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Abstract 
 
Soil salinity limits agricultural land use and crop productivity, thereby a major threat to global food 

safety. Plants treated with several phytohormones including cytokinins were recently proved as a powerful tool 
to enhance plant’s adaptation against various abiotic stresses. The current study was designed to investigate the 
potential role of 6-benzyladenine (BA) to improve broad bean (Vicia faba L.) salinity tolerance. The salt-
stressed broad bean plantlets were classified into two groups, one of which was sprayed with water and another 
was sprayed with 200 ppm of BA. Foliar applications of BA to salt-exposed plants promoted the growth 
performance which was evidenced by enhanced root-shoot fresh and dry biomass. Reduced proline was strongly 
connected to the enhanced soluble proteins and free amino acids contents, protecting plant osmotic potential 
following BA treatment in salt-stressed broad bean. BA balanced entire mineral homeostasis and improved 
mineral absorption and translocation from roots to shoots, shoots to seeds and roots to seeds in salt-stressed 
plants. Excessive salt accumulation increased malondialdehyde level in leaves creating oxidative stress and 
disrupting cell membrane whereas BA supplementation reduced lipid peroxidation and improved oxidative 
defence. BA spray to salinity-stressed plants also compensated oxidative damage by boosting antioxidants 
defence mechanisms, as increased the enzymatic activity of superoxide dismutase, catalase, peroxidase and 
ascorbate peroxidase. Moreover, clustering heatmap and principal component analysis revealed that mineral 
imbalances, osmotic impairments and increased oxidative damage were the major contributors to salts toxicity, 
on the contrary, BA-augmented mineral homeostasis and higher antioxidant capacity were the reliable markers 
for creating salinity stress tolerance in broad bean. In conclusion, the exogenous application of BA alleviated 
the antagonistic effect of salinity and possessed broad bean to positively regulate the osmoprotectants, ion 
homeostasis, antioxidant activity and finally plant growth and yield, perhaps suggesting these easily-accessible 
and eco-friendly organic compounds could be powerful tools for the management of broad bean growth as well 
as the development of plant resiliency in saline prone soils. 
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Introduction 
 
Faba bean (Vicia faba L.) or broad bean is one of the major legume crops belonging to the family 

Fabaceae that can grow across various meteorologic conditions (Singh et al., 2013; Abdel Latef et al., 2018). 
Vicia faba is a preferable and alternative source of essential proteins so that it is cultivated for collecting seeds 
that are consumed as human and animal feed. Along with high protein content and a balanced amino acids 
profile (nearly 30% of lysine), broad bean seeds are abundant in dietary fiber, minerals, vitamins, lipids, γ-
aminobutyric acid and phenolic compounds which provides nourishment for humans and positively influence 
the antioxidant system and biological process (Giménez et al., 2012; Raikos et al., 2014; Mahdi et al., 2021). It 
can be grown in a wide range of agro-ecosystem, but the performance of this legume crop is severely affected 
because of several environmental stresses including salinity. 

Soil salinity is considered as one of the primary abiotic stress factors associated with the significant 
economic impact because of losing a huge amount of agricultural land and declining crop yield (Mbarki et al., 
2018; Fariduddin et al., 2019; Abdel Latef et al., 2020a). It was reported that over 800 Mha lands are salt-
contaminated globally (Munns and Tester, 2008; Osman et al., 2020). Therefore, nowadays, salinity is a major 
threat to sustainable agricultural productivity. Further to this, about 45 Mha of irrigated land are captured by 
salt stress-related problems worldwide, and more than 50% of arable land could be salt-affected by the next 30 
years (Shrivastava and Kumar, 2015). Global soil salinization is aggravating day by day due to global warming-
induced sea-level rise,  saline-enriched water irrigation, and massive erosion of soils (Shrivastava and Kumar, 
2015; Nachshon, 2018). The world population has been estimated to increase by about 2 billons in the next 30 
years (DESA, 2015). Therefore, scientists are working to find economically feasible and efficient tactics to 
reduce or mitigate salt-induced stress for ensuring the nutritional security of the ever-increasing population 
(Geist, 2017; Noreen et al., 2020; Abdel Latef et al., 2021). 

In crop plants, salinity stress inhibits the molecular, biochemical and physiological processes of crop 
plants by damaging photosynthetic activity, changing the osmotic adjustment and ionic homeostasis, 
producing toxic oxidants and radicals, regulating phytohormonal functions, counteracting essential metabolic 
pathways, and manipulating the gene expression pattern (Tang et al., 2015; Yang and Guo, 2018; Morton et 
al., 2019). Additionally, excess amounts of Na+ and Cl− causes ionic imbalance, osmotic stress, water deficiency, 
and nutrient (such as K, Ca, Mg, Fe, Zn, N and P) disorders, which consequence in the physiological 
malfunction in both crop and vegetable plants (Rehman et al., 2019). However, excessive reactive oxygen 
species (ROS) generation due to the disruption of redox homeostasis leads to oxidative stress to the cellular 
biomolecules (Abdel Latef et al., 2017a,b,c, 2018, 2019a,b, 2020b; Attia et al., 2021). The plant showed a 
response against either osmotic or ionic stress in two mechanisms. In response to osmotic stress, the water 
absorption in plant root is inhibited that suppresses the cell development and growth of lateral bud, while ionic 
stress induces the change in the optimum ratios of K+/Na+ content and Na+ and Cl− ion levels that are 
detrimental for the normal cellular functions and processes (Munns and Tester, 2008; Singh et al., 2017). In 
stressed condition, plant defense against excessive ROS is associated with the protection of cellular redox 
homeostasis, which is mostly conferred by some antioxidant enzymatic activity for example superoxide 
dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), etc. (Tang et al., 2015; 
Tanveer and Shabala, 2018; Abdel Latef et al., 2020c; Rahman et al., 2020; Dawood et al., 2021). Therefore, 
any mechanisms that maintain optimal K+/Na+ content, nutritional balance, and ROS in plants may provide 
tolerance capability against salinity (Assaha et al., 2017). 

