. It can be argued, however, that in most space applications
a radiation hardened supervisor as well as reliable memory for the initial bitstream
configuration is available anyway.

External scrubbing via the SelectMAP interface is commonly seen as the more
robust approach and is also recommended by Xilinx [Carmichael and Tseng 2009].
Melanie Berg and other researchers at NASA come to similar conclusions in [Berg
et al. 2008] where the authors compare an external blind scrubber to an internal ECC
readback scrubber by Xilinx. The internal scrubber is based on a PicoBlaze microcon-
troller and its design was published in the not longer available application note [Jones
2007]. Using heavy-ion SEE radiation testing, it was found that the external scrubber
was always recoverable without the need for a reset or power cycle whereas the inter-
nal scrubber was never recoverable. Thus, the internal scrubber consistently reached
a state where it could not operate anymore, either because of MBUs which cannot be
handled by the scrubber or because the scrubber itself was hit by ions.

Heiner et al. from Brigham Young University improved the fault tolerance of the
same Xilinx scrubber design by applying TMR and Block RAM scrubbing [Heiner et al.
2008]. In radiation tests it was found that the improved scrubber performs much better
but still, in more than 45% of all tests the design failed at some point, requiring a sub-

ACM Computing Surveys, [

Tanya Vladimirova
Text Box

Tanya Vladimirova
Text Box

P F. Siegle et al.

Table VI. Summary: External vs. Internal Scrubbing.

METHODOLOGY ATTRIBUTES

External
— Robust.
— Radiation hardened external controller and memory needed.

Internal

— In case of ECC readback scrubbing, MBUs cannot be repaired.
— No external controller and no golden bitstream copies necessary.

sequent full reconfiguration of the device. The authors assume that the missing ability
of ECC readback scrubbers to repair MBUs was the main reason for this behaviour.

Ebrahim et al. from University of Edinburgh also work on a fault-tolerant ICAP
controller in the course of their R3TOS system [Ebrahim et al. 2012]. The controller
is based on Xilinx’ XPS_HWICAP core. The controller is not only used for scrubbing but
also for partial reconfiguration. Similar to the ICAP controller described above, the
scrubber is an ECC readback scrubber. To improve its fault-tolerance the authors apply
spatial redundancy but instead of applying TMR to the whole controller, only a so-
called Recovery Module is triplicated. This module, on the other hand, is able to gain
access to the ICAP interface only for the sake of recovering the controller from failures.
A summary of External and Internal Scrubbing approaches is given in Table VI.

4.1.5. Integration with Dynamic Partial Reconfiguration. Most scrubbing approaches de-
scribed in literature assume a static user design. If dynamic partial reconfiguration is
used as part of the normal operation, however, e.g. to time-share chip area by swapping
different modules during runtime, the reconfiguration and scrubbing process must be
somehow orchestrated because only one of them can gain access to the configuration
interface at the same time. Furthermore, if blind scrubbing or CRC readback scrubbing
is used, the golden bitstream must be kept updated after each partial reconfiguration
to mirror the currently running design.

One approach to overcome these problems is described by Heiner et al. in [Heiner
et al. 2009]. The authors use a CRC readback scrubber as described earlier. Instead
of downloading the bitstream of a reconfigurable module and updating the golden bit-
stream afterwards, the authors suggest to simply integrate the bitstream of the re-
configurable module into the golden bitstream. During the next scrubbing cycle the
scrubber detects a discrepancy between the golden bitstream and the bitstream which
has been read back from the device due to mismatching CRC sums. As a consequence,
it will then 'repair’ the bitstream by writing the updated frames to the device.

4.2. User Logic

While failure recovery takes mainly place on configuration memory layer, failure mask-
ing is implemented on user logic layer using some kind of redundancy. Most com-
monly, spatial redundancy is used but also information and temporal redundancy can
be found for specific components.

4.2.1. Spatial Redundancy. By far the most common form of spatial redundancy is TMR.
In this approach, all components of a circuit are triplicated as depicted in Figure 5 and
a majority voter is placed at the end which chooses the correct output.

To decrease the susceptible area the circuit can be further partitioned by adding
additional voters as can bee seen in Figure 6. The possible increase of availability is
discussed by McMurtrey et al. in [McMurtrey et al. 2008] using Markov chains. The

ACM Computing Surveys, NN

Tanya Vladimirova
Text Box

Tanya Vladimirova
Text Box

Mitigation of Radiation Effects in SRAM-based FPGAs for Space Applications W5

a
&)

Logic

Fig. 5. Triple Modular Redundancy.

Logic Logic
Logic @9 Logic 4—@9—
Logic Logic

Fig. 6. Triple Modular Redundancy with two partitions.

Combinational) ‘
—{rE} o—Ee

Logic
Combinational L .A @J_
] I—=|)—FF
Logic
Combinational L{ > V \m ‘
. FF vV
[N

Logic

State-Dependent Logic

Fig. 7. X - Triple Modular Redundancy: Voters are placed in the feedback paths of state-dependent logic to
allow automatic re-synchronisation.

authors show that the reliability is indeed increased because the area of each circuit
stage and therefore the chance that more than two redundant circuit stages fail is
decreased.

Since the voter is a single point of failure it is usually triplicated too. As mentioned
earlier, upsets affecting feedback loops, e.g. counter or state machines, can be problem-
atic because the failure is trapped in the loop. To overcome this problem voters can
be placed inside feedback loops. This technique, sometimes also referred to as XTMR
(Xilinx TMR) [Bridgford et al. 2008; Adell and Allen 2008], synchronises the flip-flops
automatically after repair, see Figure 7.

Most commonly, TMR is applied to the netlist of a circuit using automatic insertion.
Several commercial and academic software tools are available, including the TMRTool
by Xilinx [Xilinx 2014], Precision Hi-Rel by Mentor Graphics [Mentor Graphics 2014]
and Synplify Premier by Synopsys [Synopsis 2012]. A notable free collection of tools
is the BYU EDIF Tool suite, developed at Brigham Young University [Brigham Young
University 2014].

Researchers at Politecnico di Torino found analytically that TMR protected circuits
are still prone to SEUs because in some cases one single configuration bit upset can

ACM Computing Surveys, [

Tanya Vladimirova
Text Box

Tanya Vladimirova
Text Box

Wi F. Siegle et al.

@
OZOBNOIO (&) (&)
(a) (b) (c)

(d)

Fig. 8. Modes of possible SEU induced effects [Sonza Reorda et al. 2005b].

lead to multiple failures on user logic layer, invalidating the TMR approach [Sonza Re-
orda et al. 2005b]. Logic blocks inside the fabric of the FPGA are interconnected via
switch boxes which are built from Programmable Interconnect Points (PIPs). The au-
thors found that one single configuration bit can control two or more PIPs and they
identified three possible modifications caused by one SEU, as depicted in Figure 8.
Given a pair of connections (a), a short between the connections can occur (b), both
connections can be opened (c) or a bridge between the connections can be created (d).
If the connections belong to two redundant circuits of a TMR system, the voter will
choose a wrong or falsified output. For Virtex-II devices, this failure mode which is
sometimes also referred to as Domain Crossing Error (DCE), was partly confirmed by
Quinn et al. [Quinn et al. 2007¢] by fault injection experiments, although the authors
point out that SEU induced “DCEs are possible when TMR is incompletely applied to
a design, but they appear to be rare otherwise”. However, the authors found that TMR
can be even defeated by multiple bit upsets with two or more bits. Using a stochastic
model, they predict a worst case probability for DCEs of 0.36% for Virtex-II devices
and up to 1.2% for Virtex-5 device.

One obvious drawback of TMR is the large area and thus power overhead that can
exceed more than 200%. To decrease the overhead of TMR, several alternatives were
proposed in literature. One example is Partial TMR as discussed by Pratt et al. in
[Pratt et al. 2006; Pratt et al. 2008]. The basic idea is to apply TMR only to feed-
back paths and optionally to their inputs to avoid so-called persistent errors [Morgan
et al. 2005] in state-dependent logic. By doing so, only failures with a transient na-
ture can occur. The authors demonstrated for a DSP Kernel design that the number of
persistent bits decreased by 63% if only the feedback is triplicated at the cost of 26%
hardware overhead. By applying Partial TMR to feedback paths and their inputs, the
persistent bits were reduced by two orders of magnitude at the cost of 40% hardware
overhead. This Partial TMR approach is part of the already mentioned TMR Tool by
Brigham Young University.

Another drawback of TMR is its strong impact on the performance of a circuit, es-
pecially if the circuit contains many TMR partitions. For instance, Kastensmidt et al.
analysed the performance of a digital FIR filter design in [Kastensmidt et al. 2005].
While the implementation without TMR could achieve a performance of 154 MHz,
the performance of the TMR version with a maximum number of possible partitions
dropped down to 123 MHz.

A less common form of spatial redundancy is DWC where a circuit is duplicated
and the output of the redundant circuits is compared by a comparator. Naturally, this
mechanism is only able to detect failures instead of masking them. It can be useful
for systems which allow a downtime but need to implement fail-silent behaviour or it
can also be used as a failure detection mechanism that triggers scrubbing on-demand.
Johnson et al. investigated DWC in detail [Johnson et al. 2008]. By means of fault
injection experiments and radiation tests, the authors found that DWC can detect ap-
proximately 99.85% of all failures at the cost of ca. 200% hardware overhead.

ACM Computing Surveys, I

Tanya Vladimirova
Text Box

Tanya Vladimirova
Text Box

Mitigation of Radiation Effects in SRAM-based FPGAs for Space Applications [1

—% PRM 1
@9«% PRM 2

b

—% PRM 3

Fig. 9. A system utilising dynamic partial reconfiguration with three redundant reconfigurable modules
(PRM) and a voter in the static area.

Decision
FP Module
- - RP Decision

—_— -runr, Module Block

- RP Decision
e Module Block

Fig. 10. Basic Principle of Reduced Precision Redundancy with one full-precision (FP) module and two
reduced-precision (RP) modules.

Vot}—>

An extension to DWC is proposed by Anderson et al. in [Anderson et al. 2010]. The
authors use DWC as failure masking technique by taking advantage of the probabilis-
tic distribution of a circuit’s output. The authors use a system comprising five cascaded
half-band filters whose output is characterised by a distinct, non-uniform distribution.
Once the comparator detects a mismatch, it selects the output with the higher proba-
bility by checking a stored histogram. Due to the discrete bins of the histogram, correct
detection percentage can be bad for lower significant bits. Therefore, the authors com-
bine this approach with an additional history buffer filled with the last decisions.

