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Abstract

Crop sustainability can be threatened by new environmental challenges regarding
predicted climate changes and global warming. Therefore, the study of real biological
impacts of future environmental conditions (e.g., increased air [CO2], supra-optimal
temperature and water scarcity) on crop plants, as well as the re-evaluation of manage-
ment procedures and strategies, must be undertaken in order to improve crop adapta-
tion and promote mitigation of negative environmental impacts, thus affording crop
resilience. Coffee is a tropical crop that is grown in more than 80 countries, making it one
of the world’s most traded agricultural products, while involving millions of people
worldwide in the whole chain of value. It has been argued that this crop will be highly
affected by climate changes, resulting in decreases in both suitable areas for cultivation
and productivity, as well as impaired beverage quality in the near future. Here, we report
recent findings regarding coffee species exposure to combined supra-optimal air tempera-
tures and enhanced air [CO2], and impacts of drought stress on the crop. Ultimately, we
discuss key strategies to improve coffee performance in the context of new environmental
scenarios. The recent findings clearly show that high [CO2] has a positive impact on coffee
plants, increasing their tolerance to high temperatures. This has been related to a better
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plant vigor, to the triggering of protective mechanisms, and to a higher functional status of
the photosynthetic machinery. Even so, coffee plant is expected to suffer from water
scarcity in a changing world. Therefore, discussion is focused on some important manage-
ment strategies (e.g., shade systems, crop management and soil covering and terracing),
which can be implemented to improve coffee performance and sustain coffee production
in a continually changing environment.
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1. Introduction

Global emissions of the main greenhouses gases in the Earth’s atmosphere raised in the mid-

eighteenth century during the industrial revolution associated with the use of fossil fuels. Since

then, the CO2 concentration [CO2] has increased from 280 to 400 μL CO2 L
�1 in 2014, and it is

expected to rise to values between ca. 730 and 1020 μL CO2 L�1 by 2100 [1]. Agricultural

activity has also directly contributed to this process, being responsible for 1/3 of the CO2

emissions but also with additional N2O and CH4 production, intensified mainly by inadequate

management of crops and pastures [2], especially in low- and middle-income countries with

predominating family farming [3].

Increased greenhouse gas emissions are expected to cause a temperature rise between 0.3 and

4.8�C by 2100, depending on future emissions and adequate measures to strongly limit them.

Altered temperature may further promote extreme weather events, alter intra- and inter-

annual precipitation patterns with long periods of drought and/or heavy rainfalls, partial

melting of glacial ice, and consequently rising of the sea level [1]. Climate changes, particularly

global warming, has a severe impact on the Earth’s ecosystem and pose serious threats to

agricultural sustainability [4–6], which is one of the human activities most vulnerable to

climatic variation, since plants require optimal growing conditions to produce desired quan-

tity and quality products [7, 8]. On the other hand, global demand for food is increasing as it is

linked to the rapidly growing populations, which together with climate constraints, may

compromise world food security [9]. In addition, increase in [CO2] can affect the fundamental

plant processes, such as photosynthesis and respiration, and, therefore, growth is also antici-

pated to be affected accordingly [10–12].

With regard to the coffee crop, it is known that plant growth, development, and productivity, as

well as bean quality, are highly sensitive to climatic conditions [3, 13–16]. Accordingly, recent

modeling studies have predicted important reductions of suitable areas for coffee cultivation in

several producing regions [7, 16–19], with severe productivity losses in Mexico [20, 21], Nicara-

gua [3] and Tanzania [22], and extinction of wild populations of C. arabica in Ethiopia [23].

Although world coffee production has increased significantly in recent decades [24], studies state

that climate change has caused substantial production losses [18], associated with periods of

extreme droughts combined with supra-optimal temperatures [22, 25, 26], reducing coffee yields

and bean quality as well as increasing the incidence of pests and diseases [16, 27]. In fact, it is

believed that the recognized present climate changes have already caused yield losses in several

coffee-producing countries, including Brazil, Ethiopia and Tanzania [22, 28, 29].
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The negative estimates of future impacts on coffee crop were based on modeling approaches

mostly focusing on increased air temperatures. However, these studies have only taken into

account the current cultivars [30], and did not consider the considerable ability of some geno-

types to endure various environment constraints, through metabolic adjustments and morpho-

logical and anatomical changes. Additionally, it was recently reported that coffee plants can

respond positively to increased air [CO2] [31–33], improving plant physiological and metabolic

performance, and mitigating warming impacts [11, 33–35]. Such beneficial effect could even

overcome these impacts, allowing some yield increase under adequate water availability to the

crop [36], particularly at higher altitudes [37]. Nevertheless, given that coffee is one of the most

important agronomic products, and that possible implications of ongoing climate changes may

affect the sustainability of this crop in many actual areas, with potential dramatic economic,

social and environmental implications, there is an urgent need for improving our knowledge

regarding the plant performance under a wide range of environmental conditions. It is also

equally important to identify adequate mitigation and adaptation strategies to be implemented,

such as shading system crop management and soil cover and terracing, together with breeding

new cultivars, in order to alleviate the impacts of climate changes on coffee plants.