Different mitigation and adaptation approach was applied to conquer the adverse impacts of salt stress 
(Wang et al., 2019). Application of exogenous growth regulators including cytokinins (CK) would be an 
effective and affordable strategy for the development of plant resiliency against the detrimental consequences 
of salt stress. However, 6-benzyladenine (BA) is a CK-like plant growth regulator that can significantly amplify 
plant CK levels. It is reported that CK helps plants to confer salt tolerance by raising the activity of antioxidant 
enzymes and alleviating lipid peroxidation to protect the generation and scavenging consistency of ROS  
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(Adam et al., 1989; Bin et al., 2010; Xiaotao et al., 2013). At present, applications of exogenous CK including 
BA have been described in mitigating various abiotic stresses, e.g salinity, drought, cold and waterlogging 
(Abdel-Latef, 2003; Azooz et al., 2004a,b; Iqbal et al., 2006; Abdel Latef et al., 2009; Javid et al., 2011b; Wu et 
al., 2014; Hu et al., 2020). Therefore, the present investigation was operated for exploring the ameliorate role 
of BA for mitigating salt stress and promoting salt tolerance mechanism in broad bean plants by evaluating the 
following properties: (i) growth-promoting characters and yield, (ii) regulation of mineral homeostasis and 
translocation, (iii) level of osmoprotectants, (iv) oxidative stress and lipid peroxidation, (v) improvement of 
antioxidant enzymatic activity. 

 
 

Materials and Methods 
 
Plant materials and experimental design 
The investigation was performed using broad bean (Vicia faba L. cv. ‘Assiut 85/37’). Mature seeds were 

carefully surface-sterilized for 5 min in 0.1% mercuric chloride followed by three times washed with autoclaved 
distilled water. Then 10 disinfected seeds were planted in each pot where each pot was filled with 5 kg of air-
dried soil (sand: clay, 3:1 v/v). The pots were daily irrigated with tap water until full germination. On the 14th 
day after sowing, germinated broad bean plantlets were subjected to 0 mM NaCl (control, C), 60 mM NaCl 
(S1), and 150 mM NaCl (S2) stress. After that, all pots were classified into 2 groups, one of which was sprayed 
with water and another was sprayed with 200 ppm of BA (Sigma-Aldrich, St. Louis, MI, USA) (50 mL to each 
pot at the 14-day interval for the total period of 100 days). Thus, there were six treatment compositions as 
follows: (i) control (C), 0 mM NaCl + 0 ppm BA; (ii) 60 mM NaCl + 0 ppm BA, S1; (iii) 60 mM NaCl + 0 
ppm BA, S2; (iv) 0 mM NaCl + 200 ppm BA, BA; (v) 60 mM NaCl + 200 ppm BA, B+S1; and (vi) 150 mM 
NaCl + 200 ppm BA, B+S2. The dose of exogenous BA (200 ppm) was selected as following the report of 
(Iqbal et al., 2006). Our investigations were conducted in a completely randomized design (CRD) with three 
replications where each pot containing 6 broad beans were considered as a replica. 

 
Plant growth measurements  
The root fresh weight (RFW), shoot fresh weight (SFW), fresh seed weight (FSW) and the number of 

nodules were estimated for determining the plant growth performance. The freshly harvested samples were 
packed and preserved in an aerated oven for 7 days at 80 °C. After that, the samples were completely desiccated 
and the root dry weight (RDW), shoot dry weight (SDW) and dry seed weight (DSW) were measured.  

 
Determination of mineral ion contents 
Root, stem and leaves were harvested from broad bean plant and rinsed these samples with deionized 

water for making them contamination-free. After that, fresh samples were dried in the oven for four days at 70 
°C. Then finely grinded plant samples were treated with HNO3: HClO4 (2:1v/v) for 2 h at 220 °C by following 
the protocol of (Williams and Twine, 1960). Na+ and K+ contents were determined by the atomic absorption 
flame spectrophotometer (Model AA-6400 F, Shimadzu Corporation, Japan). The versene (disodium 
dihydrogen ethylene-diamine-tetraacetic acid) titration method (Schwarzenbach and Biedermann, 1948) was 
used for Ca2+ and Mg2+ contents were estimated using the versene (disodium dihydrogen ethylene-diamine-
tetraacetic acid) method of titration. The level of translocation was determined from quantifying the value of 
translocation factor of nutrients in broad bean plant parts according to the procedure of (Hawrylak-Nowak, 
2013): 

Translocation factor (roots to shoot) = Mineral content in shoot/Mineral content in root 
Translocation factor (shoot to seed) = Mineral content in seed/Mineral content in shoot 
Translocation factor (roots to seed) = Mineral content in seed/Mineral content in root 
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Extraction and determination of antioxidant enzymatic activity 
The enzyme extraction was performed according to the procedure of (Mukherjee and Choudhuri, 

1983). The fresh leaf samples (0.2 g) were finely ground in a cold mortar-pestle with 5 mL of 100 mM 
potassium-phosphate of (K-P) buffer (100 mM, pH 7.0) having Na2EDTA (0.1 mM) and 
polyvinylpyrrolidone (0.1 g). Then, the homogenate was then filtered using cheesecloth and performed 
centrifugation at 12000×g for 10 min at 4 °C and the resulted supernatant was used for the analysis of the 
following antioxidants: superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6), peroxidase 
(POD; EC 1.11.1.7) and ascorbate peroxidase (APX; EC 1.11.1.11). 