Instead of applying spatial redundancy to the netlist of a circuit, the whole circuit
can also be seen as a module which is then duplicated or triplicated. This approach
is easy to implement [Habinc 2002] but lacks the automatic re-synchronisation after
repair which can be achieved by netlist approaches like XTMR. However, a benefit of
modular redundancy is the physical separation of the modules which allows a partial
(on-demand) scrubbing [Azambuja et al. 2008].

Today’s usage of modular redundancy is often driven by systems that utilises dy-
namic partial reconfiguration and in which the design is broken up into physically
separated partitions anyway. Thus, it is no surprise that the earlier mentioned systems
proposed by Paulsson [Paulsson et al. 2006], Jacobs [Jacobs et al. 2012b] and Straka
[Straka et al. 2010a] are all based on modular redundancy. All these systems have
in common that one or more voters and/or comparators are placed in the static area,
similar to the scheme depicted in Figure 9. The failure detection mechanism monitors
the output of redundant modules and triggers an on-demand scrubbing process once
a failure has been detected. An interesting aspect of such a system is its adaptability
as pointed out by Jacobs et al. in [Jacobs et al. 2012b]: Since redundant modules can
be added and removed on-demand, the system availability can be tuned according to
external constraints in terms of area and power overhead.

ACM Computing Surveys, [N

Tanya Vladimirova
Text Box

Tanya Vladimirova
Text Box

Hs F. Siegle et al.

Another technique that can be understood as a modification of modular TMR is RPR.
The idea of applying RPR to FPGAs in space systems goes back to several works at the
U.S. Naval Postgraduate School, Monterey [Snodgrass 2006; Sullivan 2008; Sullivan
et al. 2009; Gavros et al. 2011] and was later followed up by Bratt et al. [Pratt et al.
2011; Pratt et al. 2013]. Instead of using three redundant copies of a module, one
module processes data with full precision while the two other modules process the
data with reduced precision. Hence, RPR is suitable for algorithms that process data
which is represented by a block of bits ordered in increasing or decreasing importance,
e.g. fixed-point numerical problems [Sullivan 2008]. A decision block determines if a
failure has occurred as follows [Pratt et al. 2011]:

if ((|FPouwt — RPlow| > Typ) and (RPlow = RP20ut))
then output < RP2o,: else output < FPp,;
end if

The full precision output F Pp,; is always chosen if no failure has been detected or if
the reduced precision modules disagree. The decision further depends on a threshold
level T}: The full precision module is assumed to be correct if its output differs less
than 7}, from the reduced precision module output RP1o,;. For an FIR filter design,
Bratt et al. showed in [Pratt et al. 2011] that the failure rate can be improved by ca. 200
times compared to an unmitigated design at the cost of ca. 70% hardware overhead.
For the same circuit, a full TMR mitigation approach improves the failure rate by ca.
1200 times at the cost of 208% hardware overhead.

4.2.2. Information Redundancy. Although information redundancy techniques are
mainly applied to memory and communication channels, several circuits can profit
from them too. Information redundancy techniques add redundant bits to data to be
able to detect or even correct falsified information. An example for the first case is the
CRC code while error correction can be achieved for instance by Hamming codes.

EDAC techniques are often applied to state machines. The states can be encoded
using different coding schemes, e.g. binary, one-hot or Grey. In addition, parity bits
can be added to achieve a Hamming code which enables the detection or correction
of bit upsets. In [Burke and Taft 2004], the robustness of state machines with binary,
one-hot, Hamming with a distance of 2 (H2) and Hamming with a distance of 3 (H3)
codes was tested using synchronous fault injection. According to the authors, H3 en-
coding can fully handle single errors and is least affected by double bit errors. State
machines with H2 encoding have less overall errors than state machines with one-hot
encoding and about half the error rate of state machines with binary encoding. Due
to the hardware overhead and the decreased performance, the author concludes that
H2 encoding is the best compromise in terms of size, speed and fault-tolerance. For
SRAM-based FPGAs, however, these results should be regarded with care because the
influence of configuration memory upsets is not taken into account. Using fault injec-
tion, Morgan et al. found in [Morgan et al. 2007] that the additional required logic can
“potentially add more unreliability than the reliability it adds to the original circuit”.
An actual implementation of a fault-tolerant state machine that uses Hamming codes
is described for instance in [Skliarova 2005].

An interesting application of information redundancy for the sake of error detec-
tion and correction is ABFT which goes back to the work of Huang and Abraham in
1984 [Huang and Abraham 1984]. ABFT is used to implement fault tolerant matrix
operations. Recently, Jacobs et al. investigated in [Jacobs et al. 2012a] the overhead
and reliability of ABFT in FPGA systems. The authors use a Multiply and Accumulate
(MAC) unit where the inputs are fed from Block RAM and where the output data is
written back to Block RAM. One of the implementations uses a second MAC unit that

ACM Computing Surveys, [N

Tanya Vladimirova
Text Box

Tanya Vladimirova
Text Box

Mitigation of Radiation Effects in SRAM-based FPGAs for Space Applications LB

|—> DIN
> WEN W—. FSM '—

ADDR

\ X/
|—> DIN
Counter —> WEN @ LFSD

ADDR

|—> DIN ? é § ;
—> WEN —> FSM

ADDR

T

Fig. 11. Simplified diagram of a Block RAM to which TMR and scrubbing is applied.

generates and validates the checksums. Compared to TMR, the hardware overhead
is as follows: 21% LUT Overhead (TMR: 148%), 24% Flip-flop Overhead (TMR: 84%),
0% Block RAM Overhead (TMR: 200%) and 25% DSP48 Overhead (TMR: 200%). From
100,000 injected faults, 1,216 errors occurred in the unmitigated design, 351 errors in
the ABFT design and 42 errors in the TMR design.

4.3. Block RAM

The embedded RAM blocks in Virtex devices need special care regarding the mitigation
because very similar to the configuration memory, upsets in Block RAM can accumu-
late, leading to an ever decreasing reliability of the memory. Although the Block RAM
content can be read out via the configuration interface, external scrubbing is not pos-
sible during operation because the RAM can not be accessed by configuration and user
logic at the same time [Xilinx 2009].

The recommended mitigation approach by Xilinx [Miller et al. 2008] includes TMR
for the Block RAM (including triplicated voter) and a memory scrubbing engine imple-
mented on user logic layer, similar to the scheme depicted in Figure 11. This method
can only be applied to single-port RAMs because eventually, they must be replaced by
dual-port counterparts as the second port is required for scrubbing. A counter auto-
increments the address of the second port and once the voter detects a failure, the
counter is stopped, the voted and thus corrected output is written back to memory and
the counter is started again.

Rollins et al. present a comprehensive comparison of fault-tolerant memories in
SRAM-based FPGAs in [Rollins et al. 2010]. The study covers the TMR and scrubbing
approach as described above plus several information redundancy techniques, includ-
ing duplication with error detection codes and error detection and correction, applied
in different configurations (with and without triplicating the logic, with and without
memory scrubbing). The fault-injection results are similar to what Morgan observed
when applying information redundancy to state machines [Morgan et al. 2007]: First,
the area overhead of the information redundancy techniques sometimes exceeds the
TMR approach and secondly, the failure rates are always even worse than the rate
for the unmitigated design. Only if Block RAM is used as ROM, some of the informa-
tion redundancy techniques perform slightly better than the unmitigated design but
always worse than TMR.

ACM Computing Surveys, [N

Tanya Vladimirova
Text Box

Tanya Vladimirova
Text Box

-20 F. Siegle et al.

5. MITIGATION DESIGN TECHNIQUES AIMED AT DESIGN-TIME FAULT AVOIDANCE

Another group of mitigation techniques, which can be best described as fault avoidance
techniques applicable during design-time are discussed in this section. This group in-
cludes analytic approaches that are aimed at analysing the sensitivity of circuits but
also at reducing this sensitivity, for instance, by re-routing the circuit design.

As already mentioned in Section 4.2, researchers at Politecnico di Torino found that
the TMR approach can be invalidated by SEUs because a single configuration bit upset
can lead to multiple failures on the user logic layer. By observing and analysing this
fault mechanism, a set of tools has been developed which allow the avoidance of these
faults already at design time.

In [Sonza Reorda et al. 2005al, a Static Analyzer tool (STAR) is presented. Based on
the researcher’s knowledge about the proprietary bitstream format, the tool is able to
determine the critical configuration bits of a circuit design. If TMR is applied to this
circuit, the tool also determines the bits which can invalidate the TMR approach as
described before.

Based on STAR, a Reliability-Oriented Place and Route (RoRA) algorithm has been
developed [Sterpone et al. 2005; Sterpone and Violante 2006]. By re-routing the cir-
cuit, RoRA can avoid the problem of single upsets attacking the TMR approach. The
authors were able to demonstrate that RoORA minimises the number of wrong answers
of circuitry to which TMR or XTMR is applied drastically. Furthermore, the authors
point out that RoRA can identify critical configuration bits much faster than fault in-
jection experiments. However, compared to the original TMR version, the re-routing
decreases the performance of the circuit.

To increase the performance of circuits to which TMR is applied, a tool called V-Place
was then presented in [Sterpone and Battezzati 2008] and it was shown that this tool
can optimise the circuit’s frequency up to 44%.

The STAR tool was later updated to STAR-LX. The main advantages are the re-
duction of the analysis time of more than five times as well as the ability to analyse
the dynamic evaluation of the design under the presence of SEUs [Sterpone and Vi-
olante 2007]. A modification which can analyse the effects of MBUs called STAR-MCU
is presented in [Sterpone and Violante 2008]. To mitigate the effects of MBUs, a new
placement algorithm called PHAM was presented in [Sterpone and Battezzati 2010].

For engineers and scientists who are interested in building their own netlist analy-
sis and CAD tools, researchers from Brigham Young University present an interesting
JAVA toolkit called RapidSmith [Lavin et al. 2011]. The toolkit offers a rich Applica-
tion Programming Interface (API) to parse, analyse and manipulate XDL files (which
can be easily created from Xilinx netlists). A very recent work that makes use of this
toolkit is presented in [Sari et al. 2014]. In this paper, the authors estimate the suscep-
tibility of an FPGA design. To determine the number of sensitive bits that are respon-
sible for the different SEU induced effects, as discussed in Section 4.2.1 and shown in
Figure 8, the authors conduct the post-routing analysis using appropriate API func-
tions of RapidSmith.

