Mitigation of rooftop solar PV impacts and evening peak support by managing available capacity of distributed energy storage systems

Md Jan-E- Alam
University of Wollongong, mjea982@uowmail.edu.au

Kashem Muttaqi
University of Wollongong, kashem@uow.edu.au

Darmawan Soetanto
University of Wollongong, soetanto@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/eispapers

Part of the Engineering Commons, and the Science and Technology Studies Commons

Recommended Citation
Alam, Md Jan-E-; Muttaqi, Kashem; and Soetanto, Darmawan, "Mitigation of rooftop solar PV impacts and evening peak support by managing available capacity of distributed energy storage systems" (2013). Faculty of Engineering and Information Sciences - Papers: Part A. 1477.

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Mitigation of rooftop solar PV impacts and evening peak support by managing available capacity of distributed energy storage systems

Abstract
A high penetration of rooftop solar photovoltaic (PV) resources into low-voltage (LV) distribution networks creates reverse power-flow and voltage-rise problems. This generally occurs when the generation from PV resources substantially exceeds the load demand during high insolation period. This paper has investigated the solar PV impacts and developed a mitigation strategy by an effective use of distributed energy storage systems integrated with solar PV units in LV networks. The storage is used to consume surplus solar PV power locally during PV peak, and the stored energy is utilized in the evening for the peak-load support. A charging/discharging control strategy is developed taking into account the current state of charge (SoC) of the storage and the intended length of charging/discharging period to effectively utilize the available capacity of the storage. The proposed strategy can also mitigate the impact of sudden changes in PV output, due to unstable weather conditions, by putting the storage into a short-term discharge mode. The charging rate is adjusted dynamically to recover the charge drained during the short-term discharge to ensure that the level of SoC is as close to the desired SoC as possible. A comprehensive battery model is used to capture the realistic behavior of the distributed energy storage units in a distribution feeder. The proposed PV impact mitigation strategy is tested on a practical distribution network in Australia and validated through simulations. 2013 IEEE.

Keywords
energy, distributed, capacity, mitigation, available, managing, support, peak, rooftop, evening, solar, impacts, storage, systems, pv

Disciplines
Engineering | Science and Technology Studies

Publication Details

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers/1477
Mitigation of Rooftop Solar PV Impacts and Evening Peak Support by Managing Available Capacity of Distributed Energy Storage Systems

M. J. E. Alam, Student Member, IEEE, K. M. Mutaqi, Senior Member, IEEE and D. Sutanto, Senior Member, IEEE

Abstract—A high penetration of rooftop solar photovoltaic (PV) resources into low-voltage (LV) distribution networks creates reverse power-flow and voltage-rise problems. This generally occurs when the generation from PV resources substantially exceeds the load demand during high insolation period. This paper has investigated the solar PV impacts and developed a mitigation strategy by an effective use of distributed energy storage systems integrated with solar PV units in LV networks. The storage is used to consume surplus solar PV power locally during PV peak, and the stored energy is utilized in the evening for the peak-load support. A charging/discharging control strategy is developed taking into account the current state of charge (SoC) of the storage and the intended length of charging/discharging period to effectively utilize the available capacity of the storage. The proposed strategy can also mitigate the impact of sudden changes in PV output, due to unstable weather conditions, by putting the storage into a short-term discharge mode. The charging rate is adjusted dynamically to recover the charge drained during the short-term discharge to ensure that the level of SoC is as close to the desired SoC as possible. A comprehensive battery model is used to capture the realistic behavior of the distributed energy storage units in a distribution feeder. The proposed PV impact mitigation strategy is tested on a practical distribution network in Australia and validated through simulations.

Index Terms—Rooftop solar photovoltaic, Energy storage, Reverse power flow, Voltage-rise, Charging/discharging strategy.

I. INTRODUCTION

Solar photovoltaic (PV) resources are the most commonly observed form of distributed generation (DG) at the residential customer premises in low voltage (LV) distribution networks. Depending on their capacity, the rooftop solar PV units serve part of the loads locally that reduces the stress on the distribution feeder and improve system performance by reducing feeder loss and releasing system capacity. However, a high penetration level of PV resources can impose several challenges for distribution network operators, such as, reverse power-flow and voltage-rise problems at LV networks [1–4].

If the PV generation is greater than the local demand at the point of common coupling (PCC), the excess power from PV inverters may produce reverse power flow in the feeder that would create voltage-rise [2, 4]. With a high penetration of rooftop PV resources at LV level, there is a possibility of the upper voltage limit violation. Solutions are required to reduce the overvoltage problem caused by the rooftop solar PV so that the penetration level can be increased while preserving a compliance with the system operation limits.