The SOD activity was estimated as followed by the protocol of (Scebba et al., 1999). Leaf extracts (2 
mL) were added with the mixtures containing K-P buffer (50 mM, pH 7.8), EDTA (0.1 mM), M L-methionine 
(13 mM), riboflavin (2 μM) and nitroblue tetrazolium (75 μM) at a final volume of 3 mL. The reaction was 
initiated, when the reaction mixtures were exposed to fluorescent light (cool white) for 15 min. The blue 
reaction colour was determined spectrophotometrically at 560 nm. The activities of CAT were assayed in 3 
mL reaction solution comprised of K-P buffer (50 mM, pH 7.0), H2O2 (30%, w/v) and leaf extract (0.1 mL), 
by using the method of (Aebi, 1984). The enzymatic activity of the CAT was determined by reducing of 
absorbance at 240 nm resultant in H2O2 consumption. POD activity was determined by adding leaf extract 
(0.5 mL) in 3 mL reaction mixture of K-P buffer (10 mM, pH 7.0), H2O2 (10 mM) and guaiacol (20 mM) 
(Maehly and Chance, 1954). An increased absorbance as a consequence of the production of tetraguaiacol was 
observed at 470 nm (Klapheck et al., 1990). The activity of APX was determined from the decreased 
absorbance at 290 nm as ascorbic acid was oxidized (Chen and Asada, 1992). APX was assayed with the reaction 
mixtures (3 mL) having K-P buffer (50 mM, pH 7.0), ascorbic acid (0.5 mM) and H2O2 (0.5 mM). All 
spectrometric readings were taken through a Spectronic Genysis1M 2PC spectrophotometer, Spectronic 
Instruments, USA. 

 
Measurement of lipid peroxidation 
The amounts Lipid peroxidation determined in the term of malondialdehyde (MDA) in broad bean 

followed by the protocol of (Heath and Packer, 1968). Leaves materials (0.2 g) were homogenized with the 
solutions of 5 mL of 5% trichloroacetic acid (TCA) followed by centrifuging at 15000g for 10 min at 4 °C. 
Along with 20% TCA, 4 mL solutions of 0.5% were added in 2 mL aliquots of the supernatant. The 
supernatant absorption and the non-specific absorption value were quantified at 532 and 600 nm, respectively. 
The MDA contents were estimated by employing the absorption coefficient of 155 nmol−1 cm−1. 

 
Measurement of proline, soluble sugars, soluble proteins and free amino acids levels 
The levels of proline (Pro) in broad bean plants were determined according to the description of (Bates 

et al., 1973). The method based on anthrone-sulfuric acid, as described by (Fales, 1951) was employed to 
determine the content of soluble sugars (SS). The method of (Lowry et al., 1951) was used to estimate soluble 
proteins (SP) content as following the standard of bovine serum albumin (BSA). The content of free amino 
acids (FAA) was estimated as following the procedure of (Moore and Stein, 1948). 

 
Statistical analysis 
The obtained data were undertaken to a two-way analysis of variance (ANOVA) followed by 

performing Tukey's test (P< 0.05) using the ‘multcompView’ package of the statistical programming language 
R 3.6.1. The MetaboAnalyst (https://www.metaboanalyst.ca/) was used for constructing heatmap and 
hierarchical clustering considering Euclidean distances. The packages ‘ggplot2’, ‘factoextra’, ‘FactoMineR’ of R 
3.6.1 were used to perform principal component analysis (PCA). 
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Results 
 
Analysis of variance 
The ANOVA of different growth and yield-contributing traits in the broad bean is shown in 

Supplementary Table 1. The S and BA significantly affect all growth and yield-related parameters in broad 
bean. However, S and BA interaction has no significant difference on SDW and No. of nodules. The analysis 
of variance of SS, SP, proline, and FAA content in root, shoot and seed of broad bean is shown in 
Supplementary Table 2. The S and BA significantly affect SS, SP and FAA content in root, shoot and seed of 
broad bean plants. However, there is no significant difference was exhibited for S and BA interaction with SP 
and FAA contents in root, SS content in shoot, SP and FAA contents in the seed of broad bean. The analysis 
of variance of different mineral content in root, shoot and seed of broad bean is shown in Supplementary Table 
3. The S and BA significantly affect Na+, K+, Ca2+ and Mg2+ contents in root, shoot and seed of broad bean 
plants. However, there is no significant difference was exhibited for S and BA interaction with Mg2+ content 
in root, Na+ content in shoot and Ca2+ content in seed of broad bean. The ANOVA of different antioxidant 
enzymes of broad bean plants was shown in Supplementary Table 4. The S and BA significantly affect the 
MDA, SOD, CAT, POD and APX activity in broad bean. However, the interaction of S and BA showed 
significant differences for MDA, SOD, CAT and APX activity except for POD in broad bean plants. 

 
Exogenous BA boosted broad bean growth under salinity stress 
The ‘S1’ plants showed a considerable reduction in RFW (by 16.17%), SFW (by 7.16%), and RDW (by 

29.47%) compared with that of ‘C’ plants (Figure 1A, B, D), but did show any effect on FSW, SDW, SDW 
and no. of nodules (Figure 1C, E-G). Moreover, ‘S2’ plants displayed a marked decrease in RFW (by 48.70%), 
RDW (by 70.42%), SFW (by 59.72%), SDW (by 42.14%), FSW (by 45.54%), DSW (by 53.36%) and no. of 
nodules (by 47.20%) compared with ‘C’ plants (Figure 1A–G). Foliar application of BA to ‘B+S1’ broad bean 
assuaged the adverse effects of saline toxicity by significantly improving the RFW, RDW, SFW, SDW, FSW, 
and no. of nodules (by 31.95%, 92.54%, 29.13%, 25.52%, 6.37%, and 31.29%, respectively), except DSW 
compared to ‘S1’ plants (Figure 1A–G). Moreover, ‘B+S2’ plants also exhibited significant enhancement in 
SFW, SDW, FSW, DSW and no. of nodules by 91.32, 36.21, 33.08, 55.45, and 84.73%, respectively, without 
RDW compared with the ‘S2’ plants (Figure 1A–G). Moreover, ‘BA’ plants showed amelioration in all studied 
growth parameters, versus ‘C’ plants (Figure 1A). 