6. SIMULATION AND EMULATION OF SINGLE EVENT EFFECTS

This section gives a brief overview of techniques for simulation and emulation of single
event effects, including accelerated radiation testing and fault injection. These tech-
niques are necessary to validate any mitigation methodology applied to the design.

ACM Computing Surveys, [NN

Tanya Vladimirova
Text Box

Tanya Vladimirova
Text Box

Mitigation of Radiation Effects in SRAM-based FPGAs for Space Applications .:21

6.1. Accelerated Radiation Testing

Although first in-flight data for Virtex-4 devices have been published [Quinn et al.
2012], the common way to gain reliable static and dynamic cross-sections for these
devices is by means of accelerated radiation testing.

To simulate high-energy galactic cosmic rays and solar event heavy ions on ground,
the FPGA is exposed to low energy ions available in particle accelerators. The quality of
the simulation can be evaluated by the amount of energy lost per unit length of track,
also referred to as Linear Energy Transfer (LET). Because the SEE sensitive region is
rather thin, ions with lower energies are sufficient for simulation as long as the LET is
similar to the one of galactic cosmic rays and solar event heavy ions. The typical energy
range used for simulation is of the order of several MeV/a and the penetration range is
between 30 and 100 ym. In general, the estimation of the SEU sensitivity using this
concept is rather conservative [Barth et al. 2004]. The machine most commonly used
for heavy ion SEU testing is the cyclotron. Several accelerators can be found across
Europe, for instance the facilities GANIL and IPN in France, SIRAD and LNS in Italy,
GSI in Germany and the HIF in Belgium [ESA/ESCIES 2010].

Single event phenomena can also be induced by protons. Linear accelerators and
cyclotron accelerators are capable of generating protons with sufficient energy to sim-
ulate solar flare and proton belt conditions [Holmes-Siedle and Adams 1993].

Regarding Virtex devices, most test result data has been collected at the cyclotron at
Texas A&M University and/or at the cyclotron at Lawrence Berkeley National Labora-
tory and published by Los Alamos National Laboratory, NASA Goddard Space Flight
Center and the Xilinx Radiation Test Consortium. Quinn et al. present in [Quinn et al.
2005] results regarding radiation-induced MBUs in Virtex, Virtex-II and Virtex-4 de-
vices and discuss the general reliability concerns of Virtex FPGAs in [Quinn et al.
2007a]. In [Quinn et al. 2007c] they present the results regarding circuitry to which
TMR is applied and discuss the problem of domain crossing errors. In [Quinn et al.
2007b], first results for Virtex-5 are published. In 2009, results regarding the SEU-
susceptibility of logical constants were presented [Quinn et al. 2009a]. In the same
year, a paper describing their methodology for static and dynamic testing was pub-
lished too [Quinn et al. 2009b]. The upset characterisation of embedded PowerPC cores
is presented by Allen in [Allen et al. 2007] and the more general characterisation for
Virtex-4QV FPGAs by Swift in [Swift et al. 2008], finally leading to the summary re-
port published by NASA and Xilinx [Allen et al. 2008]. One year later, a report sum-
marising the results gathered from dynamic testing and from testing of mitigated de-
signs was published by Allen [Allen 2009]. Recently, the static SEU characterisation
of Virtex-5QV was presented in [Swift and Allen 2012].

6.2. Fault Injection

As an alternative to accelerated radiation testing, upsets in the configuration memory
can also be emulated by fault injection.

Although many different fault injection implementations have been presented in
literature, the basic structure is similar for many systems, see Figure 12. Two devices
are simultaneously fed by test vectors. One of the DUTs is used as a ’golden’ reference
while faults are injected into the second DUT. Fault injection is based on bitstream
manipulation: Often, a configuration frame is read back from the FPGA via one of the
configuration interfaces, one or more bits are flipped and the frame is written back
to the device. The outputs of both FPGAs are compared by some mechanism which
detects if the fault injection led to a failure. Alternatively, only one DUT can be used
and its response is compared to ’golden’ answers during the fault injection campaign.
In the following, two exemplary European systems are presented.

ACM Computing Surveys, N

Tanya Vladimirova
Text Box

Tanya Vladimirova
Text Box

[2 F. Siegle et al.

Faut Injection
System

Test Vector
Generator

Fig. 12. Example of a fault injection system.

A fault injection system with a long history in Europe is FLIPPER, developed by
Alderighi et al. under ESA funding [Alderighi et al. 2007]. The system comprises one
Virtex-II Pro FPGA as controller that can be connected to a DUT board hosting the
FPGA under test. The controller communicates with a software running on a host
PC via USB. In contrast to the example depicted in Figure 12, only one DUT is used
and its response is compared to stored, known to be correct answers. Test vectors can
be converted from testbench stimuli and are fed into the DUT after one or more faults
were injected into the bitstream. Results from FLIPPER were compared to acceleration
testing results [Alderighi et al. 2010] and the authors conclude that FLIPPER is an ef-
fective tool to evaluate different mitigation techniques due to its capability to predict
failure rates, provided that raw configuration bit upset rates of the target environment
are known. However, the authors also point out that the failure rate might be under-
estimated because SEUs in flip-flops, SETs and MBUs are not emulated. FLIPPER
was also compared to and used for the analysis of the STAR/RoRA tool as described in
Section 5 [Alderighi et al. 2008].

The second fault injection system developed under ESA funding is FI-UNSHADES
from University of Seville. Compared to FLIPPER, its initial aim was the emulation of
SEUs and MBUs that originate from SETs and thus manifest in flip-flop cells rather
than the emulation of configuration memory upsets. The system is based on a Virtex-
II and the circuit under test is duplicated and compared within one FPGA. In each
campaign, the application is driven to the desired fault injection time, the clock is
stopped, the fault is injected into the desired flip-flop(s) of one of the circuits, the clock
is restarted and the outputs of both circuits are compared to detect any mismatch
[Aguirre et al. 2007a; Aguirre et al. 2007b]. Later, the injection system was updated
(FT-UNSHADES-uP) to allow a more in-depth analysis of microcontrollers. The system
only uses one circuit under test whose output is compared to the theoretically correct
output and it is now able to also inject faults into Block RAMs, LUTs and SRL16s
[Napoles et al. 2008; Guzman-Miranda et al. 2008]. More recently, FI-UNSHADES2
has been developed [Mogollon et al. 2011]. The system is based on Virtex-5, and all
data management is processed in hardware, leading to much higher fault injection
rates. Now, the system can also be used to inject faults into the configuration memory
and the usability was increased due to a simplified design flow and a web browser
based user interface.

ACM Computing Surveys, [N

Tanya Vladimirova
Text Box

Tanya Vladimirova
Text Box

Mitigation of Radiation Effects in SRAM-based FPGAs for Space Applications .23

Table VII. Comparison: Research Platforms for SRAM-based FPGAs in space.

SYSTEM ARCHITECTURE

Braunschweig Macro-Pipeline Multiprocessor
Brno Hardwired hardware blocks
Bielefeld/Paderborn General Purpose SoC
Edinburgh/IKERLAN Reconfigurable Computer
Florida General Purpose SoC
Arizona Several FPGAs hosting single task processors
COMMUNICATION MECHANISM
Braunschweig Network on Chip
Brno Hardwired
Bielefeld/Paderborn Embedded Macro Bus Structure
Edinburgh/IKERLAN via ICAP
Florida PLB Bus
Arizona OPB Bus
KEY FEATURES
Braunschweig NoC used to isolate modules during the reconfiguration process.
Brno Reconfiguration controller implemented in hardware.
Bielefeld/Paderborn Embedded Macro to allow flexible placement of modules.
Edinburgh/IKERLAN Modules are handled as hardware tasks. Communication via ICAP to al-
low flexible placement of modules.

Florida Adaptive fault-tolerance.
Arizona Two-level healing methodology.

FDIR STRATEGY
Braunschweig Scrubbing.
Brno Different redundancy modes and on-demand scrubbing.
Bielefeld/Paderborn Scrubbing.
Edinburgh/IKERLAN Scrubbing due to continuous task reconfiguration. Fault-aware task allo-

cator (hard errors). Fault-tolerant ICAP controller.

Florida Adaptable, modular redundancy and on-demand scrubbing.
Arizona Software-based fault detection. Partial on-demand scrubbing. Cold module

redundancy. Task allocation to another FPGA.

7. RESEARCH PLATFORMS FOR SRAM-BASED FPGAS IN SPACE

This section presents an overview of several research platforms that comprise SRAM-
based FPGAs. It summarises concepts, which could possibly be applicable to future
spacecraft data processing systems.

Flight heritage for Virtex-4 and Virtex-5 is relatively rare and many of the payloads
serve only as technology demonstrators so far. From the publicly available informa-
tion, it seems that none of the platforms utilises dynamic partial reconfiguration as
a functional feature. Although dynamic partial reconfiguration may offer benefits for
some projects, it can be assumed that in-flight experience for this unique capability of
SRAM-based FPGA:s is still a long way off.

However, in the research community, this topic is actively investigated. In the follow-
ing, six platforms and frameworks are presented that comprise Virtex devices which
utilise dynamic partial reconfiguration and which specifically target space applica-
tions. A summary of the systems is given in Table VII.

The platforms can be coarsely classified by the way the reconfigurable modules are
used. Most of the platforms implement a System on Chip (SoC) in which the recon-
figurable modules are connected to a soft Central Processing Unit (CPU) core, i.e. the
reconfigurable modules are used as hardware accelerators that can be installed on de-
mand. The other group of platforms uses reconfigurable modules as processors that
can process data streams independently and thus without interaction of a CPU.

ACM Computing Surveys, NG

Tanya Vladimirova
Text Box

Tanya Vladimirova
Text Box

2 F. Siegle et al.

7.1. Reconfigurable System on Chip

A demonstrator platform called Dynamically Reconfigurable Processing Module
(DRPM) is under development at University of Bielefeld and Paderborn, Germany
[Hagemeyer et al. 2012]. It is based on a prototype platform called RAPTOR-X64.
Aside from a communication module, the system comprises two processing modules,
each module including a Virtex-4 FPGA. The reconfiguration controller is part of the
FPGA. It is not only used to reconfigure the FPGA via the ICAP interface but also for
scrubbing of the configuration memory. The partial reconfigurable modules are con-
nected using so-called Embedded Macros which embed a bus structure into tiles. The
main motivation for such a structure is given in [Koester et al. 2011]: By dividing a
partial reconfigurable area into atomic units called tiles, modules of different sizes can
be more efficiently placed at run-time. It was found that an embedded bus structure
with shared signals supports the flexible placement of the modules optimally due to
its homogeneity. The tool STARECS from Politecnico di Torino [Sterpone et al. 2011]
is used to analyse the SEU effects on the system and at present, work regarding the
fault-tolerant communication via the Embedded Macros is in progress.