Studies dealing with water stress in coffee species and genotypes have provided a detailed

picture of biological mechanisms involved in drought tolerance [38–48], whereas recent

works also showed that some genotypes of both C. arabica and C. canephora can endure

temperatures much higher than what was traditionally accepted [11, 35]. As referred, plant

resilience can even be improved under the exposure to high atmospheric [CO2] [11, 34–37,

49]. In this context, the objective of this review chapter is to report the recent findings

regarding the coffee plant responses to the single and combined exposure to atmosphere-

supra-optimal temperatures and [CO2], as well as to drought stress, together with the

envisagement of some important crop management strategies (e.g., intercropping/shade

systems, soil covering and terracing), which can be implemented to improve coffee perfor-

mance and to mitigate the impact of environmental constraints, aiming at sustaining coffee

production in a permanent changing environment.

2. General aspects of production, origin and favorable environmental

conditions for Coffea arabica and C. canephora

Coffee, one of the most traded commodities in the world, is supported by C. arabica L. and

C. canephora Pierre ex A. Froehner species [14]. It is estimated that the coffee chain of value

generates a global income of ca. US$ 173,000 million [50], having as well great social implications.

In fact, this tropical crop is grown in approximately 80 countries [51], and about 25 million

farmers, mainly smallholders, depend on this highly labor-intensive crop [52], with a worldwide

involvement of ca. 125 million people in the entire chain [53]. Brazil, Vietnam, Colombia, Indo-

nesia, Ethiopia, India, Honduras and Uganda are the major coffee producers, for a world annual

production of green coffee beans which has been increasing steadily in the last decades, being

consistently near or above 9 million tons since 2011/2012 [54]. This supports over 2.5 billion cups

of coffee consumed every day around the world [55], with promising prospects for increased

consumption in the coming years, especially among young people in Asia.
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The coffee plant is characterized as a perennial woody shrub that belongs to the Rubiaceae

family. Although there are at least 125 species within the Coffea genus [56], Coffea arabica

L. (Arabica coffee) and Coffea canephora Pierre ex A. Froehner (Robusta coffee) are responsible

for approximately 99% of the world coffee production [23, 57], with the former accounting for

~65% of total coffee production [55, 58]. Besides differences in origin, these species present

important ecological differences in plant traits, as well in bean chemical composition, among

them aroma precursors. In fact, the levels of these compounds have implications on sensory

attributes, namely on astringency, taste, aroma, and flavor after roasting. Such chemical com-

position is not only genetic related but also strongly depend on environmental conditions (e.g.,

soil, shade, temperature), bean maturation stage, and to agricultural management and post-

harvest procedures [59–64].

C. arabica are originated from the tropical forests of Ethiopia, Sudan and Kenya, at altitudes of

1500–2800 m, annual averages air temperatures between 18 and 22�C, precipitation from 1600 to

more than 2000 mm l distributed throughout the year, with a well-dry season (3–4 months),

coinciding with the cold annual period. Currently, C. arabica coffee is grown in areas with cooler

temperatures (18–23�C), at altitude mostly between 400 and 1200 m [7, 30, 65, 66], although

cultivation up to 2000 m can be found in some countries in Central America. In contrast, C.

canephora originated from the lowland forests of the Congo River basin, which extend to Lake

Victoria in Uganda at altitudes up to 1200 m, are subjected to annual averages air temperatures

between 23 and 26�C with minor fluctuations, and average precipitation exceeding 2000 mm

distributed along 9–10 months [67–69]. Currently, cultivation occurs predominantly in lower

altitude areas and higher temperatures, showing satisfactory development when the daily aver-

age temperature is above 22�C so that minimum is above 17�C and the average maximum air

temperatures are below 31.5�C, with regular pattern of precipitation [70–74].

3. The impact of climate changes on coffee crop: warming and water

scarcity

Coffee plants require both adequate water supply and optimal temperature, which are consid-

ered the most important environmental variables, since water and temperature-limited condi-

tions cause negative impacts on growth, yield and productivity [14, 16, 30, 75]. Although in

many coffee producing areas water scarcity occurs in the cooler season, climate modifications

has increased the situations where low water availability and elevated temperature occur

concomitantly under field conditions, which, as observed in other plants, will have the poten-

tial to exacerbate the limitations to the photosynthetic functioning [76].

In plants, photosynthesis and respiration are among the most sensitive metabolic processes to

increasing temperatures [77]. High temperatures can cause protein denaturation and aggrega-

tion, increased production of reactive oxygen species [14], and ethylene synthesis [78]. More-

over, supra-optimal temperatures can reduce stomatal conductance and light energy use as

well as alter thylakoid ultrastructure and diffusion of gas through mesophyll [15, 79–81] with a

direct impact on net C gain. The latter will be even more amplified due to the increase of O2

solubility in relation to CO2 under higher temperatures, favoring the oxygenase activity of
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RuBisCO over its carboxylation activity, thus increasing photorespiration rates [82, 83]. Alto-

gether, this ultimately may lead to the decline in the availability of carbohydrates for energy

supply as well as carbon skeletons to support plant growth [77]. Thus, warmer temperatures

can affect crop yield at any time from sowing to grain maturity, but it is the time around

flowering, when the number of grains per land area is established, and during the grain-filling

stage, when the average grain weight is determined, that high temperatures causes major

impacts on the final harvestable crop [9, 73, 84]. In addition, it causes a reduction in the

production of leaves and consequently alters the photosynthetic activity [85].

