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Age is the main risk factor for the onset of neurodegenerative diseases. A decline of
mitochondrial function has been observed in several age-dependent neurodegenerative
diseases and may be a major contributing factor in their progression. Recent findings
have shown that mitochondrial fitness is tightly regulated by Ca2 + signals, which
are altered long before the onset of measurable histopathology hallmarks or cognitive
deficits in several neurodegenerative diseases including Alzheimer’s disease (AD), the
most frequent cause of dementia. The transfer of Ca2 + from the endoplasmic reticulum
(ER) to the mitochondria, facilitated by the presence of mitochondria-associated
membranes (MAMs), is essential for several physiological mitochondrial functions such
as respiration. Ca2 + transfer to mitochondria must be finely regulated because
excess Ca2 + will disturb oxidative phosphorylation (OXPHOS), thereby increasing the
generation of reactive oxygen species (ROS) that leads to cellular damage observed in
both aging and neurodegenerative diseases. In addition, excess Ca2 + and ROS trigger
the opening of the mitochondrial transition pore mPTP, leading to loss of mitochondrial
function and cell death. mPTP opening probably increases with age and its activity
has been associated with several neurodegenerative diseases. As Ca2 + seems to be
the initiator of the mitochondrial failure that contributes to the synaptic deficit observed
during aging and neurodegeneration, in this review, we aim to look at current evidence
for mitochondrial dysfunction caused by Ca2 + miscommunication in neuronal models
of neurodegenerative disorders related to aging, with special emphasis on AD.
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INTRODUCTION

In the last century, the population aged over 60 years old has rapidly increased around the world
(Beard et al., 2016). Aging is the major risk factor for many chronic diseases such as cancer, diabetes,
hypertension, and neurodegenerative disorders (Kennedy et al., 2014). In particular, aging has been
correlated with the occurrence of several types of dementia, affecting 5–10% of people over 65, and
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about 50% of people over 85 years old according to the
Alzheimer’s Disease (AD) International (Prince et al., 2015). AD,
the most common and still incurable form of dementia, shares
several similar cellular alterations with brain aging including
mitochondrial dysfunction, oxidative stress, Ca2+ dysregulation,
and impaired proteostasis (Leuner et al., 2007; Kern and Behl,
2009; Rodrigue et al., 2009; Martinez et al., 2017). Most cases
of AD are sporadic (SAD) and characterized by a late onset
of symptoms, such as a decline of intellectual and cognitive
functions and irreversible memory loss as major features. Several
genes have been found to increase the risk of SAD, with the gene
for apolipoprotein E (APOE) being the most studied, specifically,
the polymorphism that produces the ε4 allele of the APOE,
APOE4 variant of the protein (Allen et al., 2012). In addition,
nearly 1% of the cases of AD that are dominantly inherited
present an early development known as familial AD (FAD)
characterized by mutations in presenilin-1 (PS1) and -2 (PS2) or
in the amyloid precursor protein (APP; Sherrington et al., 1995).
Both SAD and FAD are characterized by neuronal cell death and
assumed to be similar to some extent (Hardy and Selkoe, 2002),
but the key events prior to cell death are still unclear.

Mitochondria are central organelles in neuronal physiology
integrating several crucial functions such as cell respiration,
energy metabolism, Ca2+ homeostasis, and reactive oxygen
species (ROS) generation, all of which have been found to
be dysregulated in aging, AD, and other neurodegenerative
disorders such as Parkinson’s disease (PD) and amyotrophic
lateral sclerosis (ALS)/frontotemporal dementia (FTD) disease
(Winklhofer and Haass, 2010; Schon and Przedborski, 2011;
Itoh et al., 2013; Manfredi and Kawamata, 2016). Here we
present an overview of selected findings regarding mitochondrial
dysfunction in neurodegenerative disease and discuss their
potential as therapeutic targets.