Researchers at University of Edinburgh, UK are also working towards a partial re-
configurable system on Virtex-4 FPGAs. Main objective of the work is a Reliable Re-
configurable Real-Time Operating System (R3TOS), introduced in [Iturbe et al. 2010].
Reconfiguration is done by R3TOS internally through the ICAP port. In the course
of the research on R3TOS, an Area-Time Response Balancing Algorithm (ATB) for
scheduling real-time hardware tasks was proposed in [Iturbe et al. 2010] and a task
allocator in [Hong et al. 2011], which is able to deal with spontaneously occurring
faults. The paradigm followed in Edinburgh is that hardware tasks are handled like
normal threads in a higher programming language (e.g. POSIX threads). To ’call’ a
hardware task, the reconfigurable module needs an appropriate interface, which is
proposed in [Iturbe et al. 2011a]. In the same paper, an interesting approach for inter-
task communication is presented: Instead of utilising a network with a high resource
overhead, the data is simply copied from the output buffer of one module to the in-
put buffer of another module by reading the data through ICAP and writing it back.
One benefit of avoiding an on-chip communication is the fact, that less wires need to
cross the partial reconfigurable modules which increases the flexibility regarding the
module placement. Built on the ICAP-based communication, a second task allocator
called Snake is presented in [Iturbe et al. 2011b] and because R3TOS is heavily mak-
ing use of the ICAP port, a fault-tolerant ICAP controller is introduced in [Ebrahim
et al. 2012].

Researchers at University of Florida, USA are working towards a framework for
the usage of Commercial off-the-shelf (COTS) FPGAs in space applications. The sys-
tem also utilises dynamic partial reconfiguration while one main aspect of their work
is adaptable fault-tolerance that is achieved by adding and removing redundant re-
configurable modules depending on external constraints in terms of availability and
power [Jacobs et al. 2012b; Yousuf et al. 2011]. The basic structure of the proposed
framework is depicted in Figure 13. Several reconfigurable partitions are connected
to a controller that comprises failure detectors. The controller itself is connected via
a PLB bus to an on-chip Microblaze softcore. The controller, the bus and the softcore,
as well as its peripherals, are placed in the static area of the FPGA. The static area is
hardened against SEUs by applying TMR to the netlist of the design. The researchers
also investigated the suitability of ABFT for such systems [Jacobs et al. 2012a] and
presented their own fault injection system [Cieslewski et al. 2010].

Researchers at University of Arizona, USA, are working on a Virtex-5 based par-
tial reconfigurable system called SCARS which is introduced in [Sreeramareddy et al.

ACM Computing Surveys, I

Tanya Vladimirova
Text Box

Tanya Vladimirova
Text Box

Mitigation of Radiation Effects in SRAM-based FPGAs for Space Applications [P

——— = = = — = = -
T

| MR Components |
Micr_oprocessor Controller I

| (MicroBlaze) w |

| UART, USB

|

|

System Interconnect (PLB) | _— = — —]

| |
ICAP
’ RFT Controller ‘ _I‘—/

[eNelNe}

PRR 1
PRR 2
PRR N-1
PRR N

Fig. 13. Framework as proposed by Jacobs et al. (University of Florida). [Jacobs et al. 2012b]

Further
Reconfigurable FPGAs

-

Configuation
Controller

(static FPGA)

N ’Dynamic Area
Reconfigurable FPGA

Fig. 14. DRPM by TU Braunschweig/Astrium Ltd. [Michel et al. 2011]

2008] and based on a two-level healing methodology. The system comprises five Virtex-
5 FPGAs, each including a Microblaze soft core which is responsible for the self-
healing. The partial reconfigurable modules are partitioned together with redundant
copies into so-called slots and connected to the Microblaze processor bus. The software
running on the Microblaze is responsible for the detection of faulty modules. If a fault
is detected, the module is scrubbed through the ICAP interface. If the failure persists,
it is seen as an hard error and another redundant module in the slot is activated. The
five FPGAs are connected to a master node in a wireless network. Once all modules in
a slot are faulty, the task which was running in the faulty slot is moved by the master
node to another FPGA.

ACM Computing Surveys, [

Tanya Vladimirova
Text Box

Tanya Vladimirova
Text Box

26 F. Siegle et al.

CHCKna |

H] o "
1 : 0 . g : - :
g] g H P . 0
: a L i g HH H 1
E 3 0 g 8 i H ! H
H : H ' g o i g
I e N 1 i ' > B \ '
.......................... g " : 0
1 H : A
i H 1
1 i Ld. 0
H
i |

A 23

CHCKnb |

ERR_DEC

i
| ;_) FU3a
.o SINGLEchck
L it ' generic
Partial J
Y R Reconfiguration e ——
! Y Controller ! ICAP
H (PRC) : 7
in 1 Next .
Others
e STATIC PART '
" » unit logic 1 SelectMAP
FPGA :
out Bitstreams
A4 storage

Fig. 15. Framework as proposed by Straka et al. (University of Brno) [Straka et al. 2010a]

7.2. Reconfigurable Stream Processors

The work on reconfigurable FPGAs at the University of Braunschweig, Germany, goes
back to a Data Processing Unit for a camera on-board the Venus Express mission. In
2007, an update of this architecture was proposed which also allows in-flight partial
reconfiguration [Osterloh et al. 2007]. To interconnect the partial reconfigurable mod-
ules, a NoC called SoOCWire was proposed in [Osterloh et al. 2008] which is heavily
based on SpaceWire, the only space-qualified point-to-point network architecture. The
main motivation to use a NoC approach can be found in [Osterloh et al. 2009]: Dur-
ing the reconfiguration process, glitches can occur since frames become directly active
during the write cycle. To qualify such a system for space applications, the partial
reconfigurable module must be isolated from the host system which can be optimally
achieved by a NoC approach. The successful isolation and thus protection against such
glitches was proofed in [Osterloh et al. 2010]. SoCWire became part of a demonstra-
tor platform called DRPM, developed in cooperation with the European Space Agency
and Astrium Ltd., UK. The demonstrator comprises one or more modules, each mod-
ule with a radiation hardened reconfiguration controller and two Virtex-4 devices. In
2011, an Advanced Microcontroller Bus Architecture (AMBA) to SoCWire bridge was
presented in [Michel et al. 2011] and recently a higher protocol called SoCP, which is
also based on a SpaceWire protocol, was introduced in [Michel et al. 2012]. The basic
structure of the DRPM can be seen in Figure 14. The reconfiguration controller, de-
picted on the left hand side of Figure 14, is implemented on a reliable antifuse FPGA.
It comprises a SoC with a LEON3 CPU and several peripherals, e.g. memory con-
trollers. The Virtex-4 FPGAs, one of them depicted on the right hand side, are divided
into reconfigurable partitions which are interconnected via a SoCWire routing switch.

A more theoretical framework that deals with Fault Detection, Isolation and Recov-
ery (FDIR) for SRAM-based FPGAs is proposed by researchers at University of Brno,
Czech Republic. The basic structure of this framework is depicted in Figure 15. Several
hardware blocks are arranged in a hardwired processing pipeline. For each hardware
block, a different redundancy mode can be applied, e.g. TMR or DWC. The output

ACM Computing Surveys, [N

Tanya Vladimirova
Text Box

Tanya Vladimirova
Text Box

Mitigation of Radiation Effects in SRAM-based FPGAs for Space Applications |

of the failure detectors is connected to a bus and the health status of the hardware
blocks is reported via this bus to a reconfiguration controller. In contrast to other ap-
proaches presented here, the reconfiguration controller is implemented in hardware.
In the course of this research, the design of online failure checkers was first proposed in
[Straka et al. 2007] and later extended to the overall framework [Straka et al. 2010al].
The reconfiguration controller is described in [Straka et al. 2010b] and a fault injec-
tion system is presented in [Straka et al. 2012]. Finally, a dependability analysis for
the framework is described in [Kastil et al. 2012].

8. SUMMARY OF EXISTING MITIGATION TECHNIQUES

Research on mitigating SRAM-based FPGAs for space applications has engendered a
very large number of publications in this research field. As it was shown in Section 3.3
the proposed methodologies can be split into just a few main categories targeting (i)
the configuration memory, (ii) the user logic or (iii) the Block RAMs. Regrettably there
are not enough design details in the open literature in order to compare the exist-
ing methods fairly. In addition, on-board designs are very much dependent on mission
objectives and constraints. In most cases, the decision on the use of a particular tech-
nique will be based on a trade-off between power, area and performance overheads as
well as achievable system availability. In this section a summary of the reviewed mit-
igation methods is presented which is illustrated by an example decision strategy on
selecting the right mitigation technique. It is hoped that the proposed decision strat-
egy can serve as a guidance to researchers and engineers who are novices in the field.
However, it is expected that designers will exercise their own judgment and draw their
own conclusions taking into account the specifics of their projects when considering our
recommendations below.

Figure 16 exemplifies the main steps, which a decision process on selecting a partic-
ular mitigation technique for SRAM-based FPGAs on board spacecraft might involve.
Considering the fact that space engineering projects usually require strict verification
procedures, it might be a wise decision to choose a solution with the lowest possible
implementation complexity to meet the given constraints.

If the FPGA design is often reconfigured, for instance because the chip area is shared
by several applications, it could be decided not to apply any mitigation technique at
all. This is because every time the system is reconfigured it is brought back into a safe
initial state, i.e. possible faults in configuration memory and user memory are removed
too. This simple solution has no additional power, area or performance overhead at all.
If it does not lead to a satisfactory system availability, however, one may add periodic
scrubbing which is able to remove faults in the configuration memory during the time
the system is running. Still, failures can be *trapped’ in state-dependent user logic but
fortunately, the ratio of user memory elements to sensitive configuration bits is often
small enough to gain a significant increase in system availability anyway.