Active power curtailment [5] and reactive power consumption [6] have been proposed for voltage-rise mitigation. Active power curtailment may not be an economically attractive solution, while reactive power consumption may create additional loss in the feeder due to higher current flow [7]. Authors in [8] have proposed a reactive power based voltage control technique to mitigate the voltage-rise and also discussed the limitations of their technique. Authors in [9] have proposed a control strategy for a coordinated operation of the energy storage systems and On-Load Tap Changers (OLTCs) for voltage-rise mitigation, that reduces tap changer operation stress and feeder power loss. However, an aggregate model of the secondary LV circuits was used and the details of storage charging and discharging profiles were not presented, as the focus of the paper was mainly on control coordination. The application of storage devices integrated with residential PV systems was proposed in [10] to store the surplus power from the PV array during noon time and hence reducing the energy loss associated with the excess power from the solar PV. This operation can also reduce the reverse power flow and voltage-rise problems during peak PV generation by injecting less power to the grid and storing the excess energy in the battery storage. Stored energy could be used to support the evening peak load by serving the local loads and hence reducing the stress on the grid. An investigation of voltage-rise mitigation is presented in [11] using detailed models of solar PV and battery storage devices. However, a constant-rate charging/discharging strategy was used in [11] that makes the storage device to consume or generate a constant power over the charging or discharging period, irrespective of the PV generation and the load demand variations.

In this paper, a new charging/discharging strategy is proposed for storage devices integrated with rooftop PV systems that can better match the PV generation and load...
II. ANALYSIS OF PCC OPERATION UNDER PV PENETRATION

A simple feeder shown in Fig. 1(a) is used to illustrate the voltage-rise issues produced by the solar PV units in a distribution feeder. The PV panels and storage devices are connected to the PCCs through Power Conditioning Systems (PCS) that perform Maximum Power Point Tracking (MPPT), storage control and DC/AC conversion. Initially, the storage devices are considered to be absent. Without PV, a voltage drop would occur along the feeder, as shown in Fig. 1(b). With PV, if all the loads are locally served by the PV generations at each of the PCCs, the voltage profile would be nearly flat as in Fig. 1(c). However, if the PV generation exceeds the load demand, especially at the furthest end of the feeder, then the power will flow back from the feeder to the upstream network and this can cause the voltage to rise, as shown in Fig. 1(d).

The proposed strategy is more advantageous for PV impact mitigation and evening load support compared to the traditional constant charging/discharging strategy. To wisely use the limited capacity of the storage device, while operating it according to the proposed strategy, a methodology is developed to obtain the appropriate charging/discharging rates. The proposed charging/discharging strategy would also be able to mitigate sudden changes in PV output (due to unstable weather conditions, such as, cloud passing) by operating the storage in a short-term discharge mode. The proposed strategy can also track the deviation of the actual State of Charge (SoC) of the energy storage device with the expected level of SoC at any given time instant. If the deviation of the actual SoC is more than a specified level, an adjustment of the charging/discharging rate is performed to compensate for such a deviation. This will ensure a better utilization of the available storage capacity. The proposed control strategies are verified using an Australian distribution system where the LV secondary circuits are explicitly modeled using distributed household loads, rooftop solar PV arrays and distributed storage systems.

The active power (P) and the reactive power (Q) of the PV inverter at the i-th node, S_{NI}, can be expressed as,

$$S_{NI} = (P_{PV} - P_L) + jQ_{PV}$$

(1)

where, $P_{PV} + jQ_{PV}$ is the complex power generated by the PV inverter at the i-th node, S_{PV} is the PV inverter capacity, and $P_L + jQ_L$ is the load connected at this node. However, for a unity power factor (UPF) operation of the inverter where the reactive (Q) injection/absorption is zero, (1a) can be simplified as given in (1b).

$$S_{NI} = (P_{PV} - P_L) - jQ_L$$

(1b)

To investigate the effects of varying the outputs of the PV inverter on the PCC operation, the potential apparent capacities of PV inverter (S_{PV}) of 0.5, 1.0 and 1.5 times the load active power are considered, and denoted with S_{PV1}, S_{PV2}, and S_{PV3}, respectively, as shown using the dotted circular lines in the 1st quadrant. The active power output of the PV inverter in the P-axis is varied from the rated capacity to zero in the 1st quadrant of Fig. 2(a). The remaining capacity is used for reactive power injection. Considering a fixed load and the
variations of PV inverter output as stated for each of the inverter capacities, \(S_{PV1}, S_{PV2}, \) and \(S_{PV3}, \) the tips of the net power injection vectors obtained using (1a) are plotted as the loci of the net injections in Fig. 2(a). These loci represent the operating points of the PCC as the PV inverter output varies. For an inverter capacity \(S_{PV1}, \) less than the load active power, the PCC operation remains within the 2nd and 3rd quadrant for the entire range of the PV inverter output variations. For an inverter capacity \(S_{PV2}, \) equal to the load active power, the operating point of the PCC starts at the edge of the 3rd quadrant when the inverter active power output is at the rated value, and gradually shifts into the 2nd quadrant, as the inverter output is varied. For an inverter capacity \(S_{PV3}, \) higher than the load active power, the PCC operation traverses through the 4th, 1st and 2nd quadrant, but does not enter into the 3rd quadrant. This indicates that for such an inverter capacity, the PCC may behave either as a PQ-source, or a P-source Q-sink, or a P-sink Q-source, but it will not behave like a load.

