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Abstract
Mitosis assessment of breast cancer has a strong prognostic importance and is visually evaluated by pathologists. The inter,

and intra-observer variability of this assessment is high. In this paper, a two-stage deep learning approach, named

MITNET, has been applied to automatically detect nucleus and classify mitoses in whole slide images (WSI) of breast

cancer. Moreover, this paper introduces two new datasets. The first dataset is used to detect the nucleus in the WSIs, which

contains 139,124 annotated nuclei in 1749 patches extracted from 115 WSIs of breast cancer tissue, and the second dataset

consists of 4908 mitotic cells and 4908 non-mitotic cells image samples extracted from 214 WSIs which is used for mitosis

classification. The created datasets are used to train the MITNET network, which consists of two deep learning archi-

tectures, called MITNET-det and MITNET-rec, respectively, to isolate nuclei cells and identify the mitoses in WSIs. In

MITNET-det architecture, to extract features from nucleus images and fuse them, CSPDarknet and Path Aggregation

Network (PANet) are used, respectively, and then, a detection strategy using You Look Only Once (scaled-YOLOv4) is

employed to detect nucleus at three different scales. In the classification part, the detected isolated nucleus images are

passed through proposed MITNET-rec deep learning architecture, to identify the mitosis in the WSIs. Various deep

learning classifiers and the proposed classifier are trained with a publicly available mitosis datasets (MIDOG and ATYPIA)

and then, validated over our created dataset. The results verify that deep learning-based classifiers trained on MIDOG and

ATYPIA have difficulties to recognize mitosis on our dataset which shows that the created mitosis dataset has unique

features and characteristics. Besides this, the proposed classifier outperforms the state-of-the-art classifiers significantly and

achieves a 68:7% F1-score and 49:0% F1-score on the MIDOG and the created mitosis datasets, respectively. Moreover,

the experimental results reveal that the overall proposed MITNET framework detects the nucleus in WSIs with high

detection rates and recognizes the mitotic cells in WSI with high F1-score which leads to the improvement of the accuracy

of pathologists’ decision.

Keywords Nuclei detection � Mitosis classification � Deep learning � Breast cancer � Dataset � Histology �
Image processing

& Huseyin Kusetogullari

huseyin.kusetogullari@bth.se

1 Artificial Intelligence Research Team, ViraSoft Inc., Istanbul,

Turkey

2 Research and Development Team, ViraSoft Inc, Istanbul,

Turkey

3 Department of Computer Science, Blekinge Institute of

Technology, 371 41 Karlskrona, Sweden

4 Pathology Department, Acibadem University Teaching

Hospital, Istanbul, Turkey

5 Internal Medicine Department, Çamlık Hospital, Istanbul,
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1 Introduction

Breast cancer is the most common cancer in women other

than the non-melanoma skin cancer. It is the fourth leading

cause of cancer mortality. To predict the aggressiveness of

the breast cancer, the histological grade is a significant

prognostic factor [28]. It is obtained using Nottingham

Grading System (NGS) by assessing three different tumor

features which are tubule formation, nuclear pleomor-

phism, and mitotic rate [4]. According to the NGS, mitotic

rate provides the strongest prognostic value of these three

features [4, 8]. Hence, mitosis detection and recognition

play an important role, not only in the accurate assessment

of cancer diagnosis and grading but also for predicting the

treatment effectiveness and survival [6]. Besides this,

estimation of mitotic rate depends on the correct identifi-

cation of mitotic nuclei in whole slide images (WSI) [4].

Such identification task is usually performed by patholo-

gists visually, which is tremendously difficult, highly

variable, intensive process, and time-consuming. There-

fore, it is of great importance to develop an automated

computer-aided system for mitosis classification.

To develop an automated computer-aided system, it is

essential to detect nucleus first and then, recognize mitosis

in WSIs accurately. However, this is a challenging task,

since there are various complexities and difficulties which

are (1) differences in staining among the samples from

different laboratories, (2) variable features of slide scan-

ners, (3) inter- and intra-observer variability, (4) divergent

size and shape, and (5) different color features of nuclei

and cells. In order to overcome all these issues, we propose

a new, and efficient deep learning-based framework to

solve the corresponding problem.

1.1 Related work

The detection and enumeration of mitotic cells require two

stages: segmentation and classification [19]. Earlier works

on segmentation mainly focused on three different

approaches: (1) thresholding-based, (2) edge detection

based, and (3) clustering-based segmentation [1]. One of

the well-known and most used thresholding-based methods

is Otsu’s method, and it is a global thresholding-based

algorithm [32]. Region-based cell segmentation and

boundary-based cell segmentation algorithms were sug-

gested by Paul and Mukherjee. The authors also proposed a

method of segmentation based on relative entropy between

cells and their backgrounds with the help of opening and

closing morphological operations [31]. Yang et al. [48]

introduced a watershed algorithm using marker controlling

to segment clustered cells efficiently. Other than morpho-

logical operations and entropy thresholding, contextual

information from the objects in histopathological images

was also used as a method to segment nuclei. Active

contours and level set methods were among the methods

for boundary-based segmentation. Three of the most

common clustering-based algorithms used for segmenta-

tion in biomedical image analysis are k-means clustering,

fuzzy c-means clustering, and Gaussian mixture models

[1]. Most of these earlier works assume similarity in size

and distinguishable color features of different cells. How-

ever, under certain conditions, nuclei enlarge and exhibit

margination of chromatin while prominent nucleoli appear

inside the nuclear boundary [21]. Lack of generalizing

across a broad spectrum of tissue morphologies caused

former methods to fail. Furthermore, handcrafted features

might not be distinctive for the segmentation tasks due to

staining variability in histopathological images. Deep

learning models learn the related features in a hierarchical

manner, which makes models more robust to textural and

color changes in the histopathological images, compared to

traditional methods.

