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Abstract: Vehicle electrification presents a great opportunity to reduce transportation greenhouse

gas emissions. The greater use of plug-in electric vehicles (PEVs), however, puts stress on local

distribution networks. This paper presents an optimal PEV charging control method integrated with

utility demand response (DR) signals to mitigate the impact of PEV charging to several aspects of

a grid, including load surge, distribution accumulative voltage deviation, and transformer aging.

To build a realistic PEV charging load model, the results of National Household Travel Survey (NHTS)

have been analyzed and a stochastic PEV charging model has been defined based on survey results.

The residential distribution grid contains 120 houses and is modeled in GridLAB-D. Co-simulation is

performed using Matlab and GridLAB-D to enable the optimal control algorithm in Matlab to control

PEV charging loads in the residential grid modeled in GridLAB-D. Simulation results demonstrate

the effectiveness of the proposed optimal charging control method in mitigating the negative impacts

of PEV charging on the residential grid.

Keywords: demand response (DR); GridLAB-D; plug-in electric vehicle (PEV) charging; power

distribution system

1. Introduction

Greenhouse gas (GHG) emissions have caused global warming over the past 50 years [1]. In 2009,

the United States set a goal to reduce U.S. GHG emissions to 17% below 2005 levels by 2020 [2].

To achieve this goal, government agencies have set standards to regulate GHG emissions from several

primary GHG emission sources, including electricity production, transportation, industry, commercial

and residential buildings, agriculture, and land use and forestry. Among these primary GHG emission

sources, transportation generated around 27% of total CO2 equivalent emissions in 2013 [3]. In addition,

transportation accounts for about two-thirds of U.S. petroleum consumption [1]. From these data, it is

obvious that the current transportation system is one of the major contributors to GHG emissions

and fuel consumption. The potential solution to reduce the transportation GHG emissions and fuel

consumption is vehicle electrification. The rapid growth of plug-in electric vehicles (PEVs), including

plug-in hybrid electric vehicles (PHEV) and battery electric vehicles (BEVs), however, brings great

challenges to today’s power system. The uncontrolled PEV charging could add heavy burden on the

power grid during peak load time periods. In residential distribution networks, the peak household

load occurs during the evening time. If PEV owners immediately charge their vehicles when they

arrive home, the additional PEV charging load could put the grid at risk of damage from overloading.
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To effectively integrate PEVs with power grids, a number of researchers have studied the impact

of PEV charging on distribution networks and investigated charging management strategies to reduce

this impact. Liu et al. [4] provided a literature review of PEV charge and discharge scenarios and their

impacts on distribution systems, including phase imbalance, power quality, transformer degradation,

and failure. Bosovic et al. [5] analyzed the impacts of PEV charging on a medium voltage distribution

network in the northeastern part of Bosnia and Herzegovina. The effects of PEV charging on voltage

profiles, energy losses, and the violations of network operational constraints are simulated. Since the

statistical data on average daily trip distance are not available for the Bosnia and Herzegovina area, this

work assumes that all the PEVs have almost empty batteries when the charging starts. The minimum

step of PEV charging time is 1 h because the load profiles are on an hourly basis. The simulation

results show that PEV charging, especially for slow charging at private charging stations, significantly

impacts the load profile of the power system. With 20% of PEV penetration and unregulated charging,

the voltage profile falls below the limit of −10% (p.u.). The increase of PEV penetration rate leads to

an increase of energy losses. Based on the analysis results, the authors point out that the regulation

of PEV charging process is necessary for higher percentages of PEV penetration. Calderaro et al. [6]

assessed the impact of electric vehicles (EVs) on a campus distribution network based on vehicle usage

data. The parking data, such as vehicles’ arrival times and parking duration are used to characterize

the parking area occupancy. The state of charges (SOCs) of incoming vehicles are calculated based on

the vehicle travel distances and type of route (urban, extra urban, highway, and Mixed). This increases

the accuracy of the incoming PEV SOC estimation. Four incoming vehicle patterns are identified

based on the analysis of available data. These patterns enable better prediction of EV charging power

demand for different days of a week and different time periods of a semester. Monte Carlo simulations

are carried out to evaluate the grid impact in terms of increased power consumption and voltage

deviation. The simulation results show the increase of peak power at the delivery node and the

drop of node voltage due to EV charging. Qian et al. [7] and Rautiainen et al. [8] used a statistical

method to model EV battery charging and load demand in a distribution system. Argade et al. [9]

and Hilshey et al. [10] investigated EV charging and its impact on distribution transformer aging.

Meyer et al. [11] analyzed the voltage deviation caused by public charging stations and propose

combining distributed generators with EV charging stations to reduce grid stress. With the continuous

increase of PEV market penetration rate, the utilities have recognized the importance of understanding

the regulatory needs to support vehicle grid integration (VGI) [12].

This paper proposes an optimal PEV charging control method integrated with utility signals,

such as demand response (DR) load control [13], to mitigate the impact of PEV charging loads to several

aspects of a grid, including load surge, distribution accumulative voltage deviation, and transformer

aging. Severe bus voltage deviation causes the increase of power losses along the transmission lines of

a distribution grid [14]. To ensure proper operation of a power system, American National Standards

Institute (ANSI) C84.1-2011 [15] specifies the standard operating voltage range of 60 Hz power systems.

Meanwhile, since the most expensive component of an electrical distribution system is the power

transformer, upgrading the distribution power transformers dramatically increases the power grid cost.

Therefore, transformer-level load surge, distribution accumulative voltage deviation, and transformer

aging are selected to assess the impact of PEV charging to a distribution grid. The PEV charging load

model in this paper is built based on a real-world travel survey data set, National Household Travel

Survey (NHTS). The travel data-based PEV charging load modeling has been employed in much

research [7,8], although different survey data sources are used. The presented model considers the

stochastic nature of PEV home arrival time (or PEV charging start time) and the PEV home arrival SOC.

Due to the limitation of NHTS data, the estimation of PEV home arrival SOC assumes that the battery

SOC is linearly related to the distance that a vehicle traveled and is not able to include other factors,

such as type of routes considered in [6]. A concept of PEV penetration rate is introduced to represent

the different levels of PEV charging power demand. The performance of the proposed optimal PEV

charging control method is evaluated with metrics, which have been used in previous research, such as
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load surge [6,7], accumulative voltage deviation [5,6,11], and transformer aging [9,10]. The residential

distribution network used in this study contains 120 houses and is modeled in GridLAB-D (U.S.