Ideally, for a highly resistive distribution circuit, the reverse power flow and voltage-rise problem would exist while the operating point of the PCC is located in the 1st and the 4th quadrant. This can be illustrated using a 2-node segment of the feeder in Fig. 1(a), from the \((n-1)\)-th to the \(n\)-th node. A load and a PV inverter are connected at the \(n\)-th node and the output of the inverter is varied according to the capacity curves in the 1st quadrant of Fig. 2(a). The line impedance \((R+jX)\) corresponds to a highly resistive distribution circuit and the load power factor used is similar to that of a low voltage residential feeder load. The voltages at the \(n\)-th node are obtained using a load flow analysis. The vector diagram of the voltages at these nodes is given by (2) and is shown in Fig. 2(b) using \(V_{n-1} \) as the reference vector.

\[
V_n = V_{n-1} - [I \times (R + jX)]
\]

(2)

The tips of the voltage vector at the \(n\)-th node, \(V_n\), are plotted in Fig. 2(b) for the variations in PV output for the three potential capacities of the PV inverter, \(S_{PV1}, S_{PV2}, \) and \(S_{PV3}, \) and indicated as the loci of the \(V_n\). The voltage-rise is only observed for \(S_{PV3}, \) which is higher than the load active power and when the net P injection is positive. This is shown as the shaded region of the \(V_n\) locus for \(S_{PV3}. \) Therefore, a mechanism that can reduce the active power output of the solar PV inverter can help to mitigate the voltage-rise issue. This can be achieved by absorbing part of the solar PV inverter output in the storage device.

III. THE APPLICATION OF DISTRIBUTED ENERGY STORAGE FOR MITIGATION OF SOLAR PV IMPACTS

Storage devices will reduce the net active power injection so that the PCC operating point shifts towards the 2nd and 3rd quadrant where a voltage-rise would not be typically expected for a highly resistive distribution circuit. The shift of the net injection vector due to the addition of storage devices in the feeder of Fig. 1(a) is shown in Fig. 3(a) and the corresponding voltage vector at the \(n\)-th node is shown in Fig. 3(b). The addition of the storage device mitigates the voltage-rise by storing the surplus power from the solar PV in the storage device. During the evening peak load period, the net injection vector would be shifted from the 3rd quadrant to the right towards the 4th quadrant, as shown in Fig. 4(a).

![Figure 3](image3.png)

Fig. 3. A four quadrant net power injection diagram with storage. (a) Net injection in charging operation; (b) Voltage locus in charging operation.

![Figure 4](image4.png)

Fig. 4. Four quadrant net power injection diagram with storage: (a) Net injection in charging operation; (b) Voltage locus in discharge operation.

The corresponding voltage vector diagram is shown in Fig. 4(b) showing the voltage improvement that can be obtained with the storage device. If the remaining capacity of the inverter can be used for reactive power injection, as shown in the net injection locus of Fig. 4(a), a further improvement in voltage could be observed, as shown in the voltage locus of Fig. 4(b).
A. Modeling of Battery Storage Device for Rooftop Solar PV System

Rooftop PV installations at LV customer premises mainly consist of the solar PV modules that produce DC power from solar insolation, and a Power Conditioning System (PCS) that accomplishes multiple functions including maximum power point tracking, DC-AC conversion and filtering. For an integrated storage device coupled with the DC side of the rooftop PV system, as used in this paper, the PCS will also function as the charge/discharge controller. A detailed description of the rooftop PV system modeling is presented in the previous paper of the authors [11] and therefore is not included in this paper. More focus has been given on the modeling of storage devices and its charging/discharging strategies.

The modeling of the battery storage device involves obtaining the non-linear characteristics of the battery voltage as a function of the battery State of Charge (SoC) [12] at a given charging/discharging rate, as shown in Fig. 5 [13], for typical lead-acid batteries. In Fig. 5, C is the capacity of battery storage unit in Ampere-hour (Ah).

\[V(t) = V_B0 + I(t) R(t) \]

where, \[V_B0 \] is the battery charging rate, i.e., the battery current and \[I(t) \] is the amount of active power injection into the grid. The injection of real power into the grid, \[P_{inv} \] for a given level of load, PV output and battery storage unit can be obtained using (6).

\[P_{inv} = P_L + \eta_{inv} (P_{PV} - CR V_B) \]

where, \[P_L \] is the active power of load, \[P_{PV} \] is the active power output of the PV module, \[\eta_{inv} \] is the PV inverter efficiency, \[CR \] is the battery charging rate, i.e., the battery current and \[V_B \] is the battery voltage.

