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Abstract. Decades of research indicate mitochondria from Alzheimer’s disease (AD) patients differ from those of non-AD
individuals. Initial studies revealed structural differences, and subsequent studies showed functional deficits. Observations of
structure and function changes prompted investigators to consider the consequences, significance, and causes of AD-related
mitochondrial dysfunction. Currently, extensive research argues mitochondria may mediate, drive, or contribute to a variety of
AD pathologies. The perceived significance of these mitochondrial changes continues to grow, and many currently believe AD
mitochondrial dysfunction represents a reasonable therapeutic target. Debate continues over the origin of AD mitochondrial
changes. Some argue amyloid-� (A�) induces AD mitochondrial dysfunction, a view that does not challenge the amyloid
cascade hypothesis and that may in fact help explain that hypothesis. Alternatively, data indicate mitochondrial dysfunction
exists independent of A�, potentially lies upstream of A� deposition, and suggest a primary mitochondrial cascade hypothesis
that assumes mitochondrial pathology hierarchically supersedes A� pathology. Mitochondria, therefore, appear at least to
mediate or possibly even initiate pathologic molecular cascades in AD. This review considers studies and data that inform
this area of AD research.
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INTRODUCTION

Over 40 years ago, electron microscopy (EM) pic-
tures of Alzheimer’s disease (AD) brains revealed
altered mitochondrial infrastructures [1, 2]. Initial
reports, though, offered limited speculation into the
cause or significance of this basic observation. Later
studies confirmed and extended the finding [3, 4]. In
the early 1980 s, fluorodeoxyglucose positron emis-
sion tomography (FDG PET) studies showed brains
from AD patients utilized less glucose than brains
from control subjects [5–8], which piqued inter-
est in a potential metabolism component for this
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disease [9–12]. Investigators subsequently attempted
to explain reduced AD brain glucose utilization.
Proposed hypotheses included impaired blood-brain
barrier glucose transport [13], reduced tissue energy
requirements due to reduced synaptic activity, a
tissue-loss artifact, and lesions of energy metabolism
enzymes [10].

Whether related or not to reduced FDG PET
glucose utilization, around this time and shortly
thereafter, studies in fact did reveal activity defi-
ciencies in several bioenergetic flux-related enzymes.
Some studies noted reductions in glycolysis enzymes
[14]. Initially implicated mitochondria-localized
enzymes included pyruvate dehydrogenase complex
(PDHC) and �-ketoglutarate dehydrogenase com-
plex (KGDHC) [15, 16]. Functional differences from
control subjects were later demonstrated in additional
Krebs cycle enzymes [17].
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A single study from 1987 analyzed oxygen
consumption in brain biopsy homogenates from
dementia subjects [18]. Interestingly, under sub-
maximal conditions oxygen consumption from the
dementia patient homogenates exceeded that of
the control subject homogenates. Mitochondrial
uncoupling in the dementia subject homogenates
potentially contributed to this perhaps unexpected
finding. In contrast, PET, when used to quantify
brain oxygen consumption in vivo, showed decreased
oxygen consumption by AD brains [19, 20]. Consis-
tent with the oxygen consumption PET data, Parker
et al. in 1990 reported reductions in AD subject
cytochrome oxidase (COX) activity [21].

Still, the origin and consequences of these sem-
inal but descriptive observations remained unclear.
An obvious consideration was whether mitochon-
drial or other bioenergetic lesions contributed to
AD, or whether they simply represented a byprod-
uct of the disease. Based on assumptions made by
the amyloid cascade hypothesis, first proposed in the
early 1990 s [22, 23], the latter possibility seemed
more likely. Even when viewed from this perspec-
tive, though, accumulating data from the past two
decades suggest if indeed mitochondrial-bioenergetic
dysfunction represents a byproduct of more funda-
mental AD events, this dysfunction may yet play an
important and possibly relatively upstream role in
mediating AD dysfunction and degeneration. Other
data, though, also argue mitochondrial dysfunction
could represent an independent or perhaps even pri-
mary event in AD.