Department of Energy (DOE) at Pacific Northwest National Laboratory (PNNL), Richland, WA,

USA) [16], a power distribution system simulation and analysis tool. The optimization algorithm is

programed in Matlab (MathWorks, Natick, MA, USA), which generates PEV charging control signals.

These two software packages run synchronously to perform co-simulation of PEV charging control.

The rest of the paper is organized as follows. Section 2 presents the stochastic modeling of PEV

charging power demand. Section 3 introduces the modeling of residential distribution grid and the

baseline household load. Section 4 theoretically analyzes the impact of uncontrolled PEV charging on

a local distribution system. Section 5 discusses the proposed optimal PEV charging control method.

Section 6 discusses the simulation results, and Section 7 concludes the presented work.

2. Stochastic Modeling of Plug-in Electric Vehicle Fleet Charging

A report on electric vehicle charging [17] suggests that most PEV owners leave for work in

the morning and return home in the evening. If PEV owners begin to charge vehicles immediately

when they return to home, PEV charging is likely to have the greatest effect on the residential grid

during the evening time. To study this impact, National Household Travel Survey (NHTS) [18]

results have been analyzed to build a realistic PEV charging load model for a fleet of PEVs. The key

variables that are valuable for the modeling of PEV fleet charging load in home to home trip data are

fitted in Figure 1. It is found that the vehicle home arrival time TAH follows a normal distribution

TAH ∼ N (µAH = 17.09,σAH = 2.28) as shown in Equation (1), where µAH is the mean and σAH

is the standard deviation of home arrival time. The home to home travel distance dHH follows a

log-normal distribution dHH ∼ N (lndHH ;µHH = 2.82, σHH = 1.06) as shown in Equation (2), where

µHH and σHH are mean and standard deviation of the natural logarithm of home to home travel

distance, respectively. The t-tests have been conducted on both arrival time and the natural logarithm

of the home-to-home trip distance from NHTS data, and proved the distribution fits normality at the

5% significance level. The distributions of TAH and dHH are shown in Figure 1.

fTAH
(TAH) =

1√
2πσAH

e
− (TAH−µAH )2

2σAH
2 (1)

fdHH
(dHH) =

1

dHH

√
2πσHH

e
− (ln(dHH )−µHH )2

2σHH
2 (2)

μ σ μ σ

σ μ
σ

μ

σ
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μ
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Figure 1. Stochastic modeling of plug-in electric vehicle (PEV) travel distance and charging schedule.
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PEV charging start time TStart and PEV charging duration TDUR can be found from TAH and

dHH . Assume that there is a time delay τdelay between home arrival time TAH and PEV charging start

time TStart. Charging start time can be represented as TStart = TAH + τdelay. It also follows a normal

distribution TStart ∼ N
(

µStart = µAH + τdelay,σ2
Start = σ2

AH

)

. The PEV charging load duration is

closely related to the PEV SOC at charging start time and the charging level of a charger. The PEV

home arrival SOC depends on various factors, including the geographical factors of the trip, such

as trip length, altitude variation, and traffic jams; the battery specification factors, such as battery

type, battery aging, and charging/discharging efficiency; and the PEV specification factors and the

environmental factors, such as the weather conditions and the ambient temperature [19]. Among these

factors, the NHTS data set only provides the travel distance, which could be used to estimate the

PEV home arrival SOC. Due to the limitation of the data source, it is assumed that the battery SOC

is linearly related to the distance that a vehicle traveled and that the battery is fully charged before

leaving home. The home arrival SOC of the charging batteries can be obtained by the statistics of

vehicle home-to-home travel distance dHH and the charging duration of the corresponding vehicle is

shown in Equation (3).

TDUR =
EDemand

plevel
=

EBSdHH

pleveldEPA
(3)

where EBS, plevel , and dEPA are full battery size, charging rate, and Untied States Environmental

Protection Agency (EPA) PEV driving range, respectively. In this study, the charging duration is

estimated with a Nissan Leaf 2013 battery and an alternating current (AC) level 2 charger. From the

Nissan site, the full battery size EBS = 24 kWh, dEPA = 75 miles and plevel = 6.6 kW. By fitting its

samples, charging duration TDUR follows a log-normal distribution TDUR ∼ N(lnTDUR;µDUR,σDUR),

where µDUR = 0.155 and σDUR = 1.06 are the natural logarithms of mean and standard deviation of

the charging duration random variable, respectively.

A joint random variable (TStart, TDUR) is formed to express the PEV fleet charging load. Since

TStart and TDUR are independent, the probability density function (PDF) of the joint random variable

(TStart, TDUR) can be defined by Equation (4), and the PDF plot is shown in Figure 2.

f (TStart, TDUR) = fTStart
(TStart) fTDUR

(TDUR) =
1

TDUR2πσDURσAH
e
−

(Tstart−(µAH+τdelay))
2

2σ2
AH

− (lnTDUR−µDUR)2

2σ2
DUR (4)

τ

μ

Figure 2. Joint distribution of charging start time and PEV charging duration.

With this joint random variable (TStart, TDUR), the PEV fleet charging load can be modeled by

Equation (5):

pev,i,j (t, TStart, TDUR) =

{

βi,j · plevel , ∀t ∈ [TStart, TStart + TDUR]

0 , ∀t /∈ [TStart, TStart + TDUR]
(5)
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where plevel is the charging rate for the selected charging level, as defined by the Society of Automotive

Engineers (SAE) standard J1772 [20]. βi,j is a current factor that controls the actual PEV charging

current through J1772 control pilot. In uncontrolled charging conditions, βi,j = 100%.

3. Residential Distribution Grid for Impact Study

The residential distribution grid used to study the impact of PEV charging is shown in Figure 3.

The distribution grid is a modified Institute of Electrical and Electronics Engineers (IEEE) 13-node test

feeder [21,22] connected to 120 houses. Node 650 together with a voltage regulator are modeled as the

distribution substation in which a transformer converts 7200 V three-phase voltage down to 2400 V

three-phase distribution voltage. Node 634 is a three-phase transformer, shifting voltage supply from

phase to phase of 4160 V to 480 V. The rest of the nodes are connected to a single-phase residential

load through residential split transformers. Three-phase four-line transmission lines between nodes

are modeled by a π-equivalent line model. There are capacitor banks connected to nodes 611 and

675. Residential transformers are crucial components that transfer a substation level of 2400 V high

voltage to 120 V residential voltage. Distribution transformers are center-tapped, with the primary

connected with one of three phases from transmission and secondary outputs 120 V split-phase AC

residential-level power. In Figure 3, there are 15 distribution transformers that are distributed to a total

of 120 houses. A single-distribution transformer is 25 kVA load-rated and distributes electric power to

a group of 8 houses.