Coffee trees presented a remarkable tolerance to temperatures relatively high (up to 37/30�C;

day/night) when air humidity was maintained at 75%, occurring relevant physiological/bio-

chemical impairments only at 42/34�C, associated, namely, to large activity reductions of

RuBisCO and Ru5PK [35], despite large accumulation of RuBisCO transcripts [86]. The

reported heat tolerance was related with increases in protective molecules, namely, enzyme

and non-enzyme antioxidant molecules, heat shock protein 70 (HSP70) reinforcement, and

altered gene expression [11, 86]. However, under field conditions, rising temperature may lead

to increase in air vapor pressure deficit (VPDair), what may result in decreased stomatal and

canopy conductance in Coffea spp., due to a high sensitivity of coffee stomata to VPDair values

above 2 kPa [87–89]. In addition, elevated temperatures can contribute to a gradual increase in

soil water depletion, particularity in areas lacking sufficient precipitation, resulting in water

stress, which further exacerbates the adverse effects of high temperatures.

Stomatal closure is one of the first responses to water deficit in coffee plants, aiming at

limiting water loss through transpiration flow. However, this directly decreases the CO2

availability in the chloroplasts, reducing the photosynthetic rates [14]. In this context,

irradiance reaching the chloroplasts may exceed the light energy needed to saturate photo-

synthesis, which in turn can lead to the formation of reactive oxygen species (ROS). ROS

can cause oxidative damage to multiple cell and chloroplast components, namely to the

D1 protein, lipids, RNA and DNA molecules, associated with increased cellular and meta-

bolic disorders, resulting in cell death [47, 90, 91]. Moreover, ethylene synthesis often

increases under drought stress conditions, promoting leaf senescence and slowing growth

[10]. However, coffee plants display a noticeable metabolic plasticity to cope with environ-

mental stresses [14, 51], as referred above for supra-optimal temperatures. Additionally,

air [CO2] enrichment improved both coffee antioxidant defense system and photosynthetic

performance regardless of temperatures, but maintaining a relevant photosynthetic

functioning at temperature as high as 42�C. This prevented an energy overcharge in the

photosynthetic apparatus, eventually reducing the need for energy dissipation and PSII

photoinhibition [11, 35].

Considering water stress, a large number of early studies have reported that coffee plants can

cope with drought stress through morphological, biochemical, and physiological modifica-

tions [14], as discussed later in this chapter. However, prolonged drought events associated

with elevated temperatures can lead to very severe conditions, with a general impact on cell

metabolism, associated as well to increased oxidative stress, altogether resulting in intense

defoliation and yield losses (Figure 1), although genotypic difference in stomatal sensitivity to

water stress among C. canephora genotypes have been reported [43, 45]. Furthermore, drought
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should be envisaged as contributing to a multidimensional stress, exacerbating the negative

impacts of elevated irradiance and supra-optimal temperatures [13, 14, 42]. Therefore, drought-

resistant coffee genotypes are a useful strategy for improving coffee performance in regions that

are predicted to face moderate to severe drought [49].

Overall, drought-sensitive C. canephora genotypes show a shallow root system and ineffective

stomatal control, whereas drought-resistant coffee genotypes show considerably deeper root

system, the strengthening of antioxidant defense system, and higher stomata sensitivity to

reduced water availability (both in soil and atmosphere) [43, 92]. Increased wood density

reinforcing vessels and, in turn improving resistance to cavitation, was correlated with toler-

ance to hydraulic dysfunctions [45]. On the other hand, C. canephora genotypes with specific

traits conferring drought tolerance generally show reduced yield under optimal environments

conditions due to their increased stomata sensitivity to VPDair. This is related to hydraulic

limitations to water flow from roots to leaves [43, 45]. Therefore, coffee genotypes displaying

increased phenotypic plasticity as, e.g., deep root system, substantial hydraulic conductance,

intermediate stomatal control and strengthening of antioxidant defense system, could be used

in regions which are predicted to face moderate water deficit, while drought-resistant geno-

types could be used in regions predicted to face severe drought.

In addition to the traits outlined above, leaf size as well as canopy architecture should also be

considered as important traits associated with drought tolerance. For example, although the

leaf hydraulic conductivity (Kleaf) values found in C. arabica plants are typically low, probably

linked to their native shade habitat [44, 93], C. arabica coffee genotypes with smaller leaves

displayed higher vein density, higher Kleaf, increased gas exchange and reduced drought

vulnerability [40, 44]. Drought tolerance was also found to be higher for C. canephora geno-

types displaying smaller leaves [42]. In fact, it is known in other plants that smaller leaves

allow for more rapid convective heat loss, resulting in lower transpiration and water loss likely

due to smaller boundary layer [94]. Furthermore, a more compact crown structure may result

in reduced VPDair within the coffee canopy, decreasing the transpiration demand [14], besides

allowing to increase plant density coupled with improved soil covering and reducing the

negative impacts of elevated temperatures, and high wind speed on coffee trees. On the other

Figure 1. Intensive defoliation and yield losses due to prolonged severe drought (A), together with high temperatures

(B) in C. canephora cultivations in Espírito Santo State, Brazil.
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hand, C. arabica genotypes displaying open architecture crown show high transpiration rates

(as measured by the sap flow technique) depleting accessible soil water more rapidly [40].