If frequent full reconfigurations are not part of the normal operation, one must con-
sider to add a combination of mitigation techniques. Applying spatial redundancy with-
out implementing a repair strategy (like scrubbing) is not recommended because it
only extends the time span until the system becomes unreliable. On the other hand,
a strategy solely based on scrubbing is not an ideal solution either because faults can
manifest as permanent failures within the user memory logic. Thus, a failure detec-
tion and/or failure masking technique is usually combined with a failure recovery tech-
nique.

Most payload data and imaging applications could be classified as either being of a
processor type or a stream type. The first type comprises all kinds of microcontrollers
and -processors or custom-built processors used for data acquisition and similar tasks.
These types of applications are never or rarely reset or restarted and may contain a

ACM Computing Surveys, I

Tanya Vladimirova
Text Box

Tanya Vladimirova
Text Box

H2s

Create 3 reconfig-
urable partitions

Design smaller
than 1/3 of
the FPGA?

Can the system
host 3 partitions?

Yes Yes

More than one
FPGA available?

No

No

RPR applicable?

Can you resyn-
chronise data
after repair?

No

Start

Design is often
reconfigured?

F. Siegle et al.

Stream

_[

Type?

] [Very often?

Design

Create
FPGA

than 1/3 of
the FPGA?

More than one
FPGA available?

Processor

smaller

Yes

Multi-
System

[Try Modular TMR] [Try RPR] [

Can the system
host 2 partitions?

Add On-Demand
Scrubbing

Ys:/

N

[Try Modular DWC] [

Try Partial
Netlist TMR

Try Full
Netlist TMR

External rad-hard
HW available?

Do nothing

No

Add Periodic

External

Add Periodic

Scrubbing] [Internal Scrubbing

Fig. 16. Example Decision Flow.

large state space and a huge amount of state variables. Embedded RAM is often used
to store data over a long period of time. The second type comprises circuits that can be
mainly found in payload data processing applications, for tasks like data compression,
encryption or filtering. These types of applications process data block-wise, e.g. image
by image, and often, the state space is traversed with each data block. Typically, the
number of state variables is low and embedded RAM is mainly used for FIFO buffers.

Two possible mitigation strategies can be followed:

(1) Spatial redundancy (Partial TMR or Full TMR) is applied to the netlist of the cir-
cuit and the configuration memory is periodically scrubbed.

ACM Computing Surveys, N

Tanya Vladimirova
Text Box

Tanya Vladimirova
Text Box

Mitigation of Radiation Effects in SRAM-based FPGAs for Space Applications [PN

(2) The whole circuit is duplicated or triplicated (modular redundancy) and a majority
voter, respectively comparator is used as failure detector. Then, the failure recovery
can be triggered on demand.

The spatial redundancy mitigation strategy goes well with the processor type of ap-
plication because this low-level redundancy approach allows automatic data resyn-
chronisation after repair. This strategy is also simple to apply because commercial
tools exist which automate the insertion. However, one must carefully verify that the
used toolchain does not optimise the inserted redundancy away. If the design is small
enough and the power budget relaxed, Full TMR leads to the best possible system
availability. If the design is too large to apply Full TMR, one could either use a Multi-
FPGA system or apply Partial TMR. With Partial TMR, only the feedback loops are
typically protected but not the data path within the user logic. As a consequence, er-
rors will become visible as transient failures at the output of the FPGA. No matter
which kind of TMR is applied, one must implement periodic scrubbing too. If external
radiation-hardened hardware is available or can be afforded, external scrubbing is the
more reliable approach. If either blind or readback scrubbing should be used depends
on the particular application but blind scrubbing is surely the solution with the lowest
implementation complexity.

The modular redundancy mitigation strategy goes well with the stream type of appli-
cation because the user logic can be brought back to a safe initial state after each data
block. One drawback of this mitigation approach is the fact that state variables must
be synchronised between redundant instances after repair. But since data is processed
block-wise and the number of state variables is usually low, technical solutions can
be found to execute the data resynchronisation between the data blocks. Despite the
increased implementation complexity, this mitigation approach offers some real bene-
fits. For instance, the configuration memory must only be repaired after a failure has
been detected, which can maximise the system availability and minimise the power
consumption compared to the periodic scrubbing approach. Often, the stream type of
application does not require maximum possible system availability. For instance, one
may tolerate a short downtime with each upset as long as the system is fail-silent. In
this case, it is sufficient to only duplicate the circuit and to use a comparator as failure
detector. If downtime is not an option, modular TMR can be applied. If not enough
chip area is available to triplicate the circuit, one can investigate if Reduced Precision
Redundancy (RPR) is applicable. Then, failures can be masked but the output of the
circuit might be degraded in precision until the faulty module is repaired. Modular re-
dundancy goes also well with Multi-FPGA systems because redundant instances can
be distributed over several FPGAs.

9. CONCLUSIONS

SRAM-based FPGAs are well suited for modern approaches to spacecraft data pro-
cessing since these devices offer high performance computing capabilities as well as
a large amount of logic and memory resources. However, even if some manufacturers
offer radiation hardened devices, most systems will demand a methodology to (further)
mitigate soft errors triggered by radiation effects.

This article is meant as literature survey and a tutorial for scientists and engineers
who need to get a quick yet thorough overview of this topic. A comprehensive coverage
of all aspects of radiation effects design mitigation for SRAM-based FPGAs on board
spacecraft is given. In addition, design guidelines for the right choice of mitigation
techniques are provided too. Despite that the final choice may heavily depend on the
project constraints, the proposed recommendations can still serve as a starting point
in what is a very difficult and multi-facetted design process.

ACM Computing Surveys, I

Tanya Vladimirova
Text Box

Tanya Vladimirova
Text Box

-:30 F. Siegle et al.

ACKNOWLEDGMENTS

Sponsorship from ESA under the NPI Programme, Airbus Defence and Space, UK and the University of
Leicester is gratefully acknowledged.

REFERENCES

P. Adell and G. Allen. 2008. Assessing and Mitigating Radiation Effects in Xilinx FPGAs. JPL Publication
08-9 2/08. NASA Jet Propulsion Laboratory.

M. A. Aguirre, V. Baena, J. Tombs, and M. Violante. 2007a. A New Approach to Estimate the Effect of Single
Event Transients in Complex Circuits. IEEE Transactions on Nuclear Science 54, 4 (2007), 1018-1024.
DOI: http://dx.doi.org/10.1109/TNS.2007.895549

M. A. Aguirre, J. N. Tombs, F. Muoz, V. Baena, H. Guzman, J. Napoles, A. Torralba, A. Fernandez-Leon, F.
Tortosa-Lopez, and D. Merodio. 2007b. Selective Protection Analysis Using a SEU Emulator: Testing
Protocol and Case Study Over the Leon2 Processor. IEEE Transactions on Nuclear Science 54, 4 (2007),
951-956. DOI : http://dx.doi.org/10.1109/TNS.2007.895550

M. Alderighi, F. Casini, S. D’Angelo, M. Mancini, D.M. Codinachs, S. Pastore, C. Poivey, G.R.
Sechi, G. Sorrenti, and R. Weigand. 2010. Experimental Validation of Fault Injection Analy-
ses by the FLIPPER Tool. IEEE Transactions on Nuclear Science 57, 4 (2010), 2129-2134.
DOI:http://dx.doi.org/10.1109/TNS.2010.2043855

M. Alderighi, F. Casini, S. D’Angelo, M. Mancini, D.M. Codinachs, S. Pastore, G. Sorrenti, L. Sterpone, R.
Weigand, and M. Violante. 2008. Robustness analysis of soft error accumulation in SRAM-FPGAs using
FLIPPER and STAR/RoRA. In European Conference on Radiation and Its Effects on Components and
Systems (RADECS). 157-161. DOI: http://dx.doi.org/10.1109/RADECS.2008.5782703

M. Alderighi, F. Casini, S. D’Angelo, M. Mancini, S. Pastore, and G.R. Sechi. 2007. Evaluation of Single
Event Upset Mitigation Schemes for SRAM based FPGAs using the FLIPPER Fault Injection Platform.
In 22nd IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT). 105—
113. DOI:http://dx.doi.org/10.1109/DFT.2007.45

G. Allen. 2009. Virtex-4QV Dynamic and Mitigated Single Event Upset Characterization Summary. JPL
Publication 09-4 01/09. NASA Jet Propulsion Laboratory.

G. Allen, G. Swift, and C. Carmichael. 2008. Virtex-4QV Static SEU Characterization Summary. JPL Publi-
cation 08-16 4/08. NASA Jet Propulsion Laboratory, Xilinx.

G. Allen, G.M. Swift, and G. Miller. 2007. Upset Characterization and Test Methodology of the PowerPC405
Hard-Core Processor Embedded in Xilinx Field Programmable Gate Arrays. In IEEE Radiation Effects
Data Workshop (REDW). 167-171. DOI : http://dx.doi.org/10.1109/REDW.2007.4342559

J.-P. Anderson, B. Nelson, and M. Wirthlin. 2010. Using statistical models with duplica-
tion and compare for reduced cost FPGA reliability. In IEEE Aerospace Conference. 1-8.
DOI: http://dx.doi.org/10.1109/AER0.2010.5446660

G.-H. Asadi and M.B. Tahoori. 2005. Soft error mitigation for SRAM-based FPGAs. In 23rd IEEE VLSI Test
Symposium (VT'S). 207-212. DOI : http://dx.doi.org/10.1109/VTS.2005.75

J. R. Azambuja, C. Pilotto, and FL. Kastensmidt. 2008. Mitigating soft errors in SRAM-
based FPGAs by using large grain TMR with selective partial reconfiguration. In European
Conference on Radiation and Its Effects on Components and Systems (RADECS). 288-293.
DOI:http:/dx.doi.org/10.1109/RADECS.2008.5782729

J. R. Azambuja, F. Sousa, L. Rosa, and F.L. Kastensmidt. 2009. Evaluating large grain TMR and selective
partial reconfiguration for soft error mitigation in SRAM-based FPGAs. In 15th IEEE International
On-Line Testing Symposium (IOLTS). 101-106. DOI : http://dx.doi.org/10.1109/I0LTS.2009.5195990

d. L. Barth, K. A. LaBel, and C. Poivey. 2004. Radiation assurance for the space environment.
In International Conference on Integrated Circuit Design and Technology (ICICDT). 323-333.
DOI:http://dx.doi.org/10.1109/ICICDT.2004.1309976

J. Becker, M. Hubner, G. Hettich, R. Constapel, J. Eisenmann, and J. Luka. 2007. Dynamic and Partial FPGA
Exploitation. Proc. IEEE 95, 2 (2007), 438—452. DOI : http://dx.doi.org/10.1109/JPROC.2006.888404

M. Berg, C. Poivey, D. Petrick, D. Espinosa, A. Lesea, K.A. LaBel, M. Friendlich, H. Kim, and A. Phan.
2008. Effectiveness of Internal Versus External SEU Scrubbing Mitigation Strategies in a Xilinx
FPGA: Design, Test, and Analysis. IEEE Transactions on Nuclear Science 55, 4 (2008), 2259-2266.
DOI:http://dx.doi.org/10.1109/TNS.2008.2001422

C. Bolchini, A. Miele, and C. Sandionigi. 2011. A Novel Design Methodology for Implementing
Reliability-Aware Systems on SRAM-Based FPGAs. IEEE Trans. Comput. 60, 12 (2011), 1744-1758.
DOI:http://dx.doi.org/10.1109/TC.2010.281

ACM Computing Surveys, I

Tanya Vladimirova
Text Box

Tanya Vladimirova
Text Box

Mitigation of Radiation Effects in SRAM-based FPGAs for Space Applications .31

B. Bridgford, C. Carmichael, and C. W. Tseng. 2008. Single-Event Upset Mitigation Selection Guide. Appli-
cation Note XAPP987. Xilinx.