EVIDENCE OF SECONDARY
MITOCHONDRIAL CASCADES IN AD

Sequential cleavages of the amyloid-� protein pre-
cursor (A�PP) produce a peptide byproduct called
A�. A popular line of AD research argues A�, and
perhaps specifically oligomeric conformations of a
42 amino acid-long A� species, initiates neurode-
generation [24, 25]. Cultured cells maintained in
the presence of A� show reduced electron trans-
port chain enzyme activities [26]. A� also impairs
respiratory chain function in isolated mitochondria
[27–29]. While such data indicate potential important
relationships between A� and mitochondria might
exist, they do not compellingly address the AD-
relevance of an A�-induced mitochondrial lesion,
let alone the presence of a resulting mitochondrial
cascade.

A report from Cardoso et al. more directly assessed
this question [30]. The authors added A� to the
medium of human neuronal NT2 cells, which induced
cell death. They similarly added A� to the medium
of NT2 �0 cells, NT2 cells previously depleted of
their mitochondrial DNA (mtDNA). Because they
lack mtDNA, �0 cells do not produce key respira-
tory chain subunits and are respiration-incompetent.
The A� treatment did not harm the �0 cells. These
studies suggested mitochondria in general, and the
respiratory chain specifically, may mediate A� toxi-
city. This study was perhaps the first to make a case
for a possible A�-induced mitochondrial cascade
in AD.

Subsequently, studies revealed A�PP and A� co-
localize with mitochondria [31–37]. Prominent early
observations came from models that featured an arti-
ficial expression of A�PP, and of A� overproduction.
Because artificial expression or overproduction of a
protein may affect its intracellular targeting, it is rea-
sonable to question the physiologic relevance of these
findings. However, analyses show mitochondria from
AD subject autopsy brains do appear to contain A�
[33, 35, 38, 39].

Research by Yan and colleagues sought to define
how A� located within mitochondria might mediate
mitochondrial dysfunction and result in a down-
stream pathologic cascade. In the first of these studies,
that of Lustbader et al., A� bound a dehydrogenase
protein the authors called the A�-binding alcohol
dehydrogenase (ABAD) [31]. Blocking ABAD-A�
physical interactions mitigated oxidative stress and
apoptosis. In the second study, that of Du et al.,
A� bound cyclophilin D (cypD), a component of
the mitochondrial transition pore. CypD knock-out
reduced oxidative stress and apoptosis, and cypD
knock-out preserved cognitive performance in A�PP
transgenic mice [36]. The results of these studies are
consistent with the possible presence of function-
ally important A�-induced, mitochondria-mediated
pathologic cascades in AD.

A�PP itself contains a reported mitochondrial
targeting motif [40–44]. When A�PP accesses mito-
chondria, it partly passes through the mitochondrial
protein import apparatus, including the translocase
of the outer mitochondrial membrane 40 kilodalton
(TOMM40) protein pore. This passage ultimately
does not complete, due to the presence of an A�PP
acidic domain, and the mitochondrial import-arrested
A�PP both clogs the import infrastructure and pro-
trudes from the mitochondria and into the cytoplasm.
The presence of arrested A�PP in the mitochondria
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(with its associated C-terminal end extended into the
cytosol) reportedly reduces COX activity [40].

Altered calcium homeostasis represents yet
another fundamental physiologic alteration A� can
induce [45, 46]. In both cell and animal experimen-
tal models, A� appears to both enhance the ability
of calcium to access the cytoplasm, and reduce the
cell’s ability to lower its cytosolic calcium levels.
Elevated calcium interferes with mitochondrial func-
tion, which reduces ATP production. An inhibition
of oxidative phosphorylation additionally depolar-
izes mitochondria, which further impairs the ability
of cells to buffer calcium loads. Based on this,
some propose an AD “calcium hypothesis [47].”
Under this scenario, A�-induced changes in cal-
cium homeostasis adversely impact mitochondrial
function, and through this drive other AD-associated
changes in brain function. Disrupted calcium han-
dling, therefore, could represent a mechanism via
which secondary mitochondrial cascades initiated by
A� ultimately drive this disease.