Recently, many machine learning-based methods have

been designed and proposed for mitotic cells detection

within histopathological images [4, 25, 30, 36, 41].

Moreover, several mitoses detection challenges have been

organized: MITOS12 [36], AMIDA13 [36], MITOS14,

[36], and TUPAC16 [36] and these challenges have tackled

gradually more complicated and complex scenarios and

have significantly improved the mitosis detection research.

Note that, even though the complexity increases in these

datasets, there are several issues and limitations that are

explained and discussed in the next section. The obtained

results in these competitions, deep learning methods have

shown great performance to achieve high detection rates of

mitotic cells. Some of the latest algorithms have made use

of deeper [30], wider [50] and cascades of networks [10].

Top performing methods in theses challenge are mostly

based on convolutional neural networks (CNNs)

[11, 20, 30]. According to the results in these challenges,

the computer-aided systems based on deep CNNs are the

top-performing approaches in mitosis detection and clas-

sification, and thus, have become the standard approach for

automatic mitosis detection.

CNNs have proven to outperform traditional techniques

such as conventional image processing methods including

thresholding, region growing, graph cuts, k-means clus-

tering, probabilistic models, active contours, and morpho-

logical operations in nuclei segmentation and mitosis

detection [35, 37]. [11] are the first to utilize a CNN-based

approach, CNN-based deep max-pooling, for mitosis

detection in histopathological images of the breast. Having

achieved an F-score of 0.78, they won the MITOS contest

at ICPR 2012. Ciresan et al. [11] also won the AMIDA

2013 challenge with their Multi-Column Max-Pooling
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CNNs with an F-score of 0.61. The MITOS-ATYPIA-14

challenge had a different winner with a different approach

called the Deep Cascade Network that is very similar to our

proposed method. Chen et al. [9] firstly identified candi-

dates for mitotic figure detection and then subsequent

classification only focused on these candidates. They won

the contest with an F score of 0.356. Xu et al. [47] inte-

grated the SSAE (Stacked Sparse Autoencoder)-based

framework for learning of high-level features associated

with nuclei. An extensive survey of computer-aided

methods for breast cancer diagnostic can be found in

[12, 29].

Considering that a WSI consists of a vast number of

high-power fields and mitoses are sparsely distributed, the

pixel-wise classifier feature of CNN is time-consuming for

mitosis detection when used alone. However, as Chen et al.

[9] stated, a step of defining candidates or region of interest

(ROI) can reduce the detection time and facilitate the use

of the models in practice. Our method applied Scaled-

Yolov4 [44] for the nuclei detection task. ROIs defined by

Scaled-Yolov4, the nuclei of the cells, are used as inputs

for the proposed deep learning-based classification frame-

work for mitosis classification.

1.2 Contribution

This paper presents a new two-stage deep learning frame-

work, named MITNET, to automatically classify mitosis in

WSIs. The proposed framework consists of MITNET-det

for nucleus detection and MITNET-rec for mitosis classi-

fication. In MITNET-det, the scaled-Yolov4 detection

algorithm is used. In MITNET-rec, a new deep learning

classifier is proposed. Moreover, to train and validate the

proposed MITNET deep learning architectures, two new

datasets which are nucleus dataset, and mitosis dataset are

introduced and used (Fig. 1).

The main contributions and strengths of the paper are

summarized as follows:

1. Designing the MITNET framework based on deep

learning network architectures which include MIT-

NET-det and MITNET-rec. The MITNET-det uses

scaled-Yolov4 [44] to detect the nucleus in WSIs of

breast cancer. Moreover, to the best of our knowledge,

this is the first successful attempt at applying scaled-

YOLOv4 [44] to detect nuclei in WSIs. Note that, we

have provided a web server link (http://212.156.134.

202:4481/) where the users can upload images with the

size of 512� 512 and run the proposed approach to

detect nuclei and recognize mitosis cells,

2. Developing a deep learning architecture (MITNET-

rec) based on VGG-11 [34] convolutional neural

network for mitosis recognition,

3. Introducing two new datasets, which provide a large

number of highly diverse, accurate and detailed

annotations of nucleus in patches and extraction of

image samples of mitotic cells. The first dataset is used

to detect nucleus in the WSIs and consists of 139,124

annotated nucleus in 1749 patches from 115 WSIs of

breast cancer, whereas the second one contains 4908

mitotic cells and 4908 non-mitotic cells which is used

for mitoses classification. Moreover, the datasets are

collected by three bio-engineers and two expert

pathologists.