Brigham Young University. 2014. BYU EDIF Tools Home Page. (2014). Retrieved June 2014 from http:
/Ireliability.ee.byu.edu/edif/

G. Burke and S. Taft. 2004. Fault Tolerant State Machines. In Military and Aerospace Programmable Logic
Devices Workshop (MAPLD). Jet Propulsion Laboratory.

C. Carmichael and C. W. Tseng. 2009. Correcting Single-Event Upsets in Virtex-4 FPGA Configuration Mem-
ory. Application Note XAPP1088. Xilinx.

K. Chapman. 2010. SEU Strategies for Virtex-5 Devices. Application Note XAPP864. Xilinx.

G. Cieslewski, A. D. George, and A. Jacobs. 2010. Acceleration of FPGA Fault Injection Through Multi-Bit
Testing. In International Conference on Engineering of Reconfigurable Systems and Algorithms (ERSA).
218-224.

C. Dierker. 2007. Fehlertolerante Instrumentenrechner fuer kompakte Kameras auf Raumsonden. Ph.D. Dis-
sertation. TU Braunschweig, Braunschweig, Germany.

P. E. Dodd, M.R. Shaneyfelt, J.A. Felix, and J.R. Schwank. 2004. Production and propagation of single-event
transients in high-speed digital logic ICs. IEEE Transactions on Nuclear Science 51, 6 (2004), 3278—
3284. DOI:http://dx.doi.org/10.1109/TNS.2004.839172

A. Ebrahim, K. Benkrid, X. Iturbe, and Chuan Hong. 2012. A novel high-performance fault-tolerant
ICAP controller. In NASA/ESA Conference on Adaptive Hardware and Systems (AHS). 259-263.
DOI:http:/dx.doi.org/10.1109/AHS.2012.6268660

ECSS. 2008a. Methods for the calculation of radiation received and its effects, and a policy for design mar-
gins. Standard ECSS-E-ST-10-12C. European Space Agency.

ECSS. 2008b. Space Environment. Standard ECSS-E-ST-10-04C. ESA-ESTEC.

ESA/ESCIES. 2010. Radiation Test Facilities. (2010). Retrieved June 2014 from https://escies.org/
webdocument/showArticle?id=230&groupid=6

R. B. Gardenyes. 2012. Trends and patterns in ASIC and FPGA use in space missions and impact in tech-
nology roadmaps of the European Space Agency. Master’s thesis. TU Delft, Delft, The Netherlands.

A. Gavros, H.H. Loomis, and A.A. Ross. 2011. Reduced Precision Redundancy in a Radix-4 FFT
implementation on a Field Programmable Gate Array. In IEEE Aerospace Conference. 1-15.
DOI:http:/dx.doi.org/10.1109/AER0.2011.5747459

H. Guzman-Miranda, M.A. Aguirre, and J. Tombs. 2008. A non-invasive system for the measure-
ment of the robustness of microprocessor-type architectures against radiation-induced soft errors.
In IEEE Instrumentation and Measurement Technology Conference Proceedings (IMTC). 2009-2014.
DOI:http://dx.doi.org/10.1109/IMTC.2008.4547378

S. Habinc. 2002. Suitability of reprogrammable FPGAs in space applications. Feasibility report. Gaisler
Research.

J. Hagemeyer, A. Hilgenstein, D. Jungewelter, D. Cozzi, C. Felicetti, U. Rueckert, S. Korf, M. Koester, F.
Margaglia, M. Porrmann, F. Dittmann, M. Ditze, J. Harris, L. Sterpone, and J. Ilstad. 2012. A scalable
platform for run-time reconfigurable satellite payload processing. In NASA /ESA Conference on Adap-
tive Hardware and Systems (AHS). 9-16. DOI : http://dx.doi.org/10.1109/AHS.2012.6268642

dJ. Heiner, N. Collins, and M. Wirthlin. 2008. Fault Tolerant ICAP Controller for High-Reliable Internal
Scrubbing. In IEEE Aerospace Conference. 1-10. DOI: http://dx.doi.org/10.1109/AERO.2008.4526471

J. Heiner, B. Sellers, M. Wirthlin, and J. Kalb. 2009. FPGA partial reconfiguration via configuration
scrubbing. In International Conference on Field Programmable Logic and Applications (FPL). 99-104.
DOI:http:/dx.doi.org/10.1109/FPL.2009.5272543

I. Herrera-Alzu and M. Lopez-Vallejo. 2013. Design Techniques for Xilinx Virtex FPGA Config-
uration Memory Scrubbers. IEEE Transactions on Nuclear Science 60, 1 (2013), 376-385.
DOI:http:/dx.doi.org/10.1109/TNS.2012.2231881

A. Holmes-Siedle and L. Adams. 1993. Handbook of Radiation Effects. Oxford University Press.

C. Hong, K. Benkrid, X. Iturbe, A.T. Erdogan, and T. Arslan. 2011. An FPGA task allocator with preliminary
First-Fit 2D packing algorithms. In NASA /ESA Conference on Adaptive Hardware and Systems (AHS).
264-270. DOI : http://dx.doi.org/10.1109/AHS.2011.5963946

K.-H. Huang and J.A. Abraham. 1984. Algorithm-Based Fault Tolerance for Matrix Operations. IEEE Trans.
Comput. C-33, 6 (1984), 518-528. DOI : http://dx.doi.org/10.1109/T'C.1984.1676475

X. Iturbe, M. Azkarate, I. Martinez, J. Perez, and A. Astarloa. 2009. A novel SEU, MBU and SHE handling
strategy for Xilinx Virtex-4 FPGAs. In International Conference on Field Programmable Logic and Ap-
plications (FPL). 569-573. DOI : http://dx.doi.org/10.1109/FPL.2009.5272410

ACM Computing Surveys, [I

Tanya Vladimirova
Text Box

Tanya Vladimirova
Text Box

B2 F. Siegle et al.

X. Iturbe, K. Benkrid, T. Arslan, I. Martinez, and M. Azkarate. 2010. ATB: Area-Time response Balancing
algorithm for scheduling real-time hardware tasks. In International Conference on Field-Programmable
Technology (FPT). 224-232. DOI : http://dx.doi.org/10.1109/FPT.2010.5681494

X. Iturbe, K. Benkrid, T. Arslan, R. Torrego, and I. Martinez. 2011a. Methods and Mechanisms for Hard-
ware Multitasking: Executing and Synchronizing Fully Relocatable Hardware Tasks in Xilinx FP-
GAs. In International Conference on Field Programmable Logic and Applications (FPL). 295-300.
DOI:http://dx.doi.org/10.1109/FPL.2011.60

X. Iturbe, K. Benkrid, A. Ebrahim, Chuan Hong, T. Arslan, and I. Martinez. 2011b. Snake: An Efficient
Strategy for the Reuse of Circuitry and Partial Computation Results in High-Performance Reconfig-
urable Computing. In International Conference on Reconfigurable Computing and FPGAs (ReConFig).
182-189. DOI:http:/dx.doi.org/10.1109/ReConFig.2011.82

X. Iturbe, K. Benkrid, A.T. Erdogan, T. Arslan, M. Azkarate, I. Martinez, and A. Perez. 2010. R3TOS: A
reliable reconfigurable real-time operating system. In NASA/ESA Conference on Adaptive Hardware
and Systems (AHS). 99-104. DOI : http://dx.doi.org/10.1109/AHS.2010.5546274

A. Jacobs, G. Cieslewski, and A.D. George. 2012a. Overhead and reliability analysis of algorithm-based
fault tolerance in FPGA systems. In 22nd International Conference on Field Programmable Logic and
Applications (FPL). 300-306. DOI : http://dx.doi.org/10.1109/FPL.2012.6339222

A. Jacobs, G. Cieslewski, A.D. George, A. Gordon-Ross, and H. Lam. 2012b. Reconfigurable Fault Tolerance:
A Comprehensive Framework for Reliable and Adaptive FPGA-Based Space Computing. ACM Trans.
Reconfigurable Technol. Syst. 5, 4 (2012), 21:1-21:30. DOI : http:/dx.doi.org/10.1145/2392616.2392619

d. Johnson, W. Howes, M. Wirthlin, D.L.. McMurtrey, M. Caffrey, P. Graham, and K. Morgan. 2008. Using
Duplication with Compare for On-line Error Detection in FPGA-based Designs. In IEEE Aerospace
Conference. 1-11. DOI : http://dx.doi.org/10.1109/AER0.2008.4526470

L. Jones. 2007. Single Event Upset (SEU) Detection and Correction using Virtex 4 Devices. Application Note
XAPP714. Xilinx.