A study was conducted to determine the amount of \[P_{inv} \] at a 1-kW load, which is a typical midday load of a residential household, and a 3-kW PV system. The values of \[P_{inv} \] at different charging rates are shown in Fig. 6 for a 12-V, 250-Ah battery.

\[\text{Battery storage devices consume the surplus power from solar PV units during charging operation. This reduces the amount of active power injection into the grid. The injection of real power into the grid, } P_{inv}, \text{ for a given level of load, PV output and battery storage unit can be obtained using (6).} \]

\[\text{where, } P_L \text{ is the active power of load, } P_{PV} \text{ is the active power output of the PV module, } \eta_{inv} \text{ is the PV inverter efficiency, } CR \text{ is the battery charging rate, i.e., the battery current and } V_B \text{ is the battery voltage.} \]

\[\text{A study was conducted to determine the amount of } P_{inv} \text{ at a 1-kW load, which is a typical midday load of a residential household, and a 3-kW PV system. The values of } P_{inv} \text{ at different charging rates are shown in Fig. 6 for a 12-V, 250-Ah battery.} \]
PV resulting in a negative PV power injection into the grid. Fig. 6 shows that a charging rate of C/2.31 will result in a negative \(P_{inj} \) at 100% SoC level of the battery, which is undesirable. The maximum allowable charging rate is the one at which the real power injection into the grid is zero, that is, all the surplus power is consumed by the storage during its charging operation. This rate could be obtained from (6) by putting zero for \(P_{inj} \), as given in (7).

\[
CR_{\text{max}} = \frac{(P_{L_{\text{min}}} - \eta_{\text{inv}} P_{PV_{\text{max}}})}{\eta_{\text{inv}} \times V_B^{\text{Full}}}
\]

(7)

In (7), \(P_{L_{\text{min}}} \) is the minimum level of load within the PV generation period, \(P_{PV_{\text{max}}} \) is the maximum amount of solar PV generation in the same period, and \(V_B^{\text{Full}} \) is the battery voltage at the 100% SoC. \(V_B^{\text{Full}} \) is a function of the charging rate and hence (7) is solved numerically to find \(CR_{\text{max}} \).

C. A New Strategy for the Charging/Discharging of Storage Devices

In a clear sunny day, the PV output increases gradually as the day progresses, reaches its peak during midday, and gradually decreases after midday. The surplus power at the PCC would also follow a similar trend. Therefore, a charging strategy where the charging rate gradually increases with the progress of the day, reaches its peak level during midday, and gradually decreases after the midday, would be more effective for PV impact mitigation, compared to a traditional constant charging strategy. Similarly, a discharging strategy where the discharging rate gradually increases from the start of the evening period, reaches its peak level during the evening peak load, and gradually decreases with the decrease of evening load, would be more effective for peak load support compared to a constant discharging strategy.

Further, since the energy storage devices have limited capacity (Ah) or energy (kWh), it is important to use it wisely. Too fast charging of the energy storage, when there is reverse power flow, may cause the battery to be full too soon and may result in unacceptable reverse power flow and a voltage-rise at an inconvenient time, for example at peak insolation period. But too slow charging of the storage device, when there is reverse power flow, may cause some of the capacity of the battery to be left unused.

A new charging/discharging strategy is proposed to better match the surplus PV generation/evening load profile. The methodology to obtain the appropriate charging/discharging rates to wisely use the limited storage capacity is described below using Fig. 7.

Fig. 7(a) shows the load and the PV output profile at a given PCC, where the PV output is higher than the load demand for a period of the day, \(T \). During this period, a surplus power will be available at the PCC. According to the proposed strategy, the storage device will be charged over the period \(T \). The charging rate will be increased from zero at the start of the period \(T \), (when the storage SoC is at the maximum depth of discharge \(\text{DoD}_{\text{max}} \)) at a slope of Charging Rate (SCR) defined in per-unit of time, until the SoC reaches a threshold level, \(\text{ToS}_1 \). This is shown in Fig. 7(b). From this point, the storage will be charged at a constant saturated charging rate, \(CR_{\text{Sat}} \). Once the SoC reaches the second threshold, \(\text{ToS}_2 \), less capacity of the storage is available and therefore the charging rate will be decreased using the same SCR, until the storage device attains the state of maximum charge, \(\text{SoC}_{\text{max}} \), at the end of period \(T \).

\[
\begin{align*}
CR(1) + \text{SCR, if SoC}(1) & \leq \text{ToS}_1 \\
CR_{\text{Sat}}, \text{if ToS}_1 & < \text{SoC}(1) < \text{ToS}_2 \\
CR(1) - \text{SCR}, \text{if SoC}(1) & \geq \text{ToS}_2 \\
0, \text{if SoC}(1) & \geq \text{SoC}_{\text{max}}
\end{align*}
\]

(8)

To obtain the appropriate values of the parameters SCR and \(CR_{\text{Sat}} \) to be used in (8), the following facts are considered.