π

 

Figure 3. Residential distribution grid for impact study.

3.1. Residential Baseline Load Modeling

Household baseline load represents daily power usage of classical houses, including light load,

heating, ventilating, and air conditioning load and other household appliance loads. In the distribution

grid model, the baseline load profile is obtained from a “residential hourly load profile” of a specific

typical meteorological year version 3 (TMY3) location in the United States, published by the National

Renewable Energy Laboratory [23]. High temperature is an important factor that aggravates the aging

of a distribution transformer. The high temperature also results in higher residential load especially

consumed by heating, ventilation, and air conditioning systems (HVAC). Table 1 lists the monthly

average residential house load [23] and average temperature variation in Arizona, Phoenix. July is the

hottest month, therefore, the residential load profile in July is selected as the residential baseline load

for the analysis in this paper.
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Table 1. Monthly average residential load and ambient temperature in Arizona, Phoenix.

Month Average Load (kW) Temperature High (F) Temperature Low (F)

January 0.97 67 46
February 0.95 71 49

March 0.86 77 53
April 1.05 85 60
May 1.39 95 69
June 1.99 104 78
July 2.25 106 83

August 2.17 104 83
September 2.01 100 77

October 1.33 89 65
November 0.88 76 53
December 0.96 65 45

3.2. Power Demand at Transformer

The load of an individual house can be modeled as the summation of PEV charging load and

household baseline load. The Nissan Leaf 2013 with 24 kWh battery size and 6.6 kW charging rate has

been modeled into residential houses according to different PEV penetration rates. We assume that

PEVs with different penetrations will be uniformly distributed under all 15 transformers. Equation (6)

shows the power demand at transformer i.

pT, i(t) =
NH,i

∑
j=1

(

λi,j · pev,i,j(t, TStart,i,j, TDUR,i,j) + pbase,i,j(t)
)

(6)

where λi,j is a Boolean that specifies if the house j under transformer i has a PEV or not. The number

of charging PEVs depends on PEV penetration rate. The λi,j · pev,i,j(t, TStart,i,j, TDUR,i,j) expression is

the PEV load of house j under transformer i. The charging time is specified by a joint random variable
(

TStart,j, TDUR,j

)

. The pbase,i,j(t) variable is the baseline load of the jth house. NH,i is the total number

of houses under the transformer i.

4. Impact of Plug-in Electric Vehicle Charging on Residential Distribution Grid

4.1. Load Surge

The introduction of PEV brings additional loads to the distribution network and the increase of

PEV penetration into the market in recent years aggravates this problem. The added PEV charging

loads may cause the total residential loads to exceed the designed capacity of local distribution network

transformers, which could lead to severe network performance deterioration and the damage of the

electricity supply facility.

4.2. Voltage Deviation

Power flow analysis in power systems provides information about node voltage, power loss,

and other factors in distribution networks. According to [14], voltage and current variation between

nodes can be calculated by modeling transmission lines between two nodes, a π-equivalent circuit.

Three-phase transmission lines between nodes have been modeled as a phase impedance matrix and a

phase shunt admittance matrix. Voltage and current relation between two consecutive nodes k − 1 and

k can be represented as:

Uk−1 = [a]Uk + [b]Ik (7)

where [a] = [u] + 1
2 [ZABC]k−1,k[YABC]k−1,k, [b] = [ZABC]k−1,k, and [u] is an identical matrix; [ZABC]k−1,k

and [YABC]k−1,k are the impedance matrix and shunt acceptance matrix of transmission line between
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node k − 1 and k, respectively. Since the second part of [a], 1
2 [ZABC]k−1,k[YABC]k−1,k, is much smaller

than [ZABC]k−1,k, voltage deviation between these two nodes can be expressed as a function of lower

level node current as shown in Equation (8).

∆Uk−1,k = [ZABC]k−1,k

Nk

∑
jk

Ik,jk
(8)

where Nk is the total number of direct downstream branches of node k. By adding all voltage drops

of adjacent nodes, the accumulative voltage deviation from the beginning node to any node k can be

calculated by:

∆U1,k =
K

∑
k=2

∆Uk−1,k =
K

∑
k=2

Nk

∑
jk

[ZABC]k−1,k Ik,jk
(9)

In a power flow analysis, all the load will be converted to the equivalent current form. Therefore,

Equation (9) indicates that heavy load will cause a deep voltage deviation in a circuit branch.

4.3. Impact on Local Transformer Aging

IEEE Standard C57.91-2011 [24] provides a mathematical modeling method to estimate the

oil-immersed transformer insulation loss of life caused by the rise of electricity load and ambient

temperature. Based on the standard, the deterioration of the mineral-oil-immersed transformer

insulation is a time function of several factors, such as temperature, moisture, and oxygen. In these

factors, the insulation temperature is a dominating factor, while the effect of moisture and oxygen

can be minimized by modern techniques. Equation (10) shows the relation between the normalized

transformer insulation life span and the hottest-spot winding temperature [24]:

Per_Unit_Li f e = 9.8 × 10−18e
15000

θH+273 (10)

where θH denotes the winding hottest-spot temperature. Per_Unit_Li f e denotes the normalized life

span of transformer insulation at temperature θH . At reference temperature 110 ◦C, Per_Unit_Li f e = 1.

The inverse of Per_Unit_Li f e is an important parameter, called aging acceleration factor.

FAA =
1

Per_Unit_Li f e
= e

15000
383 − 15000

θH+273 (11)

Aging acceleration factor measures the impact of winding hottest-spot temperature on the

transformer insulation life. The percentage loss of life can be calculated by:

LossLi f e =

NT

∑
n=1

FAA∆tn

LN
(12)

where LossLi f e is the percentage loss of life; LN is the normal insulation life—usually, normal insulation

life span of distribution transformer is designed to be 180,000 h or more.