 
Exogenous BA enhanced level of osmoprotectants under salinity stress 
The ‘S2’ plants showed decreased content of SS in the root, shoot and seed (by 55.41%, 33.43% and 

36.85%, respectively), and the ‘S1’ plants also exhibited reduction (Figure 2A-C). However, in contrast with 
‘S2’ plants, ‘B+S2’ plants exhibited an improved level of SS in the root, shoot and seed (by 43.69%, 29.15% and 
55.06%, respectively) (Figure 2A-C). Moreover, ‘B+S1’ plants showed enhanced content SS in the root, shoot 
and seed compared with ‘S1’ plants (Figure 2A-C). Furthermore, ‘BA’ plants induced improvement of SS 
content in all studied organs, versus ‘C’ plants (Figure 2A-C). The ‘S2’ plants displayed a reduced level of SP in 
the root (by 28.03%), and seed (by 48.19%), whereas increased in the shoot (by 27.56%) in comparison with 
‘C’ plants (Figure 2D-F). Moreover, ‘S1’ plants recorded an enhanced level of SP in the shoot (by 12.00 %), 
whereas decreased in the shoot (by 34.14%) compared with ‘C’ plants (Figure 2E, F). However, ‘B+S2’ plants 
displayed an increased level of SS in the root, shoot and seed (by 48.42%, 34.15% and 62.02%, respectively) 
compared to ‘S2’ plants (Figure 2D-F). Moreover, ‘B+S1’ plants showed enhanced content SS in the root, shoot 
and seed compared with ‘S1’ plants (Figure 2D-F). Furthermore, ‘BA’ plants displayed an enhanced level of SP 
in all tested organs, against ‘C’ plants (Figure 2D-F). The ‘S2’ plants exhibited an increased content of FAA in 
the root, shoot and seed (by 44.12%, 46.15% and 27.70%, respectively), and the ‘S1’ plants also exhibited similar 
trends (Figure 2G-I). 
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Figure 1. Different growth and yield-related parameters, (A) root fresh weight, (B) shoot fresh weight, (C) 
fresh seed weight, (D) root dry weight, (E) shoot dry weight, (F) dry seed weight and (G) no. of nodules of 
broad bean plants exposed to salinity with or without 6-benzyladenine (BA) foliar spray 
For each treatment, values were obtained from three independent replicates (n = 3). Different letters above the bars 
indicate a statistically significant difference based on P< 0.05 by Tukey’s test. ‘C’, 0 mM NaCl + distilled water spray 
(control); ‘BA’, 0 mM NaCl + 200 ppm BA spray; ‘S1’, 60 mM NaCl + distilled water spray; ‘S2’, 150 mM NaCl + 
distilled water spray; ‘S1+B1’, 60 mM NaCl + 200 ppm BA spray; and ‘B+S2’, 150 mM NaCl + 200 ppm BA spray. 
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Figure 2. Effect of foliar application of 6-benzyladenine (BA) soluble sugars (SS) content in (A) root (B) 
shoot and (C) seed; soluble proteins (SP) content in (D) root (E) shoot (F) and seed; free amino acids 
(FAA) content in (G) root, (H) shoot and (I) seed; proline (Pro) content in (J) root, (K) shoot and (L) 
seed in broad bean 
For each treatment, values were obtained from three independent replicates (n = 3). Different letters above the bars 
indicate a statistically significant difference based on P < 0.05 by Tukey’s test. ‘C’, 0 mM NaCl + distilled water spray 
(control); ‘BA’, 0 mM NaCl + 200 ppm BA spray; ‘S1’, 60 mM NaCl + distilled water spray; ‘S2’, 150 mM NaCl + 
distilled water spray; ‘S1+B1’, 60 mM NaCl + 200 ppm BA spray; and ‘B+S2’, 150 mM NaCl + 200 ppm BA spray. 
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However, in comparison with ‘S2’ plants, ‘B+S2’ plants exhibited a further enhanced level of SS in the 
root, shoot and seed (by 46.94%, 46.05% and 33.33%, respectively) (Figure 2G-I). Moreover, ‘B+S1’ plants 
displayed similar trends (Figure 2G-I). Furthermore, ‘BA’ plants displayed improvement of SS content in all 
studied parts, compared to ‘C’ plants (Figure 2G-I). The ‘S2’ plants displayed increased content of Pro in the 
root (by 88.50%), and shoot (by 95.24%) and seed (by 30.12%) compared with ‘C’ plants (Figure 2J-L). 
Moreover, ‘S1’ plants also showed an increased level of Pro in the root, shoot and seed (by 12.00 %), compared 
with ‘C’ plants (Figure 2J-L). In contrast, ‘B+S2’ plants exhibited diminished content of SS in the root, shoot 
and seed (by 34.15% and 5.91% and 4.75%, respectively), in comparison with ‘S2’ plants (Figure 2J-L). 
Moreover, ‘B+S1’ plants showed a reduced level of Pro in shoot and seed compared with ‘S1’ plants (Figure 2K, 
L). Furthermore, ‘BA’ plants displayed a decreased level of SP in root and shoot, versus ‘C’ plants (Figure 2J, 
K). 

 
Exogenous BA regulated mineral homeostasis under salt stress 
The ‘S2’ plants displayed increased content of Na+ in the root, shoot and seed (by 509.13%, 336.58% 

and 440.46%, respectively) in comparison with ‘C’ plants. Moreover, ‘S1’ plants showed similar results (Figure 
3A-C). However, in ‘B+S2’ plant, the amount of Na+ was reduced in the root, shoot and seed (by 39.89%, 
22.78% and 33.58%, respectively), relative to the content in S2’ plants (Figure 3A-C). Moreover, in ‘B+S1’ 
plant, the level of Na+ was also reduced in the root, shoot and seed, relative to the content in S1’ plants (Figure 
3A-C). Furthermore, ‘BA’ plants displayed decreased content of SP in seed compared to ‘C’ plants (Figure 3C). 
The ‘S2’ plants displayed decreased content of K+ in shoot and seed (by 32.39% and 37.36%, respectively) 
whereas increased in the root (by 13%) compared with ‘C’ plants (Figure 3D-F). Moreover, the ‘S1’ plants 
showed decreased content of K+ in shoot whereas increased in root compared with ‘C’ plants (Figure 3D, E). 
However, in ‘B+S2’ plant, the amount of K+ was amplified in the root, shoot and seed (by 11.10%, 42.48% and 
116.53%, respectively), relative to the content in ‘S2’ plants (Figure 3D-F). Moreover, in ‘B+S1’ plant, the level 
of K+ was also augmented in roots, shoot and seed, in comparison with ‘S1’ plants (Figure 3D-F). Furthermore, 
‘BA’ plants enhanced the content of K+ in all tested organs compared to ‘C’ plants (Figure 3D-F). The ‘S2’ 
plants displayed decreased content of Ca2+ (by 74.44%, 59.58% and 41.67%, respectively) and Mg2+ (by 37.88%, 
29.22% and 33.71%, respectively) in the root, shoot and seed compared with ‘C’ plants and ‘S1’ plants follow 
similar trends (Figure 3G-L). However, in ‘B+S2’ plant, the content of Ca2+ (by 154.70%, 46.49% and 52.38%, 
respectively), and Mg2+ were amplified in the root, shoot and seed (by 57.89%, 43.31% and 59.44%, 
respectively), relative to the content in ‘S2’ plants (Figure 3G-L). Moreover, in ‘B+S1’ plant, the level of Ca2+ 