The amount of charge lost for not charging the battery at a constant charging rate over the entire charging period will have to be recovered in the overall charging period. Mathematically, this constraint can be expressed using the geometrical relationships in Fig. 7(b) as given below.

\[
h_1^2 + (2h_1 - T \times \text{SCR}) \times h_2 + h_3^2 = 0
\]

(9)

where, \(h_1 \) is the constant charging rate that charges the battery in \(T \) amount of time, \(h_2 \) is the amount of increase in the constant charging rate to recover the charge lost for not using the constant charging rate over the whole charging period.

Again, the charge stored during the constant charging period is equal to the amount of charge between the first and second threshold of SoC, \(\text{ToS}_1 \) and \(\text{ToS}_2 \) respectively. This can be expressed using (10) below.
(h_{1} + h_{2}) \times \left[T - \frac{2h_{1}}{SCR} - \frac{2h_{2}}{SCR} \right] - (Tos_{2} - Tos_{1}) \times C = 0 \quad (10)

It is observed that in (9) and (10), h_{1} and SCR are the only unknown parameters; h_{1} is known from the battery capacity, and T is the period for which the battery is intended to be charged, which can be estimated from historical load and PV output profile as shown in Fig. 7(a). Tos_{1} and Tos_{2} are the choices to shape the charging rate profile. Therefore, h_{2} and SCR can be obtained by solving (9) and (10) simultaneously using a numerical technique. By varying the difference between Tos_{1} and Tos_{2}, different charging profiles can be obtained and the pattern of usage of the available storage capacity can be controlled. For example, if Tos_{1} and Tos_{2} are set to DoD_{max} and Soc_{max}, respectively, a constant charging profile is obtained, as shown in Fig. 7(c). Again, if the difference between Tos_{1} and Tos_{2} is zero, then a triangular charging profile is obtained, as shown in Fig. 7(d).

A similar strategy will be followed for the discharge operation; however, in this case the discharge rate (DR) will be increased at a Slope of Discharge Rate (SDR) defined in per-unit of time, until the SoC drops to Tos_{2} from the SoC_{max} level, and then the discharge will continue at a constant saturated discharge rate DR_{Sat}. When the SoC drops below Tos_{1}, the battery discharge rate is decreased at the same SDR until DoD_{max} is reached. At a given k-th instant, this can be expressed as,

\[
DR(k) = \begin{cases}
\text{DR}(k-1) + \text{SDR}, & \text{if SoC}(k-1) \geq \text{Tos}_{2} \\
\text{DR}_{\text{Sat}}, & \text{if Tos}_{2} > \text{SoC}(k-1) > \text{Tos}_{1} \\
\text{DR}(k-1) - \text{SDR}, & \text{if SoC}(k-1) \leq \text{Tos}_{1} \\
0, & \text{if SoC}(k-1) \leq \text{DoD}_{\text{max}}
\end{cases} \quad (11)
\]

The values of SDR and DR_{Sat} can be obtained from (9)-(10). In this case, T will be the intended period of discharge. This is the duration of the peak load support and will depend on the limited amount of the stored energy in the battery. To make an effective use of the available stored energy, it needs to be discharged in a period that includes the maximum evening peak, as shown in Fig. 8.

An estimate of the discharge period, T, can be obtained initially using the historical load curves of the specific household where the storage device is to be installed. If the available energy is fully discharged during the evening peak, the following expression will hold true.

\[
\eta_{B} \times (\text{SoC}_{\text{max}} - \text{DoD}_{\text{max}}) \times V_{B} \times \frac{1}{h_{1}} \int_{t_{1}}^{t_{2}} P_{L}(t) dt = 0 \quad (12)
\]

where, (t_{2} - t_{1}) = T, as shown in Fig. 8. t_{max} is the time of occurrence of the maximum demand, V_{B} is the nominal battery voltage, \eta_{B} is the battery energy efficiency and P_{L}(t) is the load demand at time, t. T can be obtained by solving (12) iteratively and can be used in (9) and (10) to obtain SDR and DR_{Sat}. Normally, the time of occurrence of the peak load and the length of evening load period would not be significantly different between two consecutive days. Therefore, once the system is installed and commissioned using the initial historical load curve, the information on t_{1} and t_{2} can be updated daily from measurements at the PCC to accurately estimate the intended period of discharge.

The flow chart of the charge and discharge control system for a given time step is shown in Fig. 9(a) and 9(b), respectively.

The storage device is normally charged if there is no sudden decrease in PV output at the PCC and also a reverse power flow greater than a threshold level is found. The charging rate is obtained using (8) based on the parameters obtained from (9)-(10). The storage is normally discharged if the PCC voltage is found to be lower than a threshold level and also when no sudden dip in the PCC voltage is observed, as shown Fig. 9(b). The discharge rate is obtained using (11) based on the parameters obtained from (9)-(10).