Other studies performed using transgenic mice
designed to model human AD infer a meaningful
role for mitochondrial damage (at least in these
models). For example, Reddy et al. found that in
mice expressing a mutant human A�PP transgene,
an apparent compensatory upregulation of respira-
tory chain enzyme subunits preceded both behavioral
change and A� plaque deposition [48].

Recent reports indicate either A�PP overexpres-
sion or A� exposure affects various aspects of
mitochondrial function [43]. In both A�PP trans-
genic mice and cultured cells treated with A�, the
balance between mitochondrial fission and fusion
shifts in favor of fission [49–52]. Fewer mitochon-
dria also distribute throughout dendrites. Analyses of
brains from AD patients show similar changes [3].
If A� causes these mitochondrial perturbations in
autopsy brains, and these mitochondrial perturbations
in turn contribute to neuron dysfunction or degenera-
tion, they could represent evidence of an A�-induced,
mitochondria-mediated cascade [43, 53]. Figure 1
illustrates potential causes and consequences of a
secondary mitochondrial cascade.

EVIDENCE OF A PRIMARY
MITOCHONDRIAL CASCADE IN AD

Interestingly, some of the more influential discov-
eries of altered energy metabolism enzymes arose
from studies of non-brain tissues, and were later

Fig. 1. Secondary mitochondrial cascade. Secondary mitochon-
drial cascades are compatible with the amyloid cascade hypothesis,
and could mediate A� toxicity. As illustrated, A� can directly
introduce various AD-associated functional changes and patholo-
gies, and directly or indirectly cause mitochondrial dysfunction.
A�-induced mitochondrial dysfunction, in turn, could further con-
tribute to or initiate additional AD-associated functional changes
and pathologies.

subsequently documented in brain parenchyma.
Parker and colleagues first documented lower AD
COX activity in platelets [21]. Blass, Gibson, and
colleagues first showed reduced KGDHC activity in
fibroblasts, and lowered transketolase activity in red
blood cells [16]. Reports from the mid-1980 s noted
altered patterns of glucose and oxygen consumption
in fibroblasts from AD subjects [54, 55].

While biochemical defects in AD brain could
represent a consequence of neurodegeneration, neu-
rodegeneration per se should not directly cause
specific biochemical defects outside the neuro-axis
and in non-degenerating tissues. Other structural
brain changes that could affect energy metabolism,
such as synaptic loss, similarly should not directly
cause non-neural biochemical defects. A�PP or A�
could perhaps drive biochemical changes in differ-
ent tissues provided their expression and production
occurs in those tissues. To this point, A�PP does
appear outside of the brain, but expresses as different
isoforms. A� also exists in multiple tissues outside
of the brain, including blood vessels, skin, subcu-
taneous tissues, intestine, and muscle [56]. To what
extent peripheral processing of A�PP to A� occurs
locally, or whether A� simply exports to these tissues,
remains unknown although it increasingly appears
that some tissues do locally generate A�. Two exam-
ples include muscle and platelets [57–59].
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The presence of distinct, definable biochemical
features outside the brains of AD subjects and within
multiple tissues suggests at a biochemical level, AD
is not a brain-limited process or event. At the very
least, it is hard to see how a single, stochastic A�
oligomerization-aggregation event occurring within
the brain could alter either A�PP homeostasis or
energy metabolism across multiple tissues. Even
if altered A� homeostasis does contribute to non-
brain bioenergetic or mitochondrial features seen in
AD subjects, the question of why A� homeosta-
sis itself changes across multiple tissues warrants
consideration.

An alternative possibility is that altered energy
metabolism in AD subjects exists independently of
A�PP or A�, and that altered energy metabolism
drives changes in A�PP and A� homeostasis. Exist-
ing data support this possibility. In cell culture
experiments, Gabuzda et al. found COX inhibition
shifts A�PP processing toward the amyloido-
genic pathway that ultimately produces A� [60].
Mitochondria-generated reactive oxygen species may
play a particularly important role in shifting A�PP
processing to A� [61]. Other cell culture studies sug-
gest interfering with cell bioenergetics shifts A�PP
processing away from its non-amyloidogenic path-
way, and presumably towards the amyloidogenic
pathway [62, 63].