Therefore, although the water use efficiency in coffee genotypes is associated with the hydrau-

lic capacity of the soil and stem to supply the leaves with water [95], coffee traits linked to

water safety, e.g., a more compact crown structure and to greater extent an effective stomatal

control, seem to play an important role in drought tolerance.

A recent study by [48] reported that both drought-sensitive and drought-tolerant C. canephora

genotypes showed a drought stress “memory,” with plants exposed to multiple drought

events showing better recovery than those submitted to drought events for the first time. This

performance was mainly associated with substantial metabolic reprogramming, involving key

processes such as photosynthesis, respiration, photorespiration, and the antioxidant system. In

this sense, it would appear reasonable to suggest that multiple moderate water stress in coffee

seedlings at nursery stage may improve to some extent the initial coffee performance under

field conditions in areas prone to water scarcity.

4. Can elevated [CO2] help the mitigation of the negative impacts of high

temperature and water deficit?

Although climate models point CO2 as the major greenhouse gas responsible for global

warming due to its high accumulation rate in the atmosphere [6], the impacts of increased air

[CO2] at plant physiological and biochemical levels should not be neglected, namely in coffee

metabolism [11, 31, 32, 35], as well in yield [36, 37].

The current [CO2] in the atmosphere is still below the optimum for photosynthesis of C3

plants; therefore, leaf photosynthetic rates are predicted to increase in response to future

increase in air [CO2], due to increased carboxylase activity of RuBisCO [82, 83, 96]. This

C-fertilization may eventually reinforce plant vigor (and the defense systems), which, in turn,

could reinforce the plant ability to endure environmental stresses [97]. On the other hand,

elevated CO2 levels will especially benefit plants with strong sink capacity to use such

increased amounts of photoassimilates. Otherwise, an accumulation of soluble sugars may

occur which in turn will decrease the net photosynthetic rate through negative feedback

mechanisms, that is, will provoke downregulation of photosynthesis, not allowing the plant to

fully explore the positive effect of [CO2] increase [83].

In the case of coffee, significant increases of net photosynthesis, between 34 and 49%, were

observed for C. canephora (Clone 153) and C. arabica (Icatu and IPR 108) genotypes [31], when

comparing plants grown subjected to elevated [CO2] (700 μL L�1) or normal [CO2] (380 μL L�1)

under environmental controlled conditions. Furthermore, under such high [CO2], plants also

showed a better water-use efficiency, reinforcement of photosynthetic components and increased

activity of key enzymes involved in photosynthesis and respiration, without noticeable leaf

sugar accumulation. Therefore, these coffee genotypes were able to cope with enhanced [CO2],

maintaining the consumption of photosynthates and regeneration of RuBP associated with

continuous investment in vegetative and reproductive structures. The evidence of improved
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coffee performance under enhanced [CO2] was further obtained with other C. arabica genotypes

(Obatã IAC 1669–20 and Catuaí Vermelho IAC 144) under field conditions using free-air CO2

enrichment (FACE) system, showing increased photosynthesis and decreased photorespiration,

without changes in stomatal and mesophyll conductance, for an air [CO2] of 550 μL L�1 [33].

Additionally, coffee plants grown under elevated [CO2] were more vigorous, with increased leaf

area, growth rate at height and stem diameter, showing as well increased grain yield by 14.6 and

12.0% for Catuaí Vermelho 144 and Obatã IAC 1669–20, respectively, [8, 32], although average

yield increases of 28% were also reported after three harvests [37] when compared to plant

grown at ambient [CO2]. Another study also demonstrated that coffee trees grown under

550 μL CO2 L
�1 presented increase in photosynthesis of leaves from upper and lower canopy

layers, inhibition of photorespiration, and no apparent sign of photosynthetic downregulation,

when compared to plants grown under ambient [CO2] (390 μL L�1) [98]. Finally, recent

studies based on modeling approaches accounting with high air [CO2] positive impact reported

that coffee yield losses associated mostly with high temperatures can be offset by the CO2

fertilization effect, with a probably yield increase by 2040–2070 [36], or 2050, particularly at

higher altitudes [37].

The simultaneous occurrence of various environmental constraints is the most common situation

under field conditions, and therefore, it has been argued that a positive plastic response from

plant experiencing a single stress can be increased, canceled or even reverted under the com-

bined action of multiple stresses [6]. Regarding the coffee plant, responses to the combined

effects of increased [CO2] and supra-optimal air temperature started to be investigated quite

recently, whereas the simultaneous exposure to elevated [CO2], heat and water deficit have never

been studied. The exposure to increased air [CO2] revealed interesting implications to plant

physiological response to supra-optimal conditions. This was the case in both C. arabica (cvs.