and Mg2+ was also augmented in the root, shoot and seed, in comparison with ‘S1’ plants (Figure 3G-L). 
Furthermore, ‘BA’ plants enhanced the content of Ca2+ and Mg2+ in all examined organs compared to ‘C’ plants 
(Figure 3G -L). 

We estimated the mineral translocation rates within different parts of broad bean, i.e. root to shoot, 
shoot to seed, and root to seed. ‘S2’ plants showed decreased translocations for Na+ from root to shoot and root 
to seed whereas increased from shoot to seed compared with ‘C’ plants (Figure 4A-C). Moreover, ‘S1’ plants 
showed increased translocations for Na+ from shoot to seed and root to seed compared with ‘C’ plants (Figure 
4A-C). However, ‘B+S2’ plants showed improved translocations for Na+ from root to shoot and root to seed 
whereas declined from shoot to seed compared with ‘S2’ plants (Figure 4A-C). 

Moreover, ‘S1’ plants showed decreased translocations for Na+ from shoot to seed and root to seed 
compared with ‘S1’ plants (Figure 4B, C). ‘BA’ plants showed decreased translocations for Na+ from shoot seed 
and root to seed compared with ‘C’ plants (Figure 4B, C). ‘S2’ plants showed decreased translocations for K+ 
from all different parts compared with ‘C’ plants (Figure 4D-F). Moreover, ‘S1’ plants showed reduced 
translocations for K+ from root to shoot and root to seed compared with ‘C’ plants (Figure 4D-F). 
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Figure 3. Nutrient contents in different parts of broad bean plants exposed to salt stress with or without 
6-benzyladenine (BA) treatment. Na+ content in (A) root (B) shoot and (C) seed; K+ content in (D) root 
(E) shoot and (F) seed; Ca2+ content in (G) root, (H) shoot and (I) seed; and Mg2+ content in (J) root, (K) 
shoot and (L) seed in broad bean plants 
For each treatment, values were obtained from three independent replicates (n = 3). Different letters above the bars 
indicate a statistically significant difference based on P < 0.05 by Tukey’s test. ‘C’, 0 mM NaCl + distilled water spray 
(control); ‘BA’, 0 mM NaCl + 200 ppm BA spray; ‘S1’, 60 mM NaCl + distilled water spray; ‘S2’, 150 mM NaCl + 
distilled water spray; ‘S1+B1’, 60 mM NaCl + 200 ppm BA spray; and ‘B+S2’, 150 mM NaCl + 200 ppm BA spray. 
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Figure 4. Translocation of nutrients in different parts of broad beans exposed to salt stress with or without 
6-benzyladenine (BA) treatment. Translocation factor of Na+ in (A) root to shoot (B) shoot to seed (C) 
root to seed; K+ in (D) root to shoot (E) shoot to seed (F) root to seed; Ca2+ in (G) root to shoot (H) shoot 
to seed (I) root to seed; and Mg2+ in (J) root to shoot (K) shoot to seed (L) root to seed in broad bean plants 
For each treatment, values were obtained from three independent replicates (n = 3). Different letters above the bars 
indicate a statistically significant difference based on P < 0.05 by Tukey’s test. ‘C’, 0 mM NaCl + distilled water spray 
(control); ‘BA’, 0 mM NaCl + 200 ppm BA spray; ‘S1’, 60 mM NaCl + distilled water spray; ‘S2’, 150 mM NaCl + 
distilled water spray; ‘S1+B1’, 60 mM NaCl + 200 ppm BA spray; and ‘B+S2’, 150 mM NaCl + 200 ppm BA spray. 
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However, ‘B+S2’, ‘B+S1’ and ‘BA’ plants showed improved translocations for K+ in all parts of broad 
bean compared with ‘S2’, ‘S1’ and ‘C’ plants, respectively (Figure 4D-F). ‘S2’ and ‘S1’ plants showed increased 
translocations for Ca2+ in all studied organs compared with ‘C’ plants (Figure 4G-I). However, ‘B+S2’ and 
‘B+S1’ plants showed decreased translocations for Ca2+ from root to shoot and root to seed compared with ‘S2’ 
and ‘S1’ plants, respectively (Figure 4G, I). ‘S2’ plants showed decreased translocations for Mg2+ from root to 
shoot to seed whereas increased from shoot to seed compared with ‘C’ plants (Figure 4J, K). Moreover, ‘S1’ 
plants reverse this trend (Figure 4J, K). However, ‘B+S2’ plants showed declined translocations for Mg2+ from 
root to shoot whereas increased from shoot to seed compared with ‘S2’ plants (Figure 4J, K) 

 
Exogenous BA reduced MDA content and improved antioxidant defence system under salt stress 
The production of MDA was markedly increased by 7.92% and 99.32% at both S1 and S2 treatment 

compared with ‘C’ plants (Figure 5A). Supplementation of BA to both ‘S1’ and ‘S2’ plants showed significant 
abatement in MDA content by 19.90% and 46.49% in comparison with ‘S1’ and ‘S2’ salt-stressed plants, 
respectively (Figure 5A). 