One study found transgenic mice that concurrently
expressed a mutant human A�PP gene and proof
reading-defective mtDNA polymerase � (mtPOLG)
showed enhanced A� plaque deposition [64]. Due
to the presence of the mutated mtPOLG transgene,
these mice acquire excess somatic mtDNA muta-
tions and mitochondrial dysfunction [65, 66]. This
finding links mitochondrial dysfunction to plaque
deposition. Other studies performed using AD mouse
models report similar links, although the direction
of the relationship differed. Moraes and colleagues
previously reported, in two studies using different
approaches, that interfering with respiratory chain
assembly actually reduces A� plaque deposition
[67, 68]. In one case, the authors induced mitochon-
drial dysfunction through targeted knockout of the
gene for COX10, which encodes a farnesyltrans-
ferase required for COX assembly. In the other,
they expressed a mitochondria-targeted restriction
enzyme that cleaves mtDNA. It is unclear why
driving mitochondrial dysfunction through different
approaches produced either increased or decreased
plaque deposition. Most likely, methodologic fac-
tors are relevant. In the Moraes group studies, the

mice produced less respiratory chain infrastructure,
and with mtPOLG driving mitochondrial dysfunction
aberrant rather than less respiratory chain infrastruc-
ture likely resulted. Other potential factors could
include differential effects on cell unfolded protein
responses. Regardless, studies such as these link
mitochondria to plaque deposition.

In another study, Scheffler et al. used a selective
breeding strategy to create A�PP transgenic mice that
varied primarily in the origin of their mitochondria
[69]. More specifically, the authors created mice that
contained mitochondria from different mouse strains.
Ultimately, the various groups of mice differed only
in their mtDNA sequences. This study reflected two
previous studies performed in cytoplasmic hybrid
(cybrid) cell lines, in which the investigators gen-
erated human cell lines containing mtDNA from
different individuals [70, 71]. Both studies created a
group of cybrid lines in which the mtDNA came from
individuals with AD, and a group of cybrid lines in
which the mtDNA came from age-matched, control
subjects. In each case, the cybrid lines that contained
the mtDNA form the AD subjects produced (or at
least retained) more A�.

The use of cybrid cell lines that contain mtDNA
from AD subjects, herein referred to as “AD cybrids,”
warrants additional consideration. Cybrid studies in
general are consistent with the presence of a primary
mitochondrial cascade in AD. AD cybrid cell lines
were first created in the 1990 s to address the spe-
cific question of whether mtDNA contributes to lower
platelet COX activity in AD subjects [72, 73]. First,
the investigators removed the endogenous mtDNA
from human neuronal cell lines, either the SH-SY5Y
neuroblastoma cell line or the NT2 teratocarcinoma
cell line, thereby creating SH-SY5Y and NT2 �0 cell
lines [73–75]. Next, they isolated platelets from blood
samples taken from subjects with and without AD.
Briefly maintaining platelets from individual subjects
with �0 cells in the presence of a detergent allows for
the mixing of platelet and �0 cell cytoplasms. Select-
ing specifically for cells that contain a �0 cell nucleus
and platelet mitochondria results in the isolation of a
unique cybrid line. Because the nuclear component
of cybrid cell lines prepared using a particular �0
cell line is similar if not identical, different cybrid
cell lines generally contain the same nuclear DNA
[76]. As for components transferred from platelets,
the only component that can perpetuate over time
is the mtDNA that is contained within the platelet
mitochondria. As the cells divide, all other platelet-
derived components degrade and dilute. Ultimately,
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the most fundamental difference between different
cybrid cell lines prepared on the same nuclear back-
ground is their mtDNA sequence. The transfer of
platelet mitochondria, and the mtDNA they contain,
to �0 cells to create cybrid cells restores the abil-
ity of the former �0 cells to respire. In this case,
the respiratory chains of the cybrid cells jointly con-
sists of subunits encoded from the nuclear DNA of
the original cell line nucleus and the mtDNA from
the particular platelet donor [76]. Between cybrid
cell lines prepared on the same nuclear background,
the nuclear DNA-encoded respiratory chain sub-
units are presumably identical. The mtDNA-encoded
respiratory chain subunits, though, differ because
mtDNA sequences vary between individuals. Differ-
ences between mtDNA sequences affect respiratory
chain function, so that cybrid cell lines containing
mtDNA from different donors vary in terms of res-
piratory function. This in turn leads to differences in
mitochondrial function, which mediates effects on a
variety of cell characteristics.