ER-MITOCHONDRIA COMMUNICATION
AND CA2+ REGULATION IN
AGE-ASSOCIATED
NEURODEGENERATIVE DISEASES

Communication between organelles allows cells to function and
adapt in a changing cellular environment. The endoplasmic
reticulum (ER) and mitochondria couple at specific sites termed
mitochondria-associated membranes (MAMs), which integrate
and coordinate several cellular functions, including synthesis
and exchange of phospholipid, apoptosis, mitochondrial
dynamics, and Ca2+ signaling (Liu and Zhu, 2017; Figure 1A).
Remarkably, all these processes are affected early during aging,
AD pathogenesis, and other neurodegenerative conditions,
suggesting a role for MAMs in the pathogenesis of these diseases
(De Vos et al., 2012; Hedskog et al., 2013; Gautier et al., 2016;
Area-Gomez et al., 2018). For example, the overexpression
of both wild-type and familial ALS/FTD mutant TDP-43 in
HEK293, CV-1, and NSC34 cell lines reduces ER–mitochondria
associations and Ca2+ exchange between these two organelles
(Stoica et al., 2014; Figure 1C). Likewise, loss of Sigma 1 receptor

(which is responsible for some familial forms of ALS/FTD) has
been shown to interfere with ER–mitochondria associations
(Bernard-Marissal et al., 2015; Figure 1C). Conversely, an
increase in the lipidic enzymatic function of MAMs and their
inter-organelle extension has been described in fibroblasts
from patients with SAD, in human SAD brains, and in AD
mouse models (Area-Gomez et al., 2012; Hedskog et al., 2013).
Remarkably, one of the most common and validated risk
factors for SAD, the presence of APOE4 (Holtzman et al.,
2012), has recently been associated with an increase in the
ER–mitochondrial communication and MAM enzymatic activity
(Tambini et al., 2016; Figure 1B). Furthermore, MAMs are highly
enriched in PS1 and PS2 proteins (Area-Gomez et al., 2009)
which when mutated, as in fibroblasts from patients with FAD,
also increase the lipidic enzymatic function of the MAMs and
ER–mitochondria communication (Area-Gomez et al., 2012),
through a mechanism that involves an interaction between the
mutated form of PS2 and mitofusin-2 (Mfn2; Figure 1B), a key
protein in the formation of MAMs (Filadi et al., 2016).

Conditions that increase or decrease the extension of MAMs
will affect the transfer of Ca2+ from the ER to mitochondria,
resulting in either a mitochondrial Ca2+ overload, or a lack of
Ca2+ . If the transfer of Ca2+ is excessive, cell death occurs
(Schinder et al., 1996). If Ca2+ transfer to mitochondria is
too low, a bioenergetics crisis occurs, also resulting in cell
death (Cardenas et al., 2010). Importantly, Ca2+ is dysregulated
in the aged brain and in AD (Landfield and Pitler, 1984;
Gibson and Peterson, 1987; Khachaturian, 1987). Upregulation
of Ca2+ levels can both initiate and accelerate several AD
features, from amyloid deposition to synapse loss (Stutzmann
et al., 2007). Several mechanisms have been proposed to explain
the upregulation of cytoplasmic Ca2+ levels in AD including
overexpression of the ryanodine receptor (RyR; Chakroborty
et al., 2012), or β-amyloid (Aβ)-triggering release of Ca2+

from both extracellular and intracellular sources (Demuro and
Parker, 2013). Another mechanism involves an increase of
Ca2+ leak from the ER through sensitization of the inositol
1,4,5-trisphosphate receptor (InsP3R) Ca2+ channel by directed
interaction with FAD-linked PS mutants (Cheung et al., 2008,
2010) or indirectly by interaction of FAD-linked PS mutants
with the SERCA pump (Green et al., 2008). In agreement
with the latter, it has been demonstrated that overexpression
of the FAD-linked PS2 mutant leads to an increase in the
generation of cytosolic Ca2+ hot spots, ER–mitochondria
tethering, and mitochondrial Ca2+ uptake (Zampese et al.,
2011). This in turn may result in mitochondrial Ca2+ overload
and could explain the metabolic dysfunction and cell death
observed in AD (Figure 1B). On the other hand, decreasing
intracellular Ca2+ overload, specifically through a reduction
of the InsP3R protein expression by 50%, normalizes FAD
PS-associated Ca2+ signaling and rescues the biochemical,
electrophysiological, and behavioral phenotypes observed in
two different PS1-FAD animal models (Shilling et al., 2014;
Figure 1B). Altogether, the above findings highlight the
importance of MAMs and the transfer of Ca2+ from the ER
to mitochondria in AD pathogenesis and their potential as a
therapeutic target.
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FIGURE 1 | Endoplasmic reticulum and mitochondria interactions under different scenarios. (A) Endoplasmic reticulum–mitochondrial interaction at a proper
distance allows a correct transfer of calcium to the mitochondrial matrix to sustain bioenergetic function. (B) Shortening of the distance at the endoplasmic
reticulum–mitochondrial interaction, or an increase in either the mitochondrial calcium uptake or the calcium release from the endoplasmic reticulum, causes an
exaggerated transfer of calcium to mitochondria affecting its normal bioenergetic function that leads to cell death. (C) Separation of the endoplasmic reticulum and
mitochondria causes a decrease in the calcium transfer to the mitochondrial matrix generating a drop in the bioenergetic and metabolic activity of the mitochondria.

