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Abstract. Mitochondrial dysfunction represents a well-established player in the pathogenesis of both monogenic and idio-
pathic Parkinson’s disease (PD). Initially originating from the observation that mitochondrial toxins cause PD, findings from
genetic PD supported a contribution of mitochondrial dysfunction to the disease. Here, proteins encoded by the autosomal
recessively inherited PD genes Parkin, PTEN-induced kinase 1 (PINK1), and DJ-1 are involved in mitochondrial path-
ways. Additional evidence for mitochondrial dysfunction stems from models of autosomal-dominant PD due to mutations in
alpha-synuclein (SNCA) and leucine-rich repeat kinase 2 (LRRK2). Moreover, patients harboring alterations in mitochondrial
polymerase gamma (POLG) often exhibit signs of parkinsonism. While some molecular studies suggest that mitochondrial
dysfunction is a primary event in PD, others speculate that it is the result of impaired mitochondrial clearance. Most recent
research even implicated damage-associated molecular patterns released from non-degraded mitochondria in neuroinflamma-
tory processes in PD. Here, we summarize the manifold literature dealing with mitochondria in the context of PD. Moreover,
in light of recent advances in the field of personalized medicine, patient stratification according to the degree of mitochondrial
impairment followed by mitochondrial enhancement therapy may hold potential for at least a subset of genetic and idiopathic
PD cases. Thus, in the second part of this review, we discuss therapeutic approaches targeting mitochondrial dysfunction
with the aim to prevent or delay neurodegeneration in PD.
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INTRODUCTION25

The prevalence of Parkinson’s disease (PD) has26

more than doubled over the last two decades, mak-27

ing it the fastest growing of all neurological diseases
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[1]. Despite significant advances in deciphering the 28

pathophysiology of PD [2], the etiology remains elu- 29

sive for the majority of cases. 30

On the cellular level, an involvement of oxida- 31

tive stress, lysosomal and mitochondrial dysfunction 32

has been implicated in the pathophysiology of PD 33

[3]. The first evidence that alterations in mito- 34

chondrial function may play a decisive role in the 35

pathogenesis of PD date back to the 1980s, when 36

mitochondrial toxins were reported to cause dopa- 37

responsive parkinsonism [4]. Subsequently, findings 38
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from PD genetics supported the link between mito-39