Studies generally report that although COX activ-
ities between individual cybrid cell lines prepared
from AD or control subject platelets do overlap,
mean COX activity in groups of AD cybrids is
lower than that of the comparative control groups
[72, 73, 77–79]. In these experiments, a transfer
of A�PP or A� is much less likely to drive the
observed lower mean COX activity. Rather, cybrid
data indicate mtDNA at least partly accounts for the
observed reduction in AD subject platelet mitochon-
dria COX activity. The magnitude of the difference
between COX activity means varies between studies,
but generally reflects a 15–40% activity reduction
[80]. Methodologic differences likely contribute to
this range.

Importantly, differences between AD and con-
trol cybrid lines are not limited to COX activity.
While values among AD and control lines gener-
ally overlap for measured parameters, mean values
for a given group of AD cybrid lines occasionally
are higher or lower than their comparative control
group cybrid lines [70–73, 77–79, 81–97]. Increased
parameters include markers of oxidative stress,
A� production, stress pathway activation, NFκB
activation, apoptotic signaling, and mitochondrial fis-
sion. Decreased parameters include mitochondrial
membrane potential, ATP levels, oxygen consump-
tion, glycolysis flux, calcium homeostasis, and
peroxisome proliferator-activated receptor � related
complex � (PGC1�). These differences tend to reca-
pitulate features observed in studies of brains from

Fig. 2. Primary mitochondrial cascade. A primary mitochondrial
cascade is incompatible with the amyloid cascade hypothesis.
Under this scenario, impaired mitochondrial function and asso-
ciated bioenergetic changes alter A� homeostasis and lead to an
accumulation of A�. A� may or may not in turn contribute to
the development of other AD-associated functional changes and
pathologies.

AD subjects. Because the only consistent difference
between cybrid lines of AD and control groups is
whether the mtDNA they contain originated from
AD versus control subjects, and the mtDNA within
the cybrid lines derived from a non-brain, non-
degenerating tissue, and it is not clear how transferred
A�PP or A� could account for the observed biochem-
ical and molecular changes, cybrid data support the
presence of a primary mitochondrial cascade in AD
(Fig. 2).

The “mitochondrial cascade hypothesis” repre-
sents one formal attempt to explain how mitochondria
may serve as the primary generator of AD [98–101].
This mitochondrial cascade hypothesis incorporates
data from genetic, biochemical, molecular, cell
biology, animal, clinical endophenotype, and epi-
demiologic studies. Also, as mitochondrial function
generally declines during aging [102], it tries to
bridge AD and aging research by providing a plat-
form that potentially explains why advancing age
represents the single greatest AD risk factor [103].
It is important to note various versions of this general
postulate exist, and that some of these versions sim-
ilarly identify a role for mtDNA, be it in the form of
acquired, somatic mtDNA mutations or in the form of
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inherited variants [21, 104, 105]. The mitochondrial
cascade hypothesis, with the intent of acknowledg-
ing data that support both views, proposes inherited
mtDNA variants influence mitochondrial function
and aging, and in the brain somatic mtDNA mutations
that influence mitochondrial function accumulate
with advancing age.

ASSUMPTIONS AND LIMITATIONS OF
THE (PRIMARY) MITOCHONDRIAL
CASCADE HYPOTHESIS

A primary mitochondrial cascade hypothesis nei-
ther depends on nor addresses the question of whether
A�, in any of its forms, contributes to AD dysfunc-
tion or degeneration. Rather, it infers mitochondrial
function or cell bioenergetic states meaningfully
alter either A�PP production, intracellular A�PP tar-
geting, processing of A�PP to A� monomers, the
formation of A� oligomers or fibrils, or the removal of
A�. Toxic or non-toxic amyloid cascades may exist,
but if so, they are secondary events.