The role of MAMs in aging has just begun to be unveiled.
Similar to what has been observed in AD models, aging increases
the ER to mitochondria Ca2+ transfer in long-term culture of
hippocampal neurons, with correlates with an increase of the
mitochondrial Ca2+ uniporter (MCU; Calvo-Rodriguez et al.,
2016; Figure 1B). Interestingly, a decrease in Ca2+ transfer
to mitochondria and a dissociation of the MAMs have been
described in cardiomyocytes from old mice suggesting that the
type of modification that MAMs undergo with aging might be
cell specific (Fernandez-Sanz et al., 2014).

THE MITOCHONDRIAL PERMEABILITY
TRANSITION PORE (MPTP) FORMATION
IN AGE-ASSOCIATED
NEURODEGENERATIVE DISEASES

Under conditions of Ca2+ and/or ROS overload, formation of
the mitochondrial permeability transition pore (mPTP) takes
place, which corresponds to a non-selective channel formed by
a protein complex spanning the outer and inner mitochondrial

membranes (Bernardi et al., 2006). In physiological conditions,
transient opening of the mPTP can regulate Ca2+ levels
in the mitochondrial matrix (Ichas et al., 1997). However,
dysregulated mPTP opening triggers the release of most matrix
metabolites such as ROS, Ca2+, and NAD + , leading to loss
of the mitochondrial membrane potential, inhibition of oxidative
phosphorylation (OXPHOS), and mitochondrial swelling (Elrod
and Molkentin, 2013; Rottenberg and Hoek, 2017). Even though
several proteins are known to participate in mPTP formation
[anion channel VDAC, adenine nucleotide translocator (ANT),
mitochondrial ATP synthase (F0F1), phosphate carrier (PiC), and
cyclophilin D (CypD; Bernardi et al., 2006; Rao et al., 2014), its
detailed structural configuration is not yet entirely known.

The mPTP has been linked to neurodegeneration in vitro and
in vivo. In neural progenitor cells, Aβ-amyloid exposure leads
to mPTP opening and a decrease in mitochondrial membrane
potential, release of cytochrome C, and cell death (Hou et al.,
2014). In human AD brains, Aβ-amyloid binds CypD in
mitochondria (Du and Yan, 2010), and CypD deficiency improves
mitochondrial function, memory, and learning in an AD mouse
model (Du et al., 2008). Aβ-induced neurotoxicity in vitro was
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also attenuated pharmacologically by inhibition of the mPTP
using cyclosporine A (CsA) on neural stem cells (Chen et al.,
2016). Interestingly, it has been shown that CypD knock-out mice
exhibit delayed axonal degeneration, a common feature of diverse
neurodegenerative diseases (Barrientos et al., 2011; Catenaccio
et al., 2017; Salvadores et al., 2017). Indeed, genetic deletion
of CypD delays disease progression in other mouse models of
neurodegenerative disorders, including ALS (Martin et al., 2009),
PD (Thomas et al., 2012), and multiple sclerosis (Forte et al.,
2007). Therefore, novel compounds that inhibit mPTP opening
are currently been developed, including sanglifehrin A, N-Me-
Ala-6-cyclosporin A, and antmanide (Rao et al., 2014).