chondria and PD [5]. Here, it has been shown40

that mutated genes causing monogenic PD encode41

proteins involved in mitochondrial function and42

degradation of damaged mitochondria. This review43

aims to 1) discuss the origin of the link between44

PD and mitochondria, 2) summarize how pathogenic45

variants in the PD genes Parkin, PTEN-induced46

kinase 1 (PINK1) and DJ-1 as well as parkinsonism-47

associated mutations in mitochondrial Polymerase48

gamma (POLG) cause mitochondrial impairment,49

and 3) present how oxidative stress leads to mitochon-50

drial DNA (mtDNA) disintegration in PD. Moreover,51

4) we illustrate how mitochondrial damage may cause52

inflammation in the context of PD. Additionally, 5)53

we summarize the interaction between mitochondrial54

and lysosomal pathways as well as the endoplasmic55

reticulum (ER) with a focus on calcium homeosta-56

sis. Finally, 6) we discuss resulting implications for57

genetic testing and highlight possible therapeutic58

approaches arising from a potential mitochondrial59

subtype of PD.60

ORIGINS OF THE LINK BETWEEN61

MITOCHONDRIA AND PD62

First, the so-called “frozen addicts” suggested63

a contribution of mitochondrial dysfunction to the64

pathogenesis of PD. In these drug users, living in65

California in the 1980s, physicians observed that66

a side product of new synthetic heroin triggered67

a rapid onset of a distinct form of parkinson-68

ism responsive to levodopa treatment. It turned69

out that the synthesis process resulted in the70

unwanted generation of 1-methyl-4-phenyl-1,2,5,6-71

tetrahydropyridine (MPTP), which led to inhibition72

of the respiratory chain [4]. Of note, a similar obser-73

vation was published already four years earlier [6].74

MPTP is not toxic itself but lipophilic and thus able75

to enter brain tissue by crossing the blood brain76

barrier. In the brain, it is processed by monoamine77

oxidase B (MAO-B) [7] to the toxic cation 1-methyl-78

4-phenylpyridinium (MPP+) [8]. MPP+is selectively79

taken up by dopaminergic cells [9] and inhibits mul-80

tiple complexes of the respiratory chain [3, 10]. The81

notion that mitochondrial dysfunction plays a role82

in PD pathogenesis was supported shortly after the83

description of the “frozen addicts” by the observation84

of a restricted function of respiratory chain com-85

plexes in postmortem brain sections from PD patients86

[11]. These early findings significantly stimulated PD87

research in the following years. For example, even 88

today, the injection of MPTP is most commonly used 89

to model PD in mice [12]. However, similar to other 90

animal models of PD, the clinical and pathological 91

characteristics simulated by the MPTP model differ 92

from PD in many ways [13]. 93

Disturbances in respiratory chain complexes are 94

associated with the generation of reactive oxy- 95

gen species (ROS) suggesting oxidative stress as a 96

pathogenic mechanism in PD related to mitochon- 97

drial dysfunction. Highlighting the role of ROS, 98

evidence has arisen that oxidative stress is linked 99

to dopamine metabolism [14]. Later in the present 100

review, we will particularly focus on the aspect of 101

oxidative stress and mtDNA disintegration. 102

MONOGENIC PD AND MITOCHONDRIAL 103

DYSFUNCTION 104

Over the past two decades, intensive research 105

has resulted in significant progress regarding the 106

elucidation of monogenic causes of PD. After the 107

initial description of pathogenic variants in the alpha- 108

synuclein gene (SNCA) as of cause PD in 1997 [15], 109

several genes have been identified that are associ- 110

ated with the development of PD signs resembling 111

those of idiopathic PD. These genetic alterations are 112

considered as disease-causing or as genetic risk fac- 113

tors. In particular, the autosomal dominantly inherited 114

genes SNCA, Leucine-rich repeat kinase 2 (LRRK2), 115

and Vacuolar protein sorting-associated protein 35 116

(VPS35) [16] and the autosomal recessively trans- 117

mitted genes Parkin, PINK1 and DJ-1 are both well 118

established and validated to cause PD when mutated 119

[17]. In addition, a number of genes have been shown 120

to cause atypical parkinsonism [18]. 121

In the context of autosomal dominantly inherited 122

PD, several links to mitochondrial dysfunction have 123

been described in the past decade. For instance, the 124

protein encoded by the first PD-linked gene SNCA 125

is a component of Lewy bodies [19], which were 126

recently also identified to contain organelles includ- 127

ing mitochondria [20]. Alpha-synuclein has been 128

shown to accumulate in mitochondria, interfering 129

with complex I function and increasing mitophagy 130

[21]. Thereby, calcium can trigger alpha-synuclein- 131

mediated mitochondrial dysfunction [22, 23]. In 132

keeping with these findings, the N-terminal domain 133

of alpha-synuclein is associated with respiratory 134

chain complex I [24]. Moreover, neuroepithelial stem 135

cells (NESCs) harboring PD-causing SNCA muta- 136
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tions showed reduced mitochondrial function [25].137

In addition, a nonfibrillar, phosphorylated species of138

alpha-synuclein has been shown to target mitochon-139

dria, thereby inducing mitochondrial fragmentation,140

energy deprivation and mitophagy [26]. The role of141

alpha-synuclein at the mitochondria-associated endo-142

plasmic membrane (MAM) will be discussed below143

in a separate section on inter-organellar crosstalk.144

There is also evidence for a role of LRRK2 in145

the regulation of mitochondrial function. Mutations146

in LRRK2 cause the most common and autoso-147

mal dominantly inherited form of monogenic PD148

clinically indistinguishable from IPD [27, 28]. As149

described later in this review, Parkin and PINK1 play150

a well-established role in a common pathway medi-151

ating mitophagy, the process of degrading damaged152

mitochondria. Similarly, LRRK2 is involved in the153

initiation of mitophagy by regulating mitochondrial154

motility [3]. Further evidence for an involvement of155

LRRK2 in mitochondrial clearance comes from our156

own observation of elevated mtDNA deletion lev-157

els specifically in affected LRRK2 mutation carriers,158

implicating mtDNA integrity as potential penetrance159

marker for LRRK2-linked PD [29]. Concerning160

mutations in VPS35, another cause of autosomal161

dominantly inherited PD [30], there is also evidence162

for an association with mitochondrial dysfunction.163

For example, VPS35-mutant fibroblasts exhibited an164

impaired configuration of complex I of the respi-165

ratory chain [31]. In dopaminergic neurons, VPS35166

depletion leads to the accumulation of �-synuclein167

and mitochondrial dysfunction [32]. An additional168

mechanistic link between VPS35 and mitochondria169

was demonstrated when the fission factor dynamin-170

like protein (DLP) 1 emerged as interactor of VPS35171

[33].172

Moreover, the PD-associated protein CHCHD2173

[34] has been found to accumulate in mitochondria174

under the influence of stress [35]. Further studies175

will be needed to shed light on its interaction with176

CHCHD10 [36].177

However, the most compelling evidence for a direct178

link between mitochondria and PD has been estab-179

lished for the autosomal recessively inherited PD180

genes Parkin, PINK1, and DJ-1, as illustrated by181

a PubMed search: Combining “Parkinson’s disease182

AND mitochondria” with any of these three gene183

names results in over 4500 publications in total.184

Interestingly, patients with genetic alterations in the185

mitochondrial disease-associated gene POLG also186

exhibit parkinsonism, albeit a clinically more atypical187

form.