Similarly, a primary mitochondrial cascade
hypothesis neither depends on nor addresses the
question of whether aggregation of tau protein
into tangles, or the presence of tau tangles
themselves, contributes to AD dysfunction or degen-
eration. Instead, it infers mitochondrial function or
cell bioenergetic states meaningfully alter either
tau production, intracellular targeting, processing,
post-translational modification, oligomer or fibril for-
mation, or removal. Tangles or other tau protein
derivatives may or may not function in a toxic
fashion, but if they do, it represents a secondary
event.

Undoubtedly, in the neurodegenerative disease
field protein aggregation and mitochondrial dys-
function commonly occur. Existing literature does
not resolve whether one of these pathologies con-
sistently drives the other. It is nevertheless worth
mentioning new reports that indicate on a funda-
mental level, bioenergetic states and mitochondria
profoundly influence protein aggregation. In one
study, Patel et al. showed that ATP functions as a
“hydrotrope” [106, 107]. Essentially, its hydropho-
bic nucleotide portion associates with hydrophobic
protein segments, while its hydrophilic phosphate
group maintains the complex in a soluble state. At
physiologic ATP concentrations, its hydrotrope prop-
erties prevent proteins that tend to self-aggregate
from self-aggregating. As ATP concentrations fall

to intermediate levels, this hydrotrope effect weak-
ens and oligomers form. As ATP levels fall to low
levels, fibrils then begin to assemble. In another
study, Ruan et al. showed that mitochondria act as
a sink for aggregation-prone proteins, and mitochon-
drial proteases degrade those proteins following their
importation [108]. A loss of this “mitochondria as
guardian in cytosol” (MAGIC; a term used by the
authors to describe this phenomenon) function could
in general promote protein aggregation.

When it comes to MAGIC, though, it is also con-
ceivable that a primary protein overload may drive
mitochondrial dysfunction, and through this insti-
gate a secondary mitochondrial cascade. This could
prove especially pertinent to cases of AD that occur
in the presence of deterministic A�PP, presenilin 1
(PSEN1), or presenilin 2 (PSEN2) gene mutations.
It is therefore possible that some of what we now
consider AD arises through a primary mitochondrial
cascade, while some of what we now consider AD
essentially involves a secondary mitochondrial cas-
cade.

It is still possible that mitochondrial cascades
(either as primary or secondary events) are in fact
not important in AD. If so, it would imply that
observed differences between mitochondria from AD
and non-AD brains constitute a disease-associated
but non-contributing biomarker of the responsible
process, or an end-stage artifact of the respon-
sible process. It is more difficult to account for
non-brain differences in mitochondria and mito-
chondrial function, but potential explanations are
still possible. For example, a genetic parameter
that influences AD risk could lead to a physiolog-
ically diffuse yet unrelated change in mitochondria
or their function. APOE or perhaps TOMM40
genotypes could to some extent conceivably medi-
ate such a phenomenon [109–112]. Similarly, over
the course of many years a lifestyle characteris-
tic could lead to a diffuse yet unrelated change to
mitochondria.

Despite these caveats, extensive literature does
reveal mitochondria from AD subjects (i.e., the cybrid
literature) or inducing mitochondrial dysfunction
recapitulates a number of AD-associated molecu-
lar events. Mitochondria also undoubtedly critically
contribute to an array of cell processes, including
oxidative stress, calcium homeostasis, and cell death.
These factors would seem to argue anatomically
widespread changes to mitochondrial function in
AD subjects represent more than simply coincidental
events or disease artifacts.
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IMPLICATIONS FOR THE TEMPORAL
AND SPATIAL POSITIONING OF AD
BIOMARKERS

Investigators currently use specific cerebrospinal
fluid (CSF) and neuroimaging-derived biomarkers to
document transitions within the brain, and to link
those transitions to AD. These include measurements
of CSF A� and tau protein, PET-based visualiza-
tion of fibrillar A� and tau, and magnetic resonance
imaging-inferred reductions in hippocampal volume.
It is possible to temporally order these biomarker
changes [113, 114]. Initial shifts occur in the A�
measurements, which manifest as decreased CSF A�
(particularly A�42) or as an arbitrarily defined, supra-
threshold accumulation of parenchymal A� plaques.
Next, CSF tau levels fall, and parenchymal, fibril-
lar tau accumulations start to extend beyond the
medial temporal lobes. After this, hippocampal vol-
umes shrink and shortly thereafter performance on
cognitive tests typically falls below expectations.