According to IEEE Standard C57.91-2011 [24], winding hottest-spot temperature can be

represented as:

θH = θAM + ∆θTO + ∆θH (13)

where θAM is the ambient temperature, ∆θTO is the top-oil rise over ambient temperature, and ∆θH is

the winding hottest-spot rise over top-oil temperature. In Equations (14) and (15), ∆θTO and ∆θH are

expressed as:

∆θTO = (∆θTO,U − ∆θTO,I)(1 − e
− t

τTO ) + ∆θTO,I (14)
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∆θH = (∆θH,U − ∆θH,I)(1 − e
− t

τW ) + ∆θH,I (15)

In Equation (14), ∆θTO,I and ∆θTO,U are the initial and ultimate top-oil rise over ambient

temperature and τTO is the top-oil time constant. τTO measures how fast the temperature varies

between the initial and ultimate top-oil temperature and can be expressed as:

τTO = τTO,R

∆θTO,U
∆θTO,R

− ∆θTO,I
∆θTO,R

(

∆θTO,U
∆θTO,R

)
1
n −

(

∆θTO,I
∆θTO,R

)
1
n

(16)

where n is an empirically derived exponent specified by different cooling types. τTO,R is the time

constant for rated load, beginning with initial top-oil temperature rise of 0 ◦C, and can be calculated by:

τTO,R =
C × ∆θTO,R

pT,R
(17)

where pT,R is the transformer total loss at rated load in watts. C is the thermal capacity of the

transformer, which can be calculated by:

C = 0.06MCC + 0.04MTank + 1.33VOil (18)

where MCC is the weight of the core and coil in pounds, MTank is the weight of the transformer tank in

pounds, and VOil is the volume of oil in the transformer cooling system in gallons.

Similarly, in Equation (15), τW is the winding-time constant that measures speed of winding

hottest-spot temperature change between initial winding hottest-spot temperature rise ∆θH,I and

ultimate winding hottest-spot temperature rise ∆θH,U . ∆θTO,U and ∆θH,U can be expressed by instant

transformer load, as shown in the equations below:

∆θTO,U = ∆θTO,R

(K2
U R + 1

R + 1

)

n

(19)

∆θH,U = ∆θH,RK2m
U (20)

KU =
pT,i(n∆t)

25 kW
(21)

where ∆θTO,R is the top-oil rise over ambient temperature at rated load. ∆θH,R is the winding

hottest-spot rise over top-oil temperature at transformer rated load on the tap position to be studied.

R is the ratio of load loss at rated load to no load loss. KU is the ratio of ultimate load to nominal

transformer load. n and m are experimentally determined exponents specified by the transformer

cooling mode.

Based on the discussion above, the impact of PEV charging on local distribution transformer

insulation aging can be evaluated by the value of winding hottest-spot temperature θH. The value

of θH is closely related to the instant transformer load. The whole process can be calculated by

Equations (13)–(21) with parameters obtained from Turan Gönen’s Electric Power Distribution System

Engineering [25], GridLAB-D [26] recommended values, and IEEE Standard C57.91-2011 [24], as listed

in Table A1 in Appendix A.

5. Managed Plug-in Electric Vehicle Charging with Smart Charging Strategies

The rapid growth of PEVs presents a new challenge to existing power grids due to the massive

power drawn by PEV charging. To deal with this problem, utilities have developed various strategies.

For example, DR programs offer time-based rates programs and the direct load control (DLC) program

to engage customers in DR events. Considering a price-based time of use program (ToU) DR signal,

shown in Figure 4, the utility charges higher prices during the afternoon and evening peak hours,
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while charging lower prices during the morning and late night off-peak hours. Customers in this

program know in advance the price schedule of their residential electricity usage, and tend to shift

their PEV charging to off-peak hours, which reduces both the customer electricity bill and the impact

from load aggregation. For the DLC-based PEV charging control, utilities can curtail or stop PEV

charging by specifying allowable charging rates based on grid conditions.

 

Figure 4. Time of use program (ToU) demand response (DR) signal for a summer day.

This paper presents an optimal PEV charging control method with constraints of ToU and DLC.

The PEV charging management can be seen as a charging path searching problem. Assume that all

PEVs begin the charging process at a “start time” according to the real-time pricing and DLC signal,

and finish charging at a customer-specified “stop time”. Individual PEVs have different initial SOC

levels but the same target SOC values. Figure 5 shows an envelope of possible PEV charging paths

confined by both ToU and DLC signals, in which the x-axis represents the time and the y-axis represents

PEV battery SOC. The blue curve on the left is the earliest charging path between points A and B. With

this path, a PEV is charged with largest allowable charging rate continuously until the target SOC is

reached. Any path on the left side of the blue path is not allowed due to the DLC signals. The red path

represents the latest possible charging path for a PEV to be charged from initial SOC to target SOC

within a specified charging period. With the red path, the charging is not started until the last possible

time to finish charging by following the DLC signals.

Figure 5. Envelope of PEV charging paths.

The slope of the PEV charging path in each time interval must be either zero (charger switch is off)

or the PEV charging rate corresponding to DLC signals within different time periods. The goal of the

proposed optimal charging control is to find a proper PEV charging path within this envelope, which

reduces the transformer-level load surge and mitigates the impact of PEV charging to the distribution

network. To achieve this goal, the objective function is defined to minimize the maximum transformer

load during the charging time period, as shown in Equation (22). tk is the time step that has a 10-min
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time interval. Constraint in Equation (23) guarantees that PEVs are charged to customer-desired target

SOC with a tolerance of δ. We define δ = 3% in this study. Constraint Equation (24) confines the PEV

charging rate to either switched off or following the DLC signal. βi,j (tk) in Equation (26) represents

the charging rate specified by a DLC signal. In this study, the DLC signal is defined to charge PEVs at

30% of AC level II charging rate (1.92 kW during 23:00–01:00), 50% of AC level II charging rate (3.3 kW

during 01:00–03:00), and 100% of AC level II charging rate (6.6 kW during 03:00–05:00). αi,j (tk) in

Equation (25) is the output of the optimal algorithm, which represent PEVs in either a charging-on or a

charging-off situation.

min
tk∈TCH

[max(pT, i(tk))] (22)

subject to:

(SOCT − δ) · EBS ≤ Einit,i,j + ∑
tk∈TCH

pev,i,j(tk) · ∆t ≤ SOCT · EBS (23)

pev,i,j(tk) =

{

αi,j (tk) · βi,j (tk) · plevel(tk) tk ∈ TCH

0 tk /∈ TCH

(24)

αi,j (tk) =

{

1 charge on

0 charge off
(25)

βi,j (tk) =















30% tk ∈ [23 : 00, 1 : 00)

50% tk ∈ [1 : 00, 3 : 00)

100% tk ∈ [3 : 00, 5 : 00)

(26)