Parkin-linked PD 188

Clinically, biallelic mutations in Parkin cause 189

typical levodopa-responsive PD with early disease 190

onset, slow progression and dystonia as prominent 191

(initial) symptom, while non-motor features like 192

olfactory dysfunction, psychiatric symptoms or cog- 193

nitive impairment are less frequent compared to IPD 194

[17] (Table 1). 195

In 1997, an unidentified gene mapping to chromo- 196

some 6q25.2–27 was initially linked to an autosomal 197

recessive juvenile form of parkinsonism [37]. Shortly 198

thereafter, the sequence of Parkin was unveiled, 199

with subsequent reports furthering its significance 200

for the etiology of PD [38]. To date, more than 201

130 different mutations in Parkin have been docu- 202

mented in about 1000 PD patients [17], making it 203

the most prevalent autosomal recessive form of PD 204

[39]. Parkin is an E3 ubiquitin ligase with established 205

neuroprotective activities. Furthermore, Parkin has an 206

extensive array of putative substrates [40], which can 207

be differentially modified either through mono- or 208

poly-ubiquitination with different patterns of ubiq- 209

uitin lysine linkage. This results in a complex, yet 210

insufficiently characterized array of regulatory nodes 211

associated to this protein. Parkin exerts its function 212

through three independent mechanistic axes [41]: 213

1) enhanced ubiquitination of toxic substrates to be 214

degraded by the proteasome, 2) regulation of cell 215

death pathways through non-degradative ubiquitin 216

signaling, and 3) regulation of mitochondrial quality 217

control through mitophagy and vesicular transport. 218

Although initial reports failed to detect mitochondrial 219

localization of Parkin [42], it is currently established 220

that this protein is intimately related to the regulation 221

of mitochondrial homeostasis. 222

Lys-48-polyubiquitinated Parkin substrates are 223

directed to the proteasomal degradation pathway 224

[43], meaning that Parkin deficiency or inactiva- 225

tion can lead to accumulation of diverse noxious 226

substrates that are normally targeted for degrada- 227

tion. A good example of this is PARIS, a repressor 228

of the master regulator of mitochondrial biogene- 229

sis and respiration, PGC1-� [44], as will be further 230

explained below. The first indisputable evidence for 231

parkin’s involvement in mitochondrial homeostasis 232

arose from the study of Drosophila [45] and mouse 233

[46] parkin–/– models. Remarkably, these fly models 234

exhibited degenerative phenotypes, which consider- 235

ably overlapped with those reported soon thereafter in 236

pink1–/– fly models [47–49], exposing a mechanistic 237

link between parkin, pink1 and mitochondrial qual- 238
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Table 1
Overview of genes particularly associated with mitochondrial dysfunction in Parkinson’s disease and POLG as representative of genetic mitochondrial disease with parkinsonian features

Type of PD Additional reading Median age of Clinical features Frequency and type
onset (range) of mutations

PARK-Parkin (PARK2) MDSGene
https://www.mdsgene.org/d/1/g/4)

31 (3–81) years* Slower disease course, frequent
dystonia (also as presenting
feature), rarely cognitive decline;
Usually responsive to levodopa
treatment.

Relatively common; most common known
cause of early-onset PD. Many private
mutations (>100) including >50%
deletions and duplications (gene dosage
analysis necessary). Autosomal-recessive
inheritance, heterozygous mutations
possible genetic risk factors for PD.

GeneReviews
http://www.ncbi.nlm.nih.gov/
books/NBK1223/

OMIM 600116
PARK-PINK1 (PARK6) MDSGene

https://www.mdsgene.org/d/1/g/5
32 (9–67) years* Clinically very similar to

PARK-Parkin, commonly with
dystonia, rarely cognitive decline
but possibly higher rate of
psychiatric manifestations.
Atypical signs rare. Usually
responsive to levodopa treatment.

Relatively rare; second most common known
cause of early-onset PD. Private mutations
including rare deletions and duplications
(gene dosage analysis necessary).
Autosomal-recessive inheritance,
heterozygous mutations possible genetic
risk factors for PD.

GeneReviews
http://www.ncbi.nlm.nih.gov/
books/NBK1223/

OMIM 605909
PARK-DJ-1 (PARK7) MDSGene

https://www.mdsgene.org/d/1/g/3
27 (15–40) years* Early-onset PD, dystonia as common

feature. Usually responsive to
levodopa treatment.

Extremely rare, about 30 patients with about
20 different disease-causing variants; most
often missense changes, followed by
splice-site mutations and structural
variants and frameshifts.
Autosomal-recessive inheritance.

GeneReviews
https://www.ncbi.nlm.nih.gov/
books/NBK1223/

OMIM 606324
POLG GeneReviews

https://www.ncbi.nlm.nih.gov/
books/NBK26471/

About 40 years, in
some families
earlier.

Diverse phenotypic spectrum with
onset from early infancy to late
adulthood; Parkinsonism as the
most frequent movement disorder
feature associated with POLG
mutations; good response to
levodopa.

More than 300 pathogenic mutations
reported; mtDNA deletions or depletions
as consequence of POLG mutations; no
direct genotype-phenotype correlation;
both autosomal-dominant and -recessive
inheritance reported.OMIM 203700, 613662,

607459, 157640, 258450

*Taken from www.mdsgene.org; table according to [17, 144, and 145]; mtDNA, mitochondrial DNA; MDS, Movement Disorder Society; OMIM, Online Mendelian Inheritance in Man; PINK1,
PTEN-induced kinase 1; POLG, Polymerase gamma.

https://www.mdsgene.org/d/1/g/4
http://www.ncbi.nlm.nih.gov/books/NBK1223/
http://www.ncbi.nlm.nih.gov/books/NBK1223/
https://www.mdsgene.org/d/1/g/5
http://www.ncbi.nlm.nih.gov/books/NBK1223/
http://www.ncbi.nlm.nih.gov/books/NBK1223/
https://www.mdsgene.org/d/1/g/3
https://www.ncbi.nlm.nih.gov/books/NBK1223/
https://www.ncbi.nlm.nih.gov/books/NBK1223/
https://www.ncbi.nlm.nih.gov/books/NBK26471/
https://www.ncbi.nlm.nih.gov/books/NBK26471/
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ity control processes which will be further addressed239