Icatu and IPR 108) and C. canephora cv. Conilon Clone 153 plants exposed to elevated [CO2] and

temperatures up to 42�C [11, 34, 35]. Notably, a remarkable heat tolerance was observed up to

37/30�C (day/night) irrespective of air [CO2]. The tolerance (and high physiological performance)

to such temperature was somewhat surprising as it is above what is traditionally accepted to be

tolerated by coffee plant [35]. Furthermore, enhanced [CO2] greatly mitigated the negative

impact of the temperature, especially at 42/34�C, with higher water-use efficiency (WUE) at

moderately higher temperature (31/25�C). Increased CO2 was observed to strengthen the photo-

synthetic apparatus, improving light energy use and biochemical functioning. These results were

linked to the maintenance or increase in the content of several protective molecules (neoxanthin,

lutein, β-carotene, α-tocopherol, heat shock protein-HSP70, raffinose), the activity of antioxidant

enzymes (superoxide dismutase, SOD; ascorbate peroxidase, APX, glutathione reductase, GR;

catalase, CAT) and the upregulation of some genes related to stress-protective molecules (ELIP,

HSP70, Chaperonin 20 and 60), and antioxidant enzymes (CAT, CuSOD2, APX Cyt, APX Chl)

[11]. In the same experiments, overall leaf mineral macro- and microelement contents have

remained within a range that could be considered largely adequate for coffee plants, with no

changes in macronutrient profile (N > K > Ca > Mg > S > P), that is, satisfactory mineral content

was maintained in the context of warming, under high [CO2] [34].

Climate changes are also predicted to affect intra- and inter-annual rainfall patterns, and the

decrease in precipitation amounts in conjunction with increased air temperature may reduce
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net photosynthesis at current [CO2]. Still, under increased air [CO2], a partial relief of negative

impacts of water deficit may occur [99]. Indeed, arabica coffee plants grown under severe

drought conditions and increased biotic pressure showed strategies which allow the mainte-

nance of structural and physiological integrity in the fourth period of winter growth [98]. This

occurs because of the dichotomous responses of net photosynthesis and stomatal conductance

to high [CO2], which lead to improved WUE, reducing soil moisture depletion during periods

of drought [9]. Studies by [10, 76] on Agropyron cristatum L. and Perilla frutescens var. japonica

Hara, respectively, reported positive results of elevated-CO2 mitigation of drought stress,

verifying increase in photosynthetic capacity and decrease in stomatal conductance with lower

transpiration rates. Consequently, increased intrinsic water-use efficiency (WUEi) and total

water-use efficiency (WUEt) were observed. Furthermore, high [CO2] can also alleviate oxida-

tive stress conditions, and photoinhibition status, likely associated to a higher photosynthetic

functioning (as also observed for high temperatures [11]), even under significant stomatal

closure. Altogether such responses may result in improved tolerance to drought stress, as

found in other plants [6, 10, 12]. Nevertheless, it is important to note that under severe

drought, such positive results might not be obtained, and that mitigation associated with high

[CO2] does not always occur [6].

In addition to the positive effects on the impacts of abiotic stresses, elevated [CO2] can also

reduce to some extent the incidence and severity of coffee pests and diseases. In fact, decrease

in leaf rust (Hemileia vastatrix) severity, number of lesions, leaf area injured, number of sporu-

lating lesions, percentage of damaged leaf area and area under disease progress were observed

in C. arabica cv. Catuaí IAC 144 grown under elevated [CO2] [8]. Reduced incidence of leaf

miner (Leucoptera coffeella) during periods of high infestation was also observed at elevated

[CO2] [32].

In summary, enhanced [CO2] can have a positive mitigation effect on the negative impacts of

high temperature and, probably, low water availability, as well as by reducing the severity of

some pests and diseases. However, since responses are highly species (and even cultivar)

dependent, it is urgent to implement long-term studies in coffee considering single and,

especially, combined stresses, with the simultaneous exposure to elevated [CO2], supra-

optimal temperatures and drought, relating them to phenological stages (e.g., flowering),

therefore, to increase knowledge on this crop in a context of climate changes.

5. Mitigating the impacts of climate changes through management

practices

To promote crop sustainability in the context of climate changes and global warming, adapta-

tion and mitigation measures must be implemented. Regarding adaptation, plant screening

and breeding are essential to provide new improved and stress-tolerant genotypes, but their

implementation are somewhat delayed due to the time needed to obtain new varieties. As an

example, the use of improved genotypes with an optimized architecture is a valuable tool. It is

known that small-size plants, with denser canopies, are prone to display lower transpiration
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rates [13, 14]. Additionally, plants with larger and deeper root systems would have an ability

to explore increased soil volumes, reaching water resources that other plants with a more

superficial root system do not [14]. Still, several years will be needed until such new genotypes

can be available and, therefore, ready-to-use strategies should be implemented, namely those

regarding an effective mitigation of the environmental negative impacts on the actual cropped

genotypes. This can be even more important when dealing with tree crops that have a produc-

tive lifespan of several years or decades, as it is the case of coffee, which can last for more than

30 years [18].