4. Developing a time-saving and cost-effective AI-based

computer-aided system for pathologists and doctors to

effectively and accurately identify the mitoses in WSIs

and thus, they can count the mitoses efficiently.

2 Mitosis recognition challenges
and limitations of existing datasets

Visual assessment of mitotic cells using a light microscope

is a time-consuming and difficult process which depends on

the pathologists’ experience [24]. This is due to the fact

that the pathologists generally must manually extract

morphological features such as apoptotic cells, hyper-

chromatic structures, deformed nuclei and lymphocytes to

distinguish the mitotic and non-mitotic cells in WSIs.

However, due to existence of high complexity and artifacts,

the detection and recognition accuracy is prone to error.

The phases of normal mitosis include prophase, prometa-

phase, metaphase, anaphase, and telophase which have

different morphological variations and, the mitosis

observed in the glass slides can also be in a transition state

between phases. Abnormalities during cell division can

result in morphological appearances that differ from nor-

mal mitosis, called atypical mitosis (e.g., tripolar mitotic

figures) [40]. Morphological features of mitosis and atyp-

ical mitosis need to be distinguished from mitosis-like

figures (non-mitosis) during visual assessment by pathol-

ogists. However, it is often difficult to make this distinction

by pathologists, so various AI-based computer aided sys-

tems have been developed to avoid subjectivity and diffi-

culties in the mitosis detection and recognition process. In

this respect, many competitions have been organized for

automatic mitosis recognition and several mitosis datasets

have been shared with researchers in recent years, e.g., the

MICCAI-TUPAC 16 challenge, [43], ICPR MITOS-

ATYPIA-2014 challenge [33], and MIDOG 2021 [23]. In

addition to the publicly available mitosis datasets, there are

several publicly available nuclei datasets. For instance, a

nuclei dataset from the MoNuSeg (Multi-Organ Nuclei

Segmentation) 2018 challenge [22] and the NuCLS dataset
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[2] are created for the research community to improve the

performance of the AI-based systems. The major defi-

ciency of publicly available nuclei datasets is the absence

of images containing mitosis. Even though these datasets

are crucial in the development of AI models for automatic

nuclei and mitosis detection and recognition, they have

some limitations such as (1) variability of images caused

by the specimen preparation, (2) varying staining process,

(3) WSI quality, (4) lack of available complete (both nuclei

and mitosis) datasets and (5) limited number of samples in

available datasets. Moreover, these datasets have been re-

examined by an expert pathologist who confirmed that

these datasets include false positive mitoses samples (see

Fig. 2). For instance, as shown in Fig. 2, apoptotic figures,

non-mitotic nuclei, blurry and pinkish figures are abun-

dantly available in publicly available datasets. Some fac-

tors such as artifacts due to staining techniques and

digitization by different scanners during the preparation of

WSIs may cause incorrect mitosis annotations. Therefore,

it is essential to create a new dataset from different WSIs to

further develop automated AI-based mitosis detection and

recognition models.

3 In-house dataset collection
and description

To avoid the aforementioned limitations and issues of the

existing datasets as well as increase the accuracy of the

automated AI-based models, we have created a new dataset

which consists of (1) annotated nuclei in patches of WSIs,

and (2) extracted mitosis and non-mitosis image samples

from WSIs. The in-house dataset contains different sizes,

shapes and colors of annotated nucleus on different patches

extracted from WSIs of breast cancer tissue (see Fig. 3). In

addition, since the publicly available mitosis datasets

contain a confined variety of mitotic image samples in

terms of color, size, shape, and variation, a new mitosis

dataset is generated by collecting mitotic and non-mitotic

image samples from WSIs (see Figs. 1 and 4). It is

important to note that to collect the in-house dataset, the

WSIs are scanned by 3DHISTECH scanner at 20� mag-

nification which minimizes the confounding effect of

variance in staining methods and the experience of oper-

ating personnel. On the other hand, MIDOG dataset has

been extracted from WSIs scanned by Hamamatsu XR

nanozoomer 2.0, Hamamatsu S360 and Aperio ScanScope

CS2 scanners, and MITOS-ATYPIA-14 Aperio dataset has

been extracted from WSIs scanned by Aperio Scanscope

XT scanner at 40� magnification.

The annotations of nuclei in the patches and extraction

of mitosis image samples have been carried out manually

by three bioengineers and two expert pathologists in the

field of breast pathology. The in-house dataset consists of

139,124 annotated nuclei in 1749 different patches with the

size of 512� 512 pixels which are extracted from 115

different WSIs with the size of 87; 780� 109; 494 pixels.

Note that, each WSI has been obtained from different

patient. More specifically, 115 WSIs have been obtained

from 115 different patients. The in-house mitosis classifi-

cation dataset is created as a unique dataset that contains

4908 mitotic and 4908 non-mitotic image samples with the

size of 50� 50. We collected these image samples from

214 WSIs which have been obtained from 214 different

Fig. 1 Image samples of mitotic-cells from our in-house dataset
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patients. Due to the variations in quality of images in the

collected dataset, deep learning models cannot be trained

efficiently and effectively. To tackle this problem, a color

normalization technique [42] is used as a data pre-pro-

cessing step to improve the color appearance and contrast

of low-quality histology patches. Afterwards, five different

augmentation techniques including horizontal flip, vertical

flip, mosaic, scaling, and HSV (Hue, Saturation, Value) are

applied to the created nuclei and mitosis datasets to

increase the diversity and amount of the training data for

improving the performance of MITNET framework. After

the augmentations are applied, the nuclei and mitosis

datasets have become five times larger. In the testing part,

the proposed two-stage deep learning framework was

performed on five different WSIs which include 1021

annotated mitotic nuclei and 1021 annotated non-mitotic

nuclei.