below.240

PINK1-linked PD241

Autosomal recessively inherited mutations in242

PINK1 cause early-onset PD with similar clini-243

cal features as described for PD due to biallelic244

Parkin mutations [17]. However, non-motor symp-245

toms are slightly more frequent in PINK1- compared246

to Parkin-linked PD [17] (Table 1).247

In 2001, a seminal study identified a novel248

locus for autosomal recessive early-onset parkinson-249

ism at chromosome 1p35–p36 [50], which would250

later prove to be PINK1 [51]. PINK1 encodes a251

serine/threonine kinase possessing a mitochondrial252

translocation sequence, which led to the recogni-253

tion of the protein’s involvement in mitochondrial254

function [51]. The kinase activity of PINK1 has255

been shown to be regulated by autophosphorylation256

on specific sites within the kinase domain (Ser228,257

Ser402 and Thr257) [52–54]—a process which is,258

for example, essential for Parkin translocation to the259

mitochondria upon mitochondrial stress [53] (Fig. 1).260

In 2006, a series of reports on pink1-deficient261

Drosophila models exposed the interaction between262

pink1 and parkin [47–49]. Pink1-deficient male263

flies were sterile, exhibited marked degeneration of264

flight muscles and of dopaminergic neurons, and265

displayed altered mitochondrial ultrastructure that266

evidenced malfunction [47–49]. Strikingly, these267

pink1-related phenotypes were consistently repli-268

cated in parkin-deficient flies and could be reversed269

by overexpression of parkin in pink1-deficient flies,270

but not the inverse. These studies set the stage for271

the elucidation of the molecular regulatory path-272

way through which PINK1 and Parkin jointly act to273

warrant mitochondrial quality control. The predom-274

inant model suggests that PINK1 is constitutively275

expressed and translocated to mitochondria [51],276

where it functions as a sensor and tag for mitochon-277

drial depolarization and malfunction [55–57]. Under278

steady-state conditions, PINK1 is readily imported279

into mitochondria through the TOM/TIM complex,280

whereby it is processed by the mitochondrial pro-281

cessing peptidase and cleaved by the PARL protease.282

The released N-terminal-deleted PINK1 fragment is283

ubiquitinated and degraded by the proteasome [56].284

However, under dysfunctional conditions, such as285

loss of the mitochondrial membrane potential, this286

processing of PINK1 is inhibited [55, 58], resulting in287

its stabilization on the outer mitochondrial membrane288

where it phosphorylates diverse substrates (Fig. 1). 289

Relevant at this level is the phosphorylation of ubiqui- 290

tin Ser65 and, particularly, the direct phosphorylation 291

of Parkin on Ser65 in its ubiquitin like domain, 292

which has an allosteric effect [43]. This results in 293

the recruitment and activation of Parkin and initiates 294

the complex process of selective removal of damaged 295

mitochondria through mitophagy [55], which has 296

been thoroughly explained elsewhere [56]. Of note, 297

mutations in the PD-linked kinase LRRK2 interfere 298

with Parkin/PINK1-mediated mitophagy in a kinase 299

activity-dependent manner [59] (Fig. 1). Further link- 300

ing LRRK2 mutations and impaired mitophagy, a 301

recent study demonstrated a Parkin and PINK1- 302

dependent accumulation of RAB10 [60]. 303

Besides mitophagy, the mitochondrial quality con- 304

trol program encompasses other mechanisms for the 305

specific removal of localized damaged mitochon- 306

drial components. This is accomplished by means 307

of mitochondrial-derived vesicles (MDVs), a partic- 308

ular type of vesicular trafficking [61]. MDVs can 309

be generated as a response to stress [62], and can 310

incorporate damaged cargo such as oxidized proteins 311

which might then be eliminated through lysosomal 312

degradation [3, 61]. Here again PINK1 and Parkin 313

seem to serve as instrumental factors for the for- 314

mation of MDVs [63] (Fig. 1). Moreover, the outer 315

mitochondrial membrane protein Miro1, which links 316

mitochondria to microtubule motor proteins during 317

transport, is also a target of the Parkin/PINK1 path- 318

way. Miro1 is degraded during the early stages of 319

mitophagy thereby preventing further movement of 320

dysfunctional mitochondria [64] (Fig. 1). In addition, 321

Miro1 was shown to interact with LRRK2, a func- 322

tion that is hampered by the presence of pathogenic 323

mutations, leading to reduced mitophagy and neu- 324

rodegeneration [65]. 325

The mechanisms through which PINK1 regu- 326

lates mitochondrial homeostasis are not restricted 327

to the aforementioned quality control process. 328