A significant range of management techniques can be used to minimize the impact of different

stresses that can affect the performance of agricultural systems. For coffee crop, several differ-

ent agronomic tools stand to that purpose, e.g., the use of shade systems with tree species, as

well as other intercropping associations, to improve an efficient water use and minimize

warming at the plant level, maintaining a more suitable microenvironment concerning both

temperature and air humidity. Improved soil covering with other intercropped species, and

terracing under conditions of significant slopes, are also quite useful techniques to minimize

soil water loss (or to increase its infiltration), therefore, helping to maintain water resources

available to the plants for longer periods.

5.1. Fertilization management under high air [CO2] and warming conditions

Minerals have a wide number of roles in plant cell. Therefore, as in other plants, an adequate

mineral fertilization is recognized as crucial to allow the triggering of acclimation mechanisms

in face of environmental constraints in the coffee plant. This is the case of nitrogen (N) supply,

which is of utmost importance to allow the recovery from high irradiance impact, through the

triggering of repair mechanism, and the reinforcement of leaf defense mechanisms, including

the control of highly reactive molecules of chlorophyll and oxygen, whose production is

exacerbated under high irradiance/full sun exposure [100–102]. Additionally, the presence of

adequate contents of other minerals allows the plant to maintain high metabolic performance

due to their specific roles. For instance, copper, iron and manganese, which were shown to

promote the activities of, respectively, superoxide dismutase, ascorbate peroxidase, and pho-

tosystem II under cold exposure [103], as well as calcium, which is essential to the stabilization

of chlorophyll and the maintenance of photochemical efficiency at PS II level [104].

Changes in mineral contents may affect plant development, but may also have other important

consequences, namely as regards the quality of agricultural products for food and feed, her-

bivory, litter decomposition rates, etc. [105, 106]. It is known that mineral contents often

decline in the leaf biomass under high air [CO2] conditions. This was related to higher growth

rates, accumulation of non-structural sugars (mainly starch), lower transpiration rates, or to

changes in the nutrient allocation patterns under enhanced air [CO2] [107–109] This mineral

“dilution” effect on leaves can affect the photosynthetic apparatus (e.g., through N, S and Fe),

enzyme activity (e.g., through K, P, Mn and Fe), alters redox reactions (e.g., through Fe, Zn and

Cu), and modifies the structural integrity of chloroplast membranes (e.g., B) [105, 110–113].

However, this so called “dilution effect” may frequently reflect qualitative physiological

changes rather than a lack of nutrients [108], since in many cases, these plants did not present
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mineral nutrition disturbances. This seems just to be the case in Coffea spp., since it was

observed that under adequate temperature, long-term exposure to enhanced [CO2] (700 μL L�1)

net photosynthetic rate was increased by between 40 and 49% [31], concomitantly to a moderate

mineral reduction that ranged from 7 to 25% in N, Mg, Ca, Fe in C. canephora cv Conilon Clone

153, and in N, K and Fe in C. arabica cv. Icatu [34].

Most important was also the observation that contents (on a per leaf mass basis) of several

minerals increased under supra-optimal temperatures, largely offsetting the dilution effect

observed under control temperature (25�C), keeping the large majority of minerals and their

ratios within a range that is considered adequate, therefore, suggesting that coffee plant can

maintain its mineral balance in a context of climate changes and global warming [34]. Even so,

taking into account the importance of mineral dynamics to virtually all biological processes,

studies under field conditions must be implemented to better understand the possible CO2

implications for coffee fertilizer management in a context of climate changes and global

warming in a near future.

5.2. Reducing irradiance at the leaf level

Both C arabica and C. canephora have been cultivated under full sunlight in many regions

around the world, particularly in Brazil. In fact, coffee plant can successfully adjust its photo-

synthetic metabolism to high light conditions, namely if adequate mineral nutrition is pro-

vided [100–102]. Effective acclimation to other environmental constraints (e.g., cold, heat,

drought) was also reported [14]. Such acclimation ability depends on the presence and/or

reinforcement of several mechanisms, among them leaf antioxidants, and qualitative modifi-

cations on the lipid matrix of cell membranes, particularly in the chloroplast. This allows the

plant to maintain high metabolic activity, namely as regards the photosynthetic pathway,

depending on stress severity and on species and genotype capabilities [11, 41, 57, 93, 101,

114]. However, these coffee species have evolved and grow naturally under shaded understory

[14, 68, 69]. Not surprisingly, Coffee sp. presents some leaf traits usually associated with shade

plants, namely low light saturating point (ca. 500 μmol m�2 s�1) [115], therefore, quite below

the irradiance values occurring under field conditions. This increases the probability of

photoinhibition under high solar radiation [13, 14, 100, 116, 117]. Taking into account pre-

dictions of a global warming and lower water availability along the present century, the

implementation of coffee cultivation under shaded conditions (e.g., under agro-forestry sys-

tems) may be recommended as a cultural management practice to alleviate the combined

impacts of drought and elevated temperatures [118], while improving nutrient cycling, soil

fertility and soil organic matter accumulation [119–122]. Additionally, shade crops can

improve ecological aspects including increasing bio-diversity of flora and fauna [123, 124].