This temporal ordering is consistent with the idea
of a primary amyloid cascade, but relevant studies
also contribute data that are harder to incorporate. For
example, A� plaque deposition typically precedes
cognitive decline by 1–3 decades [113–118]. This
suggests A�-induced physiologic damage lags sub-
stantially behind its physical deposition, and infers
A� toxicity is at most subtle. In response to this,
some now speculate A� itself is insufficient to cause
the disease, but instead initiates AD by triggering a
critical change in tau biology [114, 119, 120]. This
change in tau biology, either by itself or by working
in conjunction with A� (more specifically oligomers
of A�42), ultimately destroys the hippocampus and
causes cognitive decline. On a conceptual level, this
possibility would not rule out the presence of a sec-
ondary mitochondrial cascade.

This temporal scheme emphasizes biomarker
changes investigators can detect over the course
of a longitudinal study, or by analyzing different
cross-sectional studies. Some studies, though, sug-
gest when it comes to predicting or at least monitoring
AD risk, particular AD-relevant biomarkers poten-
tially predate low A� CSF levels or A� plaque
deposits [121]. In one relevant study, investigators
analyzed diary entries from young nuns (written
mostly at the beginning of their third decade) for idea
density and grammatical complexity [122]. Nuns who
wrote with lower idea density were more likely to
develop AD in old age. In another study, individu-
als who reached their highest level of employment

in their third or fourth decade were subsequently
more likely to develop AD than individuals who
continued to advance through employment hierar-
chies [123]. The authors speculated in this case,
a relative premature peaking in one’s employment
trajectory could possibly reflect a manifestation of
incipient AD. Additional biomarker studies report
similar findings and further suggest mitochondrial
function or energy metabolism could constitute a
relevant factor. Middle-aged individuals with an
increased lifetime AD risk, as defined by the pres-
ence of an APOE4 allele or a maternal family history
(a marker of mtDNA inheritance) of the disease,
are more likely to demonstrate AD-like changes on
FDG PET scans [124–126]. As a group, middle-
aged people with AD-affected mothers also have
reduced (relative to middle-aged individuals with-
out an AD-affected mother) platelet mitochondria
COX activity and exhibit brain regions with reduced
volumes [127–132]. Middle-aged children of AD
mothers who also carry an APOE4 allele perform
relatively less well on memory testing [133]. Other
similarly structured studies using different biomarker
measurements show essentially consistent findings
[134–138]. These data suggest when it comes to
brain aging and AD, inherited or acquired energy
metabolism parameters could predate A� changes.
Results from at least one direct biochemical study of
brain tissue are consistent with these findings from
living subjects [139]. On a conceptual level, this is
compatible with the presence of a primary mitochon-
drial cascade (Fig. 3).

Biomarker spatial distributions also warrant con-
sideration. Within the brain, A� plaque and tau tangle
deposition follow predictable anatomical patterns.
Initially, plaques occur predominantly within the
brain’s default mode network, a region that features
high levels of aerobic glycolysis [140]. A secondary
mitochondrial cascade would infer that A� causes
aerobic glycolysis in this region, while a primary
mitochondrial cascade would infer aerobic glycoly-
sis in some way enhances A� deposition. Similarly,
a secondary mitochondrial cascade would infer that
outside the brain, brain-derived A� causes changes to
mitochondrial function [80] and calcium homeosta-
sis [141–143], while a primary mitochondrial cascade
would infer those changes arise independent of A�,
and perhaps drive local A� deposition [70, 72].