The PV output may be suddenly decreased by irregularities in the sun irradiance levels due to unstable weather conditions causing fluctuations in the PCC net power and voltage. In the event of a sudden decrease in the PV output, the storage is put into a short-term discharge (STD) mode, as shown in Fig. 9(a). The short-term discharge-support is limited to avoid a significant drainage of charge.
enough surplus power at the PCC caused by changing cloudiness of the sky. The lost charge can be replenished by adjusting the charging rate at each instant of time to attain a reference SoC level. The reference SoC level is the one which is not affected by any unstable weather condition and can be obtained using the charging rate expressions given in (8). The strategy for performing the adjustment in charging rate is shown in Fig. 10.

If the storage is not charged at the \((k-1)\)-th time instant, the SoC will remain at the same value as in the previous time instant. Again, if the storage is discharged at the \((k-1)\)-th time instant, the SoC level will be reduced than the previous SoC. Therefore, an adjustment of the charging rate has to be performed at the beginning of the \(k\)-th time instant to make-up for the charge not stored, or lost, during the \((k-1)\)-th instant, as given below.

\[
CR'(k) = CR(k) + \varepsilon \times \frac{SoC_{ref}(k) - [SoC(k-1) + CR(k) \times \Delta t]}{\Delta t}
\]

(13)

where, \(CR'(k)\) is the adjusted charging rate, \(SoC_{ref}\) is the reference level of SoC, \(\Delta t\) is the time between two consecutive time instants, and \(\varepsilon\) is a parameter defining the percentage of the deviation to be met which can be controlled to limit the adjustment in the charging rate, if required. This adjustment of charging rate ensures an effective utilization of a storage device compared to a constant charging rate strategy in the event of irregularities in PV output which is difficult to anticipate.

Similarly, in the evening, it may be required to discharge the storage at a rate higher than the normal rate to support any abrupt voltage drop, such as a voltage-dip event caused by a sudden increase in the load demand. In this situation, the storage is put into a short-term high discharge (STHD) mode as presented in Fig. 9(b), depending on the intensity of the sudden increase in the momentary load demand. This will result in an additional charge to be drained during the higher discharge operation. Therefore, the discharge rate is adjusted by using (14) to reduce the deviation with the reference SoC level.

\[
DR'(k) = DR(k) - \varepsilon \times \frac{SoC_{ref}(k) - [SoC(k-1) - DR(k) \times \Delta t]}{\Delta t}
\]

(14)

All of the distributed storage units in the feeder operate according to the control strategy described above, based on the local information at the PCC, such as the PV output, the local demand, and the PCC voltage.

Although this paper proposes a storage control strategy based on local parameters only, a coordinated control strategy of multiple storage devices in the feeder may also be possible if a communication system become available as envisaged in the future smart grid. In such a coordinated operation, the storage devices at different locations would be able to exchange information on the available storage capacity and the surplus power at different PCCs using the communication systems, to make a better use of the total storage capacity available in the feeder to store an optimum amount of total surplus generation in the feeder.

The present paper mainly discusses the mitigation of reverse power flow caused by active power injection from rooftop solar PV in LV distribution feeders, resulting in the avoidance of a voltage-rise, although the system does not intentionally control the voltage. As there is no voltage control set-point in the proposed strategy, it is different than an on load tap-changer or voltage regulator located in medium voltage system where a feed-back arrangement is used to control the voltage at the load centre. For the same reason, it will not interfere with the operation of the on load tap-changer or the voltage regulator. The only effect of this controller is to make the on-load tap changer and the voltage regulator to have less switching operation and hence less stress. With a communication system, the battery storage system can be coordinated with the on-load tap changer as presented in [9].

IV. CASE STUDIES

A distribution network containing medium and low voltage feeders has been extracted from a New South Wales Distribution system in Australia to investigate the applicability of the proposed mitigation strategy. This is an 80 km long 11 kV rural network with three series voltage regulators. A single line diagram of the network is shown in Fig. 11. One of the LV feeders is shown in detail in a dashed circular shape. The LV feeder data used for analysis are presented in Table I.