Traditionally, coffee trees grown under shaded conditions show reduced yield, since shade

trees may compete with coffee for essential requirements such as light, water and nutrient

depending on tree density [13, 119, 125], with less nodes per branch and fewer flowers at

existing nodes must be also considered. Additionally, coffee plants show limited light distri-

bution within their own canopies [88], thus leading to the further reduction of the light

availability at whole canopy scale. However, increased light-use efficiency can compensate
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the low availability of photosynthetically active solar radiation in coffee trees grown under

shaded conditions [126]. Also, shade trees can increase the proportion of diffuse light under

their canopy by 60–90%, what may lead to increased penetration of radiation inside the coffee

canopy [126]. In fact, C. canephora Clone 02 (clonal variety “EMCAPA 8111” [127]), grown

under an irradiance retention of 70% promoted by Australian cedar (Toona ciliata M. Roem) in

southeastern region of Brazil showed similar yield to unshaded counterparts, although for a

study considering only one crop season [128] (Figure 2). Similar yield and leaf nutrient content

were also found in shaded C. canephora cv. Verdebras G35 plants intercropped with rubber

trees (Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg.) in the same region, with a reduction of

ca. 70% in total irradiation [129], while similar yield were reported for C. arabica cv. Caturra

intercropped with Erythina poeppigiana (reduction of ca. 70% in total irradiation) in the central

Valley of Costa Rica [126] and in six C. arabica genotypes shaded by E. verna and Musa sp.

(shade up to 80%) [130].

As referred above, coffee trees show increased stomatal sensitivity to VPDair, so that increase in

air temperature and/or decrease in air relative humidity (RH) can result in reduced stomatal

Figure 2. Coffea canephora cv. Conilon under shading conditions promoted by A) Australian cedar (Toona ciliate M. Roem.

var. Australis), B) papaya (Carica papaya L.), C) rubber tree (Hevea brasiliensis Willd. ex A. Juss), and D) African mahogany

(Khaya spp.), in northern Espírito Santo state, Brazil.
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aperture. In this sense, shaded systems with trees, including rubber [129] and Australian cedar

[128], can reduce air temperature, maintain higher air humidity, and decrease low wind speed

near the coffee plants, thus resulting in decreased VPDair between the leaf and the atmosphere,

and a lower water loss through transpiration [13]. Therefore, shade will promote a better

WUE, reducing plant transpiration and soil evaporation, while contributing to improve plant

physiological performance [117].

In addition to the impacts on photosynthetic machinery, rising temperature causes increases in

plant respiration rates, mainly associated with “maintenance respiration” to support protein

turnover and to maintain active ions transport across the membrane [81]. Recent studies have

reported decreases of 2 up to 6�C in air temperature surrounding coffee canopy under shaded

condition [125, 128, 129, 131]. Such reduction in air temperature can therefore reduce mainte-

nance respiration [126], as C. arabica cv. Caturra plants in the Central Valley of Costa Rica that

showed a 40% decrease in peak maintenance respiration under a 4�C decrease in maximum

temperature [125].

Coffee growers need to obtain high yields, while maintaining bean quality in order to guaran-

tee their income. Rising temperature may decrease coffee bean yields due to bud abortion or

development of infertile flowers, particularly when associated with prolonged dry periods

[65]. Additionally, increased temperature may accelerate fruit maturation and ripening, reduc-

ing the accumulation of sucrose and altering the content of several compounds that are known

precursors of taste, flavor and aroma after roasting [15, 60, 62, 64]. Shade trees may provide a

milder microclimate, attenuating temperature rise on coffee beans, and by lowering air tem-

perature close to the coffee plant can extend the maturation period so that the bean filling

period will be enlarged [132, 133], what can contribute to higher sucrose accumulation.

Besides the importance of shade in reducing thermal stress, other important benefits arise as

well. For instance, coffee trees grown under full sunlight show a typical biennial pattern, e.g.,

during one crop season, a heavy fruit load will constitute a major sink at the expense of new

leaves and branches, reducing productivity in the following year [134]. Moreover, high fruits

load may result in reduced bean size due to the carbohydrate competition among berries

during bean filling [133]. In this sense, depending on density, shade trees can reduce coffee

flowering intensity, resulting in a better coffee bean quality, as well as in higher yield stability

along the years. Although the central purpose of coffee cultivation under shaded conditions is

alleviating the impacts of both high irradiances and supra-optimal temperatures, it is worth to

mention that cultivation of trees of economic importance, such as Inga sp. [125], Australian

cedar [128], rubber tree (Figure 2) [129], can constitute important complementary sources of

income to coffee farmers.

The application of kaolin particles can also reduce the irradiance at leaf surface, increasing

radiation reflections, and, consequently decreasing leaf temperature [135]. Kaolin particle film

can as well improve light distribution inside the canopy, leading to increase in photosynthetic

rates, increasing crop water use efficiency at whole-canopy scale, as reported for apple (Malus

sylvestris) [136, 137] and grapevine (Vitis vinifera L.) [137]. Moreover, kaolin particle film

protected apple fruits from damage caused by excessive heat linked to high light conditions,

besides avoiding the direct impacts of ultraviolet radiation on fruits as well [135]. Additionally,

Mitigation of the Negative Impact of Warming on the Coffee Crop: The Role of Increased Air [CO2]…
http://dx.doi.org/10.5772/intechopen.72374

69



some works have demonstrated that particle film technology can alleviate the negative impacts

of water stress, particularly associated with increase in light reflection and decrease in canopy

temperature [137, 138]. In coffee, kaolin particle film was observed to increase C-assimilation and

bean yield, linked to improved light distribution within the canopy, since sunlight is essential to

floral initiation [139], and can, therefore, constitute a promising alternative technique to reduce

the thermal energy at leaf level.