4 MITNET: proposed methodology for nuclei
detection and mitosis recognition

The main purpose of this work is to develop an automated

computer-aided system using deep learning techniques for

mitosis classification in the WSI of breast cancer tissue

(users can upload images with the size of 512� 512 and

run the proposed approach on the given web server link

Fig. 2 Illustration of several false positives image samples of the mitotic cells obtained from publicly available datasets, a image samples from

MIDOG 2021 dataset, b image samples from MICCAI-TUPAC 16 dataset, and c image samples from MITOS-ATYPIA-2014 dataset

Fig. 3 Illustration of nuclei image samples from the in-house dataset

a original input image b nuclei mask of the image

Fig. 4 Illustration of mitotic and non-mitotic image samples from the

in-house dataset, a mitotic, b non-mitotic image samples
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http://212.156.134.202:4481/). To achieve it, the afore-

mentioned two datasets have been first created and then,

used to train and validate the proposed deep learning

framework, named MITNET, to detect nucleus and classify

mitosis accurately in WSIs. In the proposed approach, the

nuclei in the histopathological images of the breast tissue

are detected using the MITNET detection approach

(MITNET-det) based on scaled-Yolov4 architecture,

whereas, in the MITNET recognition (MITNET-rec), a

new deep learning architecture is designed and applied to

determine whether the detected nucleus is classified as

mitosis or non-mitosis. In general, flowchart of the pro-

posed mitosis recognition methodology is illustrated in

Fig. 5.

4.1 MITNET-det: nuclei detection in whole slide
images of breast cancer

In the proposed approach, detection of nuclei in WSIs is a

vital prerequisite task for automated mitosis classification.

In this work, to detect nuclei in images, an object detection

algorithm is used. Generally, the-state-of-the-art object

detection algorithms can be classified into three categories:

(1) conventional computer vision based, (2) two-stage deep

learning-based, and (3) single-stage deep learning-based

algorithms. Conventional object-detection methods are

mainly based on sliding window search and handcrafted

features. This approach results in low detection accuracy

and is computationally expensive. In the two-step-ap-

proach, a region proposal architecture is firstly employed to

predict candidate object bounding boxes. After that, a CNN

model is used to extract features from each predicted

candidate box and classify them using regression tech-

nique. Despite the two-step approach shows high detection

accuracy, it is computationally expensive. The last object

detector category applies a single deep CNN model with

regression technique to simultaneously detect and classify

objects in images. Moreover, this approach provides decent

accuracy and has the lowest computational cost when

compared to the other object detection categories. With

regard to the existing one-step algorithms, You Only Look

Once (YOLO) series algorithms have been used in many

different applications and achieved higher mean average

precision (mAP) than the other one-step deep learning-

based detection algorithms.

Fig. 5 Flowchart of the proposed methodology and created datasets employed in developing and validating a two-stage deep learning-based

method to detect nuclei and recognize mitosis in WSIs
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Therefore, in this paper to automatically detect nuclei in

WSIs, a YOLO-based deep learning framework, named

MITNET-det, is used. There are various versions of YOLO

algorithms. Among all the YOLO methods, scaled Yolov4

[5] is one of the most efficient object detection methods

which was developed recently. Chien et al. [44] proposed a

network scaling approach that modifies not only the depth,

width, resolution, but also structure of the network. The

scaled YOLOv4 is composed of three architectures: back-

bone, neck, and head. The backbone architecture aims at

extracting features from input image. To achieve this, the

backbone structure of scaled YOLOv4 uses a convolutional

neural network that combines Darknet53 with Cross Stage

Partial Network (CSPNet) to partition the feature map of

each layer into two parts and then fused them through a

cross-stage hierarchy. The CSPNet allows for more gradi-

ent flow through the network which reduces the amount of

computation and achieves a trade-off between speed and

accuracy [45]. The neck architecture concatenates the

feature maps from different layers of the CSPNet-Dar-

knet53 backbone network and delivers them as inputs to

the head network. To this end, the neck combines CSPNet-

Path Aggregation Network (PAN) with CSPNet-Spatial

Pyramid Pooling (SPP) modules. The CSPNet-SPP net-

work utilizes four different maximum pooling layers to

generate feature maps with different scales, whereas the

CSPNet-PAN uses a shortcut connection to fuse these

feature maps. Finally, the generated three scales feature

maps are fed into the head layer which is similar to

YOLOv3 to predict bounding box, class, and confidence

score. The main principle of the scaled YOLOv4 is to

analyze quantitative costs of various CNN models while

changing image sizes, number of layers, and number of

channels. One other improvement is to increase the number

of stages of the network model to achieve a better accuracy

for predicting larger objects in images. As a result, it is fast

and provides better object detection accuracy. The further

details of the scaled YOLOv4 algorithm can be found in

[44].