![Fig. 11. A practical distribution system in Australia.](image)

TABLE I

<table>
<thead>
<tr>
<th>DATA OF A TYPICAL AUSTRALIAN LOW VOLTAGE FEEDER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feeder Length (metre)</td>
</tr>
<tr>
<td>Pole to Pole Distance (metre)</td>
</tr>
<tr>
<td>Conductor</td>
</tr>
<tr>
<td>MV/LV Transformer Size</td>
</tr>
<tr>
<td>PV Size (kW)</td>
</tr>
<tr>
<td>PV Module Manufacturer</td>
</tr>
<tr>
<td>Inverter Manufacturer</td>
</tr>
<tr>
<td>Battery Storage Model</td>
</tr>
<tr>
<td>Battery Storage Voltage (V)</td>
</tr>
<tr>
<td>Battery Storage Capacity (Ah)</td>
</tr>
</tbody>
</table>

Typical electric appliances used in residential households were used to model the aggregate loads at the different phases of the test feeder. The PV system sizes at the residential households were limited within 4 kW range and operated at unity power factor. The selection of a proper sizing methodology for energy storage is a complex task and may...
require optimization process, as discussed in [19], and therefore it is beyond the scope of this paper. In this research, a lead-acid energy storage device rated at 250 Ah, 24 V, was integrated at each of the rooftop PV system which is a typical size for residential rooftop PV applications in Australia for a PV rating of 2-4 kW [20]. The standard charging/discharging curves of a 12-V lead-acid battery available in [13] were used to model a 24-V lead-acid battery using the method described in Section III-A and the obtained charging/discharging curves are shown in Fig. 12. The specifications of the charging/discharging control strategy are given in Table II. The charging/discharging parameters CR_sat, DR_sat, SCR, and SDR are calculated using (9)-(10).

The network analysis is performed using a three-phase four-wire power-flow tool [21] developed by the authors, based on the current mismatch variant of the Newton-Raphson power flow algorithm [22]. The proposed storage control strategy is tested with steady-state simulations of the test network at each instant of time under consideration.

The storage starts to charge at about 9:00 hours by detecting a reverse power flow larger than a set threshold of zero. Due to the power consumed by the storage in the charging operation, the active power injection into the grid becomes zero. The active power injection into the grid without storage (dotted blue line) in Fig. 13(a) is higher than the active power injection with storage (solid blue line).

To test the developed methodology in a realistic PV generation environment, a solar PV output profile captured on the 9th of February 2011, in the Renewable Energy Integration Facility, CSIRO Energy Technology, Australia, is used. The PV output, the load demand, the energy storage power and the net active power injection into the grid from 8:00 hours to 24:00 hours for the PCC corresponding to phase a of node 10 of the test LV feeder is shown in Fig. 13(a). The PV output was distorted by the sudden changes in the sun irradiance level. It is assumed that the SoC of the storage device is at DoDmax at the start of the simulation.

The storage starts to charge at about 9:00 hours by detecting a reverse power flow larger than a set threshold of 0.1 kW at the PCC. Using a triangular charging profile, the charging rate increases at the SCR specified in Table II until it attains ToS1, which is 70% of the total battery capacity. The SoC profile is shown in Fig. 13(b). Due to the triangular charging profile, the second threshold ToS2 is also 70%, and therefore, the charging rate starts to decrease from this point at the same SCR until the charging rate becomes zero. Due to the sudden changes in PV output and places the storage in a short-term discharge mode, as observed by the negative spikes in the battery power shown in Fig. 13(a). This counteracts the sudden fluctuations in the PV power. As a result, the fluctuations in surplus power injection at the PCC are also reduced, as observed by comparing the solid and dotted blue lines in Fig. 13(a). The drops in the SoC levels in the zoomed box in Fig. 13(b) indicate the short-term discharges. It is also observed in Fig. 13(b) that the SoC level without the charging rate adjustment does not reach the SoCmax level.

![Fig. 12. Charge/dischARGE curves of a 24-V lead acid battery modeled for different charging/discharging rates.](image)

TABLE II

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR_sat, DR_sat</td>
<td>C/6.56, C/3.34</td>
</tr>
<tr>
<td>SCR, SDR (per minute)</td>
<td>0.1619, 0.6243</td>
</tr>
<tr>
<td>Charging and Discharging Profile</td>
<td>Triangular</td>
</tr>
<tr>
<td>ToS1, ToS2</td>
<td>70%, 70%</td>
</tr>
<tr>
<td>SoCmax, DoDmax</td>
<td>100%, 40%</td>
</tr>
<tr>
<td>ε for CR, DR compensation</td>
<td>100%</td>
</tr>
</tbody>
</table>

![Fig. 13. (a) Load demand, PV output, storage power and active power injection into grid; (b) SoC profile; (c) Voltage profile without storage; (d) Voltage profile with storage.](image)
SoC and then decreases at the same SDR until DoD_{max} is reached. The discharge power of storage and the SoC during the discharge operation is shown in Fig. 13(a) and 13(b), respectively. A sudden increase in the PCC load (due to an event such as a motor start) is observed in Fig. 13(a) at about 20:00 hours. This is partly mitigated by putting the storage in a short-term high discharge mode, as observed in Fig. 13(a) by a momentary increase in storage discharge power.

The PCC voltage profile with and without storage is shown in Fig. 13(c) and 13(d), respectively. The voltage-rise during the peak PV generation, the voltage fluctuations during the sudden reductions in PV output, the voltage drop during the evening peak and a voltage dip due to a sudden increase in the load are observed in Fig. 13(c). Fig. 13(d) shows that the voltage-rise is reduced by the charging operation; the voltage fluctuations are reduced by the short-term discharging operation; the voltage profile is improved during evening peak by the discharging operation; and the voltage dip is partly mitigated by the short-term high discharge operation.