Considering the effects of supra-optimal temperatures, high density planting system can

alleviate the negative impacts of heat stress, because under such conditions, the air surround-

ing the coffee plants becomes more humid due to plant transpiration and low wind speed,

decreasing VPDair [14]. Additionally, in areas facing strong winds, the use of windbreaks or

tree shelters is recommended as both can avoid an extensive removal of boundary layer,

leading to decreased demand for water from the atmosphere. However, under high density

planting systems, coffee crop management through pruning is fundamental for renewal,

revitalizing and yield stability in coffee plantations [140], what can improve soil coverage.

5.3. Soil covering and terracing

The distance between coffee rows allows for growth of other plants, which may compete for

water and nutrients, depending on species involved. Overall, weed control aims at removing

the invasive plants, exposing soil to intense solar radiation which can result in increase in

water evaporation directly from the soil as well as facilitating the surface water runoff, leading

to erosion losses, especially in areas with a pronounced slope. Depending on weed species,

invasive plants are allowed to grow naturally between coffee rows without any management

strategy. Although such plants may reduce erosion losses and direct solar radiation, as well as

improve the infiltration of water into the soil stratum [141], they lose water during the day

through transpiration, decreasing soil moisture [142]. Therefore, weed management strategies

(for example, cut using a mower) can contribute for organic matter accumulation and, in turn,

increase the water retention capacity of the soil, improving water productivity.

Also, the use of some leguminous species, correctly managed between coffee rows, can protect

the soil, providing N to the coffee plants. Furthermore, soil coverage with herbaceous plants

between coffee rows increases soil moisture and reduces both soil temperature and weed

incidence, improves the physical and chemical soil properties [143, 144], promotes water

infiltration, reduces rainfall impact and erosion, stimulates microbial activity, and improves

organic matter in the soil [145]. Improved ground cover can be further obtained from weeds

control, and by keeping biomass from coffee plants pruning, a common practice used to

promote crop productivity [140] and soil microbiota diversity.

Coffee straw/husks, a by-product generated during coffee processing and discarded in many

farms, can also be used for soil covering, reducing water losses through soil evaporation. In

addition, coffee straw/husks can provide essential macro and micronutrients, namely N, P, K,

Ca, Mg, S, Fe, B, Mn, Zn and Cu [72], lowering the need of chemical fertilization regarding these

nutrients, and increasing coffee yield up to 25% [146]. Moreover, these coffee by-products

can improve the soil physical associated with increase in CTC and soil pH [147], and inhibit

seed germination of many weed species such as Amaranthus retroflexus, Bidens pilosa, Cenchrus
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echinatus and Amaranthus spinosus [148]. Therefore, coffee straw/husks can increase soil water

retention and reduce to some extent costs associated with weed managements and fertilizers.

Other strategies for areas with a high slope are terracing, contour plowing terrace and rectan-

gular ditches. Such practices contribute for preventing rapid surface runoff, allowing rain

water to percolate into the soil, contributing for soil conservation [149–151]. Therefore, the

establishment of terraces, although expensive, could constitute a worthwhile alternative to

reduce water losses through runoff and soil erosion, while promoting infiltration [152]. Rain

water storage in reservoirs should also be implemented. This will allow future water use

during periods of negligible rainfall, constituting an important mitigation strategy to avoid

drought stress. Therefore, increasing the water retention/storage capability in the farm can

delay or even prevent coffee water stress.

6. Future perspectives

Climate changes are expected to negatively affect the coffee crop, causing serious social and

economic impacts. Supra-optimal temperatures and water scarcity may decrease coffee yields

and some studies state that these stresses are already occurring in some coffee-growing coun-

tries. However, coffee plants show a potential ability to cope with several environmental

stresses and enhanced [CO2] can improve such ability and mitigate to some extent the negative

impacts of supra-optimal temperatures. Even so, some mitigation strategies will be necessary

to alleviate the impacts of elevated temperature and/or drought stress on coffee trees. We have

reviewed some strategies that can be implemented depending on main environmental stresses

occurring in specific regions, such as those based on coffee traits (root systems, size leaf,

canopy architecture and stomatal sensitivity) and crop management (nutrient managements

and pruning system), as well as those aiming at reducing excessive light at coffee tree level

(shaded systems, kaolin-based particle film and plant density), and at improving soil water

retention (soil covering and terracing). Notably, however, a single mitigation strategy may not

be enough to face severe stress conditions; thus, multiple strategies should be undertaken.

Future studies considering simultaneous exposure to the main environmental stresses (e.g.,

high temperatures and drought), taking into account as well elevated [CO2], will be necessary

to elucidate the mechanisms underlying plasticity and vulnerability of coffee plants under

conditions that are expected to occur in the fields in a near future. Such studies are a funda-

mental basis for plant breeders to obtain new/more adapted genotypes. Finally, these strategies

appear to be useful tools toward maintaining the coffee chain production.
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