Ultimately, the cascades that drive AD biomark-
ers will influence how we define this disease. If a
primary amyloid cascade drives AD, then persons
who lack an AD clinical phenotype but have amyloid
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Fig. 3. Could mitochondrial function influence recognized AD
biomarker changes? Studies that track dynamic biomarker shifts
suggest changes in A� (lower CSF levels or plaque accumula-
tion) precede tau changes (lower CSF tau or tangle accumulation
beyond the medial temporal regions). Reductions in brain vol-
ume (hippocampal volumes) follow A� and tau changes. Declining
memory abilities and dementia eventually occur. Additional data,
though, suggest metabolism-relevant characteristics may distin-
guish high AD risk individual from low AD risk individuals before
detectable A� changes occur. Mitochondrial function also changes
with advancing age. It is reasonable to consider whether mitochon-
dria define thresholds at which these biomarker changes begin to
manifest.

plaques may arguably have AD; a current construct
refers to this state as “preclinical AD” [144]. Fur-
ther, those with AD phenotypes that lack amyloid
plaques and an obvious alternative clinical diagnosis
arguably do not have AD; a current construct refers
to this state as “suspected non-Alzheimer pathology”
(SNAP) [145]. Conversely, if a primary mitochon-
drial cascade drives AD, then the presence of plaques
would essentially function as a biomarker (rather than
a cause) of changing brain bioenergetics. Those with
a primary energy metabolism failure, a typical AD
phenotype, but not plaques could thus potentially
represent “plaque-negative” AD cases.

IMPLICATIONS FOR THERAPEUTIC
DEVELOPMENT

Mitochondrial and amyloid cascades could co-
exist. A secondary mitochondrial cascade may
mediate damage caused by a primary amyloid
cascade, or amyloid produced as part of a pri-
mary mitochondrial cascade could itself cause harm.
Therapies targeting A� may ultimately reveal the
extent to which A� contributes to AD. If these
approaches robustly benefit AD patients, then A�
likely plays a substantial and potentially proximal
role. If A� toxicity plays a minimal or downstream
role, such approaches will probably confer at best
minimal benefits. Clinical efficacy would not rule out,
though, the concomitant presence of a mitochondrial

cascade. Obviously, if a primary amyloid cascade
drives AD by inducing a secondary mitochondrial
cascade, then eliminating A� would in general
help to prevent the secondary mitochondrial cas-
cade. AD investigators who believe in a secondary
mitochondrial cascade are meanwhile also devel-
oping interventions that would ideally interrupt
very specific parts of an A�-dependent mito-
chondrial cascade. Some efforts include deploying
small molecule inhibitors of previously documented
A�-mitochondria interactions [37, 146]. Other inter-
ventions currently in development intend to block
A�-induced changes in mitochondrial physiology.
Preventing an A�-induced increase in mitochondrial
fission represents one such approach [147].

Addressing a primary mitochondrial cascade may
require unique strategies. These strategies could
focus on preventing age-related declines in mitochon-
drial function, for example through exercise or diet.
Pharmacologic manipulations that enhance aerobic
or other aspects of mitochondrial function, or over-
all cell bioenergetics, could prove beneficial [148].
Proposed interventions include the use of molecules
that can enhance bioenergetic fluxes or increase mito-
chondrial mass [149].

CONCLUSIONS

AD features mitochondrial and bioenergetic alter-
ations that could contribute to the development
or progression of the disease. Upstream patholo-
gies, including A�, may influence mitochondrial
and bioenergetic function, and thereby initiate a
secondary mitochondrial cascade. Alternatively, a
primary mitochondrial cascade might represent a
proximal cause of many AD cases, and directly
perturb vital brain functions or introduce other
pathologies that secondarily disrupt normal brain
physiology and cause neurodegeneration.

Data support the possibility of both primary and
secondary mitochondrial cascades in AD. The pres-
ence of a secondary mitochondrial cascade does not
contradict, and is consistent with, the potential pres-
ence of a primary amyloid cascade. The presence of
mitochondrial changes outside of the brain in AD, the
fact that A� plaques deposit in brain regions defined
by specific bioenergetic conditions, that mitochon-
drial and bioenergetic changes seem to temporally
precede detectable changes in A� homeostasis, and
the ability of mitochondrial dysfunction to affect a
variety of AD-associated pathologies argue in favor
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of a primary mitochondrial cascade. Regardless of
which view is correct, both primary and secondary
mitochondrial cascades currently represent reason-
able AD therapeutic targets.
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