This optimization problem is solved by using a genetic algorithm. Firstly, the 10-min time step

charging status, αi,j (tk), for each PEV forms a 36-element Boolean vector for the 6-h charging period

from 23:00 to 05:00. For all the participants of ToU + DLC + optimal control program under the

ith transformer, the combination of their charging status Boolean vectors forms a chromosome with

a length of 36 × Ji, where Ji is the number of the participants under ith transformer. The genetic

algorithm initiates the search of an optimal charging schedule by randomly generating a number of

possible solutions as the first generation. The fitness of these solutions is evaluated by the fitness

function defined in Equation (22). By ranking the individual solutions’ fitness scaling, a number of

solutions who best fit the fitness function (Equation (22)) and the constraints (Equations (23)–(26)) are

selected to produce a new generation of solutions with the same population size through crossover

and mutation schemes. The iteration is repeated until the stopping criterion is met. In this application,

the genetic algorithm terminates execution when the value of fitness function has no improvement

in 50 consecutive generations. With the same stopping criterion, repeated tests are conducted with

various population sizes (500, 1000, 5000, 10000) to evaluate the effect of the population size on the

computational time. For each population size, the test is repeated multiple times and the average

of the computational time is pursued. The tests are conducted on an Intel(R) core i7-6700HQ CPU

computer. The test results show that the smaller population size has the faster convergence speed.

The average time of the test with 500 and 1000 population size are 16.76 and 50.18 seconds. However,

when we rise the population size to 5000 and 10000, the tests take 116.61 seconds and 213.45 seconds

to converge respectively. By considering the quality of the optimal solution and the computational

time, the population size of 1000 is selected in this application.

By solving this minimization problem, a transformer-level controller finds the optimized charging

scheduling for all the PEVs under this transformer in 10-min intervals.

6. Simulation Results

The co-simulation is performed using GridLAB-D and Matlab. GridLAB-D models the modified

residential grid introduced in Section 3 and the power flow of the grid. The DR signals are simulated
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in Matlab. Two software packages exchange data at each synchronization time instance. For the

simplicity of analysis, we focus on phase C branch only, which has the heaviest load in this residential

grid. We assume a high PEV penetration rate (i.e., 75%), that PEVs are evenly distributed in the grid,

and all the PEV owners participate in the ToU and DLC programs. It is also assumed that only PEV

charging load is controllable in this residential grid. In addition, we assume that all customers choose

05:00 as charging finish time and 100% SOC as target SOC. In this section, we present and analyze PEV

charging process using four different charging scenarios and their impact on the performance of the

distribution network and device aging.

A comparison study is conducted on PEV charging paths, load surge, voltage deviation, and

transformer insulation aging of four PEV charging scenarios: the uncontrolled PEV charging, the

ToU + DLC charging, the ToU + DLC + optimal charging, and the partial participation of controlled

charging. For uncontrolled PEV charging, PEV owners charge their vehicles with an AC level II

charging rate once they arrive home. The stochastic PEV fleet charging model established in Section 2

is used with the delay time τdelay = 0. For ToU + DLC method, the PEV charging starts at 23:00,

and the charging rate follows DLC sigma βi,j (tk) described in Section 5. The ToU + DLC + optimal

charging scenario uses the genetic algorithm to find an optimal charging schedule with ToU and DLC

constraints. For partial participation of a controlled charging scenario, 80% participation rate of the

ToU + DLC + optimal charging is assumed (20% of uncontrolled charging). For the reasons discussed

in Section 3.1, the hourly average residential house load profile in July is used as the baseline load of

each residential house. The hourly average residential house load profile is calculated by averaging

the load values for the same hour of each day in a month.

6.1. Charging Path

Figure 6a,b shows the PEV charging paths using uncontrolled PEV charging and ToU + DLC

charging control methods, respectively.

β

(a) (b) 

Figure 6. PEV charging paths under distribution transformers on phase C. (a) Uncontrolled PEV

charging paths; and (b) PEV charging paths with ToU + direct load control (DLC) method.

Figure 7 shows the PEV charging paths using ToU + DLC + optimal charging and 80% of

participation rate scenario (20% uncontrolled PEV charging). With ToU + DLC and ToU + DLC +

optimal control methods, the charging processes of all PEVs are delayed until 23:00 to avoid both the

aggregation of residential baseline load with PEV charging load and high charging price rate. Further

comparing these two methods, the charging durations of some PEVs are extended in ToU + DLC +

optimal control method to minimize the maximum power at individual transformers. However, all
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the PEVs are charged to the target SOC before the end of charging duration in ToU + DLC + optimal

control. In Figure 7b, 80% of the PEV owners choose the ToU + DLC + optimal control charging, while

the remaining 20% utilize uncontrolled charging.

(a) (b) 

Figure 7. PEV charging paths with ToU + DLC + optimal charging. (a) A 100% participation rate

optimal PEV charging scenario; and (b) an 80% participation rate of optimal PEV charging scenario

(20% uncontrolled PEV charging).

6.2. Load Surge

Figure 8 shows the comparison of aggregated transformer-level load for the four charging

scenarios. It is seen that, in an uncontrolled scenario, the aggregated loads in phase C transformers

exceed 40 kW and mostly concentrate during 17:00–21:00. This heavy load is far beyond the nominal

load of selected transformers, which is 25 kW. Both ToU + DLC charging and ToU + DLC + optimal

control charging methods greatly mitigate the load surge by shifting the PEV charging load to off-peak

hours and when the electricity price is the lowest in a day. However, without optimal control, the

ToU + DLC charging still generates a few sudden load surges, especially at 23:00, 1:00, and 3:00. That is

because at these time instances, the allowable charging rate rises dramatically and vehicles remain at

their charging status until they are charged to a target SOC. The proposed ToU + DLC + optimal control

method is designed to reduce the maximal value of the aggregated load and, as a result, eliminates

the sudden load surge at charging rate transition time instances. For the 80% participation rate of

ToU + DLC + optimal charging scenario, most PEV charging loads are shifted to the off-peak period.

However, the 20% of uncontrolled PEV charging loads are aggregated with residential loads and results

in 25–30 kW load surges during peak hours of the day. It is shown that the increase of participation

rate of the ToU + DLC + optimal control method results in better load surge mitigation performance.