A comparison of the reverse power flow at the secondary side of LV substation connected at bus 68 in Fig. 11 with and without distributed storage devices is shown in Fig. 14. It is observed that the reverse power flow with storage devices is reduced by 44% compared to the case without storage devices.

The reduction in reverse power flow is limited due to the size of the installed storage devices. With a sufficient storage capacity, it is possible to totally eliminate the reverse power. The only limitation is the cost of the energy storage system. A trade-off analysis between the cost of the energy storage and the impacts of the reverse power flow and voltage-rise in the system has to be performed to find the optimum size of the energy storage system. Further, it is important to note that the reverse flow is a complex function of time, load demand and sun insolation. The result in Fig. 14 is only for a particular load demand and the given sun insolation profile. The size of the energy storage system has been found to be adequate for the size of PV modules chosen in terms of the acceptable Australian voltage limits.

A case is studied in Fig. 15 where the PV generation drops down to such a low level for a certain period that no surplus power is available at the PCC for the storage to be charged during that time. The PV output profile is obtained from the same source (Renewable Energy Integration Facility at CSIRO), and the data was captured on the 8th February, 2011.

As shown in Fig. 15(a), the PV output drops below the load demand in the period from 10:00 hours to about 11:30 hours. At this time, no reverse power is available at the PCC and the storage device is not charged. The PV output again exceeds the load demand from about 11:45 hours and the storage device consumes the surplus power available at the PCC. The storage charging follows a triangular profile. The charging rate starts to decrease once 70% SoC level is reached at about 13:30 hours, as shown in Fig. 15(b). It is important to observe that due to multiple short-term discharge operations from 14:00 hours to 16:30 hours, and the unavailability of surplus PV power from 16:30 hours, the desired SoC_{max} level is not reached at the end of the charging period. The SoC level in this scenario reaches to about 88.5%. To ensure that the available stored charge is used wisely to serve the evening peak load, the discharge parameters are re-calculated using (9)-(11). In this case, the discharge rate starts to decrease when the SoC drops to 65.2% (not to 70% that would be the case for full SoC level) at 21:00 hours as shown in Fig 15(b).

The mitigation of voltage-rise, the reduction of voltage fluctuations, and voltage support during the evening peak demand are shown in Fig. 15(c) and 15(d).
adjustment, because according to (13), the charging rate is adjusted to be higher than the normal charging rate to recover the charge not stored during the time of unavailability of surplus PV power. Also, the storage power consumption is higher with the proposed strategy than that with the constant charging strategy during peak PV generation period.

Fig. 16(b) shows that at the end of the charging period, 28% higher utilization of the storage capacity is achieved by the proposed adjustment strategy when compared to the constant charging strategy (220Ah instead of 150Ah). However, if the adjustment is not performed to account for unstable weather condition, the utilization of the battery capacity would not be significantly higher than constant charging rate, as shown in Fig. 16(b). Fig. 16(c) shows that the proposed strategy can mitigate voltage-rise better than that using the constant charging rate, particularly during peak PV period in the midday.

Fig. 16. Usefulness of the proposed charging strategy. (a) effect on power consumed by storage in charging operation; (b) utilization of battery capacity; (c) voltage rise mitigation performance.

The methodology proposed in this paper is generic in nature and can be adapted for any integrated PV and storage system connected to the PCC. It can be used by the distribution network operators as a general guideline for the charging/discharging of storage devices integrated at the LV customer premises with rooftop PV. Further, a graphical user interface can be developed and used to inform the operators on how to input the correct data to the graphical user interface to obtain a generic charging/discharging strategy for an integrated PV and storage system under consideration.

V. CONCLUSION

A new strategy for charging/discharging of storage devices has been proposed in this paper for rooftop PV impact mitigation and evening peak load support. The proposed strategy can match the PV output/evening load profile better than the traditional constant charging/discharging strategy. A methodology has been developed to obtain the appropriate charging/discharging rates based on the current SoC level of the storage device and the intended charging/discharging period to wisely utilize the limited capacity of storage device. Further, the proposed strategy can mitigate sudden changes in PV output due to unstable weather conditions by putting the storage in a short-term discharge operation mode. It can also track and compensate for the deviation of the storage SoC from the desired level of SoC. Simulation results demonstrate that the proposed mitigation strategy can effectively mitigate the negative impacts of solar PV, can support the evening peak-time load demand while utilizing the available capacity of the storage device.

VI. ACKNOWLEDGMENT

The authors gratefully acknowledge the support and cooperation of Essential Energy, Endeavour Energy and CSIRO Energy Technology, Australia for providing practical system information and data for this research.

VII. REFERENCES