F. L. Kastensmidt, L. Sterpone, L. Carro, and M.S. Reorda. 2005. On the optimal design of triple modular
redundancy logic for SRAM-based FPGAs. In Design, Automation and Test in Europe (DATE), Vol. 2.
1290-1295. DOI : http://dx.doi.org/10.1109/DATE.2005.229

dJ. Kastil, M. Straka, L. Miculka, and Z. Kotasek. 2012. Dependability Analysis of Fault Tolerant Systems
Based on Partial Dynamic Reconfiguration Implemented into FPGA. In 15¢h Euromicro Conference on
Digital System Design (DSD). 250-257. DOI : http://dx.doi.org/10.1109/DSD.2012.40

M. Koester, W. Luk, J. Hagemeyer, M. Porrmann, and U. Ruckert. 2011. Design Optimizations for Tiled
Partially Reconfigurable Systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems
19, 6 (2011), 1048-1061. DOI : http:/dx.doi.org/10.1109/TVLSI.2010.2044902

M. Lanuzza, P. Zicari, F. Frustaci, S. Perri, and P. Corsonello. 2010. Exploiting Self-Reconfiguration Capabil-
ity to Improve SRAM-based FPGA Robustness in Space and Avionics Applications. ACM Trans. Recon-
figurable Technol. Syst. 4, 1, Article 8 (2010), 22 pages. DOI : http:/dx.doi.org/10.1145/1857927.1857935

C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, and B. Hutchings. 2011. RapidSmith: Do-It-
Yourself CAD Tools for Xilinx FPGAs. In 21th International Workshop on Field-Programmable Logic
and Applications (FPL).

D. McMurtrey, K. S. Morgan, B. Pratt, and M. J. Wirthlin. 2008. Estimating TMR Reliability on FPGAs
Using Markov Models. contentdm.lib.byu.edu/cdm/ref/collection/IR/id/612

Mentor Graphics. 2014. Precision Hi-Rel Technology Overview. (2014). Retrieved June 2014 from http:/
www.mentor.com/products/fpga/

G.C. Messenger and M.S. Ash. 1992. The Effects of Radiation on Electronic Systems (2nd edition ed.). Van
Nostrand Reinhold, New York.

H. Michel, A. Belger, F. Bubenhagen, B. Fiethe, H. Michalik, W. Sullivan, A. Wishart, and J. Ilstad. 2012. The
SoCWire protocol (SoCP): A flexible and minimal protocol for a Network-on-Chip. In NASA /ESA Confer-
ence on Adaptive Hardware and Systems (AHS). 1-8. DOI : http:/dx.doi.org/10.1109/AHS.2012.6268631

H. Michel, F. Bubenhagen, B. Fiethe, H. Michalik, B. Osterloh, W. Sullivan, A. Wishart, J. Ilstad, and
S.A. Habinc. 2011. AMBA to SoCWire network on Chip bridge as a backbone for a Dynamic Reconfig-
urable Processing unit. In NASA /ESA Conference on Adaptive Hardware and Systems (AHS). 227-233.
DOI:http:/dx.doi.org/10.1109/AHS.2011.5963941

Microsemi. 2012. Radiation-Tolerant ProASIC3 Low Power Spaceflight Flash FPGAs with Flash*Freeze
Technology. Datasheet Rev. 5. Microsemi.

G. Miller, C. Carmichael, and G. Swift. 2008. Single-Event Upset Mitigation for Xilinx FPGA Block Memories.
Application Note XAPP962. Xilinx.

J. M. Mogollon, H. Guzman-Miranda, J. Napoles, J. Barrientos, and M.A. Aguirre. 2011. FTUN-
SHADES2: A novel platform for early evaluation of robustness against SEE. In 12th Euro-

ACM Computing Surveys, NG

Tanya Vladimirova
Text Box

Tanya Vladimirova
Text Box

Mitigation of Radiation Effects in SRAM-based FPGAs for Space Applications .33

pean Conference on Radiation and Its Effects on Components and Systems (RADECS). 169-174.
DOI:http:/dx.doi.org/10.1109/RADECS.2011.6131392

K. Morgan, M. Caffrey, P. Graham, E. Johnson, B. Pratt, and M. Wirthlin. 2005. SEU-induced persis-
tent error propagation in FPGAs. IEEE Transactions on Nuclear Science 52, 6 (2005), 2438-2445.
DOI:http:/dx.doi.org/10.1109/TNS.2005.860674

K. Morgan, D.L. McMurtrey, B.H. Pratt, and M.J. Wirthlin. 2007. A Comparison of TMR With Alternative
Fault-Tolerant Design Techniques for FPGAs. IEEE Transactions on Nuclear Science 54, 6 (2007), 2065—
2072. DOI : http://dx.doi.org/10.1109/TNS.2007.910871

dJ. Napoles, H. Guzman-Miranda, M. Aguirre, J.N. Tombs, J.M. Mogollon, R. Palomo, and A.P. Vega-Leal.
2008. A Complete Emulation System for Single Event Effects Analysis. In 4th Southern Conference on
Programmable Logic (SPL). 213-216. DOI : http://dx.doi.org/10.1109/SPL.2008.4547760

NASA. 2012. Fault Management Handbook. Draft 2. Handbook NASA-HDBK-1002. National Aeronautics
and Space Administration.

G.L. Nazar, L.P. Santos, and L. Carro. 2013. Accelerated FPGA repair through shifted scrubbing.
In 23rd International Conference on Field Programmable Logic and Applications (FPL). 1-6.
DOI:http:/dx.doi.org/10.1109/FPL.2013.6645533

C.D. Norton, TA. Werne, P.J. Pingree, and S. Geier. 2009. An evaluation of the Xilinx Virtex-4
FPGA for on-board processing in an advanced imaging system. In IEEE Aerospace conference. 1-9.
DOI:http:/dx.doi.org/10.1109/AER0.2009.4839460

B. Osterloh, H. Michalik, B. Fiethe, and F. Bubenhagen. 2007. Enhancements of reconfigurable System-on-
Chip Data Processing Units for Space Application. In NASA/ESA Conference on Adaptive Hardware
and Systems (AHS). 258-262. DOI : http://dx.doi.org/10.1109/AHS.2007.47

B. Osterloh, H. Michalik, B. Fiethe, and F. Bubenhagen. 2010. Architecture verification of the SOCWire NoC
approach for safe dynamic partial reconfiguration in space applications. In NASA /ESA Conference on
Adaptive Hardware and Systems (AHS). 1-8. DOI : http:/dx.doi.org/10.1109/AHS.2010.5546220

B. Osterloh, H. Michalik, B. Fiethe, and K. Kotarowski. 2008. SoCWire: A Network-on-Chip Approach for
Reconfigurable System-on-Chip Designs in Space Applications. In NASA /ESA Conference on Adaptive
Hardware and Systems (AHS). 51-56. DOI : http:/dx.doi.org/10.1109/AHS.2008.43

B. Osterloh, H. Michalik, S.A. Habinc, and B. Fiethe. 2009. Dynamic Partial Reconfiguration in Space
Applications. In NASA/ESA Conference on Adaptive Hardware and Systems (AHS). 336-343.
DOI:http:/dx.doi.org/10.1109/AHS.2009.13

R. Padovani. 2005. Reconfigurable FPGAs in Space - Present and Future. Presentation at MAPLD Confer-
ence. (2005).

K. Paulsson, M. Hubner, and J. Becker. 2006. Strategies to On-Line Failure Recovery in Self-Adaptive Sys-
tems based on Dynamic and Partial Reconfiguration. In NASA /ESA Conference on Adaptive Hardware
and Systems (AHS). 288-291. DOI : http://dx.doi.org/10.1109/AHS.2006.67

P. J. Pingree. 2010. Advancing NASA’s on-board processing capabilities with reconfigurable FPGA technolo-
gies: Opportunities and implications. In IEEE International Symposium on Parallel Distributed Pro-
cessing, Workshops and Phd Forum (IPDPSW). DOI : http://dx.doi.org/10.1109/IPDPSW.2010.5470824

B. Pratt, M. Caffrey, J.F. Carroll, P. Graham, K. Morgan, and M. Wirthlin. 2008. Fine-Grain SEU Mitiga-
tion for FPGAs Using Partial TMR. IEEE Transactions on Nuclear Science 55, 4 (2008), 2274—2280.
DOI:http://dx.doi.org/10.1109/TNS.2008.2000852

B. Pratt, M. Caffrey, P. Graham, K. Morgan, and M. Wirthlin. 2006. Improving FPGA Design Robust-
ness with Partial TMR. In 44th IEEE International Reliability Physics Symposium (IRPS). 226-232.
DOI:http:/dx.doi.org/10.1109/RELPHY.2006.251221

B. Pratt, M. Fuller, M. Rice, and M. Wirthlin. 2013. Reduced-Precision Redundancy for Reliable FPGA
Communications Systems in High-Radiation Environments. IEEE Trans. Aerospace Electron. Systems
49, 1 (2013), 369-380. DOI : http://dx.doi.org/10.1109/TAES.2013.6404109

B. Pratt, M. Fuller, and M. Wirthlin. 2011. Reduced-Precision Redundancy on FPGAs. International Journal
of Reconfigurable Computing 2011 (2011).

H. Quinn, G.R. Allen, G.M. Swift, Chen Wei Tseng, P.S. Graham, K.S. Morgan, and P. Ostler. 2009a. SEU-
Susceptibility of Logical Constants in Xilinx FPGA Designs. IEEE Transactions on Nuclear Science 56,
6 (2009), 3527-3533. DOI : http://dx.doi.org/10.1109/TNS.2009.2033925

H. Quinn, P. Graham, J. Krone, M. Caffrey, and S. Rezgui. 2005. Radiation-induced multi-bit up-
sets in SRAM-based FPGAs. IEEE Transactions on Nuclear Science 52, 6 (2005), 2455-2461.
DOI:http:/dx.doi.org/10.1109/TNS.2005.860742

H. Quinn, P. Graham, K. Morgan, Z. Baker, M. Caffrey, D. Smith, and R. Bell. 2012. On-Orbit Re-
sults for the Xilinx Virtex-4 FPGA. In IEEE Radiation Effects Data Workshop (REDW). 1-8.
DOI:http:/dx.doi.org/10.1109/REDW.2012.6353715

ACM Computing Surveys, |

Tanya Vladimirova
Text Box

Tanya Vladimirova
Text Box

[kX F. Siegle et al.