6.3. Voltage Deviation

According to the analysis in Section 4.2, voltage deviation decisively depends on the accumulative

load of the branch. Figure 9 shows the secondary side metered voltage (also called service voltage) of

distribution transformers in phase C. According to ANSI C84.1 [15], for 120 V service voltage Range A,

voltage fluctuation should be confined within 114–126 V. From Figure 9, the uncontrolled charging

has significant voltage deviation during the peak hours. During 17:00–20:00, the service voltage of

transformers 1, 4, 12, and 15 drop below the lower threshold of 114 V. In ToU + DLC charging and

ToU + DLC + optimal control charging, voltage deviation is largely reduced, especially with the

ToU + DLC + optimal control charging strategy. This is because the ToU + DLC + optimal charging

control minimizes the maximum power for individual transformers when making charging schedule
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decisions. Similar to the situation in load surge analysis, the 80% participation rate of the optimal

charging strategy slightly reduces the effectiveness of voltage deviation reduction.

 

Figure 8. Transformer-level load profile for transformers in phase C with uncontrolled PEV charging,

ToU + DLC charging, ToU + DLC + optimal control charging, and 80% participation rate of ToU + DLC

+ optimal control charging.

 

Figure 9. Service voltage deviation in uncontrolled charging, ToU + DLC charging, ToU + DLC +

optimal control charging, and 80% participation rate of ToU + DLC + optimal control charging.

6.4. Transformer Insulation Aging

The loss of life of transformer insulation is one of key indicators of transformer aging. The nominal

loss of life rate of a distribution transformer designed with a 20-year life span should be much less

than 0.013% per day. Table 2 illustrates the one-day transformer internal insulation loss of life data

in uncontrolled charging, ToU + DLC charging, ToU + DLC + optimal control charging, and 80%

participation rate of optimal control charging. Because of aggregated load surge, the uncontrolled

charging causes dramatic damage to the transformers, which leads to a severe transformer aging.
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The ToU + DLC + optimal control charging method has the smallest transformer insulation loss of life

due to the shifting of the PEV charging load and minimizing the total residential load, which allows

the transformers to work in a healthy manner. When the participation rate of ToU + DLC + optimal

control charging is 80%, though the load surge is partly mitigated, the remaining 20% of uncontrolled

PEV charging loads and the baseline load cause transformers to be overloaded around 18:00, and this

may shorten the transformer life spans. However, the amount of load surge is much smaller and the

duration is much shorter compared with uncontrolled PEV charging, as shown in Figure 8, and thus,

the impact on transformer aging is reduced compared with uncontrolled PEV charging.

Table 2. Distribution transformer internal insulation loss of life in one day (%).

Loss of Life in One Day T1 1 (10−3) T4 (10−3) T6 (10−3) T8 (10−3) T12 (10−3) T15 (10−3)

Uncontrolled charging 700 66 32 377 207 89
ToU + DLC charging 1.80 1.70 1.80 2.10 1.90 1.90

ToU + DLC + optimal control charging 1.60 1.60 1.60 1.80 1.60 1.60
80% participation rate of optimal control

charging (20% uncontrolled charging)
2.10 2.00 2.30 2.80 1.90 5.00

1 T represents distribution transformer.

6.5. Seasonal Effect

The impact of PEV charging and the performance of optimal PEV charging control in all 12 months

are investigated. Tables A2–A5 in Appendix A show the monthly simulation results of load surge,

minimum voltage, and transformer insulation loss of life values for the four charging scenarios.

It is clearly seen in the tables that, though uncontrolled PEV charging results in transformer-level

overloading throughout the year, it causes more problems during summer months (May–September).

In summer, the aggregated load surge could exceed 45 kW on a 25 kW rated distribution transformer

for uncontrolled PEV charging. The line voltage is dramatically deviated from the 120 V nominal

value, and exceeds the standard service voltage range of 114–126 V defined in ANSI C84.1 [15].

The transformer insulation aging simulation also shows that the transformer life loss in summer

is greater than that in winter due to overloading and high ambient temperature. Tables A2–A5

in Appendix A also show that the ToU + DLC charging, ToU + DLC + optimal charging, and

80% participation rate of optimal charging can reduce/mitigate the impact of PEV charging with the

ToU + DLC + optimal charging having the best performance.

7. Conclusions

This paper provides theoretical analysis of the impact of high penetration of uncontrolled PEV

charging on electric distribution systems. An optimal charging control method is proposed with the

consideration of utility DR (ToU and DLC) signals to mitigate the impact of aggregated residential

and PEV charging load to several aspects of a grid, including load surge, voltage deviation and the

aging of distribution transformers. From the simulation results, the proposed ToU + DLC + optimal

charging control method effectively mitigates negative impacts by shifting the PEV charging load

and minimizing the total residential load at individual transformer level. With this optimal PEV

charging control, the distribution grid performs better compared to the uncontrolled charging and

ToU + DLC charging.
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Appendix A

Table A1. Transformer thermal and aging parameters used in the model.

Transformer Parameters Value

Winding hottest-spot temperature over top-oil temperature at rated load, ∆θH,R 50 ◦C
Top oil temperature rise over ambient temperature at rated load, ∆θTO,R 30 ◦C

Ratio of load loss at rated load to no-load loss, R 2
Rated load loss pT,R 0.006 (p.u)

Weight of the tank Mtank 60 (lb)
Weight of core and coil Mcc 50 (lb)

Volume of oil VOil 8.7 (gallon)
Winding time constant, τW 0.5 (h)

∆θTO exponent, n 0.8 ONAN
∆θH exponent, m 0.8 ONAN

Table A2. Summary of the impact of uncontrolled PEV charging in 12 months.

Grid Impact Transformer January February March April May June July August September October November December

Load Surge

1 36.5798 35.62 34.33 37.82 42.11 47.94 48.69 48.63 47.39 40.43 36.09 36.86
4 28.0463 27.23 26.23 31.18 35.51 41.38 42.11 42.03 40.8 33.68 27.79 28.47
6 25.6855 25.27 24.67 29.73 34.16 40.04 40.77 40.64 39.45 32.59 25.43 25.87
8 33.8089 33.12 32.27 37.62 42.1 47.98 48.71 48.62 47.4 40.28 33.58 34.18
12 37.1278 36.16 34.79 37.79 41.45 47.04 47.74 47.65 46.42 40.6 36.53 37.3
15 30.5278 29.56 28.31 31.26 35.52 41.31 42.09 42.04 40.78 34 29.93 30.7