Before training the algorithm, five different augmenta-

tion techniques are employed to increase the diversity and

the size of the nuclei dataset. Thus, the performance of the

trained detection algorithm has been further improved.

Furthermore, the scaled-YOLOv4 [44] has been applied to

detect objects in many application areas including remote

sensing [49], natural scene images [26], and many others

[7, 38, 46]. To the best of our knowledge, this study is the

first successful attempt at applying scaled-YOLOv4 to

detection of nuclei in WSIs.

4.2 MITNET-rec: mitosis recognition network
architecture

In the MITNET-rec, a mitosis classifier based on the CNN

is developed and applied to classify the detected nucleus as

mitosis or not-mitosis. Besides of the MITNET-rec, five

different deep learning methods including Resnet50 [16],

Resnet101 [16], Densenet161 [18], efficientnetB0 [39], and

efficientnetB3 [17] are used for comparison purposes. Note

that, all the classifiers used in this work are previously

trained or pre-trained with ImageNet [13] consisting of

over a million images for a wide range of objects. Further

details of the proposed classifier and the compared deep

learning classifiers are explained below:

– Proposed CNN Architecture (MITNET-rec): This

method is designed and developed based on the concept

of VGG-11 CNN model [34]. The proposed mitosis

classifier consists of a number of layers including

convolutional, max-pooling, fully connected (FC) lay-

ers, and softmax layer. The training is performed with

the Stochastic Gradient Descent optimization algorithm

with mini-batches of 4 instances. The proposed CNN

classification architecture consists of eight convolu-

tional layers, four FC layers and a softmax layer. Each

convolutional layer uses 3� 3 filters. The convolution

stride is fixed to 1, and Max-pooling is performed with

a 2� 2 window. Figure 6 shows each step of the

proposed architecture. Of the FC layers, the first three

layers consist of 4096, 2048, and 1024 neurons,

respectively. The last layer performed two-way classi-

fication to classify the detected nuclei as mitotic nuclei

or non-mitotic nuclei. Moreover, Rectified Linear Unit

(ReLU) is applied as an activation function in all layers

of the proposed deep learning model. Besides these,

adaptive average pooling operation is used in the

proposed model and the input images are with the size

of 50� 50 pixels.

– Resnet50 and Resnet101 [16]: Researchers tend to

increase the depth of CNNs in order to improve the

accuracy. However, it has been observed that the

performance degrades. This is because the information

about the gradient passing through many layers can

vanish. He et al. [16] introduced a deep residual

learning framework which explicitly let few stacked

layers fit a residual mapping. They realized such an

algorithm by using skip connections. The skip connec-

tions simply perform identity mapping, and their

outputs are added to the outputs of the stacked layers.

ResNet-34 was the first ResNet architecture inspired by

VGG-19 including skip connections. The creators of

ResNet-34 modified the building block due to the

concerns on training time. They obtained ResNet-50 by
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using a stack of three layers instead of the earlier two

for skip connections. ResNet-101 was constructed by

using more 3-layer blocks.

– Densenet161 [18]: As in ResNet, the key characteristic

of the solution to tackle the vanishing gradient problem

for deeper CNNs to create short paths from early layers

to later layers. Huang et al. [18] distilled this insight

into a simple connectivity pattern. They connected all

layers (with matching feature-map sizes) directly with

each other to ensure maximum information flow

between layers in the network. Densenet concatenates

the output feature maps of a layer with the incoming

feature maps instead of summation like in ResNet.

– EfficientnetB0 and EfficientnetB3 [17, 39]: CNNs are

scaled up for better accuracy by increasing the layers if

more resources are available. Increasing the width and

depth of CNN was usually done manually and

arbitrarily without considering a systematical approach.

Tan and Le [39] proposed a new scaling method that

uniformly scales all dimensions of depth/width/resolu-

tion using a simple yet highly effective compound

coefficient. They scaled up the mobile inverted bottle-

neck convolution (MBConv) as a baseline to obtain a

family of deep learning models, called EfficientNets

[17]. All EfficientNet models are scaled from baseline

EfficientNet-B0 using a different compound coefficient.

5 Experimental results

5.1 Experimental setup

5.1.1 Datasets

In order to understand, evaluate and analyze the perfor-

mance of the proposed classification framework over the

state-of-the-art methods, various datasets such as MIDOG

[27], ATYPIA [3], and the in-house dataset have been used

for mitosis classification. Note that, the publicly available

MIDOG and ATYPIA datasets do not contain nuclei

datasets.

The in-house dataset consists of 139,124 annotated

nuclei in 1749 patches with the size of 512� 512 pixels

extracted from 115 WSIs with the size of 87; 780�
109; 494 pixels. Note that, the 115 WSIs obtained from 115

different patients have been first randomly split into 90%

for training and 10% for validation. After that, the patches

with the size of 512� 512 have been extracted from the

WSIs. Moreover, five different augmentation techniques

are applied to the training annotated set before training the

MITNET-det.