Under steady-state conditions, PINK1 patient- 329

derived fibroblasts and neurons display diminished 330

complex I activity. This dysfunction was correlated 331

to a specific loss of phosphorylation of serine-250 in 332

the complex I subunit NdufA10 secondary to PINK1 333

deficiency [66] (Fig. 1). This is a good example of the 334

complex and multifaceted regulatory process exerted 335

by PINK1, and exposes its diverse range of actions 336

under steady-state and stress conditions. 337

Although mitophagy represents a well-established 338

mechanism in Parkin/PINK1-dependent PD, evi- 339

dence for its role in PD in general is limited. 340
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Fig. 1. Involvement of PINK1 and Parkin in mitochondrial processes. The most investigated function of PTEN-induced putative kinase
1 (PINK1) and Parkin is the initiation of mitophagy. A loss in membrane potential triggers the PINK1-mediated recruitment of the E3
ubiquitin ligase Parkin to mitochondria. At the outer mitochondrial membrane, Parkin ubiquitinates proteins thereby tagging dysfunctional
mitochondria for lysosomal degradation. This process can be inhibited by mutant LRRK2. In addition, both PINK1 and Parkin, in conjunction
with Snx9, are involved in the formation of mitochondria-derived vesicles (MDVs), which can transport cargo such as mitochondrial
damage-associated molecular patterns (mitoDAMPs). After engulfment of MDVs by endosomes, mitochondrial antigens are transported
to the plasma membrane, where they are presented on histocompatibility complex class I (MHC I) molecules. MitoDAMPs can also be
release from mitochondria trough the mitochondrial permeability transition pore (MPTP), which is formed under the control of Parkin – an
interaction partner of the pro-apoptotic protein BCL2-antagonist/killer (BAK). In a PINK1- or Parkin-deficient environment, mitoDAMPs
accumulate extracellularly and trigger cyclic GMP-AMP synthase/stimulator of interferon genes (cGas/STING) inflammatory signaling.
However, the exact release mechanisms of mitoDAMPs and their impact on the interplay of neuronal and glial cells remain to be studied
in human-derived PD models. In addition to its role in mitophagy, Parkin can modulate mitochondrial biogenesis by ubiquitination of
the Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1-�) inhibitor PARIS or by direct interaction with the
mitochondrial transcription factor A (TFAM) at the mtDNA. Moreover, Parkin influences cell cycle progression via its ubiquitination target
TANK-binding kinase 1 (TBK1). By controlling the degradation of the microtubule adaptor protein Miro1, which links kinesin heavy chain
(KHC) to mitochondria, PINK1 and Parkin regulate mitochondrial arrest as a prerequisite for mitochondrial clearance. Finally, there is also
evidence for a direct interaction between PINK1 and respiratory chain complex I. Accordingly, PINK1 influences the activity of complex I
by phosphorylation of its subunit NADH:ubiquinone oxidoreductase subunit A10 (NdufA10). The online image library Servier Medical Art
(http://smart.servier.com/) was used to create this Figure, which is partially based on our previous review [3].

Decreased mitophagy was demonstrated in IPD341

in a few studies on IPD fibroblasts and induced342

pluripotent stem cell (iPSC)-derived neurons [3];343

however, the majority of results concerning genetic344

PD still stem from overexpression models [67].345

Thus, the endogenous role of Parkin and PINK1346

will require further investigation. Moreover, it is347

currently unknown how the genetic lack of these348

proteins specifically causes dopaminergic neurode-349

generation. Given the ubiquitous expression of Parkin350

and PINK1 throughout the body, the absence of more351

wide-spread pathology also remains puzzling. These352

important research questions should be addressed in353

future studies.354

DJ-1-linked PD 355

Mutations in the gene encoding the protein deg- 356

lycase DJ-1 cause autosomal recessive PD [68] 357

(Table 1), but are less common than mutations in 358

Parkin or PINK1. Regarding DJ-1, several mecha- 359

nistic links to impaired mitochondrial function have 360

been described. First, the absence of DJ-1 alters 361

mitochondrial morphology [69]. Moreover, in line 362

with the already mentioned role as ROS scavenger 363

in PD, an association between dopamine oxida- 364

tion, mitochondrial, and lysosomal dysfunction was 365

demonstrated in iPSC-derived neurons with muta- 366

tions or depletion of DJ-1 in human and mice, 367

http://smart.servier.com/
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respectively [70]. In keeping with this finding, also368