Minimum line
voltage

1 115.6 115.8 115.2 115.8 114.4 113.3 113.2 113.2 113.4 114.7 115.7 115.6
4 115.9 116.1 115.4 116.1 114.6 113.5 113.4 113.4 113.6 114.9 116 115.9
6 117.5 117.6 117.2 117.6 116.7 115.9 115.8 115.8 116 116.9 117.5 117.4
8 116.9 117 116.4 117 115.8 115 114.9 114.9 115.1 116 116.9 116.8
12 114.7 114.9 114.6 114.9 113.9 112.7 112.6 112.6 112.9 114 114.8 114.7
15 115.2 115.3 115 115.3 114.3 113.2 113.1 113.1 113.4 114.5 115.3 115.1

Transformer
aging—insulation

loss of life (%)

1 2.39 × 10−4 1.02 × 10−4 3.95 × 10−4 2.56 × 10−3 1.48 × 10−2 2.60 × 10−1 6.97 × 10−1 4.49 × 10−1 2.23 × 10−1 5.10 × 10−3 4.54 × 10−4 1.96 × 10−4

4 2.35 × 10−5 1.09 × 10−5 4.36 × 10−5 2.36 × 10−4 1.10 × 10−3 2.05 × 10−2 6.56 × 10−2 3.97 × 10−2 1.85 × 10−2 3.79 × 10−4 3.87 × 10−5 1.66 × 10−5

6 6.58 × 10−6 2.84 × 10−6 1.76 × 10−5 1.01 × 10−4 5.03 × 10−4 9.87 × 10−3 3.24 × 10−2 1.90 × 10−2 9.00 × 10−3 1.62 × 10−4 1.56 × 10−5 4.59 × 10−6

8 6.40 × 10−5 2.97 × 10−5 1.69 × 10−4 1.34 × 10−3 7.70 × 10−3 1.34 × 10−1 3.77 × 10−1 2.40 × 10−1 1.22 × 10−1 2.50 × 10−3 1.66 × 10−4 4.37 × 10−5

12 9.53 × 10−5 3.97 × 10−5 1.37 × 10−4 7.21 × 10−4 3.90 × 10−3 6.93 × 10−2 2.07 × 10−1 1.31 × 10−1 6.24 × 10−2 1.40 × 10−3 4.69 × 10−5 7.43 × 10−5

15 3.22 × 10−5 1.33 × 10−5 5.43 × 10−5 2.86 × 10−4 1.50 × 10−3 2.84 × 10−2 8.87 × 10−2 5.42 × 10−2 2.53 × 10−2 5.10 × 10−4 5.45 × 10−5 2.47 × 10−5
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Table A3. Summary of the impact of ToU + DLC PEV charging in 12 months.

Grid Impact Transformer January February March April May June July August September October November December

Load Surge

1 18.67 18.71 18.39 17.81 19.99 23.31 25.14 24.34 22.29 18.94 18.16 18.52
4 18.67 18.71 18.39 17.81 19.99 23.31 25.14 23.34 22.29 18.94 18.16 18.52
6 18.67 18.71 18.39 17.81 19.99 23.31 25.14 23.34 22.29 18.94 18.16 18.52
8 23.68 23.74 23.35 23.05 24.3 26.62 28.79 28.07 27.09 23.99 23.3 23.62
12 22.84 22.91 22.75 22.5 22.98 24.85 26.95 26.45 25.58 23.04 22.41 22.79
15 20.28 20.44 20.25 19.75 21 23.31 25.49 24.77 23.79 20.69 20 20.32

Minimum line
voltage

1 117.1 117 117.1 117.2 116.8 116.3 116 116.1 116.3 117 117.1 117.1
4 117 117 117 117.1 116.8 116.2 115.9 116 116.3 117 117.1 117
6 117.9 117.9 117.9 118 117.7 117.3 117.1 117.2 117.4 117.9 118 117.9
8 117.6 117.6 117.7 117.7 117.6 117.3 117 117.1 117.2 117.6 117.7 117.6
12 116.7 116.7 116.7 116.8 116.5 115.9 115.6 115.7 116.1 116.7 116.8 116.7
15 116.9 116.7 116.8 116.9 116.6 116 115.7 115.8 116.1 116.6 116.8 116.8

Transformer
Aging—insulation

loss of life (%)

1 2.51 × 10−6 1.06 × 10−6 3.81 × 10−6 1.25 × 10−5 2.66 × 10−5 4.08 × 10−4 1.80 × 10−3 9.30 × 10−4 4.28 × 10−4 1.33 × 10−5 3.45 × 10−6 2.07 × 10−6

4 1.54 × 10−6 6.40 × 10−7 3.81 × 10−6 1.02 × 10−5 2.44 × 10−5 3.88 × 10−4 1.70 × 10−3 8.55 × 10−4 3.94 × 10−4 1.08 × 10−5 3.45 × 10−6 1.22 × 10−6

6 2.18 × 10−6 9.22 × 10−7 4.70 × 10−6 1.17 × 10−5 2.62 × 10−5 4.07 × 10−4 1.80 × 10−3 9.20 × 10−4 4.23 × 10−4 1.25 × 10−5 3.20 × 10−6 1.74 × 10−6

8 4.63 × 10−6 1.98 × 10−6 8.33 × 10−6 1.72 × 10−5 3.04 × 10−5 4.33 × 10−4 2.10 × 10−3 1.00 × 10−3 4.79 × 10−4 1.80 × 10−5 3.85 × 10−6 4.15 × 10−6

12 2.98 × 10−6 1.26 × 10−6 5.97 × 10−6 1.35 × 10−5 2.74 × 10−5 4.13 × 10−4 1.90 × 10−3 9.56 × 10−4 4.40 × 10−4 1.44 × 10−5 3.85 × 10−6 2.53 × 10−6

15 2.93 × 10−6 1.24 × 10−6 5.86 × 10−6 1.33 × 10−5 2.76 × 10−5 4.18 × 10−4 1.90 × 10−3 9.68 × 10−4 4.45 × 10−4 1.44 × 10−5 3.82 × 10-6 2.42E-06

Table A4. Summary of the impact of ToU + DLC+ optimal PEV charging in 12 Months.