For the mitosis classification task, the in-house mitosis

dataset and two publicly available datasets MIDOG and

ATYPIA are used. The in-house mitosis classification

dataset has 4908 mitotic and 4908 non-mitotic image

samples with the size of 50� 50, whereas the MIDOG

dataset consists of 1721 mitotic and 2714 non-mitotic

samples with the size of 50� 50 collected from 150 pat-

ches, and ATYPIA dataset includes 749 mitotic image

samples with the size of 50� 50 extracted from 1200

patches of WSIs. To generate the in-house mitosis dataset,

214 WSIs which are obtained from 214 different patients

have been used. The WSIs have been first randomly split

into 90% for training and 10% for validation. After that, the

in-house mitosis dataset has been generated from the

training and validation sets. For the MIDOG and ATYPIA

datasets, we used 90% of the image samples for training

and 10% for validation. Moreover, five augmentation

techniques are applied to the mitosis image samples to

increase the diversity and the size of the dataset before

training the proposed classifier MITNET-rec and state-of-

the-art classifiers. In the testing part, to understand and

analyze the performance of the proposed two-stage deep

learning approach and achieve the results, five different

WSIs scanned by a 3DHISTECH scanner at 20� magni-

fication have been used and 1021 mitotic nuclei and are

annotated on these WSIs.

5.1.2 Hyperparameters

The hyperparameter values have been obtained empirically

based on the performance on the validation set in both

Fig. 6 Proposed CNN-based deep learning architecture for mitosis classification
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MITNET-det and MITNET-rec. Besides this, to avoid

overfitting, two different strategies have been considered in

this work. In the first strategy, we focused on training data.

Augmentation techniques have been used to increase the

variety of image samples in the collected dataset. In the

second strategy, we used early stopping and weight decay.

Note that, weight decay adds penalty term to the cost

function in the proposed method to shrink the weights

during back-propagation. The value of the weight decay is

0.0005.

In the MITNET-dec, the parameter values such as initial

learning rate, batch size and epoch are set to 0.01, 16, and

150, respectively. Moreover, to optimize learning rate and

model weights learning rate scheduler (LambdaLR) and

Stochastic Gradient Descent (SGD) are applied. Training is

stopped when there is no change in mAP after 7 consec-

utive epochs. Also, k-means clustering is used to get the

optimal dimensions of anchor boxes in the scaled-

YOLOv4. For classifiers, the learning rate, batch size and

epoch are set to 0.00001, 4, and 100, respectively. The

SGD is used as optimizer to obtain the minimum value of

the cost function. The models are trained and tested on a

computer with a single NVIDIA GTX 3090 GPU, an Intel

i9-8950HK CPU, and 16 GB RAM.

5.2 Performance of nuclei detection method

The first experiment focuses on understanding and ana-

lyzing the performance of the scaled-Yolov4 (MITNET-

det) for nuclei detection by observing the precision and

recall values. To achieve the results, the MITNET-det

model was trained on the augmented annotated nuclei

dataset and validated on the validation nuclei dataset. The

MITNET-det model was evaluated by the mean Average

Precision (mAP). If a predicted bounding box has at least

0.5 Intersection over Union (IoU) with the ground truth

bounding box, the predicted bounding is considered to be a

true positive (TP). An undetected ground truth bounding

box is considered false negative (FN), while a predicted

bounding box that does not match its ground truth

bounding box with at least 0.5 IoU is considered to be a

false positive (FP). TP, FN, and FP are used to calculate

precision and recall values. Figure 7 demonstrates the

precision-recall curve. Moreover, the results show that the

MITNET-det model provides promising performance for

nuclei detection with an mAP of 0.88 at IoU=0.5.

5.3 Comparison of deep learning-based
classifiers on existing mitosis datasets

In the second experiment, a preliminary assessment and

evaluation are conducted on publicly available MIDOG

dataset. To achieve the results, six different deep learning-

based image classifiers which are proposed MITNET-rec,

densenet161, resnet50, resnet 101, efficientnet-B0 and

efficientnet-B3 are applied to classify mitosis and not-mi-

tosis images. More precisely, the compared deep learning-

based classifiers are trained and tested on MIDOG mitosis

dataset. The obtained precision, recall, and F1-score results

are illustrated in Fig. 8. According to the results, the pro-

posed MITNET-rec architecture provides the best perfor-

mance with precision 58:6%, recall 82:9%, and F1-score

68:7%. The second best performance is obtained using

densenet161 with precision 48:6%, recall 77:7%, and F1-

score 59.8, whereas the resnet101 provides the third best

performance with precision 36:8%, recall 73:4% and F1-

Fig. 7 Precision-recall curve of scaled-Yolov4 for nuclei detection on

WSIs

Precission   Recall  F1-Score

Efficientnet-B0

Efficientnet-B3

Resnet50

Resnet101

Densenet161

Proposed

0 20 60 8040
Scores in Percentage

Fig. 8 Performance of deep learning-based classifiers trained and

tested on publicly available MIDOG mitosis dataset
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score 49:1%. The lowest scores belong to the resnet50,

efficientnet-B0 and efficientnet-B3 classifiers. Conse-

quently, the results show that the proposed MITNET-rec

classifier achieves the greatest mitosis classification rate

over the publicly available MIDOG dataset.