alterations in respiratory chain complex integrity369

were described in DJ-1-depleted neuronal cells [71].370

POLG-related parkinsonism371

In 2001, a preliminary study reported an asso-372

ciation between POLG mutations and progressive373

external ophthalmoplegia (PEO) in three different374

Belgian families [72]. Thereafter, POLG mutations375

have been linked to an extraordinarily large set of dis-376

orders comprising a mitochondrial component, such377

as Alpers-Huttenlocher syndrome and, remarkably,378

recessively and dominantly inherited parkinsonism379

[73–75]. Interestingly, rare polymorphic variants of380

POLG have been suggested to pose a risk factor381

for IPD [76–78]. As discussed in the following,382

this hypothesis is supported by the observation of383

enhanced somatic variability in the mitochondrial384

genome of IPD patients. POLG is the only known385

mammalian polymerase present in mitochondria,386

where it integrates the molecular complex responsi-387

ble for mtDNA polymerization [79]. The functional388

complex is composed of a catalytic subunit encoded389

by the nuclear gene POLG and a homodimer acces-390

sory protein encoded by the POLG2 gene [75].391

Adding to its polymerase activity, POLG additionally392

encompasses exonuclease function (which assures393

fidelity of mtDNA replication [80]) and 5’ deoxyri-394

bose phosphate lyase activity. The latter function is395

instrumental for the base excision repair process nec-396

essary to correct oxidative damage to mtDNA [79,397

81]. Overall, the combination of these three enzy-398

matic competencies place POLG as a key player in399

the maintenance of mtDNA homeostasis. Therefore,400

it is not surprising that mutations, which compromise401

POLG function can lead to mitochondria-associated402

disorders including parkinsonism. However, it is403

worth mentioning that POLG-associated Alpers dis-404

ease does not represent the only mitochondrial405

disorder including parkinsonism in its clinical spec-406

trum. For instance, parkinsonism in combination with407

PEO has also been reported in patients with mutations408

in TWNK [82, 83].409

OXIDATIVE STRESS AND MTDNA410

DISINTEGRATION IN PD411

As summarized in the previous sections, multiple412

lines of evidence point towards a role of oxidative413

stress in the pathogenesis of PD. In addition to toxin-414

induced or primary respiratory chain dysfunction, the415

auto-oxidation of dopamine can generate free radi- 416

cals and active quinones [84]. These ROS have the 417

capacity to damage the mitochondrial genome, caus- 418

ing single- and double-strand breaks [85]. The 16,569 419

bp-long circular mtDNA codes for few but critical 420

subunits of the respiratory chain complexes I, III, 421

IV, and V. When nicks in the mtDNA are repaired 422

inefficiently, mtDNA point and deletion mutations 423

develop [86]. To protect the mtDNA from oxidative 424

insults, it is packaged in nucleoids by the mitochon- 425

drial transcription factor A (TFAM) [87]. By contrast, 426

in dopaminergic neurons from IPD patients, TFAM 427

deficiency has been observed [88, 89], suggesting an 428

enhanced exposure of the mitochondrial genome to 429

ROS. 430

Transmitochondrial cytoplasmic hybrid (or short 431

cybrid) studies first implicated mtDNA alterations 432

in the pathogenesis of PD. In these experiments, 433

cybrids were created by fusing mature platelets 434

(which naturally lack nuclei) from PD patients with 435

mtDNA-depleted control cells. Introducing patient 436

mtDNA into a control nuclear background sufficed 437

to recapitulate PD-associated mitochondrial pheno- 438

types in the receiving cells [3]. While there is 439

currently no evidence to suggest a role for inher- 440

ited mtDNA mutations in PD [3], somatic alterations 441

in the mitochondrial genome are likely part of the 442

disease process [90]. Investigating the mitochondrial 443

genome in single postmortem substantia nigra neu- 444

rons revealed mtDNA copy number depletion and an 445

accumulation of major arc deletions in IPD patients 446

[88, 91, 92]. Moreover, polygenic risk score analyses 447

of whole exome sequences from large IPD cohorts 448

showed increased genetic variation in the mtDNA 449

maintenance pathway [93]. 450

With regard to genetic PD, an additional area of 451

action of Parkin, besides the regulation of mitophagy, 452

lies in the control of mitochondrial biogenesis. A 453

series of studies in mice, drosophila and cell lines 454

showed that the degradation of PARIS, a repressor 455

of PPARGC1A expression, is mediated by Parkin. 456

In this manner, Parkin controls the PGC-1�-induced 457

transcription of nuclear-encoded mitochondrial pro- 458

teins [44, 94, 95]. However, this finding still awaits 459

confirmation in endogenous PD patient-derived cells. 460

In addition, there is evidence that Parkin’s mito- 461

chondrial biogenesis-modulating effect extends to the 462

mitochondrial genome. As PGC-1� was identified 463

as an interactor of the mitochondrial transcription 464

factor A (TFAM) [96], Parkin could convey its 465

action on the mitochondrial genome in an indirect 466

fashion. In addition, in vivo and in vitro immunopre- 467
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cipitation analyses identified a direct association of468