Grid Impact Transformer January February March April May June July August September October November December

Load Surge

1 16.77 16.64 16.13 16.13 17.01 21.59 22.32 22.24 21 16.42 15.74 16.19
4 16.22 16.29 16.13 15.9 16.29 21.59 22.32 22.24 21 16.42 15.78 16.18
6 16.21 16.3 16.12 15.89 16.12 21.59 22.32 22.24 21 16.42 15.74 16.18
8 16.46 19.68 16.12 16.13 22.57 24.42 22.32 22.24 21 19.96 19.25 20.32
12 16.27 16.3 16.12 16.03 16.2 21.59 22.32 22.24 21 16.5 16.4 16.27
15 16.23 16.29 16.26 16.13 16.3 21.59 22.32 22.24 21 16.5 15.74 16.27

Minimum line
voltage

1 117.5 117.6 117.5 117.7 117.5 116.6 116.5 116.5 116.7 117.7 117.8 117.7
4 117.5 117.6 117.5 117.7 117.5 116.5 116.4 116.4 116.6 117.7 117.9 117.7
6 118.3 118.3 118.4 118.3 118.3 117.6 117.5 117.5 117.6 118.3 118.5 118.4
8 118.2 118.2 118.3 118 118 117.6 117.5 117.5 117.6 118 118.4 118.2
12 117.2 117.3 117.3 117.5 117.3 116.3 116.1 116.1 116.4 117.4 117.6 117.5
15 117.3 117.4 117.4 117.6 117.3 116.3 116.2 116.2 116.4 117.5 117.7 117.6

Transformer
Aging—insulation

loss of life (%)

1 1.42 × 10−6 5.93 × 10−7 3.81 × 10−6 9.78 × 10−6 2.37 × 10−5 3.76 × 10−4 1.60 × 10−3 8.26 × 10−4 3.81 × 10−4 1.04 × 10−5 2.51 × 10−6 1.25 × 10−6

4 1.21 × 10−6 4.93 × 10−7 3.81 × 10−6 9.36 × 10−6 2.32 × 10−5 3.73 × 10−4 1.60 × 10−3 8.08 × 10−4 3.73 × 10−4 9.78 × 10−6 2.31 × 10−6 9.90 × 10−7

6 1.15 × 10−6 4.90 × 10−7 4.70 × 10−6 9.14 × 10−6 2.32 × 10−5 3.73 × 10−4 1.60 × 10−3 8.06 × 10−4 3.75 × 10−4 9.91 × 10−6 2.31 × 10−6 9.26 × 10−7

8 2.72 × 10−6 1.14 × 10−6 8.33 × 10−6 1.37 × 10−5 2.59 × 10−5 3.91 × 10−4 1.80 × 10−3 8.91 × 10−4 4.05 × 10−4 1.33 × 10−5 3.59 × 10−6 2.65 × 10−6

12 1.65 × 10−6 6.61 × 10−7 5.97 × 10−6 1.04 × 10−5 2.41 × 10−5 3.78 × 10−4 1.60 × 10−3 8.38 × 10−4 3.92 × 10−4 1.09 × 10−5 2.72 × 10−6 1.43 × 10−6

15 1.35 × 10−6 5.51 × 10−7 5.86 × 10−6 9.68 × 10−6 2.37 × 10−5 3.75 × 10−4 1.60 × 10−3 8.27 × 10−4 3.84 × 10−4 1.03 × 10−5 2.48 × 10−6 1.21 × 10−6
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Table A5. Summary of the impact of 80% participation rate of optimal PEV charging in 12 months.

Grid Impact Transformer January February March April May June July August September October November December

Load Surge

1 16.24 16.31 16.14 17.98 22.31 28.13 28.91 28.83 27.6 20.71 15.74 16.44
4 16.22 16.29 16.13 17.9 22.31 28.16 28.91 28.83 27.6 20.56 15.78 16.18
6 16.22 16.3 12.96 17.65 22.3 28.19 28.92 28.82 27.61 20.41 15.74 13.49
8 16.77 17.04 16.34 17.65 22.31 28.19 28.92 28.83 27.61 20.71 22.34 22.78
12 16.38 16.42 16.19 17.96 21.88 27.52 28.26 28.18 26.94 20.81 16.73 17.5
15 17.23 16.51 14.55 18.15 22.31 28.13 28.89 28.83 27.59 20.82 16.64 17.5

Minimum line
voltage

1 117.5 117.8 117.5 117.6 116.9 115.9 115.7 115.8 116 117.1 117.8 117.7
4 117.5 117.6 117.5 117.5 116.8 115.8 115.7 115.7 115.9 117.1 117.7 117.7
6 118.3 118.3 118.4 118.5 117.9 117.2 117.1 117.1 117.3 118.1 118.5 118.6
8 118.3 118.3 118.3 118.2 117.7 117 116.9 116.9 117.1 117.9 118.1 118
12 117.3 117.4 117.3 117.4 116.7 115.6 115.5 115.5 115.8 116.9 117.6 117.5
15 117.3 117.5 117.4 117.4 116.8 115.7 115.6 115.6 115.9 117 117.7 117.5

Transformer
Aging—insulation

loss of life (%)

1 1.49 × 10−6 5.88 × 10−7 3.81 × 10−6 1.11 × 10−5 3.03 × 10−5 5.09 × 10−4 2.10 × 10−3 1.10 × 10−3 4.99 × 10−4 1.21 × 10−5 2.66 × 10−6 1.23 × 10−6

4 1.27 × 10−6 4.93 × 10−7 3.81 × 10−6 1.06 × 10−5 3.01 × 10−5 5.08 × 10−4 2.00 × 10−3 1.10 × 10−3 4.94 × 10−4 1.17 × 10−5 2.49 × 10−6 1.00 × 10−6

6 1.13 × 10−6 4.84 × 10−7 4.70 × 10−6 1.14 × 10−5 3.45 × 10−5 5.85 × 10−4 2.30 × 10−3 1.20 × 10−3 5.70 × 10−4 1.29 × 10−5 2.56 × 10−6 8.62 × 10−7

8 2.43 × 10−6 9.97 × 10−7 8.33 × 10−6 1.52 × 10−5 4.05 × 10−5 4.05 × 10−5 2.80 × 10−3 1.50 × 10−3 6.74 × 10−4 1.67 × 10−5 3.81 × 10−6 2.31 × 10−6

12 1.80 × 10−6 6.71 × 10−7 5.97 × 10−6 1.12 × 10−5 2.82 × 10−5 6.93 × 10−4 1.90 × 10−3 1.00 × 10−3 4.61 × 10−4 1.20 × 10−5 2.88 × 10−6 1.49 × 10−6

15 2.00 × 10−6 8.17 × 10−7 5.86 × 10−6 1.87 × 10−5 7.17 × 10−5 1.37 × 10−3 5.00 × 10−3 2.80 × 10−3 1.30 × 10−3 2.51 × 10−5 4.06 × 10−6 1.56 × 10−6
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