Aging also modifies the opening probability of the mPTP
(Rottenberg and Hoek, 2017). During aging, the probability of the
mPTP opening increases due to higher expression levels of CypD
and the CypD-activator p53 (Priami et al., 2015). Furthermore,
the expression of HSP90, a chaperone that binds CypD to
trigger its degradation, is decreased in aged cells (Lam et al.,
2015), which could also increase the mPTP opening probability.
This evidence is further supported by a faster Ca2+ -induced
mitochondrial swelling in purified liver mitochondria obtained
from aged mice (Goodell and Cortopassi, 1998). Interestingly,
CypD is inactivated by the deacetylase SIRT3 (Hafner et al., 2010),
a known modulator of longevity in diverse species (Jasper, 2013).
The reported decline in SIRT3 activity during aging (Brown
et al., 2013) may lead to a greater activation of the mPTP,
underscoring the role of mitochondria in longevity and onset of
age-dependent neurodegenerative diseases. Interestingly, several
modulators of longevity, including metformin, mitochondrial
UPR, and caloric restriction inhibit the activation of the mPTP
(Bhamra et al., 2008; Altieri, 2013; Amigo et al., 2017), and
may contribute to lifespan extension (Rottenberg and Hoek,
2017). A key role for mitochondria in age-related disorders has
been associated to broad damaging events including increased
ROS production and defects in the regulation of intracellular
Ca2+ levels, which are directly associated to mPTP activation
with profound negative consequences for cell survival. Therefore,
mPTP emerges as a potential target for neuroprotection in age-
related neurodegenerative conditions.

MITOCHONDRIA, ROS, AGING, AND
NEURODEGENERATION

Reactive oxygen species are chemical species that are produced
by most cell types. The group of molecules that fulfill the
criteria for ROS includes hydrogen peroxide, and the highly
reactive species superoxide anion and hydroxyl radical (Wilson
et al., 2017). The production of ROS in cells is controlled
by enzymatic or non-enzymatic mechanisms. The main source
for ROS production in terms of quantitative production is
the mitochondria (Holmstrom and Finkel, 2014). Mitochondria
produces superoxide anion, a by-product of the inefficient
transfer of electrons by the electron transport chain (ETC) during
OXPHOS, that is quickly converted into hydrogen peroxide by
the action of the superoxide dismutases 1–3 (SOD1–3; Quinlan
et al., 2013). Of note, despite mitochondria being the main source

of ROS in cells, hydrogen peroxide can be produced by more than
30 different enzymes (Go et al., 2015).

While a huge amount of work in the past focused on the
deleterious roles for ROS species in cells and organisms, including
the “free radical” or “oxidative stress” theory of aging (Harman,
1956) supported by many studies (Harman, 1992; Cadenas and
Davies, 2000; Golden et al., 2002), there is growing evidence in
the last decades that ROS may serve physiological functions (Zuo
et al., 2015; Sies et al., 2017; Wilson et al., 2017). Related to
aging, other studies show that unbalanced ROS production does
not modify lifespan in mice under tightly controlled conditions
(Van Remmen et al., 2003; Ran et al., 2007). Moreover, it was
demonstrated that there is no increased oxidative damage with
age (Barja and Herrero, 2000; Kauppila et al., 2017). Currently, it
has been proposed that adaptive or hormetic production of ROS
is required to maintain several cellular mechanisms including
stem cell proliferation and fate determination in the brain (Sena
and Chandel, 2012; Chaudhari et al., 2014).

In terms of neurodegeneration associated to aging, it has
been reported in AD that the Aβ peptide interacts with
the mitochondrial protein termed amyloid binding alcohol
dehydrogenase (ABAD) in AD mouse models and in post-
mortem samples derived from AD human patients. The
functional consequence of such an interaction is an increase
in ROS production due to abnormal mitochondrial membrane
permeability (Lustbader et al., 2004). Altered OXPHOS increases
the generation of ROS (Koopman et al., 2013) and is indeed
a hallmark for early AD abnormalities in humans. In fact,
samples from human subjects show that mitochondrial-encoded
OXPHOS genes are altered in aging, mild cognitive impairment,
and AD (Mastroeni et al., 2017). Similarly, AD mouse models
have shown that both Aβ and tau protein can induce alterations
in mitochondrial proteins involved in OXPHOS (Caspersen et al.,
2005; Rhein et al., 2009; Eckert et al., 2010), causing an aberrant
ROS generation leading to cellular damage. In addition, ROS
are known to cause mitochondrial fragmentation (Wang et al.,
2014), which reduces mitochondrial performance (Westermann,
2012) favoring the generation of more ROS and cellular damage
associated to it.