 

 
Figure 5. Levels of (A) malondialdehyde (MDA) content (B) SOD (superoxide dismutase) activity, (C) 
CAT (catalase) activity, (D) POD (peroxidase) activity, and (E) APX (ascorbate peroxidase) activity in 
broad bean plants exposed to salinity with or without 6-benzyladenine (BA) foliar spray 
For each treatment, values were obtained from three independent replicates (n = 3). Different letters above the bars 
indicate a statistically significant difference based on P < 0.05 by Tukey’s test. ‘C’, 0 mM NaCl + distilled water spray 
(control); ‘BA’, 0 mM NaCl + 200 ppm BA spray; ‘S1’, 60 mM NaCl + distilled water spray; ‘S2’, 150 mM NaCl + 
distilled water spray; ‘S1+B1’, 60 mM NaCl + 200 ppm BA spray; and ‘B+S2’, 150 mM NaCl + 200 ppm BA spray. 

 
Furthermore, ‘BA’ plants also showed a significant reduction in MDA content (Figure 5A). The 

activities of SOD, CAT, POD, and APX were significantly increased (by 85.02%, 113.90%, 77.23%, and 
81.85%, respectively) in ‘S2’ plants compared with ‘C’ plants (Figure 5B-E). Moreover, ‘S1’ plants followed a 
similar trend in all studied antioxidant enzymes (Figure 5B-E). However, ‘B+S1’ plants showed significant 
improvement in the activity of SOD, CAT, POD, and APX by 22.59%, 99.23%, 82.42%, and 33.58%, 
respectively, in comparison to ‘S1’ plants (Figure 5B-E). Likewise, ‘B+S2’ plants markedly improved the 
activities of SOD, CAT, POD, and APX by 47.62%, 29.66%, 49.29% and 7.53%, respectively, in comparison 
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with the ‘S2’ plants (Figure 5B-E). Furthermore, enhanced activities of all examined antioxidant enzymes were 
recorded in ‘BA’ plants compared with ‘C’ plants (Figure 5B-E).  

 
Hierarchical clustering and PCA analysis  
The morpho-physiological, biochemical, and growth attributing data under both control and salinity 

stress conditions were subjected to hierarchical clustering, heatmap analysis, and PCA (Figure 6). 
 

 
Figure 6. Hierarchical clustering and heatmap (A) to elucidate the treatment variable relationships. The 
mean values of the various parameters obtained in this study were normalized and clustered. The entire 
dataset was analysed using principal component analysis (PCA) (B)  
The variables included shoot fresh weight (SFW), fresh seed weight (FSW), root dry weight (RDW), shoot dry weight 
(SDW), dry seed weight (DSW), no. of nodules, soluble sugars (SS), soluble proteins (SP), free amino acids (FAA), 
proline (Pro), malondialdehyde content (MDA), superoxide dismutase (SOD) activity, catalase (CAT) activity, 
peroxidase (POD) activity, ascorbate peroxidase (APX) activity. ‘C’, 0 mM NaCl + distilled water spray (control); 
‘BA’, 0 mM NaCl + 200 ppm BA spray; ‘S1’, 60 mM NaCl + distilled water spray; ‘S2’, 150 mM NaCl + distilled 
water spray; ‘S1+B1’, 60 mM NaCl + 200 ppm BA spray; and ‘B+S2’, 150 mM NaCl + 200 ppm BA spray. 

 
According to Hierarchical clustering results, these parameters were classified into four clusters (cluster-

A−D) (Figure 6A). K+ root, K+ seed, SP root, Mg2+ root and Mg2+ seed were clustered into cluster-A. and 
RDW, RFW, SFW, SDW, FSW, DSW, SS seed, no. of nodules, Ca2+ seed, Ca2+ root, SS root, Ca2+ shoot, SS 
shoot, Mg2+, SP seed, K+ shoot were included in cluster-B. In comparison with ‘C’, all cluster-A and cluster-B 
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included parameter showed a negative affinity in (‘S1’ and ‘S2’) broad bean under salt stress, whereas a positive 
affinity was noticed in BA-treated salt-stressed (‘B+S1’ and ‘B+S2’) broad bean in comparison with salt-
stressed plants (Figure 6A). It has been observed that BA treated stress-free broad bean which showed the 
highest level of increment of these parameters were grouped into cluster-A and cluster-B. However, cluster-C 
was comprised of SP shoot, FAA seed, SOD, FAA root, FAA shoot, APX, CAT and POD (Figure 6A). In 
comparison with ‘C’, every parameter of cluster-C exhibited an increasing trend in both salt-stressed (‘S1’ and 
‘S2’) and BA-treated salt-stressed (‘B+S1’ and ‘B+S2’) broad bean plants (Figure 6A). Moreover, B+S2 treated 
stressed broad bean plants that exhibited the highest level of increment of these parameters were grouped into 
cluster-C. Cluster D was classified as Na+ shoot, Na+ seed, Pro root, Na+ root, MDA, Pro shoot, Pro seed. On 
the contrary to other clusters, every parameter of cluster-D showed an increasing trend in salt-affected plants 
(‘S1’ and ‘S2’) in comparison with control (Figure 6A). But the fall of these parameters was observed when the 
stressed plants are treated with BA (‘B+S1’ and ‘B+S2’) broad bean plants. ‘S2’ plants evidenced that the 
highest level of increment was observed in those parameters which grouped into cluster-D (Figure 6A). 

We accomplished PCA for determining acquaintance between the treatment groups and the morpho-
physiological and biochemical parameters. The PCA biplotelicits segregation clearly among the groups of six 
treatments (‘C’, ‘S1’, ‘S2’, ‘B+S1’, ‘B+S2’ and ‘BA’) (Figure 6B). Both the first and second components of PCA 
elucidate approximately 93.5% data variability (Figure 6B). Experimental results showed that heatmap cluster-
A and -B variables (Figure 6A) were moderately associated with ‘C’ and strongly associated with ‘B+S1’ 
treatments (Figure 6B), whereas the heatmap cluster-C variables (Figure 6A) were intensely interlinked to 
‘B+S2’ treatments (Figure 6B). The variables of heatmap cluster-B (Figure 6A) were sharply interlinked with 
‘S2’ and moderately interlinked with ‘S1’ treatment (Figure 6B). 