5.4 Performance of different deep learning
classifiers on various mitosis datasets

The purpose of this experiment is to understand and ana-

lyze the diversities and similarities of various mitosis

datasets. To achieve it, six different deep learning methods

are used to classify mitosis and not-mitosis in five different

WSIs. Also, three separate cases are considered for eval-

uating and assessing the deep learning classifiers; (case 1)

trained on MIDOG mitosis dataset and tested on our in-

house mitosis dataset, (case 2) trained on ATYPIA mitosis

dataset and tested on our in-house mitosis dataset, (case 3)

trained and tested on our in-house mitosis dataset. The

obtained overall scores on five WSIs and average scores of

the classifiers are tabulated in Tables 1, 2, and 3. Accord-

ing to the results, the lowest precision, recall, and F1-scores

are obtained by classifiers in case 1 and case 2 which

indicate that there are numerous varieties and diversities

between the mitosis image samples in the publicly avail-

able datasets (MIDOG and ATYPIA) and in-house dataset.

More precisely, these low scores reveal that the mitosis

samples in the in-house dataset consists of unique features

and characteristics. Moreover, they are more challenging to

classify by using the deep learning classifiers because the

classifiers generated by the publicly available datasets

cannot accurately classify the mitosis samples in the in-

house dataset. As tabulated in Table 3, the greatest average

precision, recall, and F1-scores are obtained using the

proposed MITNET-rec architecture with the in-house

dataset which are 75:4%, 38:1%, and 49%, respectively.

However, the efficientnet-B0 yields the poorest perfor-

mance with average precision, recall and F1-scores of

36:3%, 30:1%, and 33:4%, respectively. Consequently, the

obtained scores demonstrate that the deep learning classi-

fiers trained on the existing datasets and tested on the

created dataset cannot perform well.

5.5 Performance of the proposed MITNET
framework on whole slide images

The purpose of this experiment is to qualitatively analyze

the efficiency and robustness of the proposed MITNET

framework. Besides this, the MITNET-rec is qualitatively

compared with the densenet161 classifier which provides

the second-best mitosis classification results as shown in

Fig. 8 and Table 3. To achieve it, the augmented and

annotated nuclei dataset has been used to train the MIT-

NET-det, and the augmented mitosis dataset is used to train

Table 1 Performance of deep learning-based classifiers in percentage which are trained on MIDOG dataset and tested on in-house dataset

Image ID Metrics Classifiers

Proposed Densenet161 Resnet50 Resnet101 Efficientnet-B0 Efficientnet-B3

WSI-1 Precision 3.56 1.48 1.24 1.66 0.49 1.02

Recall 38.1 53.9 42.8 38.1 55.5 36.5

F1-score 65.2 2.91 2.42 3.19 0.97 1.98

WSI-2 Precision 13.6 7.21 4.32 5.41 0.98 3.88

Recall 47.5 47.6 42.1 30.1 44.8 50.2

F1-score 21.2 12.5 7.81 9.16 1.92 7.21

WSI-3 Precision 13.9 8.9 9.5 10.5 2.1 6.9

Recall 22.5 47.1 26.4 23.4 23.5 34.5

F1-score 17.2 15.1 14.1 14.6 14.6 11.5

WSI-4 Precision 7.5 3.3 5.2 5.68 0.8 2.8

Recall 28.2 34.1 31.5 30.7 35.8 36.8

F1-score 11.9 6.1 8.9 9.6 1.7 5.2

WSI-5 Precision 1.4 0.8 0.8 0.8 0.08 0.08

Recall 25.5 47.5 40 27.5 27.5 32.5

F1-score 2.7 1.6 1.4 1.5 0.17 1.6

Average Precision 8.04 4.3 4.2 4.8 0.9 3.1

Recall 32.2 46.1 36.4 29.9 41.5 31.6

F1-score 11.9 7.6 6.9 7.6 1.7 5.5
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Table 2 Performance of deep learning-based classifiers in percentage which are trained on ATYPIA dataset and tested on in-house dataset

Image ID Metrics Classifiers

Proposed Densenet161 Resnet50 Resnet101 Efficientnet-B0 Efficientnet-B3

WSI-1 Precision 1.5 0.6 0.4 0.2 0.1 0.2

Recall 24.5 30.1 12.6 35.8 24.5 14.2

F1-score 2.8 1.2 0.7 0.5 0.3 0.6

WSI-2 Precision 4.9 1.3 1.1 0.4 0.6 1.1

Recall 46.4 37.6 32.2 34.4 34.9 33.8

F1-score 8.9 2.5 2.1 0.9 1.3 2.1

WSI-3 Precision 6.2 2.1 4.1 3.1 1.4 1.3

Recall 17.2 19.3 16.2 18.8 17.8 17.1

F1-score 9.1 3.8 6.6 5.3 2.5 2.4

WSI-4 Precision 4.1 1.4 2.2 0.7 0.8 1.9

Recall 28.2 21.8 19.2 22.8 19.2 20.1

F1-score 7.3 2.7 4.1 1.6 1.3 3.5

WSI-5 Precision 1.1 0.2 0.1 0.1 0.2 0.1

Recall 20 17.5 5 25 22.5 20

F1-score 1.9 0.3 0.1 0.2 0.2 0.3

Average Precision 3.5 1.1 1.5 0.9 0.6 0.9

Recall 27.3 25.3 17.1 27.3 23. 21.1

F1-score 6.1 2.1 2.7 1.7 1.1 1.8

Table 3 Performance of deep learning-based classifiers in percentage which are trained and tested on in-house dataset