MITOCHONDRIAL DYSFUNCTION AND
SYNAPTIC DEFICITS

Synapses are neuronal structures in which mitochondria are
fundamental (Li et al., 2004) by providing large amounts
of ATP required to fuel synaptic vesicle physiology and
by acting as a Ca2+ buffer modulating cytoplasmic Ca2+

signal and hence, neurotransmission (Ghosh and Greenberg,
1995; Verstreken et al., 2005; Gunter and Sheu, 2009; Wan
et al., 2012). Synaptic mitochondria are more vulnerable to
cumulative damage showing impaired Ca2+ uptake capacity
and increased propensity to undergo mPTP compared to non-
synaptic mitochondria (Scheff et al., 2006). Likewise, in an
APP/PS1 AD mouse, synaptic mitochondrial function was
significantly more affected than non-synaptic mitochondria
(Dragicevic et al., 2010). Synaptic deficit is an early event in the
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pathogenesis of several neurodegenerative disorders including
AD and worsens with disease progression and age (Wilcox
et al., 2011). The extent of cognitive decline in AD patients is
tightly associated with the extent of synapse loss in specific brain
regions including cortex and hippocampus (Scheff et al., 2006;
Mattson, 2010). Post-mortem hippocampus from AD patients
shows a considerable decrease in dendritic spine density (Ferrer
et al., 1990) and transgenic mouse models of AD show age-
dependent reduction in spine density before plaque deposition
(Lanz et al., 2003). Along these lines, in aged synapses and
from AD models, a decline in mitochondrial respiration and
signs of mitochondrial damage such as reduced antioxidant
contents and increased oxidative stress markers has been
described (Du et al., 2010; Quiroz-Baez et al., 2013). Proteomic
analysis of aged synaptic mitochondria reveals changes in ETC
proteins, antioxidants, and proteins related to mitochondrial
dynamics (Stauch et al., 2014). Just recently, through the use
of cytoplasmic hybrid (“cybrid”) technology, Yu et al. (2017)
were able to recapitulate mitochondrial structural and functional
changes observed in AD-affected brains. In this model, their
findings demonstrate that AD-affected mitochondria elicited
detrimental effects on synaptic development (Yu et al., 2017).
How ER vesicles found in the synaptic region and the transfer
of Ca2+ contribute to the impairment of mitochondria and
synaptic formation remains to be explored, but given the
dysregulation of Ca2+ observed during aging, AD, and other
neurodegeneration, an important role is expected. Elucidating
the factors that underlie early synaptic dysfunction will be key
to prevent the widespread neurodegeneration associated with
aging.

CONCLUSION

Aging continues to be the most relevant risk factor for AD,
the most common form of dementia in the elderly, and other
neurodegenerative diseases. Both aging and neurodegeneration
are accompanied by a loss in the ability of the cells to adjust
and rewire their metabolic networks to keep a tight balance
between energy production and expenditure in an ever-changing

environment. Mitochondria work as an adaptable metabolic
control, a “rheostat,” that integrates inputs from the intra and
extracellular environment to generate functional outputs that
adjust cell behavior and energy production and consumption.
Several lines of evidence suggest that mitochondrial function
deteriorates with increasing age and the progression of several
neurodegenerative diseases. This supports the notion that aging
and the neurodegenerative diseases such as AD may share
a common root, the failure of the rheostat program. Since
Ca2+ is also altered in both conditions and can either energize
or overload the rheostat depending on the concentration,
understanding how MAM formation is regulated is important.
Identifying the players that participate in the regulation to assure
a proper Ca2+ transfer to mitochondria is critical in order
to determine the real potential of this intracellular signaling
platform as an intervention candidate to improve aging and
hinder the onset of neurodegenerative disease such as AD.
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