H. Quinn, P.S. Graham, M.J. Wirthlin, B. Pratt, K.S. Morgan, M.P. Caffrey, and J.B. Krone. 2009b.
A Test Methodology for Determining Space Readiness of Xilinx SRAM-Based FPGA Devices
and Designs. IEEE Transactions on Instrumentation and Measurement 58, 10 (2009), 3380-3395.
DOI:http://dx.doi.org/10.1109/TIM.2009.2025469

H. Quinn, K. Morgan, P. Graham, J. Krone, and M. Caffrey. 2007a. A review of Xilinx FPGA architectural
reliability concerns from Virtex to Virtex-5. In 9¢th European Conference on Radiation and Its Effects on
Components and Systems (RADECS). 1-8. DOI : http://dx.doi.org/10.1109/RADECS.2007.5205533

H. Quinn, K. Morgan, P. Graham, J. Krone, and M. Caffrey. 2007b. Static Proton and Heavy Ion Test-
ing of the Xilinx Virtex-5 Device. In IEEE Radiation Effects Data Workshop (REDW). 177-184.
DOI:http:/dx.doi.org/10.1109/REDW.2007.4342561

H. Quinn, K. Morgan, P. Graham, J. Krone, M. Caffrey, and K. Lundgreen. 2007c. Domain Crossing Errors:
Limitations on Single Device Triple-Modular Redundancy Circuits in Xilinx FPGAs. IEEE Transactions
on Nuclear Science 54, 6 (2007), 2037—2043. DOI : http:/dx.doi.org/10.1109/TNS.2007.910870

P. M. B. Rao, M. Ebrahimi, R. Seyyedi, and M. B. Tahoori. 2014. Protecting SRAM-based FPGAs Against
Multiple Bit Upsets Using Erasure Codes. In 51st Annual Design Automation Conference (DAC). ACM,
New York, NY, USA, Article 212, 6 pages. DOI:http://dx.doi.org/10.1145/2593069.2593191

N. Rollins, M. Fuller, and M.J. Wirthlin. 2010. A Comparison of fault-tolerant memories in SRAM-based
FPGAs. In IEEE Aerospace Conference. 1-12. DOI : http://dx.doi.org/10.1109/AER0.2010.5446661

A. Sari, D. Agiakatsikas, and M. Psarakis. 2014. A Soft Error Vulnerability Analysis Framework for Xilinx
FPGAs. In ACM /SIGDA International Symposium on Field-programmable Gate Arrays (FPGA). ACM,
New York, NY, USA, 237-240. DOI : http://dx.doi.org/10.1145/2554688.2554767

A. Sari and M. Psarakis. 2011. Scrubbing-based SEU mitigation approach for Systems-on-
Programmable-Chips. In International Conference on Field-Programmable Technology (FPT). 1-8.
DOI: http://dx.doi.org/10.1109/FPT.2011.6132703

F. Siegle, T. Vladimirova, O. Emam, and J. Ilstad. 2013. Adaptive FDIR framework for payload data pro-
cessing systems using reconfigurable FPGAs. In NASA/ESA Conference on Adaptive Hardware and
Systems (AHS). 15—-22. DOI : http://dx.doi.org/10.1109/AHS.2013.6604221

I. Skliarova. 2005. Self-correction of FPGA-Based control units. In 2nd International Conference on Embed-
ded Software and Systems (ICESS). Springer-Verlag, Berlin, Heidelberg, 310-319.

J.D. Snodgrass. 2006. Low-Power Fault Tolerance for Spacecraft FPGA-based Numerical Computing. Ph.D.
Dissertation. Naval Postgraduate School, Monterey, CA, U.S.A.

M. Sonza Reorda, L. Sterpone, and M. Violante. 2005a. Efficient estimation of SEU effects in
SRAM-based FPGAs. In 11th IEEE International On-Line Testing Symposium (IOLTS). 54-59.
DOI: http://dx.doi.org/10.1109/IOLTS.2005.26

M. Sonza Reorda, L. Sterpone, and M. Violante. 2005b. Multiple errors produced by single upsets in
FPGA configuration memory: a possible solution. In European Test Symposium (ETS). 136-141.
DOI:http:/dx.doi.org/10.1109/ETS.2005.29

A. Sreeramareddy, J.G. Josiah, A. Akoglu, and A. Stoica. 2008. SCARS: Scalable Self-Configurable Architec-
ture for Reusable Space Systems. In NASA /ESA Conference on Adaptive Hardware and Systems (AHS).
204-210. DOI:http://dx.doi.org/10.1109/AHS.2008.77

L. Sterpone and N. Battezzati. 2008. A Novel Design Flow for the Performance Optimization of Fault Tol-
erant Circuits on SRAM-based FPGA’s. In NASA /ESA Conference on Adaptive Hardware and Systems
(AHS). 157-163. DOI : http://dx.doi.org/10.1109/AHS.2008.59

L. Sterpone and N. Battezzati. 2010. A new placement algorithm for the mitigation of multiple cell upsets
in SRAM-based FPGAs. In Design, Automation Test in Europe (DATE). 1231-1236.

L. Sterpone, F. Margaglia, M. Koester, J. Hagemeyer, and M. Porrmann. 2011. Analysis of SEU effects in
partially reconfigurable SoPCs. In NASA/ESA Conference on Adaptive Hardware and Systems (AHS).
129 —136. DOI: http://dx.doi.org/10.1109/AHS.2011.5963926

L. Sterpone, M.S. Reorda, and M. Violante. 2005. RoRA: a reliability-oriented place and route algorithm
for SRAM-based FPGAs. In Research in Microelectronics and Electronics, 2005 PhD, Vol. 1. 173-176.
DOI:http://dx.doi.org/10.1109/RME.2005.1543031

L. Sterpone and M. Violante. 2006. A new reliability-oriented place and route algorithm for SRAM-based
FPGAs. IEEE Trans. Comput. 55, 6 (2006), 732 —744. DOI : http://dx.doi.org/10.1109/TC.2006.82

L. Sterpone and M. Violante. 2007. Static and Dynamic Analysis of SEU Effects in SRAM-Based FPGAs. In
12th IEEE European Test Symposium (ETS). 159-164. DOI : http://dx.doi.org/10.1109/ETS.2007.37

L. Sterpone and M. Violante. 2008. A New Algorithm for the Analysis of the MCUs Sensitiveness of TMR
Architectures in SRAM-Based FPGAs. IEEE Transactions on Nuclear Science 55, 4 (2008), 2019-2027.
DOI: http://dx.doi.org/10.1109/TNS.2008.2001858

ACM Computing Surveys, [N

Tanya Vladimirova
Text Box

Tanya Vladimirova
Text Box

Mitigation of Radiation Effects in SRAM-based FPGAs for Space Applications B3

M. Straka, J. Kastil, and Z. Kotasek. 2010a. Fault Tolerant Structure for SRAM-Based FPGA via Partial Dy-
namic Reconfiguration. In 13th Euromicro Conference on Digital System Design: Architectures, Methods
and Tools (DSD). 365-372. DOI : http://dx.doi.org/10.1109/DSD.2010.12

M. Straka, J. Kastil, and Z. Kotasek. 2010b. Generic partial dynamic reconfiguration controller for
fault tolerant designs based on FPGA. In The Nordic Microelectronics Event (NORCHIP). 1-4.
DOI:http://dx.doi.org/10.1109/NORCHIP.2010.5669477

M. Straka, L. Miculka, J. Kastil, and Z. Kotasek. 2012. Test platform for fault tolerant systems design
properties verification. In IEEE 15th International Symposium on Design and Diagnostics of Electronic
Circuits Systems (DDECS). 336—-341. DOI : http://dx.doi.org/10.1109/DDECS.2012.6219084

M. Straka, J. Tobola, and Z. Kotasek. 2007. Checker Design for On-line Testing of Xilinx FPGA Communica-
tion Protocols. In 22nd IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems
(DFT). 152-160. DOI : http://dx.doi.org/10.1109/DFT.2007.21

M.A. Sullivan. 2008. Reduced Precision Redundancy Applied to Arithmetic Operations in Field Pro-
grammable Gate Arrays for Satellite Control and Sensor Systems. Master’s thesis. Naval Postgraduate
School, Monterey, California.

M. A. Sullivan, H.H. Loomis, and A.A. Ross. 2009. Employment of Reduced Precision Redundancy for Fault
Tolerant FPGA Applications. In 17th IEEE Symposium on Field Programmable Custom Computing
Machines (FCCM). 283—-286. DOI : http://dx.doi.org/10.1109/FCCM.2009.53

G. Swift and G. Allen. 2012. Virtex-5QV Static SEU Characterization Summary. Technical Report. NASA
Jet Propulsion Laboratory, Xilinx.

G. Swift, G.R. Allen, Chen Wei Tseng, C. Carmichael, G. Miller, and J.S. George. 2008. Static Upset Charac-
teristics of the 90nm Virtex-4QV FPGAs. In IEEE Radiation Effects Data Workshop (REDW). 98-105.
DOI:http://dx.doi.org/10.1109/REDW.2008.25

Synopsis. 2012. Synplify Premier. Fast, Reliable FPGA Implementation and Debug. (2012). Retrieved
June 2014 from http://www.synopsys.com/Tools/Implementation/FPGAImplementation/CapsuleModule/
syn_prem _ds.pdf

TRAD. 2014. OMERE Software. (2014). Retrieved June 2014 from http:/www.trad.fr/fOMERE-Software.
html

Xilinx. 2009. Virtex-4 FPGA Configuration Guide. User Guide UGO071. Xilinx.

Xilinx. 2010. Space-Grade Virtex-4QV Family Overview. Datasheet DS653. Xilinx.

Xilinx. 2012a. Radiation-Hardened, Space-Grade Virtex-5QV Family Overview. Datasheet DS192. Xilinx.

Xilinx. 2012b. Soft Error Mitigation Using Prioritized Essential Bits. Application Note XAPP538. Xilinx.

Xilinx. 2012c. Virtex-5 FPGA Configuration Guide. User Guide UG191. Xilinx.

Xilinx. 2014. TMRTool. (2014). Retrieved June 2014 from http://www.xilinx.com/ise/optional_prod/tmrtool.
htm

S. Yousuf, A. Jacobs, and A. Gordon-Ross. 2011. Partially reconfigurable system-on-chips for adaptive fault
tolerance. In International Conference on Field Programmable Logic and Applications (FPL). 1-8.
DOI:http:/dx.doi.org/10.1109/FPT.2011.6132708

ACM Computing Surveys, [N

Tanya Vladimirova
Text Box

Tanya Vladimirova
Text Box

Tanya Vladimirova
Text Box