 
 
Discussion 
 
Various small organic compounds, such as plant growth regulators and signal molecules, could be applied 

as a powerful tool in improving and enhancing plants' adaptability against several unfavourable environments 
such as soil salinity (Fahad et al., 2015; Mostofa et al., 2015; Ahmed et al., 2019). Application of exogenous 
phytohormones including CK has been proven as a promising sight in the alleviation of the adverse effects of 
salt toxicity in several vegetables and crops, such as brinjal (Solanum melongena Mill.), soybean (Glycine max 
L.), mung bean (Cucumis sativus L.), rice (Oryza sativa L.) and maize (Zea mays L.) (Hadiarto and Tran, 2011; 
Javid et al., 2011a; Wu et al., 2014; Fahad et al., 2015; Tahjib-Ul-Arif et al., 2018b; Akram et al., 2019; Rahman 
et al., 2019). An important synthetic CK, BA has been recognized as the potential stress-mitigating 
phytohormones to the scientific community. The purpose of our current investigation is to explore the 
potential role of BA in enhancing salinity tolerance in broad bean plants. 

In plants, salinity from soil or irrigation initially creates an imbalance in ionic homeostasis, which 
consequently provokes osmotic impairments and oxidative damages, both of which noticeably limit the growth 
and development of plants (Jiang et al., 2019). The negative effects of the abiotic factor on vegetable-producing 
plants can be appraised by determining the physiological and morphological attributes (Akram et al., 2019). 
The current experiment revealed that salinity elicited its obvious adverse effects on broad bean growth and 
biomass production, whereas the exogenous application of BA assuaged the salt-induced injurious impacts 
(Figure 1). To understand the underlying defense mechanisms of BA-mediated salt acclimation, we 
investigated various physio-biochemical characters (Figures 2-5). The RFW, SFW, FSW, RDW, SDW, DSW 
and no. of nodules of the salt-stressed broad bean were reduced as compared to control (Figure 1), which 
endured by an imbalance of mineral homeostasis and oxidative injury in plants (Figures 3,5). However, foliar 
application of BA recovered salt-affected damage by improving the phenotypic characteristics and plant growth 
features which includes RFW, SFW, FSW, RDW, SDW, DSW and no. of nodules (Figure 1), perhaps by 
balancing mineral homeostasis (Figure 3), and maintaining ROS production and lipid peroxidation (Figure 5). 
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In concord with our findings, it was mentioned that exogenous BA enhanced plant growth of brinjal (Wu et 
al., 2014), maize (Ren et al., 2017; Hu et al., 2020) and wheat under salt-stress and waterlogging conditions 
(Iqbal et al., 2006). Furthermore, our works were supported by PCA, which implied that BA treated salt injured 
plant of broad bean showed a stronger correlation with plant growth features as compared with ‘S1’ and ‘S2’ 
plants (Figure 6B), exhibiting an influential application of BA in the mitigation of the salt adverse effect on the 
plant growth-related features and physiology. 

An important osmoprotectant, Pro was widely used as an efficient marker in plant salt tolerance 
mechanism because of its crucial role in the osmotic adjustment of plants (Sharma et al., 2011; Uddin et al., 
2012). Besides, under abiotic stress conditions, osmoregulants lay an important role in the sustainable growth 
and development of plants (Zulfiqar et al., 2020). Thus, the plant maintains its water balance and osmotic 
potential by accumulating essential osmolytes like Pro, SS, SP and FAA (Mansour and Ali, 2017; 
Hasanuzzaman et al., 2019). Our result revealed that proline was rapidly accumulated by salt-exposed broad 
bean and subsequent increment of SP and FAA content except for SS to regulated the metabolic activity by 
maintaining osmotic homeostasis (Figure 2). Our findings is similar to the results obtained from the response 
dos salt stressed cucumber (Cucumis sativus L.) (Fan et al., 2012), Salvadora persica (Parida et al., 2016), maize 
(Fu et al., 2017) and rice (Wang et al., 2018), drought-stressed barley (Hordeum vulgare L.) (Bandurska et al., 
2017; Dbira et al., 2018) and cold-stressed rice (Sohag et al., 2020b). However, the exogenous supply of BA 
significantly reduced the excess Pro produced under salt stress and improved plant growth (Figures 1, 2J-L). 
Intriguingly, increased levels of SS, SP, FAA in ‘B+S1’ and ‘B+S2’ plants revealed that exogenous BA strongly 
compensated Pro by absorbing those osmoprotectants to ensure osmotic adjustments (Figure 2). A parallel 
result was reported in eggplant, wheat and rapeseed (Brassica napus L.) plants (Wu et al., 2014; Nawaz et al., 
2015; Khan et al., 2019a, 2019b). 

Our study indicated that excess salt accumulation in broad bean destroyed the balance of mineral 
homeostasis and thus the plant growth was retired. Salt stress decreased K+, Ca2+ and Mg2+ contents in all parts 
(except K+ content in root) (Figure 3D-L), which because of excess accumulation of Na+ in shoot and other 
organs (Figure 3A-C). With the increased absorption rate of Na+ and Cl− ions, a significant decline in other 
ions (e.g., K+, Ca2+, and Mg2+) exhibited in many experiments (Hakim et al., 2014; Orlovsky et al., 2016; 
Mahmud et al., 2017). Exogenous plant hormone (e.g. CK) application on salt-stressed rice and rapeseed plants 
was found to alleviate the salt antagonistic effects on the morpho-physiological and biochemical characteristics 
of these crops (Anuradha and Rao, 2001; Khan et al., 2019b). However, exogenous BA application re-
established ionic balance by mitigating uptake of excessive Na+ and enhancing the K+, Ca2+ and Mg2+ level in 
broad bean which may ensure proper nourishment and normal plant growth (Figures 1, 3). Our present results 
are strongly correlated K+, Ca2+ and Mg2+ contents with ‘B+S1’ and ‘B+S2’ plants than ‘S1’ and ‘S2’ plants 
which was clearly and powerfully supported by PCA analysis (Figure 6B). A similar result was noticed in several 
experiments that were undertaken in different environmental stress conditions (Gurmani et al., 2007; Ding et 
al., 2017; Yan et al., 2018; Sohag et al., 2020a). Moreover, control, ‘B+S1’ and ‘B+S2’ plants accumulated 
higher concentrations of Ca2+ and Mg2+ (Figure 3G-L). It suggested that exogenous BA enhanced plant growth 
by up-regulating the uptake capacity of divalent cations in broad bean. Enhanced content of Ca2+ and Mg2+ 
plays a crucial role in the proper functioning of some biological processes such as protein synthesis, enzymatic 
stimulation, signal transduction and fortification of cell membrane structure fortification (Chen et al., 2010; 
Guo, 2017). The abundance of nutrients especially K+ to plants enhances the plant’s ability to survive under 
stressed conditions (Shrivastava and Kumar, 2015).  