Parkin with the mitochondrial genome and TFAM469

[97, 98]. By binding to the transcription factor in470

the mitochondrial D-loop region, Parkin may cat-471

alyze (multiple) mono-ubiquitylation [99] of TFAM472

thereby modulating mtDNA gene expression. Fur-473

ther supporting an involvement of Parkin in mtDNA474

maintenance, crossing parkin knockout mice with475

“mutator” mice that harbor a proof reading-deficient476

version of mitochondrial polg revealed 1) an increase477

in pathogenic mtDNA mutations, 2) enhanced loss478

of nigral tyrosine hydroxylase-positive neurons, and479

3) motor deficits in the double-mutant animals480

[100]. These results highlight the protective action481

of Parkin against mtDNA mutagenic stress —a482

role which is likely intertwined with the protein’s483

newly identified function in inflammatory signaling.484

Inflammation triggered by mitochondrial damage485

associated molecular patterns (DAMPs) as emerging486

topic in PD research will be discussed in more detail487

in the following section.488

MITOCHONDRIAL DAMAGE-INDUCED489

INFLAMMATION IN PD490

First results suggesting a link between TFAM491

shedding, mtDNA release and inflammation came492

from fundamental studies outside of PD research.493

In mouse embryonic fibroblasts (MEFs), a heterozy-494

gous tfam knockout was employed to genetically495

induce mtDNA stress [101]. Aberrant packaging of496

the mitochondrial genome due to tfam deficiency497

led to the escape of mtDNA from the mitochondria.498

In the cytosol, mtDNA can act as DAMP pro-499

moting cGAS/STING inflammatory signaling [101].500

During apoptosis, mitochondrial DAMPs can be501

released through the mitochondrial permeability tran-502

sition pore. The formation of BAK/BAX [102]503

or VDAC macropores [103] at the outer mito-504

chondrial membrane has been shown to facilitate505

mitochondrial herniation and subsequent mtDNA506

efflux. Interestingly, the PD protein Parkin can ubiq-507

uitinate BAK thereby suppressing pore formation508

[104], cytochrome c release and consequent apopto-509

sis induction [105, 106] to ensure efficient clearance510

of damaged mitochondria, which could otherwise511

trigger inflammation. A specific role for Parkin and512

PINK1 in mitochondrial damage-induced inflam-513

mation was further supported by a recent study514

in the above-mentioned parkin knockout “mutator”515

mouse model. The accumulation of mtDNA alter-516

ations in the parkin null background, was shown 517

to increase the serum levels of circulating cell-free 518

mtDNA (ccf mtDNA) and of various cytokines. By 519

contrast, depleting stimulator of interferon genes 520

(STING), which regulates the activation of the DNA 521

inflammasome, sufficed to rescue the degeneration of 522

dopaminergic neurons and a motor impairment pre- 523

viously observed in these animals, suggesting that 524

these phenotypes are the result of inflammatory pro- 525

cesses [107]. In a trial experiment as part of this study, 526

we could also show upregulated inflammatory pro- 527

files in a small number of PD patients with Parkin 528

mutations [107]. Moreover, Parkin/PINK1 have been 529

shown to modulate cell cycle progression via the 530

downstream target of the cyclic GMP-AMP synthase 531

(cGAS)/STING pathway, TANK-binding kinase 1 532

(TBK1), at damaged mitochondria. Mitochondrially 533

localized TBK1 is sequestered by Parkin/PINK1 dur- 534

ing mitophagy, leading to a block in mitosis. By 535

contrast, loss of Parkin or PINK1 accelerated cellular 536

proliferation in mice [108]. While also NOD-, LRR- 537

and pyrin domain-containing protein 3 (NLRP3) 538

has been identified as a target of cGas/STING 539

signaling [109], the inflammasome can equally 540

be activated directly by mitochondrial dysfunction 541

and elevated ROS [110]. Treatment of lipopolysac- 542

charide (LPS)-primed mouse microglia with the 543

mitochondrial complex I inhibitor rotenone induced 544

NLRP3 activation, ASC (apoptosis-associated speck- 545

like protein containing a CARD domain) speck 546

formation and pro-interleukin-1� processing in a 547

concentration-dependent manner [111]. Moreover, 548

enhanced Parkin-mediated ER-mitochondrial tether- 549

ing and subsequent mitochondrial calcium overload 550

[112] as well as blockage of mitophagy [113] have 551

been reported to trigger NLRP3 inflammasome acti- 552

vation. 553

In addition to their role in innate immunity, Parkin 554

and PINK1 may also be involved in the control 555

of the adaptive immune response. In mice lacking 556

parkin or pink1, treatment with the bacteria-derived 557

endotoxin LPS [114] or an intestinal infection with 558

gram-negative bacteria [115] induced the forma- 559

tion of MDVs [63], which transport mitochondrial 560

antigens to the plasma membrane, where they are 561

presented on major histocompatibility complex class 562

I (MHC I) molecules [114, 115]. Both processes, 563

MDV induction and mitochondrial antigen presen- 564

tation (mitAP), are depending on Sorting nexin 9 565

(Snx9), the cellular abundance of which is regulated 566

by Parkin in a proteasome-dependent manner [114]. 567

Taken together, these findings suggest that Parkin and 568
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PINK1 are critically involved in the orchestration of569