Image ID Metrics Classifiers

Proposed Densenet161 Resnet50 Resnet101 Efficientnet-B0 Efficientnet-B3

WSI-1 Precision 88 52.4 50 53.7 56.8 51.7

Recall 34.9 34.9 34.9 34.9 39.7 23.8

F1-score 50 41.9 41.1 42.3 46.7 32.6

WSI-2 Precision 79.7 58.8 57.7 45.3 42.9 52

Recall 55.7 54.6 53 53 54.1 49.7

F1-score 65.6 56.6 55.3 48.9 47.8 50.1

WSI-3 Precision 88.9 59.9 69.1 52.5 37.4 59.5

Recall 46.1 41.1 37.4 43.4 45.5 40.1

F1-score 60.7 48.8 48.6 47.6 41.1 47.9

WSI-4 Precision 75.8 49.1 51.2 35.2 30.8 37

Recall 21.2 22.1 17.5 22.7 23.8 21.8

F1-score 31.2 30.5 26.1 27.6 26.8 27.5

WSI-5 Precision 44.8 25.5 30.8 12.5 13.8 15.9

Recall 32.5 32.5 30 27.5 32.5 27.5

F1-score 37.7 28.6 30.4 17.2 19.4 20.2

Average Precision 75.4 49.1 51.8 39.8 36.3 43.2

Recall 38.1 37 34.6 36.3 30.1 32.6

F1-score 49 41.3 40.3 36.7 33.4 35.7
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the MITNET-rec and densenet161 classifiers, respectively.

In testing, the WSIs with the size of 87; 780� 109; 494

pixels are used as input for the proposed framework. In the

system, the smaller patches with the size of 512� 512 are

first automatically extracted from the WSIs. After that, the

MITNET deep learning framework is applied to all pat-

ches. The qualitative results of the proposed MITNET

framework are shown in Fig. 9. The results demonstrate

that the MITNET-det detects the nuclei in the patches and

localize them with boundaries accurately. After that, the

detected and localized nuclei images are center cropped to

50� 50 which are used as input for the classifiers. The

qualitative results indicate that the proposed MITNET-rec

classifier obtains the mitotic cells accurately. In the second

qualitative results as illustrated in Fig. 10, the detected

nuclei in six different patches are used as input for MIT-

NET-rec and densenet161 classifiers. Note that, these pat-

ches are assessed by three bioengineers and two expert

pathologists and the ground truths are shown in Fig. 10.

According to the bioengineers and pathologists, two pat-

ches shown in the first two rows of Fig. 10 do not contain

any mitotic cells. However, the rest of the patches illus-

trated in the last four rows of Fig. 10 consists of a single

mitosis. For the first two image patches, the densenet161

classifies a non-mitotic cell as a mitotic cell, whereas the

proposed MITNET-rec does not find any mitotic cells. The

image patch in the third row of the figure consists of a

single mitosis, and both classifiers successfully classify the

mitotic cell. On the other hand, for the rest of the patches,

the proposed MITNET-rec classifies and localizes the

mitotic cells correctly, but the densenet161 fails and cannot

classify any mitotic cell in these patches. Consequently,

even though densenet161 classifies some mitotic cells

correctly, it has a high false positive rate which increases

complexity for doctors and pathologists.

6 Conclusions

In this paper, a new dataset and a two-stage deep learning

framework named MITNET are introduced. The dataset is

manually collected from different wholes slide images

(WSIs) by three bioengineers and two pathologists. The

dataset consists of: (1) annotated nuclei in patches, (2)

extracted mitosis and not-mitosis image samples. In addi-

tion to generated dataset, MITNET is presented for nuclei

detection (MITNET-det) and mitosis classification (MIT-

NET-rec) in WSIs. The MITNET-det uses scaled-Yolov4

which is trained on the annotated nucleus dataset. The

results demonstrate that the model provides high nuclei

detection rate. In the MITNET-rec, a new deep learning-

based classifier based on VGG-11 is proposed for mitosis

recognition in WSIs. Besides this, in this paper, six dif-

ferent pre-trained deep learning-based classifiers trained on

various mitosis datasets (MIDOG) and tested on in-house

dataset are evaluated and investigated. The obtained results

reveal that the classifiers provide poor recognition perfor-

mance. As a result, the mitosis samples in the in-house

dataset contain unique characteristics and features as

compared to the publicly available mitosis datasets. Fur-

thermore, the proposed MITNET framework is employed

on WSIs, and the results demonstrate that the proposed

framework achieves high detection and classification rates.

Consequently, the proposed MITNET framework provides

a practical and convenient computer-aided system for

helping doctors and pathologists to make their decisions

more accurate and efficient.

Fig. 9 The qualitative results obtained using the proposed framework,

a input patches, b nuclei detection results, c mitosis classification

results
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Fig. 10 Qualitative results,

a ground truth, b proposed

MITNET-rec, c densenet161
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