Our study also revealed that nutrient (Na+, K+, Ca2+ and Mg2+) translocations from root to shoot, 
shoot to seed and root to seed were severely attenuated as much of these ions were accumulated in roots of ‘S1’ 
and ‘S2’plants (Figure 4A-L). Moreover, our findings further revealed that the preferential allocation of 
minerals in roots contributed to retard plant growth and injury in the aerial portion of broad bean under salt 
stress (Figures 1A, 4F–J). On the contrary, exogenous supplementation of BA superbly augmented mineral 
uptake and translocation in ‘B+S1’ and ‘B+S2’ plants (Figure 4F–J). BA-induced improvement of plant roots 
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branching and growth of root-shoot growth likely facilitated broad bean foraging for excess mineral and water 
from the neighboring and adjacent rooted layer of soil (Khan et al., 2018; Nadeem et al., 2019). 

MDA has been recognized as an excellent marker for measuring the destruction of the membrane due 
to oxidative stress in plants (Miller et al., 2010). ROS accumulation in response to salt stress is responsible for 
creating oxidative damage, showed a positive and frequent correlation with the content of MDA in plants, as 
noticed in soybean, broad bean, wheat and Rosa hybrida (Siddiqui et al., 2017; Soundararajan et al., 2018). The 
present research revealed that excess salt uptake in broad bean resulted in oxidative damage by overproducing 
ROS and thus MDA content was significantly increased in leaves, which ultimately promoted huge growth 
retardation and yield loss of broad bean (Figures 1, 5A). On the contrary, exogenous BA treatment to broad 
bean leaves alleviated salt-mediated oxidative injury, as strongly supported by the reduced MDA content in the 
of ‘B+S1’ and ‘B+S2’ plants leaves (Figure 5A), which was similar to the findings in maize under salinity and 
submerge conditions and faba bean under salt stress (Shah, 2011; Ren et al., 2018; Tahjib-Ul-Arif et al., 2018b; 
Ahmad et al., 2019). When the plants are exposed to salt stress, it produces toxic ROS which resulted in 
oxidative damage and retard the growth of the plant (Tang et al., 2015; Roy et al., 2019). However, the 
increased activities of some antioxidants showed an efficient and effective remedy against ROS toxicity and 
oxidative damage (Hanin et al., 2016; Engwa, 2018). In our current investigation, we observed that the 
enzymatic activity of all antioxidants (namely SOD, CAT, POD and APX) was enhanced in both salt-treated 
plants (Figure 5B-E). Our result was supported by experiments on soybean (Weisany et al., 2012), maize 
(Tahjib-Ul-Arif et al., 2018b) and rice (Roy et al., 2019), whereas opposite findings were reported in Pisum 
sativum (Öztürk, 2012) and rice (Tahjib-Ul-Arif et al., 2018a). However, foliar spraying BA to both stress-
treated plant leaves, further accelerated the activities of all studied antioxidant enzymes (Figure 5B-E), 
suggesting an advanced antioxidant capacity of the broad bean plants in response to ‘B+S1’ and ‘B+S2’ 
treatment to detoxify salt-induced ROS. In current experiments, BA stimulated the activities of antioxidant 
enzyme SOD and POD under salt stress, according to the study in Nigella sativa (Shah, 2011), eggplant (Wu 
et al., 2014) and maize (Hu et al., 2020). Moreover, BA increased the activities of CAT and APX under salt 
stress, which results were supported by the findings in eggplant (Wu et al., 2014), strawberry (Faghih et al., 
2017) and faba bean (Ahmad et al., 2019). The enhanced activity of SOD was correlated with the salinity 
tolerance in plants (Ma et al., 2012). Besides, POD, CAT and APX are work as H2O2 scavenging enzymes in 
cells (Mittler, 2002; Roy et al., 2019). 

Our results indicate that the potential activity of exogenous BA positively energizes the plant growth 
by providing oxidative protection which might augment plants' entire metabolic process and antioxidant 
capacity, thereby broad bean plant develop tolerance mechanism against salt-stress (Figures 1, 5). The PCA also 
suggested that ‘B+S1’ and ‘B+S2’ plants had a strong and positive correlation with SOD, POD, CAT and APX 
activity than ‘S1’ and ‘S2’ plants (Figure 6B). 
 

 
Conclusions 
 
It is concluded that salt stress caused severe osmotic damage, created oxidative damage, disrupted the 

essential mineral homeostatic balance and retarded the normal growth of plants. Our present study describes 
the first proof of exogenous BA-induced plant stress tolerance mechanisms against salinity in broad bean. The 
favourable application of exogenous BA might contribute to alleviating salt-induced excess adsorption of ROS 
by improving antioxidant enzymatic activity of SOD, CAT, POD and APX. Moreover, foliar application of 
BA might maintain osmotic potentiality and plant metabolic activity by modulating Pro, SP, and SS and FAA 
levels in the broad bean grown in salt-affected soils, which might assist in enhancing essential water uptake 
capacity and plant physiological response under salinity stress condition.  Moreover, under salt stress regimes 
BA treatment strongly upregulated the mineral homeostasis by controlling Na+, K+, Ca2+ and Mg2+ contents. 
Finally, the detailed study suggests that exogenous application of BA might be considered as an effective and 
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powerful strategy in alleviating the antagonistic activity of salt toxicity, thereby latterly ensured sustainable 
growth and development of broad bean. Furthermore, the molecular investigation is needed to explore new 
insights into a better understanding of the extensive biological functions of BA-mediated salt stress response 
and tolerance mechanism in broad bean. 
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