mitophagy induction, immune surveillance and cell570

cycle control in the context of PD.571

CROSSTALK BETWEEN572

MITOCHONDRIA, LYSOSOMES AND ER573

AND ITS IMPACT ON CALCIUM574

HOMEOSTASIS575

Multiple lines of evidence suggest that impaired576

lysosomal degradation causes an accumulation of577

dysfunctional mitochondria in PD [3]. Mutations578

in LRRK2 [116] and SNCA [117] have been579

demonstrated to interfere with lysosomal pathways.580

Furthermore, in DJ-1-mutant iPSC-derived neurons,581

mitochondrial stress was shown to trigger oxidized582

dopamine accumulation, which in turn led to lysoso-583

mal dysfunction, and eventually the accumulation of584

alpha-synuclein [70].585

In addition to the crosstalk between lysosomes586

and mitochondria, the ER is involved in the inter-587

organellar communication in PD. Alterations of the588

MAM have been described in different PD models589

[118]. Exemplarily, alpha-synuclein can be found at590

the MAM, and pathogenic mutations in SNCA lead591

to increased mitochondrial fragmentation [119].592

Furthermore, calcium homeostasis depends on a593

well-orchestrated signalling between mitochondria,594

the lysosome and the ER. In SNCA overexpression595

models and patient-derived neurons with a triplica-596

tion mutation, a reduced connection between ER and597

mitochondria leads to a calcium-dependent decrease598

in ATP production [120]. However, also Parkin [121],599

PINK1 and LRRK2 [122], as well as DJ-1 [123] may600

function in calcium-related pathways.601

Emphasizing the role of calcium homeostasis in602

PD, research demonstrated that isradipine, a calcium603

channel antagonist, protects dopaminergic neurons604

[124] by lowering mitochondrial oxidative stress and605

by reducing mitochondrial turn over and mass [125].606

IMPLICATIONS FOR GENETIC TESTING607

AND POTENTIAL THERAPEUTIC608

OPTIONS TO AMELIORATE609

MITOCHONDRIAL FUNCTION IN PD610

Currently, only genetic testing allows identifying611

patients with probable mitochondrial dysfunction by612

detection of variants in genes associated with mito-613

chondrial pathways. Nevertheless, at present, only a614

minority of PD patients undergo genetic testing.615

A variety of drugs are used in clinical practice 616

to treat PD, mostly by increasing dopamine levels 617

in the midbrain [126]. However, these approaches 618

only allow for symptomatic treatment, and no neuro- 619

protective effect has been demonstrated with any of 620

the drugs approved to date. Such disease-modifying 621

treatment options are urgently needed as neurode- 622

generation progresses during the disease course, and 623

symptomatic treatment is not able to prevent severe 624

disability and a significant decrease in the quality of 625

life in later disease stages [127]. 626

Various therapeutic approaches focus on a pos- 627

sible mitochondrial etiology of PD: First, several 628

approaches target the presence of ROS. Although 629

positive effects were observed with various sub- 630

stances in vitro and in vivo in animal models, only 631

the antioxidant substance MitoQ that was reported 632

to protect dopaminergic neurons in 6-OHDA-treated 633

mice [128] reached the testing in clinical trials. Unfor- 634

tunately, there was no evidence for neuroprotection 635

in PD patients [129]. 636

Second, approaches with mitochondrial enhancers, 637

i.e., substances that generally improve the func- 638

tion of mitochondria, were investigated. Particularly 639

noteworthy in this context are studies in which PD 640

patients were treated with coenzyme Q10 in ran- 641

domized double-blinded trials [130]. However, no 642

effect of coenzyme Q10 administration on neuropro- 643

tection was demonstrated in genetically non-stratified 644

patients. Thus, current approaches are based on the 645

assumption that only a subset of PD patients, namely 646

such suffering from a “mitochondrial form of PD”, 647

may benefit from therapy with coenzyme Q10. For 648

this, patients with autosomal recessively inherited PD 649

due to mutations in Parkin and PINK1 could serve as 650

“positive controls”. A current clinical investigator- 651

initiated study based on this principle divides IPD 652

patients using a genomic approach into patients 653

with high and low probability of mitochondrial dys- 654

function due to the presence of a polygenic risk 655

score composed of mitochondrially associated sin- 656

gle nucleotide polymorphisms (SNPs) [131]. Another 657

potential mitochondrial enhancer is vitamin K2. This 658

substance represents, as well as Coenzyme Q10, a 659

dietary supplement. In Drosophila, vitamin K2 has 660

a strong effect on rescuing motor disturbances in 661

pink1 knockout flies [132]. However, studies failed to 662

demonstrate a role for this compound as an electron 663

carrier in mammalian cells [133, 134]. 664

Besides the mentioned established “mitochondrial 665

enhancers”, there are novel compounds that have the 666

potential to ameliorate mitochondrial function in PD 667
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patients. For example, a study testing the potential of668

the neo-substrate kinetin triphosphate (KTP) demon-669

strated an increase in the kinase activity of mutant670

PINK1 in cell culture experiments [135], warranting671

further tests in PINK1 animal models.672

Third, selective MAO-B inhibitors like selegiline673

and rasagiline represent a group of drugs approved674

for PD treatment, which show possible evidence675

for a neuroprotective effect. As described earlier,676

MAO-B is responsible for the processing of MPTP677

to MPP+, and, therefore, inhibition of this enzyme678

might reduce oxidative stress. Early after the descrip-679

tion of selegiline, findings from animal models680

suggested a neuroprotective effect [7, 136] and a681

clinical trial was initiated investigating the effects682

of selegiline as well as of tocopherol (vitamin E).683

Here, the so-called DATATOP study suggested a684

disease-modifying effect of selegiline but not of toco-685

pherol in early stages of PD [137]. However, as686

selegiline also exhibited symptomatic effects increas-687

ing levodopa levels, its neuroprotective effect was688

questioned. Later, the ADAGIO trial investigated the689

newer MAO-B inhibitor rasagiline and suggested690

neuroprotective features in low-dose administration.691

Surprisingly, this effect was absent at a higher692

dose [138]. Together, the disease-modifying effect693

of selective MAO-B inhibitors remains controversial694

[139]. Furthermore, targeting the interplay between695

mitochondrial pathways and calcium homeostasis,696

a clinical trial investigated the calcium channel697

antagonist isradipine. However, no beneficial effects698

on motor and non-motor features of PD could be699

observed [140].700

In the context of monogenic PD, the function701

of the encoded proteins provides a potential start-702

ing point for gene-specific therapies [141]. Finally,703

new treatment options might result from the cur-704

rently discovered mechanistic relationship between705

(monogenic) PD and inflammation [107]. In keep-706

ing with this notion, the intake of ibuprofen was707

found to reduce the risk of developing PD [142, 143].708

However, further clarification is needed whether709

inflammation contributes to neurodegeneration in710

PD, or is instead a consequence of neuronal loss.711

CONCLUSION AND OUTLOOK712

Mitochondrial dysfunction represents a well-713

established mechanism in the pathogenesis of both714

idiopathic as well as monogenic PD. In recent years,715

investigating monogenic PD has decisively con-716

tributed to the clarification of impaired mitochondrial 717

pathways in the sporadic disease. In light of the mani- 718

fold literature on this topic, it is tempting to speculate 719

that several of the above-mentioned PD proteins form 720

a pathophysiological network surrounding mitochon- 721

dria. Alterations at any point of this network may 722

contribute to the disease, although the exact mech- 723

anisms orchestrating this interplay are still not fully 724

understood. 725

Despite our advances in basic PD research, clin- 726

ical trials targeting mitochondrial dysfunction and 727

oxidative stress have not demonstrated significant 728

beneficial effects to date. Of note, however, patients 729

have not yet been stratified according to the etiol- 730

ogy of disease in previous trials. In the meantime, 731

different etiologic subtypes of PD have emerged. 732

Stratification approaches, according to such specific 733

subtypes of the disease, are currently being developed 734

and incorporated into trial designs [131]. 735

Most recently, a link between immunologic alter- 736

ations and mitochondrial dysfunction in autosomal 737

recessively inherited monogenic PD has been demon- 738

strated [107]. However, evidence that inflammation 739

causes neurodegeneration is limited thus far, and 740

the role of immunity in PD needs further eluci- 741

dation. Regarding monogenic PD in general, first 742

gene-specific therapies allowing personalized treat- 743

ment are already undergoing clinical trials. Together, 744

further in-depth investigation along with biomarker 745

establishment of a “mitochondrial subtype” of PD 746

represents a promising approach to arrive at a more 747

individualized treatment even of IPD patients. In the 748

future, continuous efforts in both basic and clinical 749

research with a fast translation of new insights into 750

clinical practice have the potential to lead to new 751

therapeutic approaches in “mitochondrial PD”. 752
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